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Abstract

For a sample of size n from a random discrete distribution P on the real line
R, S1 denotes the number of observations which occur only once, S2 the number
of observations which occur exactly twice, ... , and so on. Let On(S

(n)) be the
order of the random partition S(n) = (S1, · · · , Sn) of the positive integer n. In
case P has the Dirichlet process, that is, S(n) has the Ewens sampling formula,
Aratia and Tavaré (1992) shows the asymptotic normality of logOn(S

(n)), which
is an extension of Erdős and Turán (1967). Barbour and Tavaré (1994) gives the
rate of convergence. In case P has the mixture of Dirichlet processes, we give the
asymptotic distribution of logOn(S

(n)) and the rate of its convergence.

Key Words and Phrases: Erdős-Turán law, mixture of Dirichlet processes, order of partition,

random partition, smoothing lemma.

1. Introduction

Let G0 be a continuous distribution on the real line R and θ be a positive constant.
Let B be the σ-field which consists of the subsets of R. Let the random distribution P

have the Dirichlet process D(θG0) on (R, B) with parameter θG0. Let Vj (j = 1, 2, . . .)
be a sequence of independent and identically distributed (i.i.d.) random variables with
the distribution G0, and Wj(j = 1, 2, . . .) be a sequence of i.i.d. random variables
with the beta distribution Be(1, θ). We assume that V1, V2, · · · and W1,W2, · · · are
independent. We put p1 = W1 and pj = Wj(1−W1) · · · (1−Wj−1) (j = 2, 3, · · · ). Then,
we can write P(B) =

∑∞
j=1 pjδVj (B) for any B ∈ B, where δV (B) = 1 if V ∈ B and 0

otherwise (Sethuraman (1994)). Thus P (∈ D(θG0)) is discrete almost surely (a.s.).
For a sample of size n from P havingD(θG0), S1 denotes the number of observations

which occur only once, S2 the number of observations which occur exactly twice, ..., and
Sn the number of observations which occur exactly n times. S(n) = (S1, · · · , Sn), which
satisfies

∑n
j=1 jSj = n, gives the random partition of the integer n. S(n) has the well-

known Ewens sampling formula, whose distribution depends on θ and does not depend
on G0 (see, for example, Antoniak (1974; Prop. 3) and Johnson et al. (1997; Sec. 2 of
Chap. 41)).

In this paper, we consider the order On(S
(n)) of the random partition S(n) =

(S1, · · · , Sn), which is given by

On(S
(n)) = l.c.m.{ j : Sj > 0 ( j = 1, 2, · · · , n) },
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where l.c.m. represents the least common multiple. For the Dirichlet process, that is,
for the Ewens sampling formula, Arratia and Tavaré (1992) shows

logOn(S
(n))− θ

2 log
2 n√

θ
3 log

3 n

d−→ N(0, 1) as n → ∞,

where
d−→ means the convergence in distribution. Especially, the case of θ = 1 (random

permutation) is well-known as Erdős-Turán law (Erdős and Turán (1967)). Gnedin et
al. (2012) extends the asymptotic normality of logOn for sampling from stick-breaking
partition of the interval [0, 1], which includes the case of the Ewens sampling formula.

Barbour and Tavaré (1994) gives the rate of the above convergence, which is

sup
−∞<x<∞

∣∣∣∣P[{θ

3
log3 n

}−1/2(
logOn(S

(n))− θ

2
log2 n+ θ log n log log n

)
≤ x

]
−Φ(x)

∣∣∣∣
= O

(
1

log1/2 n

)
, (1)

where Φ(x) is the standard normal distribution function.

Hereafter, in this paper, we consider θ as a positive random variable having a
distribution γ. Given θ, let the random discrete distribution P have the Dirichlet process
D(θG0) on (R, B) with parameter θG0. Then this random discrete (a.s.) distribution P

has the mixture of Dirichlet processes D(θG0) with the mixing distribution γ (Antoniak
(1974)). Concerning the random partition based on the sample, the relation between the
Dirichlet process and the mixture of Dirichlet processes is equivalent to (ii) of Theorem
12 of Gnedin and Pitman (2006) which is the characterization of the random partition
which are consistent and exchangeable.

For the random partition S(n) = (S1, · · · , Sn) of the integer n, based on a sample of
size n from the mixture of Dirichlet processes D(θG0) with the mixing distribution γ, we
consider its order On(S

(n)). In the next section 2, we give the asymptotic distribution
of logOn(S

(n)) and its rate of the convergence, which are our main results. In addition,
in the section 2 we give the outline of the proof for the main results. In the section 3
we give the proof in detail.

2. Asymptotic distribution of logOn(S
(n))

We assume that the distribution γ of the positive random variable θ has the
bounded density, and Eγ denotes the expectation with respect to γ. W assume Eγ(θe

c0θ)
< ∞, where c0 is a positive constant such that 0 < c0 ≤ 0.41. Then, since θ is the positive
random variable, we have Eγθ

2 < ∞. We put γ∗(x) = γ(2x), which is the distribution
function of θ/2. The distribution γ∗(x) has also the bounded density.

Theorem 2.1. Asymptotically it holds that

logOn(S
(n))

log2 n

d−→ θ

2
as n → ∞.
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The rate of the convergence is

sup
−∞<x<∞

∣∣∣∣P(
logOn(S

(n))

log2 n
≤ x

)
− γ∗(x)

∣∣∣∣ = O

(
1

log1/3 n

)
. (2)

The assumptions about θ (γ) are satisfied by the following distributions: (1) The
distribution whose support is finite and has the bounded density. (2) The Rayleigh
distribution whose density is given by g(x) = (x/b2) exp(−x2/2b2) (x > 0; b > 0). (3)
The half-normal distribution whose density given by g(x) =

√
2/(

√
πσ) exp[−x2/(2σ2]

(x > 0; σ > 0). (4) The gamma distribution whose density is given by g(x) =
(x/b)c−1e−x/b/bΓ(c) (x > 0; 1/c0 > b > 0, c > 0).

Given θ, let random variables Bj (j = 1, 2, · · · ) be independent and take the value
0,1 with the probabilities given by

P (Bj = 0) =
j − 1

θ + j − 1
, P (Bj = 1) =

θ

θ + j − 1
(j = 1, 2, · · · ).

For j = 1, 2, · · · and m = 0, 1, 2, · · · , we let

Zjm =
∞∑

i=m+1

Bi(1−Bi+1) · · · (1−Bi+j−1)Bi+j .

We put Yn = Z1n + Z2n + · · · + Znn, and Z(n) = (Z1, · · · , Zn), where Zj = Zj0 (j =
1, 2, · · · ). Then, the following lemma holds.

Lemma 2.2. (Arratia and Tavaré (1992), Theorem 1) Given θ, the random partition
S(n) = (S1, · · · , Sn) of n based on a mixture of Dirichlet processes is expressed by the
following equivalent form such that

Sj =

n−j∑
i=1

Bi(1−Bi+1) · · · (1−Bi+j−1)Bi+j +Bn−j+1(1−Bn−j+2) · · · (1−Bn)

for each j = 1, 2, · · · , n. Given θ, Z1, · · · , Zn are independent and Zj has Poisson
distribution with mean θ/j (j = 1, · · · , n).

For Sj of Lemma 2.2, for example,

S1 = B1B2 +B2B3 + · · ·+Bn−1Bn +Bn

is the number of components of size 1 for the partition of n.

S2 = B1(1−B2)B3 +B2(1−B3)B4 + · · ·+Bn−2(1−Bn−1)Bn +Bn−1(1−Bn)

is the number of components of size 2 for the partition of n.

For Z(n) = (Z1, · · · , Zn), we put

On(Z
(n)) = l.c.m.{ j : Zj > 0 (j = 1, 2, · · · , n) }, Tn(Z

(n)) =

n∏
j=1

jZj

and
µn(θ) = E

[
log Tn

(
Z(n)

)
− logOn

(
Z(n)

) ∣∣ θ ].
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We put

S∗
1n =

log Tn(Z
(n))

log2 n
, S∗

2n =
logOn(Z

(n)) + µn(θ)

log2 n
and S∗

3n =
logOn(S

(n))

log2 n
.

For S∗
1n, we have the following proposition whose proof is given in the next section.

Proposition 2.3. S∗
1n converges in distribution to γ∗ and its rate is given by

sup
−∞<x<∞

∣∣∣P (S∗
1n ≤ x)− γ∗(x)

∣∣∣ = O

(
1

log1/3 n

)
. (3)

In order to evaluate the probabilities P (S∗
2n ≤ x) and P (S∗

3n ≤ x) based on this propo-
sition, we need the folling lemma.

Lemma 2.4. Let H be a distribution function, which has the density and H ′(x) ≤ ξ
for a positive constant ξ. Let U be a random variable satisfying sup−∞<x<∞ |P (U ≤
x)−H(x)| ≤ η. Then for any random variable X and any ϵ > 0

sup
−∞<x<∞

|P (U +X ≤ x)−H(x)| ≤ η + ϵξ + P (|X| > ϵ). (4)

The lemma 2.4 is easily proved by the equation (1.20) of Petrov (1995). Using the
relation (4) to S∗

2n = S∗
1n + (S∗

2n − S∗
1n) with (3), we obtain the following lemma 2.5.

The detail is given in the next section.

Lemma 2.5. S∗
2n converges in distribution to γ∗ and its rate is given by

sup
−∞<x<∞

|P (S∗
2n ≤ x)− γ∗(x)| = O

(
1

log1/3 n

)
. (5)

Using the relation (4) to S∗
3n = S∗

2n + (S∗
2n − S∗

3n) with (5), we obtain the following
lemma 2.6. The detail is given in the next section.

Lemma 2.6. S∗
3n converges in distribution to γ∗ and its rate is given by

sup
−∞<x<∞

|P (S∗
3n ≤ x)− γ∗(x)| = O

(
1

log1/3 n

)
. (6)

Thus the lemma 2.6 yields the theorem 2.1.

3. Appendix

To prove the proposition 2.3, we use the smoothing lemma (see, for example, Petrov
(1995; Theorem 5.1)).

Lemma 3.1. (smoothing lemma) Let F (x) and G(x) be distribution functions with
the characteristic functions f(t) and g(t), respectively. Suppose that G(x) has a bounded
derivative on the real line, so that supx G

′(x) ≤ K. Then for every T > 0 and every
b(> 1/2π) we have

sup
−∞<x<∞

|F (x)−G(x)| ≤ b

∫ T

−T

∣∣∣f(t)− g(t)

t

∣∣∣dt+ c(b)
K

T
,

where c(b) is a positive constant depending only on b.
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Proof of Proposition 2.3 We put

Fn(x) = P (S∗
1n ≤ x) = P

(
log Tn(Z

(n))

log2 n
≤ x

)
and let the characteristic functions of the distribution functions Fn and γ∗ be fn(t) and
g(t), respectively. We have

log Tn(Z
(n)) =

n∑
j=1

Zj log j

and given θ, Z1, Z2, · · · are independent, and Zj has Poisson distribution P (θ/j) for
j = 1, 2, · · · . Therefore we obtain

E[eit log Tn(Z
(n))|θ] = exp

{
θ

n∑
j=1

1

j
(eit log j − 1)

}
and therefore,

fn(t) = Eγ

[
E[e

i t
log2 n

log Tn(Z
(n))|θ]

]
= Eγ exp

{
θ

n∑
j=1

1

j
(e

it log j

log2 n − 1)

}
.

Since g(t) = Eγ exp{iθt/2}, we have

fn(t)− g(t) = Eγe
i θt

2

[
exp

{
θ

n∑
j=1

1

j
(e

it log j

log2 n − 1)− i
θt

2

}
− 1

]
.

Thus we obtain

|fn(t)− g(t)| ≤ Eγ

∣∣∣∣ exp θ{ n∑
j=1

1

j
(e

it log j

log2 n − 1)− it

2

}
− 1

∣∣∣∣ ≤ I1 + I2, (7)

where I1 and I2 are given by

I1 = Eγ

∣∣∣∣ exp θ{ n∑
j=1

1

j
(e

it log j

log2 n − 1)− it

2

}
− exp θ

{
i

t

log2 n

n∑
j=1

log j

j
− it

2

}∣∣∣∣,
I2 = Eγ

∣∣∣∣ exp iθt{ 1

log2 n

n∑
j=1

log j

j
− 1

2

}
− 1

∣∣∣∣.
At first, we evaluate I2. Using the inequality |eiη − 1| ≤ |η|, we have

I2 ≤ Eγ

{
θ|t|

∣∣∣∣ 1

log2 n

n∑
j=1

log j

j
− 1

2

∣∣∣∣} ≤ Eγ(θ)|t|
c3

log2 n
, (8)

where c3 is a positive constant. Next, we evaluate I1. We have

I1 = Eγ

∣∣∣∣∣ exp iθ
{

t

log2 n

n∑
j=1

log j

j
− t

2

}

×
[
exp θ

{ n∑
j=1

1

j
(e

it log j

log2 n − 1)− i
t

log2 n

n∑
j=1

log j

j

}
− 1

]∣∣∣∣∣ ≤ Eγ

∣∣ exp(θJ)− 1
∣∣, (9)
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where

J =
n∑

j=1

1

j
(e

it log j

log2 n − 1)− i
t

log2 n

n∑
j=1

log j

j
=

n∑
j=1

1

j

(
e
it log j

log2 n − it log j

log2 n
− 1

)
.

Applying the inequality | exp(iη)− 1− iη| ≤ 1
2η

2 (−∞ < η < ∞) to the parentheses of
the right-hand side of the above, we have

∣∣J∣∣ ≤ t2

2 log n
× 1

log3 n

n∑
j=1

log2 j

j
.

∑n
j=1[log

2 j/j]
/
log3 n is monotone decreasing and converges to 1/3 as n → ∞. It takes

the maximum at n = 2, which is smaller than 0.722. Thus we obtain

∣∣J∣∣ ≤ 0.361
t2

log n
.

Using the above inequality and the inequality |ew−1| ≤ |w|e|w| for any complex number
w to (9), we obtain

I1 ≤ Eγ

{
0.361θ

t2

log n
exp

[
θ

0.361

log1/3 n

( t

log1/3 n

)2
]}

.

We note 0.361/ log1/3 n < c0 with c0 = 0.41. For |t| ≤ log1/3 n, under the assumption of
E(θec0θ) < ∞, we have ∣∣∣∣I1t

∣∣∣∣ = O

(
1

log2/3

)
. (10)

With respect to I2, by (8) we have∣∣∣∣I2t
∣∣∣∣ = O

(
1

log2 n

)
, (11)

Using (10) and (11) to (7), for 0 ≤ t ≤ log1/3 n, we obtain∣∣∣∣fn(t)− g(t)

t

∣∣∣∣ = O
( 1

log2/3 n

)
. (12)

Using the lemma 3.1 with T = log1/3 n, and Fn and γ∗ instead of F and G, respectively,
by (7) we obtain

sup
−∞<x<∞

|Fn(x)− γ∗(x)| = O
( 1

log1/3 n

)
,

which yields (3). 2

We have
∑n

j=1[log
2 j/j]

/
log3 n < 0.38 for n ≥ 6. If we take n greater than 5,

we have (10) under the the assumption of E(θec0θ) < ∞ with c0 = 0.16. We have∑n
j=1[log

2 j/j]
/
log3 n < 0.35 for n ≥ 12. If we take n greater than 11, we have (10)

under the the assumption of E(θec0θ) < ∞ with c0 = 0.13. As concerns the condition
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E(θec0θ) < ∞, the larger n we neglect, and the smaller positive constant c0 is sufficient.

Proof of Lemma 2.5 With respect to the difference between S∗
1n and S∗

2n, for
any ϵ > 0, we have

P (|S∗
1n − S∗

2n| > ϵ | θ) = P

(∣∣∣∣ logOn(Z
(n)) + µn(θ)

log2 n
− log Tn(Z

(n))

log2 n

∣∣∣∣ > ϵ

∣∣∣∣ θ)
= P

(∣∣∣ log Tn(Z
(n))− logOn(Z

(n))− µn(θ))
∣∣∣ > ϵ log2 n

∣∣∣ θ ). (13)

By the proposition 2.3 and its proof of Barbour and Tavaré (1994), it holds that

P

(∣∣∣ log Tn(Z
(n))− logOn(Z

(n))−µn(θ))
∣∣∣ > ϵ log2 n

∣∣∣θ) = θc1n+θ2c2n for ∀ϵ > 0 (14)

where c1n = O
(
(log log n)2)/ log n

)
and c2n = O(1/ log n). Therefore, under the condi-

tion Eγθ
2 < ∞, by (13) and (14) we have

P (|S∗
1n − S∗

2n| > ϵ) = O

(
(log log n)2

log n

)
(15)

for any ϵ > 0. We use the relation (4) by taking U = S∗
1n, X = S∗

2n − S∗
1n, H = γ∗,

η = O(1/ log1/3 n), and ϵ = O(1/ log1/3 n). By the relation (3) and (15), we obtain

sup
−∞<x<∞

|P (S∗
2n ≤ x)− γ∗(x)| = O

(
1

log1/3 n

)
. (16)

Proof of Lemma 2.6 By the relation (2.1) and (2.2) of Barbour and Tavaré (1994),
we have

|S∗
2n − S∗

3n| =
∣∣∣∣ logOn(Z

(n))− logOn(S
(n))

log2 n

∣∣∣∣ ≤ Y, given θ (17)

where Y = (Yn + 1)/ log n and E(Yn) = Eγ(E(Yn|θ)) ≤ Eγθ
2. Thus, by (17) we have

P (|S∗
2n − S∗

3n| > ϵ) ≤ P (|Y | > ϵ) ≤ 1 + Eγθ
2

ϵ log n
for ∀ϵ > 0. (18)

We use the relation (4) by taking U = S∗
2n, X = S∗

3n −S∗
2n, H = γ∗, η = O(1/ log1/3 n),

and ϵ = O(1/ log2/3 n). By the relation (16) and (18), we obtain

sup
−∞<x<∞

|P (S∗
3n ≤ x)− γ∗(x)| = O

(
1

log1/3 n

)
. (19)

The rate of convergence given by (2) is less than (1). Further work is desirable for
the better rate of convergence of (2).
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Comput., 3, 167–176.
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law for the order of random permutation. Combin. Probab. Comput., 21, 715–733.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete multivariate distribu-
tions. New York: John Wiley & Sons.

Petrov, V. (1995). Limit theorems of probability theory. New York : Oxford Univ. Press.

Sethuraman, J (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4,
639–650.

Received March 25, 2013
Revised October 1, 2013


