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By

Takuto Yamashita∗ and Takashi Yanagawa†

Abstract

An alternative to the Satterswaite-Welch degrees of freedom (df) is developed
in this paper based on unbiased estimating equations. The method enables us
to evaluate the impact of sample variation due to using estimated df instead of
the true df by computer intensive method. It is shown by simulation that the
alternative df is close to the Welch df and the method developed could be also
used for evaluating the impact of sample variation due to using estimated df in the
Welch test.

Key Words and Phrases: Behrens-Fisher problem, heterogeneity of population variances, Sat-

terswaite test, Student t-test, Welch test

1. Introduction

We express the intention of this paper in a framework of two-sample problem. Let
Xi1, Xi2, . . . , Ximi be a random sample from a population with normal distribution N(µi,
σ2
i ), i = 1, 2. We consider statistical test for testing H0: µ1 = µ2 against H1: µ1 ̸= µ2.

If population variances are homogeneous, routine practice is to apply the Student t-test.
The test is based on statistic

Tp = (X̄1 − X̄2) / Sp

√
1

m1
+

1

m2
,

where Sp is a pooled estimator of σ = σ1 = σ2 defined by

S2
p =

1

m1 +m2 − 2

(m1∑
j=1

(X1j − X̄1)
2 +

m2∑
j=1

(X2j − X̄2)
2

)
.

Tp follows a t-distribution with (m1 + m2 − 2) degree of freedom (df) under H0. If
σ1 ̸= σ2, Tp does not follow a t-distribution. A reasonable alternative is to employ
statistic

T = (X̄1 − X̄2) /

√
S2
1

m1
+

S2
2

m2
,
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where S2
i is the group sample variance given by

S2
i =

1

mi − 1

mi∑
j=1

(Xij − X̄i)
2.

The distribution of T was first discovered by Behrens (1929) and later developed by
Fisher (1939). The problem of constructing the optimum test for comparing two nor-
mal means when the unknown population variances are unequal have been called the
Behrens-Fisher problem (Lehman and Romano, 2005).

A common alternative to the Behrens-Fisher sampling distribution that is compli-
cated to apply in practice is to approximate the distribution of T by t-distribution with
adjusted df . Smith (1936) and later Welch (1938) found that such adjusted df was given
by

νw = (U1 + U2)
2 /

(
U2
1

m1 − 1
+

U2
2

m2 − 1

)
,

where Ui = S2
i /mi. The νw is often called the Welch df and the test that uses T by

considering it follows t-distribution with the adjusted df is called the Welch test. The
test is installed in standard statistical packages and suggested to use when σ1 ̸= σ2. The
Welch test is later extended to K-sample problems by Satterswaite (1946).

In subsequent years the robustness of the Student t-test was studied extensively.
It was shown by numerous authors (Boneau, 1960; Box, 1953; Cochran, 1947; Posten,
Yeh, and Owen, 1982; Srivastava, 1958 among others) that t-test was robust against
considerable departure from its theoretical assumption. In particular, it was shown that
if the sample sizes were approximately equal (m1 ≈ m2), the t-test based on Tp was
fairly robust against violations of the variance homogeneity up to ratio of variances
about 4.0 (Millar, 1986 Section 7.3). Thus the usefulness of the Welch test is limitted in
the situation where sample sizes are substantially imbalanced and/or ratio of variances
is more than 4.

We look at the fact in this study that the Welch df is subject to sampling variation
via S2

i . We show by simulation in the next section that impact of the variation on
p-values of the Welch test could be substantial, even if the sample sizes are not small.

We develop an unbiased estimating equation of the df that approximates the dis-
tribution of T by t-distribution. We call the df the tdf and the estimator of tdf from the
unbiased estimating equation is called the u-estimator of the tdf . We replace the Welch
df with the u-estimator of tdf in this paper and evaluate the impact of its sampling
variation, by first constructing computer intensive confidence intervals of tdf and then
calculating p-values using the upper and lower limits of the confidence intervals.

In Section 3 we formulate the problem in a framework ofK-sample problems and de-
fine tdf , the degree of freedom that approximates the distribution of T by t-distribution.
In Section 4 we develop an unbiased estimating equation for the tdf based on samples
generated in computer by assuming those observed sample means and variances from
populations are as if given constants. Also c-intensive approximate 90% confidence in-
tervals of the tdf and p-value are constructed by using the unbiased estimating equation
in the same section. The U -test, an alternative to the Welch-Satterswaite test, is defined
in Section 5. Behavior of the c-intensive confidence intervals are studied by simulation in
Section 6. Section 7 states the conclusion of the study in this paper and finaly discussion
is given in Section 8.
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2. Impact of sampling variation of Welch df

The Welch df does depend on samples. We conducted simulation to evaluate its
impact on the levels of the Welch test in the following way. (i) Construct two samples
by generating m1 random digits that follow normal distribution with mean zero and
variance σ2

1 , and m2 random digits that follow normal distribution with mean zero and
variance σ2

2 . (ii) Compute the values of Welch df and T based on the two samples. (iii)
Repeat (i)∼(ii) 10,000 times. (iv) Denoting by (fi, Ti) the computed values of Welch df
and T in the i-th run, stratify (fi, Ti), i = 1, 2, . . . , 10, 000, into four strata by means of
the first, second and third quadrants of f ’s, and compute empirical tail probabilities of
the Welch test by

Ri =
1

2500

2500∑
j=1

I
(
|tij | > tfij (0.025)

)
,

where I(A) = 1(0), if A is true (false), tij and fij are the j-th values of T and df in the
i-th stratum, and tf (0.025) is the upper 2.5% point of the t-distribution with f degrees
of freedom. Ri represents empirical tail probabilities of the Welch test under H0 when
the nominal level is 0.05.

Table 1 Tail probabilities of the Welch test when the nominal value is 0.05.

id σ2
1 σ2

2 m1 m2 R1 R2 R3 R4 RSS
1 6 9 5 8 0.024 0.050 0.061 0.055 0.029
2 6 9 15 20 0.046 0.048 0.045 0.056 0.008
3 6 9 50 60 0.047 0.049 0.047 0.050 0.004
4 6 9 8 5 0.012 0.034 0.060 0.101 0.066
5 6 9 20 15 0.032 0.042 0.052 0.068 0.027
6 6 9 60 50 0.044 0.043 0.054 0.053 0.011
7 6 24 5 8 0.047 0.040 0.047 0.058 0.014
8 6 24 15 20 0.039 0.050 0.048 0.066 0.020
9 6 24 50 60 0.042 0.046 0.050 0.061 0.015
10 6 24 5 21 0.013 0.032 0.062 0.083 0.054
11 6 24 15 53 0.036 0.051 0.057 0.069 0.025
12 6 24 50 160 0.043 0.051 0.052 0.066 0.018
13 6 24 8 5 0.008 0.020 0.048 0.146 0.109
14 6 24 20 15 0.026 0.038 0.053 0.080 0.040
15 6 24 60 50 0.036 0.042 0.054 0.070 0.027

Table 1 summarizes values of Ri, i = 1, 2, 3, 4, when (σ2
1 , σ

2
2)=(6,9), (6,24) and

(m1, m2)=(5,8), (8,5), (15,20), (20,15), (50,60), (60,50), (5,21), (15,53), (50,160). Those
values should be in the vicinity of 0.05 if the Welch df is valid. The last column of the
table gives the value of

RSS =

√√√√ 4∑
i=1

(Ri − 0.05)2

to evaluate it. The table shows that when σ2
1 < σ2

2 and m1 < m2, RSS decreases as the
increase of sample sizes, so long as (σ2

2/σ
2
1)/(m2/m1) is constant; but that it is not the
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case when σ2
1 < σ2

2 and m1 > m2, or when σ2
1 < σ2

2 , m1 < m2 and (σ2
2/σ

2
1)/(m2/m1)

is not constant; that tail probabilities of the Welch test on the 2nd and 3rd strata are
close to the nominal value, 0.05, when (σ2

2/σ
2
1) is small, but it is not the case when

(σ2
2/σ

2
1) is large; that those probabilities on the first and the fourth strata are far from

the nominal level when σ2
1 < σ2

2 and m1 > m2, for example, R1 = 0.036 when m1 = 60,
m2 = 50, σ2

1 = 6 and σ2
2 = 24. Furthermore, when σ2

1 < σ2
2 and m1 > m2 and m1

and m2 are small, values of R1 are far away from 0.05; for example, R1 = 0.012 when
σ2
1 = 6, σ2

2 = 9,m1 = 8,m2 = 5.

3. Mathematical development

3.1. K-sample problem

We shall formulate the problem in a framework ofK-sample problem. Suppose that
only summary statistics such as sample size, sample mean and variance, denoted by mi,
X̄i and S2

i , i = 1, 2, . . . ,K, are available. We assume in this paper that these statistics
are obtained from the i-th sample from the population with normal distribution N(µi,
σ2
i ), i = 1, 2, . . . ,K.

Consider statistical test for testing hypothesis H0:c1µ1 + c2µ2 + · · · + cKµK = 0
against the alternative hypothesis H1 that negates H0, where c′s are given contrasts
such that

∑K
i=1 ci = 0. We employ statistic

T =
K∑
i=1

ciX̄i /

√√√√ K∑
i=1

c2iS
2
i /mi

for testing the hypothesis. If σ1 = σ2 = · · · = σk, T follows a t-distribution with∑K
i=1(mi−1) df underH0. However, if it is not the case T does not follow a t-distribution

under H0. Satterswaite (1946), extending the idea of Smith (1936) and Welch (1938),
proposed to approximate the disribution of T by t-distribution with adjusted df given
by

ν̂w =

( K∑
i=1

c2iS
2
i

mi

)2

/

( K∑
i=1

1

mi − 1
(
c2iS

2
i

mi
)2
)
. (1)

The ν̂w is called the Satterswaite-Welch df . It reduces to the Welch df when K = 2.

3.2. Definition of the tdf

We first define tdf , the degree of freedom that approximates the distribution of T
by t-distribution. In order for T to follow t-distribution, the squared denominator of T
multiplied by constant must follows a chi-squared distribution. We define tdf as the df
of chi-squared distribution whose first two moments agree with those moments of the
distribution of the statistic. More precisely, putting, A =

∑K
i=1 c

2
iS

2
i /mi, and letting

Qν be the statistic that follows a chi-squared distribution with ν df , tdf is defined as ν
that satisfies

E(A) = E(ξQν), V ar(A) = V ar(ξQν), (2)

where ξ is an unknown parameter. We need following lemmas to get explicit form of
tdf . The proofs of lemmas are straightforward and are omitted.
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Lemma 1. Let S2
i be the sample variance of data from a population with normal

distribution N(µi, σ
2
i ). Then

(i) E(S2
i ) = σ2

i , (ii) V (S2
i ) =

2σ4
i

(mi − 1)
, (iii) E(S4

i ) =
(mi + 1)σ4

i

(mi − 1)
.

Lemma 2. Assume the assumption of Lemma 1, then (2) is represented by

K∑
i=1

c2iσ
2
i

mi
= ξν,

K∑
i=1

1

mi − 1
(
c2iσ

2
i

mi
)2 = ξ2ν.

From Lemma 2 and definition, we have

tdf =

( K∑
i=1

c2iσ
2
i

mi

)2( K∑
i=1

1

mi − 1
(
c2iσ

2
i

mi
)2
)−1

, (3)

and

ξ =

( K∑
i=1

1

mi − 1
(
c2iσ

2
i

mi
)2
)
/

( K∑
i=1

c2iσ
2
i

mi

)
. (4)

Theorem 1. Assume the assumption of Lemma 1, then the distribution of T under H0

is approximated by a t-distribution with tdf degree of freedom.

Proof. The proof of the theorem is given in Appendix.

Note that the Satterswaite-Welch df may be obtained by replacing unknown pa-
rameter σ2 in formula (3) with S2

i , namely from( K∑
i=1

c2iS
2
i

mi

)2

− ν
K∑
i=1

1

mi − 1

(
c2iS

2
i

mi

)2

= 0. (5)

This estimating equation is not unbiased for tdf . An unbiased estimating equation for
tdf is given in the following theorem.

Theorem 2. Assume the assumption of Lemma 1, then an unbiased estimating equation
for tdf is given by( K∑

i=1

c2iS
2
i

mi

)2

− 2

K∑
i=1

1

mi + 1

(
c2iS

2
i

mi

)2

− ν

K∑
i=1

1

mi + 1

(
c2iS

2
i

mi

)2

= 0. (6)

Proof. The proof of the theorem is given in Appendix.
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Note that when m = mi for all i = 1, 2, . . . ,K it follows that

ν̂u = ν̂w +
2

m− 1

(
ν̂w − (m− 1)

)
,

where ν̂u and ν̂w are solutions of equations (6) and (5), respectively, thus ν̂u ≥ ν̂w since
ν̂w ≥ m − 1. We target ν̂u, the estimator of tdf obtained from (6), in this paper. ν̂u is
called the u-estimator in the introduction. The advantage of unbiasedness of estimating
equations is discussed in Yanagaimoto and Yamamoto (Chapter 6 in Godambe, 1999).

4. Sampling from population with estimated mean and variance

4.1. Unbiased estimating equation

Generate ni random digits, denoted by X∗
i1, X

∗
i2, . . . , X

∗
ini

, from N(x̄i,s
2
i ) by assum-

ing that X̄i = x̄i and S2
i = s2i are given constants, where ni may be different from mi,

i = 1, 2, . . . ,K. Put

X̄∗
i =

1

ni

ni∑
j=1

X∗
ij and S∗2

i =
1

ni − 1

ni∑
j=1

(X∗
ij − X̄∗

i )
2.

Note that X̄∗
i and S∗2

i are conditional sample mean and sample variance conditioned on
X̄i = x̄i and S2

i = s2i . We have the following lemma.

Lemma 3. Assume the assumption of Lemma1. Then unconditional expectations of
S∗2
i and S∗4

i = (S∗2
i )2 are given by

(i) E(S∗2
i ) = σ2

i , (ii) E(S∗4
i ) =

(mi + 1)(ni + 1)

(mi − 1)(ni − 1)
σ4
i .

(iii) Furthermore, the unconditional variance of S∗2
i is given by

V (S∗2
i ) =

2(mi + ni)

(mi − 1)(ni − 1)
σ4
i .

Proof. The proof of the lemma is given in Appendix.

Theorem 3. Assume the assumption of Lemma 1. Then an unbiased estimating equa-
tion for tdf based on {X∗

ij}
ni
j=1, i = 1, 2, . . . ,K, is given by( K∑

i=1

c2iS
∗2
i

mi

)2

− 2

K∑
i=1

(
c2iS

∗2
i

mi

)2
(mi + ni)

(mi + 1)(ni + 1)
= ν

K∑
i=1

(
c2iS

∗2
i

mi

)2
(ni − 1)

(mi + 1)(ni + 1)
. (7)

Proof. The expectation of the left hand side of the equation is

E

( K∑
i=1

c2iS
∗2
i

mi

)2

− 2
K∑
i=1

(
c2i
mi

)2
(mi + ni)

(mi + 1)(ni + 1)
E(S∗4

i )

= E

( K∑
i=1

c2i
mi

S∗2
i

)2

− 2
K∑
i=1

(
c2i
mi

)2
(mi + ni)

(mi − 1)(ni − 1)
σ4
i
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= E

( K∑
i=1

c2i
mi

S∗2
i

)2

−
K∑
i=1

(
c2i
mi

)2

V (S∗2
i )

=

( K∑
i=1

c2iσ
2
i

mi

)2

.

On the other hand, the expectation of the right hand side of the equation in the theorem
is

ν
K∑
i=1

(
c2i
mi

)2
(ni − 1)

(mi + 1)(ni + 1)
E(S∗4

i )

= ν
K∑
i=1

(
c2i
mi

)2
1

mi − 1
σ4
i .

Therefore the expectations of left and right hand sides agree with if ν is equal to the tdf
given in formula (3). This completes the proof of the theorem.

It follows from Theorem 3 that the u-estimator for tdf based on {X∗
ij}

ni
j=1 is given

by

ν̂∗ =

(( K∑
i=1

U∗
i

)2

− 2
K∑
i=1

(U∗
i )

2 (mi + ni)

(mi + 1)(ni + 1)

)(
K∑
i=1

(U∗
i )

2 (ni − 1)

(mi + 1)(ni + 1)

)−1

, (8)

where U∗
i = c2iS

∗2
i /mi.

4.2. Computer intensive confidence intervals for tdf and p-value

ν̂∗ is an estimator of tdf , but its distribution is not easy to develop. We construct an
approximate 90% empirical confidence interval (CI) of tdf and p-value from the empirical
distribution of ν̂∗ in this section.

First, we set up the true empirical CI of tdf as follows. (1-1) Give the values of
µi and σ2

i , generate random degits of size mi from N(µi, σ
2
i ), and compute x̄i and s2i

for i = 1, 2, . . . ,K. (1-2) Compute ν̂u from the unbiased estimating equation given in
Theorem 2. (1-3) Repeat this process, get the empirical distribution of ν̂, and obtain
5% and 95% points of the empirical distribution. Denote these points by ν0.05 and ν0.95.
We call interval (ν0.05, ν0.95) the true 90% empirical CI of tdf .

Next, we construct the true CI of p-value as follows. Let plow and pupp be the
values of P (T > |t|) computed by assuming the distribution of T being t-distribution
with ν0.05 and ν0.95 degrees of freedom, respectively. Then it follows that

plow ≤ p-value ≤ pupp,

since when T follows a t-distribution with ν df the tail probability P (|T | > x) is a
decreasing function of ν for fixed x > 0. Furthermore, it follows that (plow, pupp) is a
90% empirical CI of p-value given T = t. We call it the true empirical conditional 90%
CI of the p-value given T = t. Note that (ν0.05, ν0.95) and (plow, pupp) are available
when µi and σ2

i are known.
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Finally, when µi and σ2
i are unknown, we construct approximate 90% CIs of the tdf

and p-value based on the empirical distribution of ν̂∗ as follows. (2-1) Putting ni = hmi

and denoting a given class of h by H, where mi is the size of the original sample from
the i-th population, generate ni random digits, X∗

i1, X
∗
i2, . . . , X

∗
ini

, from N(x̄i,s
2
i ), using

x̄i and s2i that were given in step (1-1), i = 1, 2, . . . ,K. (2-2) Compute the estimator
given in formula (8). (2-3) Repeat steps (2-1) ∼ (2-2) L times and find the 5% and
95% points of the empirical distribution of ν̂∗; denote them by ν̂∗low,h and ν̂∗upp,h. (2-
4) Obtain p̂∗low,h and p̂∗upp,h from ν̂∗low,h and ν̂∗upp,h similarly as above. (2-5) Compare
(p̂∗low,h, p̂

∗
upp,h) with the true 90% empirical conditional CI of p-value, and select the

h ∈ H that makes (p̂∗low,h, p̂
∗
upp,h) the closest to the true 90% empirical conditional CI

of p-values. Since the bounds of the interval changes monotonically with the increase of
h, it will not take time to find the best h. The intervals with the best h, denoted by
(ν̂∗low, ν̂

∗
upp) and (p̂∗low, p̂

∗
upp), are called the c-intensive approximate 90% CIs of tdf and

p-value, respectively.

5. U-test

For testingH0:c1µ1+c2µ2+· · ·+cKµK = 0 with T , we approximate the distribution
of T under H0 by t-distribution with ν̂ degree of freedom, where ν̂ is the u-estimator of
tdf obtained from the unbiased estimating function given in Theorem 2. We call this test
the U -test. The p-value of the U -test is given by P (|T | > |t||H0), where t is the observed
value of T . As the Welch test, the U -test employs the estimated tdf , i.e., ν̂, in computing
p-value and it depends on the variability of both ν̂ and t. We suggest to express the
test results by p-value with its c-intensive approximate 90% CI. It could be useful for a
cautious evaluation of the p-value. For example, we may reject H0 if p̂∗upp < 0.05, but
not reject, or retain hypothesis H0 if p̂∗upp ≥ 0.05, even if p-value < 0.05.

6. Simulation

Simulation was conducted to investigate the behavior of the proposed method when
K = 2. First we established the true empirical CI of tdf as follows. (1) Generating
random digits of size mi from N(µi, σ

2
i ) for given values of µi and σ2

i , and computed x̄i

and s2i for i = 1, 2 when µ1 = 2.0, 2.25, 2.3, 2.5, 2.75, 2.8, 2.9, 3.3, 3.4, 3.8, 3.9, 4.4, µ2 = 0;
σ2
1 = 3, σ2

2 = 6, 12, 18, 24; m1 = 5 and m2 = 7, 10, 20. (2) Obtained ν̂u from the unbiased
estimating equation given in Theorem 2. (3) Repeated this process 5,000 times, and
obtained the true empirical CI of tdf . (4) Then for H = {1, 2, 3} generated random
digits of size ni = hmi from N(x̄ij , s

2
ij), i = 1, 2 and h ∈ H, where (x̄ij , s

2
ij) was the

value of (x̄i, s
2
i ) obtained in step (1) in the j-th run, j = 1, 2, . . . , 5, 000. (5) Repeated

the step (4) 1,000 times (i.e. L = 1, 000) and obtained 90% interval (ν̂∗j,low,h, ν̂
∗
j,upp,h)

for each j (j = 1, 2, . . . , 5000) and h ∈ H. (6) Finally, ν̂∗low,h and ν̂∗upp,h were obtained
by averaging those 5,000 lower and upper bounds for each h ∈ H.

Table 2 summarizes the results of the simulation. The first six columns in the table
are values of µ1, µ2, σ

2
1 , σ

2
2 , m1 and m2. The 7th and 8th columns list the values of

the true 90% empirical CI. The remaining columns list c-intensive intervals of tdf for
h ∈ H = {1, 2, 3}. Table 3 lists the values of conditional (p̂low, p̂upp) and (p̂∗low,h, p̂

∗
upp,h)

given t = 2.2 for each h ∈ H. These intervals are computed from corresponding intervals
of tdf listed in Table 2. Table 3 shows that those conditional lower and upper bounds of
p-value given t = 2.2 are fairly stable throughout the experimental conditions and that
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the values of the lower band of the c-intensive CIs for p-value are not decreasing with
the increase of h, and those of the upper band do not increase as the increase of h; that
many values of the lower bound listed under h = 1, h = 2 and h = 3 are fairly close
to the true bounds; and that those values of the upper bounds listed under h = 1 are
the closest to those true values among h = 1, 2, 3. Thus we suggest to use (p̂∗low, p̂

∗
upp)

obtained when h = 1 as the c-intensive approximate 90% CI of p-values.

Table 2 The true CI and c-intensive CI of tdf when h = 1, 2, 3

true CI c-intensive CI
mean, SD and sample size h = 1 h = 2 h = 3
µ1 µ2 σ2

1 σ2
2 m1 m2 ν̂low ν̂upp ν̂∗low ν̂∗upp ν̂∗low ν̂∗upp ν̂∗low ν̂∗upp

2.9 0 3 6 5 7 7.00 11.99 6.88 14.58 7.85 12.84 8.29 12.25
3.4 0 3 12 5 7 6.84 11.98 6.93 14.20 7.77 12.38 8.15 11.77
3.9 0 3 18 5 7 6.59 11.94 6.81 13.77 7.49 11.86 7.80 11.23
4.4 0 3 24 5 7 6.45 11.87 6.69 13.35 7.25 11.39 7.51 10.74
2.3 0 3 6 5 10 7.35 14.98 8.61 17.57 9.56 15.77 10.01 15.07
2.8 0 3 12 5 10 9.81 14.99 9.59 17.42 10.63 15.78 11.11 15.23
3.3 0 3 18 5 10 9.98 14.98 9.82 17.15 10.78 15.50 11.22 14.95
3.8 0 3 24 5 10 9.85 14.97 9.84 16.85 10.69 15.17 11.08 14.61
2.0 0 3 6 5 20 6.19 24.27 9.23 26.45 9.81 21.62 10.18 19.49
2.25 0 3 12 5 20 8.52 24.91 12.62 27.45 13.49 24.76 14.02 23.36
2.5 0 3 18 5 20 10.87 24.96 14.87 27.57 15.90 25.60 16.49 24.64
2.75 0 3 24 5 20 13.13 24.98 16.41 27.55 17.52 25.83 18.12 25.10

Table 3 (p̂low, p̂upp) and (p̂∗low, p̂
∗
upp) when h = 1, 2, 3

true CI c-intensive CI
mean, SD and sample size h = 1 h = 2 h = 3
µ1 µ2 σ2

1 σ2
2 m1 m2 p̂low p̂upp p̂∗low p̂∗upp p̂∗low p̂∗upp p̂∗low p̂∗upp

2.9 0 3 6 5 7 0.048 0.064 0.044 0.064 0.047 0.060 0.048 0.058
3.4 0 3 12 5 7 0.048 0.065 0.045 0.064 0.047 0.060 0.049 0.058
3.9 0 3 18 5 7 0.048 0.066 0.045 0.065 0.048 0.061 0.050 0.060
4.4 0 3 24 5 7 0.048 0.067 0.046 0.065 0.049 0.062 0.051 0.061
2.3 0 3 6 5 10 0.044 0.062 0.041 0.057 0.043 0.054 0.044 0.052
2.8 0 3 12 5 10 0.044 0.053 0.042 0.054 0.043 0.051 0.044 0.050
3.3 0 3 18 5 10 0.044 0.052 0.042 0.053 0.043 0.051 0.044 0.050
3.8 0 3 24 5 10 0.044 0.053 0.042 0.053 0.044 0.051 0.044 0.050
2.0 0 3 6 5 20 0.038 0.069 0.037 0.055 0.039 0.053 0.040 0.052
2.25 0 3 12 5 20 0.037 0.057 0.036 0.047 0.037 0.046 0.038 0.045
2.5 0 3 18 5 20 0.037 0.050 0.036 0.044 0.037 0.043 0.037 0.042
2.75 0 3 24 5 20 0.037 0.046 0.036 0.042 0.037 0.041 0.037 0.041

7. Conclusion

Results of the simulation suggest that the p-value of the U -test for testingH0:c1µ1+
c2µ2 + · · · + cKµK = 0 is better to be evaluated by using the c-intensive approximate
90% CI of p-value constructed by the the size of sample ni = mi, i = 1, 2. . . . ,K.

8. Discussion

The u-estimator of tdf is not substantially different from the Welch df . Table 4
lists the values of the Welch df and u-estimator of tdf obtained from the simulation that
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was carried out by 5,000 run by generating random samples of size m1 from N(µ1, σ
2
1)

and of size m2 from N(µ2, σ
2
2), where values of µ1, µ2, σ

2
1 , σ

2
2 , m1 and m2 employed are

listed in Table 4. The table shows relatively large differences between the Welch df and
u-estimator of the tdf ; for example, 8.71 vs. 10.21 in id 1, or 18.78 vs. 21.46 in id 12.
However those differences are not substantial when evaluated by means of the right tail
probabilities. Table 5 lists the right tail probabilities of t-distribution in the range of
t ≥ 1.0 when the values of df are 8.71 (id 1 Welch), 10.21 (id 1 u-estimator), 18.78 (id
12 Welch) and 21.46 (id 12 u-estimator). The table indicates that differences of p-values
are small between two df ’s.

Looking at Table 5 the referee of the present paper pointed out that the tail prob-
abilities of t-distribution with 8.71 df and 21.46 df were not substantially different,
indicating the stability of p-values and thus no need of constructing the CI of p-values
regardless of the variation of estimated df . Our answer to the comment is as follows.
The finding from Table 1 is true; namely, the impact of the variation of estimated df on
the level of the test, and also on the p-value, could be substantial. Readers might have
the feeling of contradiction between the comment and this statement. To resolve it they
are asked to understand that the right tail probability of t-distribution could undergoes
significant fluctuation due to small shift of df in the range of small values, for example,
when t = 2.2 the right tail probabilities of df = 4 and df = 8 are 0.046 and 0.029,
respectively. To express the point more clearly we obtained the empirical distribution
of Welch’s df by generating 5,000 sets of normal random digits when σ2

1 = 3, σ2
2 = 6,

m1 = 5 and m2 = 20. The summary statistics of the distribution were given as follows.
min = 4.35, max = 23.00, mean=10.82, SD=4.95, 90% CI=(5.47, 21.73).

When t = 2.00, the upper tail probabilities of t-test with the df corresponding to
the above summary statistics are obtained as

min = 0.029, max = 0.055, mean=0.036 and 90% CI=(0.029, 0.049).
The referee also pointed out that over-all behavior of the Welch test was not so

bad. Look at the id.13 in Table 1. The empirical levels of the test on R1, R2, R3 and
R4 are 0.008, 0.020, 0.048, 0.146, respectively; the levels on R1 and R4 are far from the
nominal level. However, the average of those levels is 0.055, fairly close to 5%, indicating
that if we apply the Welch test many times repeatedly, then we get over-all satisfaction.
However, we stress that the Welch test is often applied to data that repetition is never
conceived. For example, the repetition is not conceived in many clinical studies and
yet decision is done based on p-value from each study. Such is the case that a cautious
evaluation of the p-values would be absolutely-required.
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Table 4 Values of the Welch df and u-estimator.
†: u-estimator for tdf .

mean, SD and sample size Welch df udf†

id µ1 µ2 σ2
1 σ2

2 m1 m2 ν̂w ν̂u
1 2.9 0 3 6 5 7 8.71 10.21
2 3.4 0 3 12 5 7 8.61 9.83
3 3.9 0 3 18 5 7 8.28 9.27
4 4.4 0 3 24 5 7 7.99 8.81
5 2.3 0 3 6 5 10 10.49 12.31
6 2.8 0 3 12 5 10 11.58 13.21
7 3.3 0 3 18 5 10 11.74 13.09
8 3.8 0 3 24 5 10 11.64 12.78
9 2 0 3 6 5 20 10.82 13.05
10 2.25 0 3 12 5 20 14.79 17.58
11 2.5 0 3 18 5 20 17.22 22.05
12 2.75 0 3 24 5 20 18.78 21.46

Table 5 Right tail probabilities of t-distribution when the values of df are
selected from Table 4.

Selected are those df of id.1 and of id.12 in Table 4.

†: u-estimator

id 1 in Table 4 id 12 in Table 4
Welch df udf† Welch df udf†

t 8.71 10.21 18.78 21.46
1.0 0.173 0.170 0.166 0.164
1.2 0.132 0.129 0.123 0.121
1.4 0.100 0.096 0.090 0.088
1.6 0.074 0.070 0.064 0.062
1.8 0.055 0.051 0.045 0.043
2.0 0.040 0.037 0.031 0.029
2.2 0.029 0.026 0.021 0.019
2.4 0.022 0.019 0.014 0.013
2.6 0.016 0.013 0.009 0.008
2.8 0.012 0.009 0.006 0.005
3.0 0.009 0.007 0.004 0.003
3.2 0.006 0.005 0.003 0.002
3.4 0.005 0.003 0.002 0.001
3.6 0.003 0.002 0.001 0.001
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Appendix: Proofs of Theorems

Proof of Theorem 1
First we note that

∑
ciX̄i and

∑
(c2iσ

2
i /mi) are mutually independent, since X̄i

and S2
i are independent from the assumption of normality of underlying population

distribution. Next we note that the distribution of T is approximated by the distribution
of

T ∗ =
∑

ciX̄i/
√

ξQtdf ,
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where tdf and ξ are given in formulae (3) and (4). Now Z =
∑

ciX̄i/
√∑

c2iσ
2
i /mi

follows standard normal distribution under H0, and by using formulae (3) and (4) we
may represent T ∗ by T ∗ = Z/

√
Qtdf/tdf . Thus T

∗ follows t-distribution with tdf degrees
of freedom. This completes the proof of Theorem 1.

Proof of Theorem 2
It follows from Lemma 1 that

E

(∑ c2iS
2
i

mi

)2

= V ar

(∑ c2iS
2
i

mi

)
+

(
E

(∑ c2iS
2
i

mi

))2

= 2
∑ 1

mi − 1

(
c2iσ

2
i

mi

)2

+

(∑ c2iσ
2
i

mi

)2

and

E

(∑ 1

mi + 1

(
c2iS

2
i

mi

)2
)

=
∑ 1

mi + 1

(
V ar

(
c2iS

2
i

mi

)
+

(
E

(
c2iS

2
i

mi

))2
)

= 2
∑ 1

(mi + 1)(mi − 1)

(
c2iσ

2
i

mi

)2

+
∑ 1

mi + 1

(
c2iσ

2
i

mi

)2

.

Therefore the expectation of the left hand side of the equation is

E

((∑ c2iS
2
i

mi

)2

− 2
∑

1
mi+1

(
c2iS

2
i

mi

)2

− ν
∑

1
mi+1

(
c2iS

2
i

mi

)2
)

=

(∑ c2iσ
2
i

mi

)2

− ν
∑

1
mi−1

(
c2iσ

2
i

mi

)2

.

Thus the expectation is zero if ν = tdf , where tdf is given in formula (3). This complete
the proof of Theorem 2.

Proof of Lemma 3
(i) From Lemma 1

E(S∗2
i ) = E

(
E(S∗2

i )|s2i )
)

= E(S2
i ) = σ2.

(ii) Also from Lemma 1

E(S∗4
i ) = E

(
E(S∗4

i )|s2i )
)

= E

(
ni + 1

ni − 1
S4
i

)
=

(ni + 1)(mi + 1)

(ni − 1)(mi − 1)
σ4
i .
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