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Abstract

Atallah et al. [2] introduced a randomized algorithm
for string matching with mismatches, which utilized
fast Fourier transformation (FFT) to compute convo-
lution. It estimates the score vector of matches be-
tween text string and a pattern string, that is, the
vector obtained when the pattern is slid along the text,
and the number of matches is counted for each posi-
tion. This paper simplifies the algorithm and give an
exact analysis of the variance of the estimator.
keywords: Pattern matching, mismatch, FFT, con-
volution, randomized algorithm

1 Introduction

Let T =ty,...,t, be a text string and P = py,...,pm
be a pattern string over an alphabet X. String match-
ing problem is to find all occurrences of the pattern P
in the text T. Approximate string matching problem is
to find all occurrences of small variations of the orig-
inal pattern P in the text T'. Substitution, insertion,
and deletion operations are often allowed to introduce
the variations. In this paper, we allow the substitution
operation only. The derived problem is usually called
string matching with mismatches. It is essentially to
compute the score vector C(T, P) = (¢1,...,Cn—m+1)
between T and P, where each ¢; counts the number
of matches between the substring ¢;, ..., t;y.,n,—1 of the
text T and the pattern P. If ¢; = m, the pattern ex-
actly occurs at position ¢ in the text. Fig. 1 shows an
example of the score vector. A reasonable amount of
effort has been paid for this problem [1, 3, 4, 6, 8]. Re-
fer the textbooks [5, 7] to know the history and various
results.

Recently, Atallah et al. [2] introduced a random-
ized algorithm of Monte-Carlo type which returns an
estimation of the score vector C(T, P). The estima-
tion is performed by averaging independent equally
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Figure 1: Score vector between the text acbabbaccb
and the pattern abbac.

distributed estimates. Let k be the number of ran-
domly sampled estimations, then the time complexity
is O(knlogm) by utilizing a fast Fourier transforma-
tion (FFT). They showed that the expected value of
the estimation is equal to the score vector, and that
the variance is bounded by (m — ¢;)?/k.

In this paper, we give a slight simplification of their
algorithm. Moreover, we analyze the variance of the
estimator exactly.

2 Preliminaries

Let A be the set of non-negative integers. Let ¥ be
a finite alphabet. An element of ¥* is called a string.
The length of a string w is denoted by |w|. The empty
string is denoted by e, that is, |¢| = 0. We denote the
cardinality of a set S by |S| or #S.

We define a function ¢ from ¥ x ¥ to {0,1} by

1 ifa=b,
5(a’b)_{o if a #b.

For a text string T" = t1t5...t, and a pattern string
P = pips...pm, the score vector of matches between
T and P is defined as C(T, P) = (¢1,¢2, - -+, Cnem+t1),
where ¢; = Z;"zl 8(ti+j—1,pj). That is, ¢; is the num-
ber of matches between the text and the pattern when
the first letter of the pattern in positioned in front of
the ith letter of the string.
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3 Deterministic Algorithm

In this section, we introduce a deterministic algorithm
to compute the score vector for given text T and pat-
tern P. Although it might not be practical for large
alphabet, it will be a base for the randomized algo-
rithm explored in the next section.

3.1 Binary Alphabet Case

We first consider a binary alphabet ¥ = {a,b}. We
define a function ¢ : ¥ — {-=1,1} by ¢(a) = 1 and
¥ (b) = —1. By using ¢, we convert the strings 7' and
P into the sequences of integers as follows.

,(/)(pl)v w(pQ)a ey w(pm)
Let A¥(T,P) = (alf,a;p,...,affmﬂ) where a; =

Z¢(ti+j—1) 9 (pj)-

Lemmal For any 1 < ¢+ < n—-m+1, ¢ =
(@ +m)/2.

Proof. Since ¢; = #{j | titj—1 = pj, 1 < j < m},
we have af = #{j | tir;j 1 =p;j, 1 <j<m}—#{j|
tivj—1 #pj L<j<m}p=ci—(m—¢)=2¢—m.
Thus ¢; = (a? +m)/2. O

The above lemma implies that we have only to com-
pute A¥(T, P) to get the score vector C(T, P). Since
the sequence AY (T, P) is the convolution of ¢ (T') with
the reverse of ¢)(P), we can calculate all the a;’s simul-
taneously by the use of fast Fourier transform (FFT)
in O(nlogm) time as follows. As is stated in [2],
we additionally apply the standard technique [5] of
partitioning the text into overlapping chunks of size
(1 + a)m each, and then processing each chunk sepa-
rately. Processing one chunk gives us am components
of C. Since we have n/(am) chunks and each chunk
can be computed in O((1+a)mlog((1+a)m)) by FFT,
the total time complexity is -~ - O((1 + a)mlog((1 +

a)m)) = O ((Ha)nlog((l + a)m)) = O(nlogm) by

[e3%

choosing o = O(m).

Theorem 1 For a binary alphabet, the score vector C
can be exactly computed in O(nlogm) time.

3.2 General Case

We now consider general case |2| > 2. Let Uy be the
set of all mappings from ¥ to {—1,1}. Remark that
|Uys| = 2%, We abbreviate ¥s; with ¥ when ¥ is clear
from the context. The next lemma is obvious.

Lemma 2 For any ¢ € ¥y and any a,b € X,

1 i d(a) = o),
vla)-¥(b) = { —1if dla) £ B(b).

Lemma 3 For any a,b € X,

ﬁ S (a) - (b) = 8(a,b).

PeEW

Proof. In case of a = b, then ¥(a) = ¥ (b) for any ¢ €
U. Therefore 1(a) - ¥ (b) = 1 for any ¢ by Lemma 2,
and the sum >y, ¥(a)-4(b) equals to the cardinality
of W. Thus, the left side of the equation is unity.

To prove the lemma in case of a # b, we show a
more general proposition that

> ab(d) e 1p(dn) - (D) =0

Ppew

if di # b,---,d, # b for n > 0. By the assumption
that b is distinct from dy,-- -, d,,

Do w(dr) e (dn) - (D)

Ppew

= ) Yd)(da) 1

P(b)=1,9e¥

>

p(b)=—1,9€¥

W(dy) -
= 0.

Thus, by the proposition for n = 1, the left side of the
equation is zero. O

Theorem 2 Foranyl1<i<m-—n+1,

1
c; = m Z aj’.

Ppew

(1)

Proof. By the definition of af’ and Lemma 3, the
right side of the equation can be changed as follows.

ﬁ Z al = ‘% Z Ziﬁ(tiﬂ;l) “Y(p;)

YeT peW j=1

= Z ﬁ Z Y(tiyi—1) - Y(py)

j=1 YET

= 25(ti+j—1apj)~
=1

Since the last formula is the definition of ¢;, the theo-
rem is proved. O

Theorem 3 C(T,P) can be exactly computed in
O(2%Inlogm) time.
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Proof. By Theorem 2 ¢; is the mean of a;/’ for every
1 € Wy, therefore C(T, P) is obtained by comput-
ing all AY(T, P). Since each A¥(T,P) can be com-
puted in O(nlogm) time, we can calculate C(T, P) in
O(2*Inlogm) time. O

We note that if the alphabet ¥ is infinite, by split-
ting the text in chunks of length O(m) to be dealt with
independently ensures it will work with an alphabet
size O(m), so that C(T, P) can be exactly computed
in 0(2°™nlogm).

4 Randomized Algorithm

A shortcoming of the deterministic algorithm in the
last section is that the running time is exponential
with respect to the size of alphabet. It is not practi-
cal for large alphabet. In this section, we propose a
randomized algorithm which was inspired by Atallah
et al. [2].

Let us noticed that Theorem 2 can be interpreted as
follows. Each ¢; is the mean of random variable X; =
Z;nzl W(titj—1)-¥(p;), assuming that ¢ is drawn uni-
formly randomly from ¥. The observation leads us to
the following randomized algorithm. Instead of com-

puting all vectors A, (T, P) = (a¥,a¥,... ,a;f_m_H)

where af = Y7, W(tiyj-1) - P(p;) to average them,
we compute only k£ samples of them for randomly cho-
sen 1,...,¥r € ¥. Since the expected value of X;
equals to ¢;, it will give a good estimation for large
enough k. We will give a formal proof of it, and ex-
actly analyze the variance of X; in the sequel. Fig. 2
illustrates the core part of the algorithm for the basic
case n = (1 + a)m.

We now analyze the mean and the variance of the es-
timator ¢;. Since all the random variable ¢é; are defined
in a similar way, we generically consider the random
variable

where the ¢;’s and the p;’s are fixed and mapping ¥’s
are independently and uniformly selected from Vs.
The definition implies that § is the mean of k random
variables which are drawn from independent and iden-
tical distribution. The random variable can be defined
by
m
s =Y _0(t;) - ¥(p)),

j=1

and the mean E($) and variance V() are

Vis)

and V(3) = p

The number ¢ of matches between T' = t;...¢,, and
P=pi...ppmis
Cc = Z(S(tj,pj)

Jj=1

Lemma 4 The mean of § is equal to c.

Proof. By Lemma 3,

E(3) = E(s) = % s

R Wt
1 m

= m ZT/J(tj) ¥(py)

YEW j=1

1

= Zm ¥(ty) - ¥(py)
j=1 Ppew

= ) 6(t;,p)).
Jj=1

Thus, the mean of § is c. O

In order to analyze the variance of s accurately, we
introduce the following function prp : ¥ x ¥ — N
depending on text T = t;...t,, and pattern P =
P1-...Ppm, which give a statistics of T" and P.

pr.p(a,b) =4#{j|t; =aand p; =b, 1 <j <mj}

For example, let T = aabac and P = abbba. Then
pr.p(a,b) =2, pr.p(a,a) = pr.p(b,b) = pr p(c,a) =
1, and the others are zero. We omit the subscription
T,P of prp in the sequel. In addition, we use the
following expression.

7(a,b) = p(a,b) + p(b,a).

The next lemma is obvious from the definition.

> o =5 Y

(a,b)eXxX (a,b)exX x>

Lemma 5 7(a,b) =
m.

The next lemma gives the exact variance of §, in
terms of p.

Lemma 6 The variance of § is

V(3) ==Y (p(a,)* + p(a,b) - p(b,a)) .

a#b

Proof. Since the mean of s equals to ¢ by Lemma 4,
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Procedure ESTIMATESCORE

Input: a text T'=11...¢(14a)m and a pattern P =p; ..

Output: an estimate for the score vector C(T, P).

for / := 1 to k do begin
randomly and uniformly select a 1, from Uy.
Let Ty = ¢¢(T'). Note that Ty is a sequence over {—1,1} of length (1 + a)m
Let P; be the concatenation of ¢),(P) with trailing am zeros.

.Pm in 2.

compute the vector Cy as the convolution of Ty with the reverse of P, by FFT.

end

=

A 1
compute the vector C' = z
¢

Z Cy and output it as an estimate of C(T, P).

Figure 2: A randomized algorithm to compute a score vector.

By the definition of p,

s = > ) p(b)-pad)

(a,)ESXE
= Zpab -‘rZ’l/J - p(a,b), and
a#b

c = Zp(a,b).

a=b
Therefore,
(s —¢)?

= [ v@um)pa,n)

a#b
= > wla)w®d)p(a b)p(a)ypd)p(d,b)
a#b a’#b/
= |‘Il|2pa b) Z a',b')
a;éb a’ #b’
T Emw (a")eo (1)

Let us take a(a,b,a’,b’) = |\IJ| Z P(a

peT
(b'), and show that

ala,b,a’,b)
1 ifa=ad andb=10V,ora="b and a’ =0,
0 otherwise,

by the case analysis whether there exists a distinct
character from the others in a, b, a’,b’. If there exists
such a character, then «a(a,b,a’,b’) = 0 by the proof
of Lemma 3. If there does not exist such a character,
then we have either a = a’ and b = ¥, or a = b’ and
b = a’ by the assumption that both a # b and a’ # ¥b'.

Then, by Lemma 3 and the fact that ¢(a)? = 1 for
any ¥ € ¥ and any a € X since ¢(a) € {—1,1},

b,a',b') = =1.
ala,b,d |\I/| 1;1}1/)
Thus,
V() = prab pla,b) + p(b,a))
a#b
= ,Z )2 + pla,b) - p(b,a)) .
a#b

Moreover, by the definition of 7, we have
Z (p(a7 b)2 + p<a7 b) '
a#b

= 5 (p(a7 b)2 + 2p(a, b) ’

p(b,a))

p(b,a) + p(b,a)?)

a<b

Therefore, the variance can be exactly restated in term
of 7 as follows, which might be more intuitive.

Theorem 4 The variance of § is

. 1 9
=z ZT(Q, b)

a<b
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Remind that 7(a,b) represented the number of po-
sitions j = 1,...,m in T and P, such that (¢;,p;) is
either (a,b) or (b,a). If T exactly matches P, then
V(5) = 0, which implies that the estimation is al-
ways m, without any error. On the other hand, since
Y a<p T(a,b) = m —c, the variance V'(8) is maximized
for inputs which have no match and are constructed
by only two characters, for example, T = aaaaaa,
P = bbbbbb, and T' = aaabba, P = bbbaab.

We now state the bound of the variance of § in terms
of m and ¢, that exactly fits to the one proved by
Atallah et al. [2].

Lemma 7 The variance of § is bounded as follows.
(m —c)?

OEEL

Proof. By Lemma 5,

m-—c =

>

(a,b)erxx

= Z p(a,b)

a#b

= %ZT(CL,I))

a#b

= > 7(a,b).

a<b

p(av b) - Z p(a, b)

a=b

Therefore, by Theorem 4,

(m —c)?

v

where Z 7(a',b") expresses the sum of 7(a’,V’) ex-
a’ <b’

cept for the two cases ' = a,b’ =band a’ =b,b = a.

Since 7(a,b) > 0 for any a and b, the last formula is

not less than zero. a

We now have the main theorem.

Theorem 5 Algorithm ESTIMATESCORE 71uns in
O(knlogm) time. The mean of the estimation equals
to the score vector C, and the variance of each entry
is bounded by (m — ¢;)?/k.

5 Conclusion

We gave a randomized algorithm for string matching
with mismatches, which can be regarded as a slight

simplification of the one due to Atallah et al. [2]. For
comparison, we give a brief description of their algo-
rithm. It treats the set U’ of all mappings from ¥ to
{0,1,...,|X]| — 1}, and the basic equation is

Z iwwuwfl)—w(m,

pew’ j=1

1

¢ = I (2)
where w is a primitive |X|th root of unity. When
|2] = 2, we know w = —1, and that the equation (2)
directly corresponds to the equation (1) in ours. The
difference is how to treat general alphabet |X| > 2. In
our algorithm, the converted sequence ¥ (7T) is sim-
ply over {—1,1}, while in their algorithm (T) is
over {1,w,w?,...,w™I=1} that are complex numbers.
When computing the convolution by FFT, the com-
putation of the former will be much simpler (and pos-
sibly faster) than the latter. From the view point of
the precision of the numerical calculations, the former
might be preferable to the latter, although we have
not yet studied explicitly. Moreover, this simplifica-
tion enabled us to reach the exact estimation of the
variance (Theorem 4), by fairly primitive discussion.
An interesting point is that the variance is still inde-
pendent from the size of alphabet, although we map
¥ into {—1,1}, instead of {0,1,...,|%| —1}.

In their paper [2], they considered various exten-
sions, such as string matching with classes, class com-
ponents, “never match” and “always match” symbols,
weighted case, and higher dimension arrays. We think
our simplification will be valid without any difficulty
for all those extensions, although we have not com-
pletely verified them yet.
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