Projective reduction of the discrete Painlevé system of type $\$\left(A _2+A _1\right)^{\wedge}\{(1)\} \$$
Kajiwara，Kenji
Facutly of Mathematics，Kyushu University
Nakazono，Nobutaka
Graduate School of Mathematics，Kyushu University
Tsuda，Teruhisa
Facutly of Mathematics，Kyushu University

https：／／hdl．handle．net／2324／15556

出版情報：MI Preprint Series．2009－34，2010－05－28．Oxford University Press
バージョン：
権利関係：

MI Preprint Series

Kyushu University
The Global COE Program
Math-for-Industry Education \& Research Hub

> Projective reduction of the discrete Painlev'e system of type $\left(A_{2}+A_{1}\right)^{(1)}$

Kenji Kajiwara, Nobutaka Nakazono and Teruhisa Tsuda

MI 2009-34
(Received September 29, 2009)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

Projective reduction of the discrete Painlevé system of type

$$
\left(A_{2}+A_{1}\right)^{(1)}
$$

Kenji Kajiwara, Nobutaka Nakazono ${ }^{\dagger}$ and Teruhisa Tsuda
28 September. 2009
Facutly of Mathematics, Kyushu University, 819-0395 Moto-oka, Fukuoka 819-0395, Japan
${ }^{\dagger}$ Graduate School of Mathematics, Kyushu University, 819-0395 Moto-oka, Fukuoka 819-0395, Japan

Abstract

We consider the q-Painlevé III equation arising from the birational representation of the affine Weyl group of type $\left(A_{2}+A_{1}\right)^{(1)}$. We study the reduction of the q-Painlevé III equation to the q-Painlevé II equation from the viewpoint of affine Weyl group symmetry. In particular, the mechanism of apparent inconsistency between the hypergeometric solutions to both equations is clarified by using factorization of difference operators and the τ functions.

2000 Mathematics Subject Classification: 34M55, 39A13, 33D15, 33E17
Keywords and Phrases: affine Weyl group, discrete Painlevé equation, hypergeometric function

1 Introduction

The discrete Painlevé equations have been studied actively from various points of view. Together with the Painlevé equations, they are now regarded as one of the most important classes of equations in the theory of integrable systems (see, for example, [6]). Originally, the discrete Painlevé equations had been identified as single second-order equations $[1-3,33,37]$ and then were generalized to simultaneous first-order equations. A typical example is the following equation known as a discrete Painlevé II equation [33, 37]:

$$
\begin{equation*}
x_{n+1}+x_{n-1}=\frac{(a n+b) x_{n}+c}{1-x_{n}^{2}}, \tag{1.1}
\end{equation*}
$$

where x_{n} is the dependent variable, n is the independent variable, and $a, b, c \in \mathbb{C}$ are parameters. By applying the singularity confinement criterion [7], (1.1) is generalized to

$$
\begin{equation*}
x_{n+1}+x_{n-1}=\frac{(a n+b) x_{n}+c+(-1)^{n} d}{1-x_{n}^{2}}, \tag{1.2}
\end{equation*}
$$

where d is a parameter, with its integrability preserved. Introducing the dependent variables X_{n} and Y_{n} by

$$
\begin{equation*}
X_{n}=x_{2 n}, \quad Y_{n}=x_{2 n-1}, \tag{1.3}
\end{equation*}
$$

then (1.2) can be rewritten as

$$
\begin{equation*}
Y_{n+1}+Y_{n}=\frac{(2 a n+b) X_{n}+c+d}{1-X_{n}{ }^{2}}, \quad X_{n+1}+X_{n}=\frac{(a(2 n+1)+b) Y_{n+1}+c-d}{1-Y_{n+1}{ }^{2}} . \tag{1.4}
\end{equation*}
$$

Equation (1.4) is known as a discrete Painlevé III equation since it admits a continuous limit to the Painlevé III equation [5]. Conversely, (1.1) can be recovered from (1.4) by putting $d=0$ and (1.3). We call this procedure "symmetrization" of (1.4), which comes from the terminology of the Quispel-Roberts-Thompson (QRT) mapping [34,35]. After this terminology, (1.4) is sometimes called the "asymmetric" discrete Painlevé II equation, and (1.1) is called the "symmetric" discrete Painlevé III equation [21].

It looks that the symmetrization is a simple specialization of parameters at the level of the equation, but some strange phenomena have been reported as to their particular solutions expressed in terms of hypergeometric functions (hypergeometric solutions). The hypergeometric solutions to (1.1) have been constructed as follows [9,19]:

Proposition 1.1 For each $N \in \mathbb{N}$, let τ_{N}^{n} be an $N \times N$ determinant defined by

$$
\tau_{N}^{n}=\left|\begin{array}{cccc}
H_{n} & H_{n+1} & \cdots & H_{n+N-1} \tag{1.5}\\
H_{n+2} & H_{n+3} & \cdots & H_{n+N+1} \\
\vdots & \vdots & \ddots & \vdots \\
H_{n+2 N-2} & H_{n+2 N-1} & \cdots & H_{n+3 N-3}
\end{array}\right|
$$

where H_{n} is a function satisfying the three-term relation:

$$
\begin{equation*}
H_{n+1}-z H_{n}+n H_{n-1}=0 . \tag{1.6}
\end{equation*}
$$

Then,

$$
\begin{equation*}
x_{n}=\frac{2}{z} \frac{\tau_{N+1}^{n+1} \tau_{N}^{n}}{\tau_{N+1}^{n} \tau_{N}^{n+1}}-1 \tag{1.7}
\end{equation*}
$$

satisfies (1.1) with the parameters

$$
\begin{equation*}
a=\frac{8}{z^{2}}, \quad b=\frac{4(1+2 N)}{z^{2}}, \quad c=-\frac{4(1+2 N)}{z^{2}} . \tag{1.8}
\end{equation*}
$$

On the other hand, since (1.4) appears as the Bäcklund transformation of the Painlevé V equation [28,38], its hypergeometric solutions are essentially the same as those to the Painlevé V equation [22,31]. The explicit form of the hypergeometric solutions to (1.4) are given as follows:

Proposition 1.2 For each $N \in \mathbb{N}$, let $\tau_{N}^{n, m}$ be an $N \times N$ determinant defined by

$$
\tau_{N}^{n, m}=\left|\begin{array}{cccc}
K_{n}^{m} & K_{n+1}^{m} & \cdots & K_{n+N-1}^{m} \tag{1.9}\\
K_{n+1}^{m} & K_{n+2}^{m} & \cdots & K_{n+N}^{m} \\
\vdots & \vdots & \ddots & \vdots \\
K_{n+N-1}^{m} & K_{n+N}^{m} & \cdots & K_{n+2 N-2}^{m}
\end{array}\right|
$$

where K_{n}^{m} is a function satisfying

$$
\begin{equation*}
K_{n+1}^{m}-K_{n}^{m}-t K_{n+1}^{m+1}=0, \quad n K_{n+1}^{m}-(n+t) K_{n}^{m}-(n-m) t K_{n}^{m+1}=0 . \tag{1.10}
\end{equation*}
$$

Then,

$$
\begin{equation*}
X_{n}=2(n+2 N-1) \frac{\tau_{N+m}^{n, m} \tau_{N}^{n, m}}{\tau_{N+1}^{n-1, m-1} \tau_{N}^{n+1, m+1}}-1, \quad Y_{n}=\frac{2}{t} \frac{\tau_{N+1}^{n-1, m-1} \tau_{N}^{n, m+1}}{\tau_{N+1}^{n-1, m} \tau_{N}^{n, m}}-1, \tag{1.11}
\end{equation*}
$$

satisfy (1.4) with the parameters

$$
\begin{equation*}
a=-\frac{4}{t}, \quad b=\frac{-4(-m+2 N-1)}{t}, \quad c=\frac{2(1+2 N)}{t}, \quad d=\frac{2(2 m+2 N-3)}{t} . \tag{1.12}
\end{equation*}
$$

It is obvious that substituting $d=0$ into the hypergeometric solutions to (1.4) in Proposition 1.2 do not yield those to (1.1) in Proposition 1.1. In particular, we remark the following differences between the two solutions:
(1) The hypergeometric functions are different. Equation (1.6) can be solved by considering the parabolic cylinder function (Weber function), while (1.10) can be solved by considering the confluent hypergeometric function. In fact, the former function is expressed as a specialization of the latter, but this specialization is not consistent with the symmetrization.
(2) Structures of the determinant are different. The determinant (1.5) has asymmetry in the shift of index: the shift in the vertical direction is two while that in the horizontal direction is one. On the other hand, the determinant (1.9) is an ordinary Hankel determinant.

We note that similar phenomena have been reported also for some other discrete Painlevé equations [$8,18,25$]. Many integrable systems admit particular solutions expressed in terms of determinants, but such an asymmetric structure of the determinant solutions has been seen only in the hypergeometric solutions to the discrete Painlevé equations. Note here that these phenomena cannot be seen for the algebraic (or rational) solutions. For example, it is known that substituting $d=0$ into the determinant expression of the rational solutions to (1.4) yields those to (1.1); see [20, 23, 24].

The τ function is one of the most important objects in the theory of integrable systems and is regarded as carrying the underlying fundamental mathematical structures. Concerning the discrete Painlevé equations, investigation of the τ functions started $[18,19]$ through the search for the explicit formulae of the hypergeometric and algebraic solutions. In fact, the above mysterious asymmetric structure has been one motivation of further study.

It is now known that theory of birational representations of affine Weyl groups provides us with an algebraic tool to study the Painlevé systems [27,29-32]. Moreover, a geometric framework of the two-dimensional Painlevé systems has been presented based on certain rational surfaces $[15,39]$. Combining these results enables us to study the Painlevé systems effectively. For instance, it played a crucial role in the identification of hypergeometric functions that appear as the particular solutions to the Painlevé systems in Sakai's classification [12-14].

The purpose of this paper is to clarify the mechanism of the phenomena of hypergeometric solutions from the viewpoint of the affine Weyl group symmetry. We shall take the q-Painlevé equation of type $\left(A_{2}+A_{1}\right)^{(1)}$ as an example, which is the simplest non-trivial discrete Painlevé system [39]. The key is to formulate the symmetrization in terms of the birational representation of the affine Weyl group, where the discrete Painlevé equation arises from the action of the translational subgroup. In fact, the discrete time evolution of the symmetric case can be regarded as a "half-step" of a translation of the affine Weyl group with restricted to a certain line in the parameter space. Conversely, we can derive various discrete Painlevé equations from elements of infinite order that are not only translations by taking a projection on a certain subspace of the parameters. We call such a procedure to obtain a "smaller" discrete time evolution of Painlevé type a projective reduction.

This paper is organized as follows: in Section 2, we introduce a q-Painlevé III equation and derive a q-Painlevé II equation by applying the symmetrization. Then we give a brief review on their hypergeometric solutions. In Section 3, we first introduce the family of Bäcklund transformations of the q-Painlevé III equation, which is a birational representation of the affine Weyl group of type $\left(A_{2}+A_{1}\right)^{(1)}$. We next lift the representation on the level of τ functions and derive various bilinear equations. We then clarify the mechanism of the inconsistency among the hypergeometric solutions by using this framework. Some concluding remarks are given in Section 4.

$2 q-P_{\text {III }}$ and $q-P_{\text {II }}$

We consider the following system of q-difference equations [11, 17, 39]:

$$
\begin{equation*}
g_{n+1}=\frac{q^{2 N+1} c^{2}}{f_{n} g_{n}} \frac{1+a_{0} q^{n} f_{n}}{a_{0} q^{n}+f_{n}}, \quad f_{n+1}=\frac{q^{2 N+1} c^{2}}{f_{n} g_{n+1}} \frac{1+a_{2} a_{0} q^{n-m} g_{n+1}}{a_{2} a_{0} q^{n-m}+g_{n+1}}, \tag{2.1}
\end{equation*}
$$

for the unknown functions $f_{n}=f_{n}(m, N)$ and $g_{n}=g_{n}(m, N)$ and the independent variable $n \in \mathbb{Z}$. Here $m, N \in \mathbb{Z}$ and $a_{0}, a_{2}, c, q \in \mathbb{C}^{\times}$are parameters. Equation (2.1) has the (extended) affine Weyl group symmetry of type $\left(A_{2}+A_{1}\right)^{(1)}$ and is known as a q-Painlevé III equation $\left(q-\mathrm{P}_{\mathrm{III}}\right)$ since the continuous limit yields the Painlevé III equation. We also consider the following q-difference equation $[25,36]$:

$$
\begin{equation*}
X_{k+1}=\frac{q^{2 N+1} c^{2}}{X_{k} X_{k-1}} \frac{1+a_{0} q^{\frac{k}{2}} X_{k}}{a_{0} q^{\frac{k}{2}}+X_{k}}, \tag{2.2}
\end{equation*}
$$

for the unknown function $X_{k}=X_{k}(N)$ and the independent variable $k \in \mathbb{Z}$. Equation (2.2) is a q-Painlevé II equation $\left(q-\mathrm{P}_{\mathrm{II}}\right)$ and actually it admits a continuous limit to the Painlevé II equation.

Note that substituting

$$
\begin{equation*}
m=0, \quad a_{2}=q^{\frac{1}{2}}, \tag{2.3}
\end{equation*}
$$

and putting

$$
\begin{equation*}
f_{k}(0, N)=X_{2 k}(N), \quad g_{k}(0, N)=X_{2 k-1}(N), \tag{2.4}
\end{equation*}
$$

in (2.1) yield (2.2).
We shall briefly review the hypergeometric solutions to $q-\mathrm{P}_{\mathrm{III}}$ and $q-\mathrm{P}_{\text {II }}$ following [11,25].

2.1 Hypergeometric solutions to $\boldsymbol{q}-\mathbf{P}_{\text {III }}$

First, we review the hypergeometric solutions to q - $\mathrm{P}_{\text {III }}$. For each $N \in \mathbb{Z}_{\geq 0}$, let $\psi_{N}^{n, m}$ be an $N \times N$ determinant defined by

$$
\psi_{N}^{n, m}=\left|\begin{array}{cccc}
F_{n, m} & F_{n+1, m} & \cdots & F_{n+N-1, m} \tag{2.5}\\
F_{n-1, m} & F_{n, m} & \cdots & F_{n+N-2, m} \\
\vdots & \vdots & \ddots & \vdots \\
F_{n-N+1, m} & F_{n-N+2, m} & \cdots & F_{n, m}
\end{array}\right|, \quad \psi_{0}^{n, m}=1,
$$

where $F_{n, m}$ satisfies

$$
\begin{align*}
& F_{n+1, m}-F_{n, m}=-a_{0}^{2} q^{2 n} F_{n, m-1}, \\
& F_{n, m+1}-F_{n, m}=-a_{2}^{-2} q^{2 m+2} F_{n-1, m} . \tag{2.6}
\end{align*}
$$

Lemma 2.1 ([11]) $\psi_{N}^{n, m}$ satisfies the following bilinear difference equations:

$$
\begin{align*}
& a_{0}{ }^{2} q^{2 n-2} \psi_{N+1}^{n-1, m-1} \psi_{N}^{n, m}-q^{2 N} \psi_{N}^{n, m-1} \psi_{N+1}^{n-1, m}+\psi_{N}^{n-1, m-1} \psi_{N+1}^{n, m}=0, \tag{2.7}\\
& \psi_{N+1}^{n, m} \psi_{N}^{n, m-1}-q^{-2 N} \psi_{N}^{n-1, m} \psi_{N+1}^{n+1, m+1}-a_{0}^{2} q^{2 n} \psi_{N}^{n, m} \psi_{N+1}^{n, m-1}=0, \tag{2.8}\\
& \psi_{N+m}^{n, m} \psi_{N}^{n-1, m-1}-\psi_{N+1}^{n, m-1} \psi_{N}^{n-1, m}+a_{2}{ }^{2} q^{2 m} \psi_{N}^{n, m} \psi_{N+1}^{n-1, m-1}=0, \tag{2.9}\\
& \psi_{N+1}^{n, m-1} \psi_{N}^{n, m}-a_{2}^{-2} q^{2 m} \psi_{N+1}^{n-1, m-1} \psi_{N}^{n+1, m}-\psi_{N}^{n, m-1} \psi_{N+1}^{n, m}=0 . \tag{2.10}
\end{align*}
$$

Proposition 2.2 ([11]) The hypergeometric solutions to $q-P_{\mathrm{III}},(2.1)$, with $c=1$ are given by

$$
\begin{equation*}
f_{n}=-a_{0} q^{n} \frac{\psi_{N+1}^{n, m-1} \psi_{N}^{n, m}}{\psi_{N+1}^{n, m} \psi_{N}^{n, m-1}}, \quad g_{n}=\frac{a_{2}}{a_{0}} q^{-n-m+1} \frac{\psi_{N+1}^{n, m} \psi_{N}^{n-1, m-1}}{\psi_{N+1}^{n-1, m-1} \psi_{N}^{n, m}} . \tag{2.11}
\end{equation*}
$$

Proposition 2.2 follows from Lemma 2.1.
Remark 2.3 (1) $F_{n, m}$ satisfies the three-term relation:

$$
\begin{equation*}
F_{n+1, m}+\left(a_{0}^{2} q^{2 n}-a_{2}^{-2} q^{2 m+2}-1\right) F_{n, m}+a_{2}^{-2} q^{2 m+2} F_{n-1, m}=0 \tag{2.12}
\end{equation*}
$$

whose general solution is given by

$$
\begin{align*}
F_{n, m}= & \frac{A}{\left(a_{2}{ }^{-2} q^{2 m+2} ; q^{2}\right)_{\infty}}{ }_{1} \varphi_{1}\binom{0}{a_{2}{ }^{2} q^{-2 m} ; q^{2}, a_{2}{ }^{2} a_{0}{ }^{2} q^{2 n-2 m}} \\
& +B\left(a_{2}^{-2} q^{2 m+4} ; q^{2}\right)_{\infty}\left(a_{2}{ }^{-1} q^{m+1}\right)^{2 n}{ }_{1} \varphi_{1}\left(\begin{array}{c}
0 \\
a_{2}{ }^{-2} q^{2 m+4}
\end{array} q^{2}, a_{0}{ }^{2} q^{2 n+2}\right) . \tag{2.13}
\end{align*}
$$

Here, A and B are arbitrary constants, and ${ }_{1} \varphi_{1}$ is the basic hypergeometric function defined by [4]

$$
{ }_{1} \varphi_{1}\left(\begin{array}{l}
a \tag{2.14}\\
b
\end{array} ; q, z\right)=\sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(b ; q)_{k}(q ; q)_{k}}(-1)^{k} q^{\frac{k(k-1)}{2}} z^{k}, \quad(a ; q)_{k}=\prod_{i=1}^{k}\left(1-a q^{i-1}\right) .
$$

(2) $\psi_{N}^{n, m}$ satisfies the discrete Toda equation:

$$
\begin{equation*}
\psi_{N+1}^{n, m} \psi_{N-1}^{n, m}-\left(\psi_{N}^{n, m}\right)^{2}+\psi_{N}^{n+1, m} \psi_{N}^{n-1, m}=0 . \tag{2.15}
\end{equation*}
$$

In general, (2.15) admits a solution expressed in terms of the Toeplitz type determinant

$$
\begin{equation*}
\psi_{N}^{n, m}=\operatorname{det}\left(c_{n-i+j, m}\right)_{i, j=1, \ldots, N} \quad(N>0), \tag{2.16}
\end{equation*}
$$

for an arbitrary function $c_{n, m}$ under the boundary conditions

$$
\begin{equation*}
\psi_{0}^{n, m}=1, \quad \psi_{N}^{n, m}=0 \quad(N<0) . \tag{2.17}
\end{equation*}
$$

Since the hypergeometric solutions to $q-\mathrm{P}_{\text {III }}$ satisfy the conditions (2.17), the bilinear equation (2.15) is regarded as to fix the determinant structure of the solutions.

2.2 Hypergeometric solutions to $\boldsymbol{q}-\mathbf{P}_{\text {II }}$

Next, we review the hypergeometric solutions to q - P_{II}. For each $N \in \mathbb{Z}_{\geq 0}$, let ϕ_{N}^{k} be an $N \times N$ determinant defined by

$$
\phi_{N}^{k}=\left|\begin{array}{cccc}
G_{k} & G_{k-1} & \cdots & G_{k-N+1} \tag{2.18}\\
G_{k+2} & G_{k+1} & \cdots & G_{k-N+3} \\
\vdots & \vdots & \ddots & \vdots \\
G_{k+2 N-2} & G_{k+2 N-3} & \cdots & G_{k+N-1}
\end{array}\right|, \quad \phi_{0}^{k}=1,
$$

where G_{k} satisfies

$$
\begin{equation*}
G_{k+1}-G_{k}+\frac{1}{a_{0}^{2} q^{k}} G_{k-1}=0 . \tag{2.19}
\end{equation*}
$$

Lemma 2.4 ([25]) ϕ_{N}^{k} satisfies the following bilinear difference equations:

$$
\begin{align*}
& a_{0}{ }^{-2} q^{-k+1} \phi_{N+1}^{k-2} \phi_{N}^{k+1}+\phi_{N+1}^{k} \phi_{N}^{k-1}-q^{-N} \phi_{N+1}^{k-1} \phi_{N}^{k}=0, \tag{2.20}\\
& q^{N} \phi_{N+1}^{k+1} \phi_{N}^{k-2}+a_{0}-2 q^{-k-N} \phi_{N+1}^{k-1} \phi_{N}^{k}-\phi_{N+1}^{k} \phi_{N}^{k-1}=0 . \tag{2.21}
\end{align*}
$$

Proposition 2.5 ([25]) The hypergeometric solutions to $q-P_{\mathrm{II}}$, (2.2), with $c=1$ are given by

$$
\begin{equation*}
X_{k}=-a_{0} q^{\frac{k}{2}+N} \frac{\phi_{N+1}^{k} \phi_{N}^{k-1}}{\phi_{N+1}^{k-1} \phi_{N}^{k}} \tag{2.22}
\end{equation*}
$$

Proposition 2.5 follows from Lemma 2.4.
Remark 2.6 (1) The general solution to (2.19) is given by

$$
\begin{align*}
G_{k}= & \Theta\left(-a_{0} q^{\frac{2 k+1}{4}} ; q^{\frac{1}{2}}\right) \\
& \times\left\{A e^{\frac{k \pi i}{2}}{ }_{1} \varphi_{1}\left(\begin{array}{c}
0 \\
\left.\left.-q^{\frac{1}{2}} ; q^{\frac{1}{2}},-i a_{0} q^{\frac{3+2 k}{4}}\right)+B e^{-\frac{k \pi i}{2}}{ }_{1} \varphi_{1}\left(\begin{array}{c}
0 \\
-q^{\frac{1}{2}}
\end{array} q^{\frac{1}{2}}, i a_{0} q^{\frac{3+2 k}{4}}\right)\right\} .
\end{array} . . . \begin{array}{ll}
\end{array}\right) .\right. \tag{2.23}
\end{align*}
$$

Here, $\Theta(a ; q)$ denotes the Jacobi theta function, which is defined by

$$
\begin{equation*}
\Theta(a ; q)=(a ; q)_{\infty}\left(q a^{-1} ; q\right)_{\infty} \tag{2.24}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
\Theta(q a ; q)=-a^{-1} \Theta(a ; q) \tag{2.25}
\end{equation*}
$$

(2) ϕ_{N}^{k} also satisfies the bilinear equation

$$
\begin{equation*}
\phi_{N+1}^{k} \phi_{N-1}^{k+1}-\phi_{N}^{k} \phi_{N}^{k+1}+\phi_{N}^{k+2} \phi_{N}^{k-1}=0, \tag{2.26}
\end{equation*}
$$

which is a variant of the discrete Toda equation. Under the conditions

$$
\begin{equation*}
\phi_{0}^{k}=1, \quad \phi_{N}^{k}=0 \quad(N<0), \tag{2.27}
\end{equation*}
$$

(2.26) admits a solution expressed by

$$
\begin{equation*}
\phi_{N}^{k}=\operatorname{det}\left(c_{k+2 i-j-1}\right)_{i, j=1, \ldots, N} \quad(N>0), \tag{2.28}
\end{equation*}
$$

for an arbitrary function c_{k}. Hence, (2.26) can be regarded as the bilinear equation that fixes the determinant structure of the hypergeometric solutions to $q-\mathrm{P}_{\mathrm{II}}$.

2.3 Comparing the hypergeometric solutions

By comparing the hypergeometric solutions to $q-\mathrm{P}_{\mathrm{III}}$ and $q-\mathrm{P}_{\mathrm{II}}$ (see Propositions 2.2 and 2.5 , respectively) one may immediately notice that a naïve application of the specialization, (2.3), to the former does not yield the latter. As analogous to the phenomena seen in Section 1, we find the following differences between the two solutions:
(i) the hypergeometric functions are different. In fact, substituting $a_{2}=q^{\frac{1}{2}}$ into (2.12) and (2.13) do not yield (2.19) and (2.23), respectively;
(ii) the determinant structures are different.

Remark 2.7 The correspondence between the rational solutions to $q-\mathrm{P}_{\mathrm{III}}$ (see [10]) and that to $q-\mathrm{P}_{\text {II }}$ (see [25]) are straightforward. It is easily verified that substituting $a_{2}=q^{\frac{1}{2}}$ into the former yields the latter.

3 Projective reduction from $\boldsymbol{q}-\mathrm{P}_{\mathrm{III}}$ to $\boldsymbol{q}-\mathrm{P}_{\mathrm{II}}$

3.1 Birational representation of $\widetilde{W}\left(\left(A_{2}+A_{1}\right)^{(1)}\right)$

We formulate the family of Bäcklund transformations of $q-\mathrm{P}_{\mathrm{III}}$ as a birational representation of the extended affine Weyl group of type $\left(A_{2}+A_{1}\right)^{(1)}$ [11, 17]. We refer to [27] for basic ideas of this formulation.

We define the transformations $s_{i}(i=0,1,2)$ and π on the variables $f_{j}(j=0,1,2)$ and parameters $a_{k}(k=0,1,2)$ by

$$
\begin{array}{ll}
s_{i}\left(a_{j}\right)=a_{j} a_{i}^{-a_{i j}}, & s_{i}\left(f_{j}\right)=f_{j}\left(\frac{a_{i}+f_{i}}{1+a_{i} f_{i}}\right)^{u_{i j}}, \\
\pi\left(a_{i}\right)=a_{i+1}, & \pi\left(f_{i}\right)=f_{i+1},
\end{array}
$$

for $i, j \in \mathbb{Z} / 3 \mathbb{Z}$. Here the symmetric 3×3 matrix

$$
A=\left(a_{i j}\right)_{i, j=0}^{2}=\left(\begin{array}{ccc}
2 & -1 & -1 \tag{3.3}\\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

is the Cartan matrix of type $A_{2}^{(1)}$, and the skew-symmetric one

$$
U=\left(u_{i j}\right)_{i, j=0}^{2}=\left(\begin{array}{ccc}
0 & 1 & -1 \tag{3.4}\\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

represents an orientation of the corresponding Dynkin diagram. We also define the transformations
$w_{j}(j=0,1)$ and r by

$$
\begin{align*}
w_{0}\left(f_{i}\right) & =\frac{a_{i} a_{i+1}\left(a_{i-1} a_{i}+a_{i-1} f_{i}+f_{i-1} f_{i}\right)}{f_{i-1}\left(a_{i} a_{i+1}+a_{i} f_{i+1}+f_{i} f_{i+1}\right)}, & w_{0}\left(a_{i}\right)=a_{i}, \tag{3.5}\\
w_{1}\left(f_{i}\right) & =\frac{1+a_{i} f_{i}+a_{i} a_{i+1} f_{i} f_{i+1}}{a_{i} a_{i+1} f_{i+1}\left(1+a_{i-1} f_{i-1}+a_{i-1} a_{i} f_{i-1} f_{i}\right)}, & w_{1}\left(a_{i}\right)=a_{i}, \tag{3.6}\\
r\left(f_{i}\right) & =\frac{1}{f_{i}}, & r\left(a_{i}\right)=a_{i}, \tag{3.7}
\end{align*}
$$

for $i \in \mathbb{Z} / 3 \mathbb{Z}$.
Proposition 3.1 ([17]) $\left\langle s_{0}, s_{1}, s_{2}, \pi, w_{0}, w_{1}, r\right\rangle$ forms the extended affine Weyl group of type $\left(A_{2}+\right.$ $\left.A_{1}\right)^{(1)}$. Namely, the transformations satisfy the fundamental relations

$$
\begin{equation*}
s_{i}^{2}=\left(s_{i} s_{i+1}\right)^{3}=\pi^{3}=1, \pi s_{i}=s_{i+1} \pi(i \in \mathbb{Z} / 3 \mathbb{Z}), \quad w_{0}^{2}=w_{1}^{2}=r^{2}=1, r w_{0}=w_{1} r, \tag{3.8}
\end{equation*}
$$

and the actions of $\widetilde{W}\left(A_{2}^{(1)}\right)=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle$ and $\widetilde{W}\left(A_{1}^{(1)}\right)=\left\langle w_{0}, w_{1}, r\right\rangle$ commute with each other.
In general, for a function $F=F\left(a_{i}, f_{j}\right)$ we let an element $w \in \widetilde{W}\left(\left(A_{2}+A_{1}\right)^{(1)}\right)$ act as $w \cdot F\left(a_{i}, f_{j}\right)=$ $F\left(a_{i} \cdot w, f_{j} \cdot w\right)$, that is, w acts on the arguments from the right. Note that $a_{0} a_{1} a_{2}=q$ and $f_{0} f_{1} f_{2}=$ $q c^{2}$ are invariant under the actions of $\widetilde{W}\left(\left(A_{2}+A_{1}\right)^{(1)}\right)$ and $\widetilde{W}\left(A_{2}^{(1)}\right)$, respectively. We define the translations $T_{i}(i=1,2,3,4)$ by

$$
\begin{equation*}
T_{1}=\pi s_{2} s_{1}, \quad T_{2}=s_{1} \pi s_{2}, \quad T_{3}=s_{2} s_{1} \pi, \quad T_{4}=r w_{0} \tag{3.9}
\end{equation*}
$$

whose actions on parameters $a_{i}(i=0,1,2)$ and c are given by

$$
\begin{align*}
& T_{1}:\left(a_{0}, a_{1}, a_{2}, c\right) \mapsto\left(q a_{0}, q^{-1} a_{1}, a_{2}, c\right), \\
& T_{2}:\left(a_{0}, a_{1}, a_{2}, c\right) \mapsto\left(a_{0}, q a_{1}, q^{-1} a_{2}, c\right), \\
& T_{3}:\left(a_{0}, a_{1}, a_{2}, c\right) \mapsto\left(q^{-1} a_{0}, a_{1}, q a_{2}, c\right) \tag{3.10}\\
& T_{4}:\left(a_{0}, a_{1}, a_{2}, c\right) \mapsto\left(a_{0}, a_{1}, a_{2}, q c\right) .
\end{align*}
$$

Note that $T_{i}(i=1,2,3,4)$ commute with each other and $T_{1} T_{2} T_{3}=1$. The action of T_{1} on f variables can be expressed as

$$
\begin{equation*}
T_{1}\left(f_{1}\right)=\frac{q c^{2}}{f_{1} f_{0}} \frac{1+a_{0} f_{0}}{a_{0}+f_{0}}, \quad T_{1}\left(f_{0}\right)=\frac{q c^{2}}{f_{0} T_{1}\left(f_{1}\right)} \frac{1+a_{2} a_{0} T_{1}\left(f_{1}\right)}{a_{2} a_{0}+T_{1}\left(f_{1}\right)} . \tag{3.11}
\end{equation*}
$$

Or, applying $T_{1}{ }^{n} T_{2}{ }^{m} T_{4}{ }^{N}(n, m, N \in \mathbb{Z})$ on (3.11) and putting

$$
\begin{equation*}
f_{i, N}^{n, m}=T_{1}{ }^{n} T_{2}{ }^{m} T_{4}{ }^{N}\left(f_{i}\right) \quad(i=0,1,2), \tag{3.12}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
f_{1, N}^{n+1, m}=\frac{q^{2 N+1} c^{2}}{f_{1, N}^{n, m} f_{0, N}^{n, m}} \frac{1+a_{0} q^{n} f_{0, N}^{n, m}}{a_{0} q^{n}+f_{0, N}^{n, m}}, \quad f_{0, N}^{n+1, m}=\frac{q^{2 N+1} c^{2}}{f_{0, N}^{n, m} f_{1, N}^{n+1}} \frac{1+a_{2} a_{0} q^{n-m} f_{1, N}^{n+1, m}}{a_{2} a_{0} q^{n-m}+f_{1, N}^{n+1, m}}, \tag{3.13}
\end{equation*}
$$

which is equivalent to q - $\mathrm{P}_{\mathrm{III}}$, (2.1). Then, $T_{i}(i=1,2,3,4)$ are regarded as Bäcklund transformations of q - $\mathrm{P}_{\text {III }}$.

In order to formulate the symmetrization to $q-\mathrm{P}_{\mathrm{II}}$, it is crucial to introduce the transformation R_{1} defined by

$$
\begin{equation*}
R_{1}=\pi^{2} s_{1} \tag{3.14}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
R_{1}{ }^{2}=T_{1} \tag{3.15}
\end{equation*}
$$

The actions of R_{1} are given by

$$
\begin{align*}
& R_{1}:\left(a_{0}, a_{1}, a_{2}, c\right) \mapsto\left(a_{2} a_{0}, a_{0}^{-1}, a_{1} a_{0}, c\right), \tag{3.16}\\
& R_{1}\left(f_{0}\right)=\frac{q c^{2}}{f_{0} f_{1}} \frac{1+a_{0} f_{0}}{a_{0}+f_{0}}, \quad R_{1}\left(f_{1}\right)=f_{0} \tag{3.17}
\end{align*}
$$

which describe the zig-zag motion around the line $a_{2}=q^{\frac{1}{2}}$ on the parameter space. However, if we put $a_{2}=q^{\frac{1}{2}}$, then R_{1} becomes the translation on the line $a_{2}=q^{\frac{1}{2}}$ with the step $q^{\frac{1}{2}}$ (see Figure 1). In fact, the actions of R_{1} are now given by

$$
\begin{align*}
& R_{1}:\left(a_{0}, a_{1}, c\right) \mapsto\left(q^{\frac{1}{2}} a_{0}, q^{-\frac{1}{2}} a_{1}, c\right) \tag{3.18}\\
& R_{1}\left(f_{0}\right)=\frac{q c^{2}}{f_{0} f_{1}} \frac{1+a_{0} f_{0}}{a_{0}+f_{0}}, \quad R_{1}\left(f_{1}\right)=f_{0} \tag{3.19}
\end{align*}
$$

Applying $R_{1}{ }^{k} T_{4}{ }^{N}$ on (3.19) and putting

$$
\begin{equation*}
f_{i, N}^{k}=R_{1}{ }^{k} T_{4}{ }^{N}\left(f_{i}\right) \quad(i=0,1,2), \tag{3.20}
\end{equation*}
$$

we have

$$
\begin{equation*}
f_{0, N}^{k+1}=\frac{q^{2 N+1} c^{2}}{f_{0, N}^{k} f_{0, N}^{k-1}} \frac{1+a_{0} q^{\frac{k}{2}} f_{0, N}^{k}}{a_{0} q^{\frac{k}{2}}+f_{0, N}^{k}} \tag{3.21}
\end{equation*}
$$

which is equivalent to $q-\mathrm{P}_{\mathrm{II}}$, (2.2). Then, R_{1} and T_{4} are regarded as Bäcklund transformations of $q-\mathrm{P}_{\mathrm{II}}$.

Figure 1. Action of R_{1} on the parameter space $\boldsymbol{a}=\left(a_{0}, a_{1}, a_{2}\right) \in\left(\mathbb{C}^{\times}\right)^{3}$ with $a_{0} a_{1} a_{2}=q$. Left: generic case. Right: $a_{2}=q^{\frac{1}{2}}$.

In general, it is possible to obtain various discrete dynamical systems of Painlevé type from elements of infinite order that are not necessarily translations in the affine Weyl group by taking a projection on an appropriate sublattice of corresponding root lattice. We call such a procedure a projective reduction.

By using the above formulation, we can now explain why the difference of hypergeometric solutions to $q-\mathrm{P}_{\text {III }}$ and that to $q-\mathrm{P}_{\text {II }}$ occurs.

3.2 Hypergeometric functions

First, we explain about the difference of hypergeometric functions. For convenience, we define the function $H_{n, m}$ by

$$
\begin{equation*}
H_{n, m}=\Theta\left(a_{0}{ }^{2} q^{2 n+1} ; q^{2}\right) F_{n+\frac{1}{2}, m}, \tag{3.22}
\end{equation*}
$$

where $F_{n, m}$ is given in Remark 2.3. Then, we obtain from (2.12) with $a_{2}=q^{\frac{1}{2}}$ the three-term relation for $H_{n, 0}$:

$$
\begin{equation*}
\left[T_{1}^{2}+\left(q^{-3-2 n} a_{0}^{-2}+q^{-2-2 n} a_{0}^{-2}-1\right) T_{1}+q^{-3-4 n} a_{0}^{-4}\right] H_{n, 0}=0 . \tag{3.23}
\end{equation*}
$$

Let $n=0$. Since $R_{1}{ }^{2}=T_{1}$, the linear difference operator in (3.23) is fourth order with respect to R_{1}. Moreover, it admits the following factorization into the second order linear difference operators:

$$
\begin{equation*}
T_{1}^{2}+\left(a_{0}^{-2} q^{-3}+a_{0}^{-2} q^{-2}-1\right) T_{1}+a_{0}^{-4} q^{-3}=\left(R_{1}^{2}+R_{1}+a_{0}^{-2} q^{-2}\right)\left(R_{1}^{2}-R_{1}+a_{0}^{-2} q^{-1}\right) . \tag{3.24}
\end{equation*}
$$

On the other hand, the three-term relation for G_{0} (see (2.19)) can be expressed as

$$
\begin{equation*}
\left(R_{1}^{2}-R_{1}+a_{0}^{-2} q^{-1}\right) G_{0}=0 . \tag{3.25}
\end{equation*}
$$

Note that the second factor in the right-hand side of (3.24) is exactly the operator in (3.25), thus, G_{0} also satisfies (3.23) with $n=0$. This factorization (3.24) implies that G_{k} can not be obtained simply from $F_{n, m}$ by a specialization of parameters (2.3).

3.3 Determinant structure

Next, in order to discuss the difference of determinant structures, we need to introduce the τ functions and lift the representation to the Weyl group on the level of τ functions [17,40]. We introduce τ_{i} and $\bar{\tau}_{i}(i \in \mathbb{Z} / 3 \mathbb{Z})$ with

$$
\begin{equation*}
f_{i}=q^{\frac{1}{3}} c^{\frac{2}{3}} \frac{\bar{\tau}_{i+1} \tau_{i-1}}{\tau_{i+1} \bar{\tau}_{i-1}} . \tag{3.26}
\end{equation*}
$$

Proposition 3.2 ([40]) We define the action of $s_{i}(i=0,1,2), \pi, w_{j}(j=0,1)$, and r on τ_{k} and $\bar{\tau}_{k}$ ($k=0,1,2$) by the following formulae:

$$
\begin{gather*}
\left\{\begin{array}{ll}
s_{i}\left(\tau_{i}\right)=\frac{u_{i} \tau_{i+1} \bar{\tau}_{i-1}+\bar{\tau}_{i+1} \tau_{i-1}}{u_{i}^{\frac{1}{2}} \bar{\tau}_{i}}, & s_{i}\left(\tau_{j}\right)=\tau_{j} \\
s_{i}\left(\bar{\tau}_{i}\right)=\frac{v_{i} \bar{\tau}_{i+1} \tau_{i-1}+\tau_{i+1} \bar{\tau}_{i-1}}{v_{i}^{\frac{1}{2}} \tau_{i}}, & s_{i}\left(\bar{\tau}_{j}\right)=\bar{\tau}_{j}
\end{array} \quad(i \neq j),\right. \tag{3.27}\\
\left\{\begin{array}{l}
\pi\left(\tau_{i}\right)=\tau_{i+1}, \\
\left.w_{0}\left(\bar{\tau}_{i}\right)=\frac{a_{i+1} \frac{1}{3}\left(\bar{\tau}_{i} \tau_{i+1}\right)=\bar{\tau}_{i+1},}{}, u_{i-1} \tau_{i} \bar{\tau}_{i+1} \tau_{i+2}+u_{i+1}^{-1} \tau_{i} \tau_{i+1} \bar{\tau}_{i+2}\right) \\
a_{i+2}{ }^{\frac{1}{3}} \bar{\tau}_{i+1} \bar{\tau}_{i+2}
\end{array}\right. \tag{3.28}\\
w_{0}\left(\tau_{i}\right)=\tau_{i}, \tag{3.29}
\end{gather*}
$$

$$
\left\{\begin{array}{l}
w_{1}\left(\tau_{i}\right)=\frac{a_{i+1}{ }^{\frac{1}{3}}\left(\tau_{i} \bar{\tau}_{i+1} \bar{\tau}_{i+2}+v_{i-1} \bar{\tau}_{i} \tau_{i+1} \bar{\tau}_{i+2}+v_{i+1}^{-1} \bar{\tau}_{i} \bar{\tau}_{i+1} \tau_{i+2}\right)}{a_{i+2}{ }^{\frac{1}{3}} \tau_{i+1} \tau_{i+2}} \tag{3.30}\\
w_{1}\left(\bar{\tau}_{i}\right)=\bar{\tau}_{i}
\end{array}\right.
$$

$$
\begin{equation*}
r\left(\tau_{i}\right)=\bar{\tau}_{i}, \quad r\left(\bar{\tau}_{i}\right)=\tau_{i}, \tag{3.31}
\end{equation*}
$$

with

$$
\begin{equation*}
u_{i}=q^{-\frac{1}{3}} c^{-\frac{2}{3}} a_{i}, \quad v_{i}=q^{\frac{1}{3}} c^{\frac{2}{3}} a_{i}, \tag{3.32}
\end{equation*}
$$

where $i, j \in \mathbb{Z} / 3 \mathbb{Z}$. Then, $\left\langle s_{0}, s_{1}, s_{2}, \pi, w_{0}, w_{1}, r\right\rangle$ realizes the affine Weyl group $\widetilde{W}\left(\left(A_{2}+A_{1}\right)^{(1)}\right)$.

Figure 2. Configuration of the τ functions on the lattice with $N=0$.
Then, we define the τ functions $\tau_{N}^{n, m}(n, m, N \in \boldsymbol{Z})$ by

$$
\begin{equation*}
\tau_{N}^{n, m}=T_{1}{ }^{n} T_{2}{ }^{m} T_{4}{ }^{N}\left(\tau_{1}\right) . \tag{3.33}
\end{equation*}
$$

We note that $\tau_{0}=\tau_{0}^{-1,0}, \tau_{1}=\tau_{0}^{0,0}, \tau_{2}=\tau_{0}^{0,1}, \bar{\tau}_{0}=\tau_{1}^{-1,0}, \bar{\tau}_{1}=\tau_{1}^{0,0}$, and $\bar{\tau}_{2}=\tau_{1}^{0,1}$.
Proposition 3.3 The action of $\widetilde{W}\left(\left(A_{2}+A_{1}\right)^{(1)}\right)$ on $\tau_{N}^{n, m}$ is

$$
\begin{align*}
& s_{0}\left(\tau_{N}^{n, m}\right)=\tau_{N}^{-n, m-n}, \quad s_{1}\left(\tau_{N}^{n, m}\right)=\tau_{N}^{m-1, n+1}, \quad s_{2}\left(\tau_{N}^{n, m}\right)=\tau_{N}^{n-m,-m}, \quad \pi\left(\tau_{N}^{n, m}\right)=\tau_{N}^{-m, n-m+1}, \tag{3.34}\\
& w_{0}\left(\tau_{N}^{n, m}\right)=\tau_{-N}^{n, m}, \quad w_{1}\left(\tau_{N}^{n, m}\right)=\tau_{2-N}^{n, m}, \quad r\left(\tau_{N}^{n, m}\right)=\tau_{1-N}^{n, m} . \tag{3.35}
\end{align*}
$$

For convenience, we put

$$
\begin{equation*}
\alpha_{i}=a_{i}^{\frac{1}{6}}, \quad \gamma=c^{\frac{1}{6}}, \quad Q=q^{\frac{1}{6}} . \tag{3.36}
\end{equation*}
$$

Though it is possible to derive more various bilinear difference equations from Proposition 3.2, we present here only the equations that are directly relevant to $q-\mathrm{P}_{\mathrm{III}},(3.11)$.

Proposition 3.4 The following bilinear equations hold:

$$
\begin{align*}
& \tau_{N+1}^{n, m} \tau_{N}^{n+1, m+1}-Q^{-3 n+3 m+2 N-2} \gamma^{2} \alpha_{1}{ }^{3} \tau_{N}^{n+1, m} \tau_{N+1}^{n, m+1}+Q^{-6 n+6 m+4 N-4} \gamma^{4} \alpha_{1}{ }^{6} \tau_{N}^{n, m} \tau_{N+1}^{n+1, m+1}=0, \tag{3.37}\\
& \tau_{N+1}^{n+1, m+1} \tau_{N}^{n+1, m}-Q^{3 n+2 N+4} \gamma^{2} \alpha_{0}{ }^{3} \tau_{N}^{n, m} \tau_{N+1}^{n+2, m+1}+Q^{6 n+4 N+8} \gamma^{4} \alpha_{0}{ }^{6} \tau_{N}^{n+1, m+1} \tau_{N+1}^{n+1, m}=0, \tag{3.38}\\
& \tau_{N+1}^{n+1, m+1} \tau_{N}^{n, m}-Q^{-3 n+3 m-2 N-4} \gamma^{-2} \alpha_{1}{ }^{3} \tau_{N+1}^{n+1, m} \tau_{N}^{n, m+1}+Q^{-6 n+6 m-4 N-8} \gamma^{-4} \alpha_{1}{ }^{6} \tau_{N}^{n+1, m+1} \tau_{N+1}^{n, m}=0, \tag{3.39}\\
& \tau_{N+1}^{n+1, m} \tau_{N}^{n+1, m+1}-Q^{3 n-2 N+2} \gamma^{-2} \alpha_{0}{ }^{3} \tau_{N+m}^{n, m} \tau_{N}^{n+2, m+1}+Q^{6 n-4 N+4} \gamma^{-4} \alpha_{0}{ }^{6} \tau_{N}^{n+1, m} \tau_{N+1}^{n+1, m+1}=0, \tag{3.40}\\
& \tau_{N+1}^{n, m} \tau_{N-1}^{n, m}+Q^{-8 n+4 m-4} \alpha_{0}{ }^{-4} \alpha_{1}{ }^{4}\left(\tau_{N}^{n, m}\right)^{2}-Q^{-2 n+m-1} \alpha_{0}{ }^{-1} \alpha_{1} \tau_{N}^{n+1, m} \tau_{N}^{n-1, m}=0 . \tag{3.41}
\end{align*}
$$

The proof of Proposition 3.4 will be given in the appendix A.1.
As seen below $q-\mathrm{P}_{\text {III }}$, (3.11) or (3.13), can be obtained from the bilinear equations. Noticing that

$$
\begin{equation*}
f_{0, N}^{n, m}=Q^{4 N+2} \gamma^{4} \frac{\tau_{N+1}^{n, m} \tau_{N}^{n, m+1}}{\tau_{N}^{n, m} \tau_{N+1}^{n, m+1}}, \quad f_{1, N}^{n, m}=Q^{4 N+2} \gamma^{4} \frac{\tau_{N+1}^{n, m+1} \tau_{N}^{n-1, m}}{\tau_{N}^{n, m+1} \tau_{N+1}^{n-1, m}}, \quad f_{2, N}^{n, m}=Q^{4 N+2} \gamma^{4} \frac{\tau_{N+1}^{n-1, m} \tau_{N}^{n, m}}{\tau_{N}^{n-1, m} \tau_{N+1}^{n, m}}, \tag{3.42}
\end{equation*}
$$

we can rewrite (3.37) and (3.39) as

$$
\begin{align*}
& 1+Q^{-6 n+6 m-6} \alpha_{1}{ }^{6} f_{1, N}^{n+1, m}=Q^{-3 n+3 m+2 N-2} \gamma^{2} \alpha_{1}{ }^{3} \frac{\tau_{N}^{n+1, m} \tau_{N+1}^{n, m+1}}{\tau_{N+1}^{n, m} \tau_{N}^{n+1, m+1}}, \tag{3.43}\\
& 1+Q^{6 n-6 m+6} \alpha_{1}{ }^{-6} f_{1, N}^{n+1, m}=Q^{3 n-3 m+2 N+4} \gamma^{2} \alpha_{1}{ }^{-3} \frac{\tau_{N+1}^{n+1, m} \tau_{N}^{n, m+1}}{\tau_{N+1}^{n, m} \tau_{N}^{n+1, m+1}}, \tag{3.44}
\end{align*}
$$

respectively. Dividing (3.44) by (3.43), we have

$$
\begin{equation*}
\frac{1+Q^{6 n-6 m+6} \alpha_{1}{ }^{-6} f_{1, N}^{n+1, m}}{1+Q^{-6 n+6 m-6} \alpha_{1}{ }^{6} f_{1, N}^{n+1, m}}=Q^{6 n-6 m+6} \alpha_{1}{ }^{-6} \frac{\tau_{N+1}^{n+1, m} \tau_{N}^{n, m+1}}{\tau_{N}^{n+1, m} \tau_{N+1}^{n, m+1}}=Q^{6 n-6 m+6} \alpha_{1}{ }^{-6} \frac{f_{0, N}^{n, m}}{f_{2, N}^{n+1, m}}, \tag{3.45}
\end{equation*}
$$

which is equivalent to the second equation of (3.13). Similarly, (3.38) and (3.40) yield the first equation of (3.13).

For the hypergeometric solutions, we relate the τ functions to the determinants $\psi_{N}^{n, m}$, (2.5), by multiplication of appropriate "gauge" factor. Set

$$
\begin{align*}
\tau_{N}^{n, m}= & (-1)^{\frac{N(N+1)}{2}} Q^{-2(2 n-m) N^{2}+6 N n} \alpha_{0}{ }^{-4 N^{2}+6 N} \alpha_{2}{ }^{-2 N^{2}}\left(\frac{\Theta\left(-Q^{-6 n} \alpha_{0}^{-6}, Q^{6}\right) \Theta\left(-Q^{6 m} \alpha_{2}{ }^{-6}, Q^{6}\right)}{\Theta\left(Q^{-6(n-m)} \alpha_{0}{ }^{-6} \alpha_{2} \alpha^{-6}, Q^{6}\right)}\right)^{N} \\
& \times \Gamma\left(Q^{2 n-m+1} \alpha_{0}^{2} \alpha_{2} ; Q, Q\right) \Gamma\left(Q^{-n+2 m-1} \alpha_{1}^{2} \alpha_{0} ; Q, Q\right) \Gamma\left(Q^{-n-m} \alpha_{2}^{2} \alpha_{1} ; Q, Q\right) \psi_{N}^{n, m-1}, \tag{3.46}
\end{align*}
$$

where $\Gamma(a ; p, q)$ denotes the Elliptic gamma function, which is defined by

$$
\begin{equation*}
\Gamma(a ; p, q)=\frac{\left(q^{2} a^{-1} ; p, q\right)_{\infty}}{(a ; p, q)_{\infty}} \tag{3.47}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
\Gamma(q a ; q, q)=\Theta(a, q) \Gamma(a ; q, q) \tag{3.48}
\end{equation*}
$$

Let $\gamma=1$. Then the bilinear equations (3.37)-(3.41) can be rewritten as

$$
\begin{align*}
& \psi_{N+1}^{n, m} \psi_{N}^{n+1, m+1}-Q^{-12 n+12 N} \alpha_{0}{ }^{-12} \psi_{N}^{n+1, m} \psi_{N+1}^{n, m+1}+Q^{-12 n} \alpha_{0}{ }^{-12} \psi_{N}^{n, m} \psi_{N+1}^{n+1, m+1}=0, \tag{3.49}\\
& \psi_{N+m}^{n+1, m} \psi_{N}^{n+1, m}-Q^{-12 N} \psi_{N}^{n, m} \psi_{N+1}^{n+2, m+1}-Q^{12 n+12} \alpha_{0}^{12} \psi_{N}^{n+1, m+1} \psi_{N+1}^{n+1, m}=0, \tag{3.50}\\
& \psi_{N+1}^{n+1, m+1} \psi_{N}^{n, m}-\psi_{N+1}^{n+1, m} \psi_{N}^{n, m+1}+Q^{12 m+12} \alpha_{2}{ }^{-12} \psi_{N}^{n+1, m+1} \psi_{N+1}^{n, m}=0, \tag{3.51}\\
& \psi_{N+1}^{n+m} \psi_{N}^{n+1, m+1}-Q^{12 m+12} \alpha_{2}^{-12} \psi_{N+1}^{n, m} \psi_{N}^{n+2, m+1}-\psi_{N}^{n+1, m} \psi_{N+1}^{n+1, m+1}=0, \tag{3.52}\\
& \psi_{N+1}^{n, m} \psi_{N-1}^{n, m}-\left(\psi_{N}^{n, m}\right)^{2}+\psi_{N}^{n+1, m} \psi_{N}^{n-1, m}=0, \tag{3.53}
\end{align*}
$$

respectively. Equations (3.49)-(3.52) are equivalent to (2.7)-(2.10). Note that (3.53) is exactly the discrete Toda equation, (2.15), which fixes the determinant structure of the hypergeometric solutions as mentioned in Remark 2.3.

Remark 3.5 The gauge factor $\tau_{N}^{n, m} / \psi_{N}^{n, m-1}$ in (3.46) is obtained by solving the overdetermined system of the bilinear difference equations with $\gamma=1$ under the boundary conditions $\tau_{N}^{n, m}=0$ ($N \in \mathbb{Z}_{<0}$) [26].

Let us consider the bilinear equations for $q-\mathrm{P}_{\mathrm{II}}$. Since we need R_{1}, τ_{i}, and $\bar{\tau}_{i}(i \in \mathbb{Z} / 3 \mathbb{Z})$, the lattice is restricted to the "unit-strip" (see Figure 3). Therefore, we have only to consider $\tau_{N}^{n, 0}$ and $\tau_{N}^{n, 1}(n, N \in \mathbb{Z})$. We set

$$
\begin{equation*}
\tau_{N}^{k}=R_{1}{ }^{k} T_{4}{ }^{N}\left(\tau_{1}\right) . \tag{3.54}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\tau_{0}=\tau_{0}^{-2}, \quad \tau_{1}=\tau_{0}^{0}, \quad \tau_{2}=\tau_{0}^{-1}, \quad \bar{\tau}_{0}=\tau_{1}^{-2}, \quad \bar{\tau}_{1}=\tau_{1}^{0}, \quad \bar{\tau}_{2}=\tau_{1}^{-1} . \tag{3.55}
\end{equation*}
$$

In general, it follows that

$$
\begin{equation*}
\tau_{N}^{n, 0}=\tau_{N}^{2 n}, \quad \tau_{N}^{n, 1}=\tau_{N}^{2 n-1} \tag{3.56}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{0, N}^{k}=Q^{4 N+2} \gamma^{4} \frac{\tau_{N+1}^{k} \tau_{N}^{k-1}}{\tau_{N}^{k} \tau_{N+1}^{k-1}} \tag{3.57}
\end{equation*}
$$

Figure 3. The actions of R_{1} on $\tau_{i}(i=0,1,2)$.

Proposition 3.6 The following bilinear equations hold:

$$
\begin{align*}
& Q^{-\frac{-k+4 N+2}{2}} \gamma^{2} \alpha_{0}{ }^{-3} \tau_{N}^{k+1} \tau_{N+1}^{k-2}-Q^{-3 k+4 N+2} \gamma^{4} \alpha_{0}{ }^{-6} \tau_{N}^{k-1} \tau_{N+1}^{k}-\tau_{N+1}^{k-1} \tau_{N}^{k}=0, \tag{3.58}\\
& Q^{-\frac{-3-A N-2}{2}} \gamma^{-2} \alpha_{0}{ }^{-3} \tau_{N+1}^{k+1} \tau_{N}^{k-2}-Q^{-3 k-4 N-2} \gamma^{-4} \alpha_{0}{ }^{-6} \tau_{N}^{k} \tau_{N+1}^{k-1}-\tau_{N+1}^{k} \tau_{N}^{k-1}=0, \tag{3.59}\\
& \tau_{N+1}^{k} \tau_{N-1}^{k+1}-Q^{\frac{k-4 N+1}{2}} \gamma^{-2} \alpha_{0} \tau_{N}^{k+2} \tau_{N}^{k-1}-Q^{-k+4 N-1} \gamma^{4} \alpha_{0}{ }^{-2} \tau_{N}^{k} \tau_{N}^{k+1}=0 . \tag{3.60}
\end{align*}
$$

The proof of Proposition 3.6 will be given in the appendix A.2.
One can obtain $q-\mathrm{P}_{\mathrm{II}}$, (3.19), from Proposition 3.6 as follows. Equations (3.58) and (3.59) can be rewritten as

$$
\begin{align*}
& 1+Q^{-3 k} \alpha_{0}^{-6} f_{0, N}^{k}=Q^{\frac{-3 k+4 N+2}{2}} \gamma^{2} \alpha_{0}{ }^{-3} \frac{\tau_{N}^{k+1} \tau_{N+1}^{k-2}}{\tau_{N+1}^{k-1} \tau_{N}^{k}} \tag{3.61}\\
& 1+Q^{3 k} \alpha_{0}{ }^{6} f_{0, N}^{k}=Q^{\frac{3 k+4 N+2}{2}} \gamma^{2} \alpha_{0}{ }^{3} \frac{\tau_{N+1}^{k+1} \tau_{N}^{k-2}}{\tau_{N+1}^{k-1} \tau_{N}^{k}} \tag{3.62}
\end{align*}
$$

Dividing (3.62) by (3.61), we have

$$
\begin{equation*}
\frac{1+Q^{3 k} \alpha_{0}{ }^{6} f_{0, N}^{k}}{1+Q^{-3 k} \alpha_{0}{ }^{-6} f_{0, N}^{k}}=Q^{3 k} \alpha_{0}{ }^{6} \frac{\tau_{N+1}^{k+1} \tau_{N}^{k-2}}{\tau_{N}^{k+1} \tau_{N+1}^{k-2}}=Q^{3 k-12 N-6} \gamma^{12} \alpha_{0}{ }^{6} f_{0, N}^{k+1} f_{0, N}^{k} f_{0, N}^{k-1}, \tag{3.63}
\end{equation*}
$$

which is equivalent to (3.21).
For hypergeometric solutions, by putting $\gamma=1$ and

$$
\begin{equation*}
\left.\tau_{N}^{k}=(-1)^{\frac{N(N-1)}{2}} Q^{N(N-1)(k+n)} \alpha_{0}^{2 N(N-1)} \frac{\Gamma\left(Q^{2^{2}+3}\right.}{2} \alpha_{0}^{2} ; Q, Q\right) \Gamma\left(Q^{-\frac{k}{2}} \alpha_{0}^{-1} ; Q, Q\right) \Gamma\left(Q^{\frac{-k+3}{2}} \alpha_{0}^{-1} ; Q, Q\right) \phi_{n}^{k} \tag{3.64}
\end{equation*}
$$

we can rewrite the bilinear equations (3.58), (3.59), and (3.60) as

$$
\begin{align*}
& Q^{6 N-6 k+6} \alpha_{0}{ }^{-12} \phi_{N}^{k+1} \phi_{N+1}^{k-2}+Q^{6 N} \phi_{N}^{k-1} \phi_{N+1}^{k}-\phi_{N+1}^{k-1} \phi_{N}^{k}=0, \tag{3.65}\\
& Q^{6 N} \phi_{N+1}^{k+1} \phi_{N}^{k-2}+Q^{-6 N-6 k} \alpha_{0}{ }^{-12} \phi_{N}^{k} \phi_{N+1}^{k-1}-\phi_{N+1}^{k} \phi_{N}^{k-1}=0, \tag{3.66}\\
& \phi_{N+1}^{k} \phi_{N-1}^{k+1}-\phi_{N}^{k} \phi_{N}^{k+1}+\phi_{N}^{k+2} \phi_{N}^{k-1}=0, \tag{3.67}
\end{align*}
$$

which are equivalent to (2.20), (2.21), and (2.26), respectively. The determinant structure of the hypergeometric solutions is fixed by (3.67) as was explained in Remark 2.6.

Therefore, the difference of the determinant structures of the hypergeometric solutions to $q-\mathrm{P}_{\mathrm{III}}$ and that to $q-\mathrm{P}_{\mathrm{II}}$ originates from the following procedures:
(i) the specialization $a_{2}=q^{\frac{1}{2}}$ and the restriction of τ functions on the "unit-strip";
(ii) taking the half-step translation R_{1} instead of T_{1} as a time evolution.

These result in the difference of the bilinear equations (3.41) (or (3.53)) and (3.60) (or (3.67)), which fix the determinant structure of the hypergeometric solutions.

4 Concluding remarks

In this paper, we have clarified the mechanism that gives rise to the apparent "inconsistency" in the hypergeometric solutions to $q-\mathrm{P}_{\text {III }}$ and that to $q-\mathrm{P}_{\mathrm{II}}$ by using their underlying affine Weyl group symmetry. In general, it is also possible to explain the inconsistency among the hypergeometric solutions to other symmetric and asymmetric discrete Painlevé equations (see, for example, Propositions 1.1 and 1.2).

We shall make a slightly technical remark on the solutions to $q-\mathrm{P}_{\mathrm{II}}$. Besides the hypergeometric solution to $q-\mathrm{P}_{\text {II }}$ in Proposition 2.5, one can also obtain another solution to $q-\mathrm{P}_{\text {II }}$ from that to q $\mathrm{P}_{\text {III }}$ in Proposition 2.2 through a naïve specialization (2.3). This solution, however, takes different expressions according to the parity of the time variable k of $q-\mathrm{P}_{\mathrm{II}}$, (2.2). On the other hand, the solution in Proposition 2.5 forms a smooth function in k. In this sense it is more natural as a solution to $q-\mathrm{P}_{\mathrm{II}}$.

Before closing, we demonstrate another example of the projective reductions. Let us consider the following system of difference equations [28]:

$$
\begin{equation*}
Z_{n}+X_{n}=\frac{3 n a+b_{1}}{Y_{n}}+t, \quad X_{n+1}+Y_{n}=\frac{(3 n+1) a+b_{2}}{Z_{n}}+t, \quad Y_{n+1}+Z_{n}=\frac{(3 n+2) a+b_{3}}{Z_{n}}+t, \tag{4.1}
\end{equation*}
$$

where X_{n}, Y_{n}, and Z_{n} are the dependent variables, $n \in \mathbb{Z}$ is the independent variable, and $a, b_{1}, b_{2}, b_{3}, t \in$ \mathbb{C} are parameters. Equation (4.1) is one of the discrete Painlevé systems of type $A_{3}^{(1)}$. Namely, it arises from a Bäcklund transformation of the Painlevé V equation, which describes a translation in a different direction from (1.4). Putting $b_{1}=b_{2}=b_{3}=b, X_{n}=x_{3 n-1}, Y_{n}=x_{3 n}$, and $Z_{n}=x_{3 n+1}$, we can reduce (4.1) to

$$
\begin{equation*}
x_{n+1}+x_{n-1}=\frac{a n+b}{x_{n}}+t, \tag{4.2}
\end{equation*}
$$

which is known as a discrete Painlevé I equation [36]. This reduction from (4.1) to (4.2) is a typical example of the projective reductions other than a symmetrization.

It seems that various projective reductions of the discrete Painlevé systems change the underlying symmetry and yield a number of intriguing problems. One interesting project is to make a list of the hypergeometric functions that appear as the solutions to all the symmetric discrete Painlevé equations in Sakai's classification [13, 14,39]. These will be discussed in forthcoming papers [16].

Acknowledgement. The authors would like to express their sincere thanks to Prof. M. Noumi for fruitful discussions and valuable suggestions. They also acknowledge continuous encouragement by Prof. T. Masuda, Prof. H. Sakai, and Prof. Y. Yamada. This work has been partially supported by the JSPS Grant-in-Aid for Scientific Research No. 19340039.

A Derivation of bilinear equations

In this appendix, we derive various bilinear equations for τ functions from the birational representations of $\widetilde{W}\left(\left(A_{2}+A_{1}\right)^{(1)}\right)$ given in Proposition 3.2.

A. 1 Bilinear equations for $\boldsymbol{q}-\mathbf{P}_{\text {III }}$

We use the notations introduced in (3.33) and (3.36). For convenience, we classify the bilinear equations into six types so that any equations which belong to the same type can be transformed into each other by the action of $\widetilde{W}\left(\left(A_{2}+A_{1}\right)^{(1)}\right)$.

Proposition A. 1 (Type I: Discrete Toda type) The following bilinear equations hold:

$$
\begin{align*}
& \tau_{N+1}^{n, m} \tau_{N-1}^{n, m}+Q^{4 n-8 m+4} \alpha_{1}{ }^{-4} \alpha_{2}{ }^{4}\left(\tau_{N}^{n, m}\right)^{2}-Q^{n-2 m+1} \alpha_{1}{ }^{-1} \alpha_{2} \tau_{N}^{n, m+1} \tau_{N}^{n, m-1}=0, \tag{A.1}\\
& \tau_{N+1}^{n, m} \tau_{N-1}^{n, m}+Q^{4 n+4 m} \alpha_{0}^{4} \alpha_{2}{ }^{-4}\left(\tau_{N}^{n, m}\right)^{2}-Q^{n+m} \alpha_{0} \alpha_{2}^{-1} \tau_{N}^{n+1, m+1} \tau_{N}^{n-1, m-1}=0, \tag{A.2}\\
& \tau_{N+1}^{n, m} \tau_{N-1}^{n, m}+Q^{-8 n+4 m-4} \alpha_{0}{ }^{-4} \alpha_{1}{ }^{4}\left(\tau_{N}^{n, m}\right)^{2}-Q^{-2 n+m-1} \alpha_{0}{ }^{-1} \alpha_{1} \tau_{N}^{n+1, m} \tau_{N}^{n-1, m}=0 . \tag{A.3}
\end{align*}
$$

Figure 4. Configuration of τ functions for the bilinear equations of type I. Left: (A.1), center: (A.2), right: (A.3).

Proof. Application of $T_{4}=r w_{0}$ on $\bar{\tau}_{0}$ yields

$$
\begin{equation*}
T_{4}\left(\bar{\tau}_{0}\right)=c^{-\frac{2}{3}} a_{0}^{-\frac{1}{3}} a_{1}^{-1} a_{2}{ }^{-\frac{2}{3}} \frac{\bar{\tau}_{0} \bar{\tau}_{1}}{\tau_{1}}+c^{\frac{2}{3}} a_{0}{ }^{\frac{1}{3}} a_{1} \frac{2}{3} a_{2} \frac{\bar{\tau}_{0} \bar{\tau}_{2}}{\tau_{2}}+a_{1}{ }^{\frac{1}{3}} a_{2}{ }^{-\frac{1}{3}} \frac{\tau_{0} \bar{\tau}_{1} \bar{\tau}_{2}}{\tau_{1} \tau_{2}}, \tag{A.4}
\end{equation*}
$$

which is rearranged as

$$
\begin{equation*}
T_{4}\left(\bar{\tau}_{0}\right)-c^{-\frac{2}{3}} a_{0}^{-\frac{1}{3}} a_{1}^{-1} a_{2}^{-\frac{2}{3}} \frac{\bar{\tau}_{0} \bar{\tau}_{1}}{\tau_{1}}\left(\frac{q^{\frac{1}{3}} c^{\frac{2}{3}} a_{1} \tau_{0} \bar{\tau}_{2}+\bar{\tau}_{0} \tau_{2}}{\bar{\tau}_{0} \tau_{2}}\right)\left(\frac{q^{\frac{1}{3}} c^{\frac{2}{3}} a_{2} \tau_{1} \bar{\tau}_{0}+\bar{\tau}_{1} \tau_{0}}{\bar{\tau}_{1} \tau_{0}}\right)+a_{1}^{-\frac{2}{3}} a_{2}^{\frac{2}{3}} \frac{\bar{\tau}_{0}{ }^{2}}{\tau_{0}}=0 . \tag{A.5}
\end{equation*}
$$

Applying $T_{2}=s_{2} \pi s_{1}$ and $T_{3}=s_{2} s_{1} \pi$ on $\bar{\tau}_{0}$ and $\bar{\tau}_{1}$, respectively, we obtain

$$
\begin{align*}
& q^{\frac{1}{6}} c^{\frac{1}{3}} a_{1} \frac{1}{2} \tau_{1} T_{2}\left(\bar{\tau}_{0}\right)=q^{\frac{1}{3}} c^{\frac{2}{3}} a_{1} \tau_{0} \bar{\tau}_{2}+\bar{\tau}_{0} \tau_{2}, \tag{A.6}\\
& q^{\frac{1}{6}} c^{\frac{1}{3}} a_{2}{ }^{\frac{1}{2}} \tau_{2} T_{3}\left(\bar{\tau}_{1}\right)=q^{\frac{1}{3}} c^{\frac{2}{3}} a_{2} \tau_{1} \bar{\tau}_{0}+\bar{\tau}_{1} \tau_{0} . \tag{A.7}
\end{align*}
$$

Using (A.6) and (A.7), we can rewrite (A.5) as

$$
\begin{equation*}
T_{4}{ }^{2}\left(\tau_{0}\right) \tau_{0}+a_{1}^{-\frac{2}{3}} a_{2}^{\frac{2}{3}} T_{4}\left(\tau_{0}\right)^{2}-a_{1}{ }^{-\frac{1}{6}} a_{2}^{\frac{1}{6}} T_{2} T_{4}\left(\tau_{0}\right) T_{3} T_{4}\left(\tau_{1}\right)=0 . \tag{A.8}
\end{equation*}
$$

Then by applying $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n-1}, T_{1}{ }^{l} T_{2}{ }^{m} T_{4}{ }^{n-1} \pi$, and $T_{1}{ }^{l} T_{2}{ }^{m-1} T_{4}{ }^{n-1} \pi^{2}$ on (A.8), we obtain (A.1), (A.2), and (A.3), respectively.

Figure 4 shows the configuration of τ functions in the bilinear equations. Each bilinear equation takes the form of a linear combination of the three quadratic terms in τ functions. In the left figure, we mark the first, the second, and the third multiplication of τ functions of (A.1) with the square, the circle, and the triangle, respectively. In the rest of this paper, we use similar representations as above.

Proposition A. 2 (Type II: Discrete 2d-Toda type) The following bilinear difference equations hold:

$$
\begin{align*}
& \left(1-Q^{-12 m} \alpha_{2}{ }^{12}\right) \tau_{N+1}^{n, m} \tau_{N-1}^{n, m}+Q^{n-11 m} \alpha_{0} \alpha_{2}{ }^{11} \tau_{N}^{n+1, m+1} \tau_{N}^{n-1, m-1}-Q^{n-2 m} \alpha_{0} \alpha_{2}{ }^{2} \tau_{N}^{n, m+1} \tau_{N}^{n, m-1}=0, \tag{A.9}\\
& \left(1-Q^{12 n} \alpha_{0}{ }^{12}\right) \tau_{N+1}^{n, m} \tau_{N-1}^{n, m}+Q^{10 n+m} \alpha_{0}{ }^{10} \alpha_{2}{ }^{-1} \tau_{N}^{n+1, m} \tau_{N}^{n-1, m}-Q^{n+m} \alpha_{0} \alpha_{2}{ }^{-1} \tau_{N}^{n+1, m+1} \tau_{N}^{n-1, m-1}=0, \tag{A.10}\\
& \left(1-Q^{12 n-12 m} \alpha_{0}{ }^{12} \alpha_{2}{ }^{12}\right) \tau_{N+1}^{n, m} \tau_{N-1}^{n, m}+Q^{10 n-11 m} \alpha_{0}{ }^{10} \alpha_{2}{ }^{11} \tau_{N}^{n+1, m} \tau_{N}^{n-1, m}-Q^{n-2 m} \alpha_{0} \alpha_{2}{ }^{2} \tau_{N}^{n, m+1} \tau_{N}^{n, m-1}=0 \tag{A.11}
\end{align*}
$$

Figure 5. Configuration of τ functions for the bilinear equations of type II. Left: (A.9), center: (A.10), right: (A.11).

Proof. Equation (A.9) is derived by eliminating $\tau_{l, m, n}$ from (A.1) and (A.2). We obtain (A.10) and (A.11) in a similar manner.

Proposition A. 3 (Type III) The following bilinear equations hold:

$$
\begin{gather*}
\left(Q^{4 n-8 m+4} \alpha_{1}{ }^{-4} \alpha_{2}{ }^{4}-Q^{4 l+4 m} \alpha_{0}{ }^{4} \alpha_{2}{ }^{-4}\right)\left(\tau_{N}^{n, m}\right)^{2}+Q^{n+m} \alpha_{0} \alpha_{2}{ }^{-1} \tau_{N}^{n+1, m+1} \tau_{N}^{n-1, m-1} \\
\quad-Q^{n-2 m+1} \alpha_{1}{ }^{-1} \alpha_{2} \tau_{N}^{n, m+1} \tau_{N}^{n, m-1}=0, \tag{A.12}\\
\left(Q^{4 n+4 m} \alpha_{0}{ }^{4} \alpha_{2}{ }^{-4}-Q^{-8 n+4 m-4} \alpha_{0}{ }^{-4} \alpha_{1}{ }^{4}\right)\left(\tau_{N}^{n, m}\right)^{2}+Q^{-2 n+m-1} \alpha_{0}{ }^{-1} \alpha_{1} \tau_{N}^{n+1, m} \tau_{N}^{n-1, m} \\
\quad-Q^{n+m} \alpha_{0} \alpha_{2}{ }^{-1} \tau_{N}^{n+1, m+1} \tau_{N}^{n-1, m-1}=0, \tag{A.13}\\
\left(Q^{-8 n+4 m-4} \alpha_{0}{ }^{-4} \alpha_{1}{ }^{4}-Q^{4 n-8 m+4} \alpha_{1}{ }^{-4} \alpha_{2}{ }^{4}\right)\left(\tau_{N}^{n, m}\right)^{2}-Q^{-2 n+m-1} \alpha_{0}{ }^{-1} \alpha_{1} \tau_{N}^{n+1, m} \tau_{N}^{n-1, m} \\
\quad+Q^{n-2 m+1} \alpha_{1}{ }^{-1} \alpha_{2} \tau_{N}^{n, m+1} \tau_{N}^{n, m-1}=0 . \tag{A.14}
\end{gather*}
$$

Proof. We obtain (A.12) by eliminating $\tau_{l, m, n+1} \tau_{l, m, n-1}$ from (A.1) and (A.2). Other equations can be derived in a similar manner.

Proposition A. 4 (Type IV) The following bilinear equation holds:

$$
\begin{align*}
Q^{-3 n} \alpha_{0}^{-3}\left(1-Q^{-12 m} \alpha_{2}^{-12}\right) \tau_{N}^{n+1, m} \tau_{N}^{n-1, m} & -Q^{-3 m} \alpha_{2}{ }^{3}\left(1-Q^{-12 l} \alpha_{0}{ }^{-12}\right) \tau_{N}^{n, m+1} \tau_{N}^{n, m-1} \\
& +\left(Q^{-12 m} \alpha_{2}{ }^{-12}-Q^{-12 l} \alpha_{0}{ }^{-12}\right) \tau_{N}^{n+1, m+1} \tau_{N}^{n-1, m-1}=0 \tag{A.15}
\end{align*}
$$

Proof. Equation (A.15) can be derived by eliminating $\tau_{N}^{n, m}$ from (A.12) and (A.13).

Figure 6. Configuration of τ functions for the bilinear equations of type III. Left: (A.12), center: (A.13), right: (A.14).

Figure 7. Configuration of τ functions for the bilinear equations of type IV.

Proposition A. 5 (Type V) The following bilinear equations hold:

$$
\begin{align*}
& \tau_{N+1}^{n, m} \tau_{N-1}^{n+1, m+1}-Q^{n+m-2 N} \gamma^{-2} \alpha_{0}{ }^{2} \alpha_{1} \tau_{N}^{n+1, m} \tau_{N}^{n, m+1}-Q^{-2 n+2 m-4 N} \gamma^{4} \alpha_{0}{ }^{-4} \alpha_{1}{ }^{-2} \tau_{N}^{n, m} \tau_{N}^{n+1, m+1}=0, \tag{A.16}\\
& \tau_{N+1}^{n+1, m} \tau_{N-1}^{n, m}-Q^{-2 n+m-2 N} \gamma^{-2} \alpha_{0}{ }^{-3} \alpha_{1}{ }^{-1} \alpha_{2}{ }^{-2} \tau_{N}^{n+1, m+1} \tau_{N}^{n, m-1}-Q^{4 n-2 m+4 N} \gamma^{4} \alpha_{0}{ }^{6} \alpha_{1}{ }^{2} \alpha_{2}{ }^{4} \tau_{N}^{n+1, m} \tau_{N}^{n, m}=0, \tag{A.17}\\
& \tau_{N+1}^{n+1, m+1} \tau_{N-1}^{n+1, m}-Q^{n-2 m-2 N+1} \gamma^{-2} \alpha_{1}{ }^{-1} \alpha_{2} \tau_{N}^{n, m} \tau_{N}^{n+2, m+1}-Q^{-2 n+4 m+4 N-2} \gamma^{4} \alpha_{1}{ }^{2} \alpha_{2}{ }^{-2} \tau_{N}^{n+1, m+1} \tau_{N}^{n+1, m}=0, \tag{A.18}\\
& \tau_{N+1}^{n+1, m+1} \tau_{N-1}^{n, m}-Q^{n+m+2 N} \gamma^{2} \alpha_{0}{ }^{2} \alpha_{1} \tau_{N}^{n, m+1} \tau_{N}^{n+1, m}-Q^{-2 n-2 m-4 N} \gamma^{-4} \alpha_{0}{ }^{-4} \alpha_{1}{ }^{-2} \tau_{N}^{n+1, m+1} \tau_{N}^{n, m}=0, \tag{A.19}\\
& \tau_{N+1}^{n, m} \tau_{N-1}^{n+1, m}-Q^{-2 n+m+2 N} \gamma^{2} \alpha_{0}{ }^{-3} \alpha_{1}{ }^{-1} \alpha_{2}{ }^{-2} \tau_{N}^{n, m-1} \tau_{N}^{n+1, m+1}-Q^{4 n-2 m-4 N} \gamma^{-4} \alpha_{0}{ }^{6} \alpha_{1}{ }^{2} \alpha_{2}{ }^{4} \tau_{N}^{n, m} \tau_{N}^{n+1, m}=0, \tag{A.20}\\
& \tau_{N+1}^{n+1, m} \tau_{N-1}^{n+1, m+1}-Q^{n-2 m+2 N} \gamma^{2} \alpha_{0} \alpha_{2}{ }^{2} \tau_{N}^{n+2, m+1} \tau_{N}^{n, m}-Q^{-2 n+4 m-4 N} \gamma^{-4} \alpha_{0}{ }^{-2} \alpha_{2}{ }^{-4} \tau_{N}^{n+1, m} \tau_{N}^{n+1, m+1}=0 . \quad \text { (A } \tag{A.21}
\end{align*}
$$

Proof. First, we prove (A.16)-(A.18). We rewrite (A.4) as

$$
\begin{equation*}
T_{4}\left(\bar{\tau}_{0}\right)-c^{-\frac{2}{3}} a_{0}^{-\frac{1}{3}} a_{1}^{-1} a_{2}^{-\frac{2}{3}} \frac{\bar{\tau}_{1}}{\tau_{1} \tau_{2}}\left(q^{\frac{1}{3}} c^{\frac{2}{3}} a_{1} \tau_{0} \bar{\tau}_{2}+\bar{\tau}_{0} \tau_{2}\right)-c^{\frac{2}{3}} a_{0}{ }^{\frac{1}{3}} a_{1} \frac{2}{3} a_{2} \frac{\bar{\tau}_{0} \bar{\tau}_{2}}{\tau_{2}}=0 . \tag{A.22}
\end{equation*}
$$

By using (A.6), we have from (A.22) that

$$
\begin{equation*}
T_{4}\left(\bar{\tau}_{0}\right) \tau_{2}-c^{-\frac{1}{3}} a_{0}{ }^{-\frac{1}{6}} a_{1}{ }^{-\frac{1}{3}} a_{2}{ }^{-\frac{1}{2}} \bar{\tau}_{1} T_{2}\left(\bar{\tau}_{0}\right)-c^{\frac{2}{3}} a_{0} 0^{\frac{1}{3}} a_{1}{ }^{\frac{2}{3}} a_{2} \bar{\tau}_{0} \bar{\tau}_{2}=0, \tag{A.23}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
T_{1}{ }^{-1} T_{4}{ }^{2}\left(\tau_{1}\right) T_{2}\left(\tau_{1}\right)-c^{-\frac{1}{3}} a_{0}{ }^{-\frac{1}{6}} a_{1}{ }^{-\frac{1}{3}} a_{2}-\frac{1}{2} T_{4}\left(\tau_{1}\right) T_{1}^{-1} T_{2} T_{4}\left(\tau_{1}\right)-c^{\frac{2}{3}} a_{0}{ }^{\frac{1}{3}} a_{1}{ }^{\frac{2}{3}} a_{2} T_{1}^{-1} T_{4}\left(\tau_{1}\right) T_{2} T_{4}\left(\tau_{1}\right)=0 . \tag{A.24}
\end{equation*}
$$

Figure 8. Configuration of τ functions for the bilinear equations of type V. Upper left: (A.16), upper center: (A.17), upper right: (A.18), lower left: (A.19), lower center: (A.20), lower right: (A.21).

We obtain (A.16), (A.17), and (A.18) by applying $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n-1}, T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n-1} \pi$, and $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n-1} \pi^{2}$ on (A.24), respectively.

Next, we prove (A.19)-(A.21). We rewrite (A.4) as

$$
\begin{equation*}
T_{4}\left(\bar{\tau}_{0}\right)-a_{1}{ }^{\frac{1}{3}} a_{2}{ }^{-\frac{1}{3}} \frac{\bar{\tau}_{2}}{\tau_{1} \tau_{2}}\left(a^{\frac{1}{3}} c^{\frac{2}{3}} a_{2} \tau_{1} \bar{\tau}_{0}+\bar{\tau}_{1} \tau_{0}\right)-c^{-\frac{2}{3}} a_{0}^{-\frac{1}{3}} a_{1}^{-1} a_{2}^{-\frac{2}{3}} \frac{\bar{\tau}_{0} \bar{\tau}_{1}}{\tau_{1}}=0 . \tag{A.25}
\end{equation*}
$$

By using (A.7), we have from (A.25) that

$$
\begin{equation*}
T_{4}{ }^{2}\left(\tau_{0}\right) \tau_{1}-c^{\frac{1}{3}} a_{0}{ }^{\frac{1}{6}} a_{1}{ }^{\frac{1}{2}} a_{2}{ }^{\frac{1}{3}} T_{3} T_{4}\left(\tau_{1}\right) T_{4}\left(\tau_{2}\right)-c^{-\frac{2}{3}} a_{0}{ }^{-\frac{1}{3}} a_{1}{ }^{-1} a_{2}{ }^{-\frac{2}{3}} T_{4}\left(\tau_{0}\right) T_{4}\left(\tau_{1}\right)=0 . \tag{A.26}
\end{equation*}
$$

We obtain (A.19), (A.20), and (A.21) by applying $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n-1} \pi^{2}, T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n-1}$, and $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n-1} \pi$ on (A.26), respectively.

Proposition A. 6 (Type VI) The following bilinear equations hold:

$$
\begin{align*}
& \tau_{N+1}^{n, m} \tau_{N}^{n+1, m+1}-Q^{-3 n+3 m+2 N-2} \gamma^{2} \alpha_{1}{ }^{3} \tau_{N}^{n+1, m} \tau_{N+1}^{n, m+1}+Q^{-6 n+6 m+4 N-4} \gamma^{4} \alpha_{1}{ }^{6} \tau_{N}^{n, m} \tau_{N+1}^{n+1, m+1}=0, \tag{A.27}\\
& \tau_{N+1}^{n+1, m} \tau_{N}^{n, m}-Q^{-3 m+2 N+1} \gamma^{2} \alpha_{2}{ }^{3} \tau_{N}^{n+1, m+1} \tau_{N+1}^{n, m-1}+Q^{-6 m+4 N+2} \gamma^{4} \alpha_{2}{ }^{6} \tau_{N}^{n+1, m} \tau_{N+1}^{n, m}=0, \tag{A.28}\\
& \tau_{N+1, m+1}^{n+1,1} \tau_{N}^{n+m}-Q^{3 n+2 N+4} \gamma^{2} \alpha_{0}{ }^{3} \tau_{N}^{n, m} \tau_{N+m+1}^{n+2,1}+Q^{6 n+4 N+8} \gamma^{4} \alpha_{0}{ }^{6} \tau_{N}^{n+1, m+1} \tau_{N+1}^{n+1, m}=0, \tag{A.29}\\
& \tau_{N+1}^{n+1, m+1} \tau_{N}^{n, m}-Q^{-3 n+3 m-2 N-4} \gamma^{-2} \alpha_{1}{ }^{3} \tau_{N+1}^{n+1} \tau_{N}^{n, m+1}+Q^{-6 n+6 m-4 N-8} \gamma^{-4} \alpha_{1}{ }^{6} \tau_{N}^{n+m+m+1} \tau_{N+1}^{n, m}=0, \tag{A.30}\\
& \tau_{N+m}^{n, m} \tau_{N}^{n+1, m}-Q^{-3 m-2 N-1} \gamma^{-2} \alpha_{2}{ }^{3} \tau_{N+1}^{n+1, m+1} \tau_{N}^{n, m-1}+Q^{-6 m-4 N-2} \gamma^{-4} \alpha_{2}{ }^{6} \tau_{N}^{n, m} \tau_{N+1}^{n+1, m}=0, \tag{A.31}\\
& \tau_{N+1}^{n+1, m} \tau_{N}^{n+1, m+1}-Q^{3 n-2 N+2} \gamma^{-2} \alpha_{0}{ }^{3} \tau_{N+1}^{n, m} \tau_{N}^{n+2, m+1}+Q^{6 n-4 N+4} \gamma^{-4} \alpha_{0}{ }^{6} \tau_{N}^{n+1, m} \tau_{N+1}^{n+1, m+1}=0 . \tag{A.32}
\end{align*}
$$

Figure 9. Configuration of τ functions for the bilinear equations of type VI. Upper left: (A.27), upper center: (A.28), upper right: (A.29) lower left: (A.30), lower center: (A.31), lower right: (A.32).

Proof. First, we prove (A.27)-(A.29). Equations (A.27), (A.28), and (A.29) can be derived by applying $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n}, T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n} \pi$, and $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n} \pi^{2}$ on (A.7), respectively.

Next, we prove (A.30)-(A.32). By applying T_{2} on τ_{0}, we obtain

$$
\begin{equation*}
q^{-\frac{1}{6}} c^{-\frac{1}{3}} a_{1}{ }^{\frac{1}{2}} \bar{\tau}_{1} T_{2}\left(\tau_{0}\right)-q^{-\frac{1}{3}} c^{-\frac{2}{3}} a_{1} \tau_{2} \bar{\tau}_{0}-\bar{\tau}_{2} \tau_{0}=0 \tag{A.33}
\end{equation*}
$$

Equations (A.30), (A.31), and (A.32) can be derived by applying $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n}, T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n} \pi$, and $T_{1}{ }^{l+1} T_{2}{ }^{m} T_{4}{ }^{n} \pi^{2}$ on (A.33), respectively.
Remark A. 7 The bilinear equations in Proposition 3.4 correspond to (A.27), (A.29), (A.30), (A.32), and (A.3).

A. 2 Bilinear equations for $\boldsymbol{q}-\mathbf{P}_{\text {II }}$

The bilinear equations for $q-\mathrm{P}_{\mathrm{II}}$ are derived from the equations in Section A.1. Since the parameter space and τ functions are restricted, we only have to pick up the bilinear equations that consist of the τ functions on the "unit-strip," and to rewrite them in terms of R_{1} instead of T_{1} (see Figure 3). Therefore, only the bilinear equations of type V and VI are relevant. We use the notation in (3.54).
Proposition A. 8 The following bilinear equations hold:

$$
\begin{align*}
& \tau_{N+1}^{k+1} \tau_{N-1}^{k+2}-Q^{\frac{k-4 N+2}{2}} \gamma^{-2} \alpha_{0} \tau_{N}^{k+3} \tau_{N}^{k}-Q^{-k+4 N-2} \gamma^{4} \alpha_{0}{ }^{-2} \tau_{N}^{k+1} \tau_{N}^{k+2}=0, \tag{A.34}\\
& \tau_{N+1}^{k+2} \tau_{N N-1}^{k+1}-Q^{\frac{k+4 N+2}{2}} \gamma^{2} \alpha_{0} \tau_{N}^{k+3} \tau_{N}^{k}-Q^{-k-4 N-2} \gamma^{-4} \alpha_{0}{ }^{-2} \tau_{N}^{k+2} \tau_{N}^{k+1}=0, \tag{A.35}\\
& Q^{-\frac{-4 k-4 N+4}{2}} \gamma^{2} \alpha_{0}^{-3} \tau_{N}^{k+3} \tau_{N+1}^{k}-Q^{-3 k+4 N-4} \gamma^{4} \alpha_{0}^{-6} \tau_{N}^{k+1} \tau_{N+1}^{k+2}-\tau_{N+1}^{k+1} \tau_{N}^{k+2}=0, \tag{A.36}\\
& Q^{-\frac{3 k+4 N+8}{2}} \gamma^{-2} \alpha_{0}^{-3} \tau_{N+1}^{k+3} \tau_{N}^{k}-Q^{-3 k-4 N-8} \gamma^{-4} \alpha_{0}{ }^{-6} \tau_{N}^{k+2} \tau_{N+1}^{k+1}-\tau_{N+1}^{k+2} \tau_{N}^{k+1}=0 . \tag{A.37}
\end{align*}
$$

Proof. Noticing (3.55), we obtain from (A.23)

$$
\begin{equation*}
R_{1}{ }^{-2} T_{4}^{2}\left(\tau_{1}\right) R_{1}^{-1}\left(\tau_{1}\right)-q^{-\frac{5}{12}} c^{-\frac{1}{3}} a_{0}{ }^{\frac{1}{6}} T_{4}\left(\tau_{1}\right) R_{1}^{-3} T_{4}\left(\tau_{1}\right)-q^{\frac{5}{6}} c^{\frac{2}{3}} a_{0}{ }^{-\frac{1}{3}} R_{1}^{-2} T_{4}\left(\tau_{1}\right) R_{1}^{-1} T_{4}\left(\tau_{1}\right)=0, \tag{A.38}
\end{equation*}
$$

from which (A.34) is derived by applying $R_{1}{ }^{m+3} T_{4}{ }^{n-1}$. Similarly, we have

$$
\begin{equation*}
T_{4}^{2}\left(\tau_{1}\right) R_{1}^{-1}\left(\tau_{1}\right)-q^{\frac{1}{3}} c^{\frac{1}{3}} a_{0}{ }^{\frac{1}{6}} R_{1} T_{4}\left(\tau_{1}\right) R_{1}^{-2} T_{4}\left(\tau_{1}\right)-q^{-\frac{2}{3}} c^{-\frac{2}{3}} a_{0}{ }^{-\frac{1}{3}} T_{4}\left(\tau_{1}\right) R_{1}^{-1} T_{4}\left(\tau_{1}\right)=0 \tag{A.39}
\end{equation*}
$$

by applying π on (A.26). Then we obtain (A.35) by applying $R_{1}{ }^{m+2} T_{4}{ }^{n-1}$ on (A.39). Equation (A.36) is derived by applying $R_{1}{ }^{m+3} T_{4}{ }^{n}$ on

$$
\begin{equation*}
q^{\frac{1}{6}} c^{\frac{1}{3}} a_{0}^{-\frac{1}{2}} \tau_{1} R_{1}^{-3} T_{4}\left(\tau_{1}\right)-q^{\frac{1}{3}} c^{\frac{2}{3}} a_{0}^{-1} R_{1}^{-2}\left(\tau_{1}\right) R_{1}^{-1} T_{4}\left(\tau_{1}\right)-R_{1}^{-2} T_{4}\left(\tau_{1}\right) R_{1}^{-1}\left(\tau_{1}\right)=0 \tag{A.40}
\end{equation*}
$$

which follows from (A.6). Finally, we obtain (A.37) by applying $R_{1}{ }^{m+3} T_{4}{ }^{n}$ on

$$
\begin{equation*}
q^{-\frac{1}{6}} c^{-\frac{1}{3}} a_{0}{ }^{-\frac{1}{2}} T_{4}\left(\tau_{1}\right) R_{1}^{-3}\left(\tau_{1}\right)-q^{-\frac{1}{3}} c^{-\frac{2}{3}} a_{0}^{-1} R_{1}^{-1}\left(\tau_{1}\right) R_{1}^{-2} T_{4}\left(\tau_{1}\right)-R_{1}^{-1} T_{4}\left(\tau_{1}\right) R_{1}^{-2}\left(\tau_{1}\right)=0, \tag{A.41}
\end{equation*}
$$

which is follows from (A.33).

Figure 10. Configuration of τ functions for the bilinear equations in Proposition A.8. The figures correspond to (A.34), (A.35), (A.36), and (A.37), respectively, from the left to the right.

Remark A. 9 The bilinear equations in Proposition 3.6 correspond to (A.36), (A.37), and (A.34).

References

[1] E. Brézin and V.A. Kazakov, Exactly solvable theories of closed strings, Phys. Lett. B 236 (1990) 144-150.
[2] M.R. Douglas and S.H. Shenker, Strings in less than one dimension, Nucl. Phys. B 335 (1990) 635-654.
[3] A.S. Fokas, A.R. Its and A.V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys. 147 (1992) 395-430.
[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications 35 (Cambridge University Press, Cambridge, 1990).
[5] B. Grammaticos, F.W. Nijhoff, V. Papageorgiou, A. Ramani and J. Satsuma, Linearization and solutions of the discrete Painlevé III equation, Phys. Lett. A 185 (1994) 446-452.
[6] B. Grammaticos and A. Ramani, Discrete Painlevé equations: a review, Lect. Notes Phys. 644 (2004) 245-321.
[7] B. Grammaticos, A. Ramani and V. Papageorgiou, Do integrable mappings have the Painlevé property?, Phys. Rev. Lett. 67 (1991) 1825-1828.
[8] T. Hamamoto, K. Kajiwara and N.S. Witte, Hypergeometric solutions to the q-Painlevé equation of type $\left(A_{1}+A_{1}^{\prime}\right)^{(1)}$, Int. Math. Res. Not. 2006 (2006) Article ID 84619.
[9] K. Kajiwara, The discrete Painlevé II equation and the classical special functions, in Symmetries and integrability of difference equations, eds. by P. Clarkson and F.W. Nijhoff, London Math. Soc. Lecture Note Ser. 255(Cambridge University Press, Cambridge, 1999) 217-227.
[10] K. Kajiwara, On a q-difference Painlevé III equation. II. Rational solutions, J. Nonlin. Math. Phys. 10 (2003) 282-303.
[11] K. Kajiwara and K. Kimura, On a q-difference Painlevé III equation. I. Derivation, symmetry and Riccati type solutions, J. Nonlin. Math. Phys. 10 (2003) 86-102.
[12] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, ${ }_{10} E_{9}$ solution to the elliptic Painlevé equation, J. Phys. A: Math. Gen. 36 (2003) L263-L272.
[13] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Hypergeometric solutions to the q-Painlevé equations, Int. Math. Res. Not. 2004 (2004) 2497-2521.
[14] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Construction of hypergeometric solutions to the q-Painlevé equations, Int. Math. Res. Not. 2005 (2005) 1441-1463.
[15] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Point configurations, Cremona transformations and the elliptic difference Painlevé equation, Sémin. Congr. 14 (2006) 169198.
[16] K. Kajiwara and N. Nakazono, In preparation.
[17] K. Kajiwara, M. Noumi and Y. Yamada, A study on the fourth q-Painlevé equation, J. Phys. A: Math. Gen. 34 (2001) 8563-8581.
[18] K. Kajiwara, Y. Ohta and J. Satsuma, Casorati determinant solutions for the discrete Painlevé III equation, J. Math. Phys. 36 (1995) 4162-4174.
[19] K. Kajiwara, Y. Ohta, J. Satsuma, B. Grammaticos and A. Ramani, Casorati determinant solutions for the discrete Painlevé-II equation, J. Phys. A: Math. Gen. 27 (1994) 915-922.
[20] K. Kajiwara, K. Yamamoto and Y. Ohta, Rational solutions for the discrete Painlevé II equation, Phys. Lett. A 232 (1997) 189-199.
[21] M.D. Kruskal, K.M. Tamizhmani, B. Grammaticos and A. Ramani, Asymmetric discrete Painlevé equations, Regul. Chaotic Dyn. 5 (2000) 273-280.
[22] T. Masuda, Classical transcendental solutions of the Painlevé equations and their degeneration, Tohoku Math. J. 56 (2004) 467-490.
[23] T. Masuda, Y. Ohta and K. Kajiwara, Rational solutions to the Painlevé V equation and the universal characters, RIMS Kokyuroku 1203 (2001) 97-108 (in Japanese).
[24] T. Masuda, Y. Ohta and K. Kajiwara, A determinant formula for a class of rational solutions of Painlevé V equation, Nagoya J. Math. 168 (2002) 1-25.
[25] S. Nakao, K. Kajiwara and D. Takahashi, Multiplicative $\mathrm{dP}_{\text {II }}$ and its ultradiscretization, Reports of RIAM Symposium No. 9ME-S2, Kyushu University (1998) 125-130 (in Japanese).
[26] N. Nakazono, In preparation.
[27] M. Noumi, Painlevé equations through symmetry (American Mathematical Society, Providence, 2004).
[28] Y. Ohta, Self-dual structure of the discrete Painlevé equations, RIMS Kokyuroku 1098 (1999) 130-137 (in Japanese).
[29] K. Okamoto, Studies on the Painlevé equations. III. Second and Fourth Painlevé equation, $P_{\text {II }}$ and P_{IV}, Math. Ann. 275 (1986) 221-255.
[30] K. Okamoto, Studies on the Painlevé equations. I. Sixth Painlevé equation P_{VI}, Ann. Mat. Pura Appl. 146 (1987) 337-381.
[31] K. Okamoto, Studies on the Painlevé equations. II. Fifth Painlevé equation P_{V}, Japan. J. Math. 13 (1987) 47-76.
[32] K. Okamoto, Studies on the Painlevé equations. IV. Third Painlevé equation P_{III}, Funcial. Ekvac. 30 (1987) 305-332.
[33] V. Periwal and D. Shevitz, Unitary-matrix models as exactly solvable string theories, Phys. Rev. Lett. 64 (1990) 1326-1329.
[34] G.R.W. Quispel, J.A.G Roberts and C.J. Thompson, Integrable mappings and soliton equations, Phys. Lett. A 126 (1988) 419-421.
[35] G.R.W. Quispel, J.A.G Roberts and C.J. Thompson, Integrable mappings and soliton equations II, Physica D 34 (1989) 183-192.
[36] A. Ramani and B. Grammaticos, Discrete Painlevé equations: coalescences, limits and degeneracies, Physica A 228 (1996) 150-159.
[37] A. Ramani, B. Grammaticos and J. Hietarinta, Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991) 1829-1832.
[38] A. Ramani, Y. Ohta, J. Satsuma and B. Grammaticos, Self-duality and schlesinger chains for the asymmetric $\mathrm{d}-\mathrm{P}_{\mathrm{II}}$ and $q-\mathrm{P}_{\mathrm{III}}$ equations, Comm. Math. Phys. 192 (1998) 67-76,
[39] H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001) 165-229.
[40] T. Tsuda, Tau functions of q-Painlevé III and IV equations, Lett. Math. Phys. 75 (2006) 3947.

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a padic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
 Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI
Variable selection for functional regression model via the L_{1} regularization

MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \mathbf{T}-functions of the q-Painlevé system of type $E_{8}^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI

Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

```
MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
```

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWA On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKI
Hecke's zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO and Teruhisa TSUDA Projective reduction of the discrete Painlev'e system of type $\left(A_{2}+A_{1}\right)^{(1)}$

