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Production Monte Carlo Rendering
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Abstract Production rendering changed radically in last few years. With ever increasing computing
power, it is now possible to use raytracing and physically based lighting and shading in production.
The tools evolved (surfaces are now using normalized brdfs, lighting is using sampled arealights)
and rendering is becoming more and more a sampling problem. Even in real-time rendering, we
begin to see the use of such algorithms (like sampled ambient occlusion). Monte Carlo integration
is the most common method of solving the rendering equation. Although the basic version does not
have a remarkable convergence behaviour, numerous techniques have been added to the toolbox of
the shader writer to make it practical.
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1 Introduction

Rendering is rapidly becoming a sampling problem. In the first part of this paper, we will first present
and expose the problem, which has a very compact and clean form in the rendering equation. Then
we will show some of the most common techniques used in production: importance sampling and
multiple importance sampling. Finally, we will go through a few practical cases, direct lighting, and
bsdf and volume sampling.

2 Rendering Equation

The rendering equation was first introduced by Kajiya [7], in the following form:

Lo(x, ω) = Le(x, ω) + Lr(x, ω) (1)

Lo(x, ω) = Le(x, ω) +

Z

Ω

fr(x, ω, ω)Li(x, ω)(ω.n)dω (2)

which can be reformulated as an area integral over all surfaces in the scene:

Lo(x
, x) = Le(x

, x) +

Z

S

fr(x
, x, x)Li(x

, x)V (x, x)G(x, x)dA (3)
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with

V (x, x) = 1, if x’ and x are mutually visible, 0 otherwise (4)

G(x, x) =
(ω.n)(ω.n)

||x − x||2 (5)

Depending on the sampling strategy used, one or the other formulation will be preferred.

Although this equation already presents a few interesting challenges, this is in fact a simplified
version that does not account for volumetric effects or complex subsurface scattering. Readers in-
terested in the full form should look at Glassner [2].

Table 1: Notation
Lo outgoing radiance
Li incoming radiance
Le emitted radiance
fr brdf
x position on surface
n normal at x
ω outgoing direction
ω incoming direction
Ω hemishere fo directions

3 Monte Carlo Sampling

3.1 Introduction

A PDF (probability density function) p is a function that describes the distribution of values a random
variable x can take on a domain X . It has 2 main properties:

∀x ∈ X, p(x) ≥ 0 (6)

Z

X

p(x) = 1 (7)

Now let’s say we want to evaluate the following integral:

F =

Z

X

f(x)dx (8)

Even if we don’t have an analytical solution, if we can evaluate f for any point in X , then we can
compute F with Monte Carlo sampling. Suppose we have a random variable Y with a PDF p defined
on X , and a function g such as the expected value of g(Y ) is F , then:

E[g(Y )] =

Z

X

g(y)p(y)dy (9)

=

Z

X

f(y)dy (10)

= F (11)
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The integration problem is now a mean estimation problem, if we take n samples, then the estimate
will be:

F̂ =
1

n

n−1X
i=0

g(yi) (12)

where yi are random values from the distribution p.

The estimate is unbiased:

E[F̂ ] =
1

n

n−1X
i=0

E[g(Yi)] (13)

E[F̂ ] = E[g(Y )] (14)

=

Z

X

f(x)dx (15)

And the variance is:

E[F̂ ] =
1

n

n−1X
i=0

V [g(Yi)] (16)

E[F̂ ] = V [g(Y )] (17)

=

Z

X

„
g(x)−

Z

X

f(t)dt

«2

dx (18)

3.2 Importance Sampling

In the previous section, we showed a way to compute the integral:

F =

Z

X

g(x)p(x)dx (19)

Unfortunately this is not exactly the equation we are after, but a simple rewrite can get us back to
the original problem:

F =

Z

X

f(x)dx (20)

=

Z

X

„
f(x)

p(x)

«
p(x)dy (21)

then the estimate is :

F̂ =
1

n

n−1X
i=0

f(yi)

p(yi)
(22)
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To have a good estimate, we can increase the number of samples n, but also try to reduce the variance
of each f/p (p should match f ). We still need a way to generate those yi samples based on p, a few
techniques are available to us, the most interesting one and usable in practice, is the CDF inversion.

3.3 CDF Inversion

One question is: how do we distribute samples according to p(y)? For the random variable Y, the
CDF (cumulative distribution function) is defined as :

PY (y) = Pprobalility(Y ≤ y) =

Z y

ymin

p(x)dx (23)

If Y is a scalar random variable with CDF PY , then the random variable U defined by:

U = PY (Y ) (24)

is the uniform distribution. If we invert this equation:

Y = P−1
Y (U) (25)

then Y is distributed with density p. This transformation is called the inverse CDF technique. This
means that if you can compute the inverse of the integral of a PDF, then you can use the inverse CDF
method. Other methods like rejection sampling are also available, but not very popular in practice,
since there is no way to bound the computational cost, which is always a variable we try to minimize
in rendering.

3.4 Multiple Importance Sampling

To use the CDF inversion method efficiently we need to find a PDF that will closely match the
function f we are trying to integrate. Unfortunately in real scenarios, it is usually not possible to
find such functions, but instead we can find multiple PDFs, each of them roughly matching some part
of f . We could let the user choose the best technique for each scenario but it’s not really practical.
Therefore we use multiple importance sampling (MIS) to automatically combine PDFs. If we have
M techniques sampling N samples, then:

F̂ =
1

N

M−1X
j=0

NjX
i=0

ωj(yi)
f(yi)

pj(yi)
(26)

the estimate will remain unbiased if the weights obey the following:

M−1X
j=0

ωj(y) = 1 (27)
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we could just take ωj = 1/M but this would just give an average of all the techniques, Veach [11]
instead proposed a very simple, yet efficient method called the balance heuristic:

ωi(y) =
pi(y)PM−1

j=0 pj(y)
(28)

4 Applications

4.1 Direct Lighting

For direct lighting, we have the following equation which is a further simplified version of the general
rendering equation:

Lo(x, ω) =

Z

Ω

fr(x, ω, ω)Llight(x, ω)(ω.n)dω (29)

and in the three-point form:

Lo(x
, x) =

Z

S

fr(x
, x, x)Llight(x

, x)V (x, x)G(x, x)dA (30)

Li in the integral is replaced by Llight, the energy emitted directly by light sources. The implicit
recursion is gone and what’s left is just a 2D integral of a product of 3 functions Llight, fr , and V .
The visibility V is scene dependent and usually there is no good way to compute it except to sample
blindly; however we can use our knowledge of the material fr and the light source Llight to guide
our sampling. And by using multiple sampling, we don’t have to choose between the two.

Here is an example of a dome light, and a GGX specular brdf, using light importance sampling for
infinite arealights [10], and microfacets based sampling [5] for the brdf:

Figure 1: LightSampling, BrdfSampling, MIS(from left to right, equal time renders)

When using only brdf sampling the reflections (Eq. 29) are clean but not the highlights, with light
sampling only (Eq. 30), the highlights are nicely resolved but the rest is noisy. Because each sam-
pling technique covers different parts of the integral, when using MIS we get the best result ev-
erywhere. We are effectively doubling the number of techniques, since we are shooting twice the
number of samples, but even with this additional cost the result is more converged at equal render
time (Fig. 1).
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4.2 BSDF Sampling

In a pathtracer, to maintain good interactivity, we usually want only one path per iteration, i-e a
camera ray hitting a surface will generate only one indirect ray to continue the path. However a
material used in production will have multiple lobes, such as clearcoat, diffuse, specular, ..., so we
need to choose one at every hit. We could just pick and evaluate one lobe, but one way to further
reduce the variance is to use one-sample MIS [11]. The computation is the same as normal MIS, the
only difference is that here we will pick one sampling strategy j with probability cj to choose our
unique sample.

F (yi) =
ωjf(yi)

cjpj(yi)
(31)

We will choose one lobe to pick the direction and still compute the whole contribution, and then use
the balance heuristic on the PDF. For a brdf with a diffuse, specular and clearcoat:

fr(x, ω, ω) = fd(x, ω, ω) + fs(x, ω, ω) + fc(x, ω, ω) (32)

In this example, we have 3 sampling strategies we can choose from, choosing cj proportional to each
albedo, the final PDF p will be independent of the chosen strategy:

1

p(x)
=

1

cdpd(x)

cdpd(x)

cdpd(x) + csps(x) + ccpc(x)
when choosing diffuse (33)

1

p(x)
=

1

csps(x)

csps(x)

cdpd(x) + csps(x) + ccpc(x)
when choosing specular (34)

1

p(x)
=

1

ccpc(x)

ccpc(x)

cdpd(x) + csps(x) + ccpc(x)
when choosing clearcoat (35)

1

p(x)
=

1

cdpd(x) + csps(x) + ccpc(x)
(36)

The cost here is virtually the same as brdf evaluation and sampling represent a very small portion of
an actual render (< 1%), for a cleaner result (Fig. 2).

4.3 Volume Sampling

Another interesting use case of one sample MIS is volume sampling. The simplest way to sample a
volume is to use density sampling, i-e sample the transmittance. The contribution of a ray passing
though a scattering volume is :

Le(x
, ω) =

Z

S

τ(t)(x, ω, t)dt (37)

with the transmittance τ(t) defined as:

τ(t) =

Z t

t=0

e−σtt

dt (38)

if we use a PDF proportional to τ , for a random number χ, the CDF inversion gives us:

t =
−1
σt
ln(1− (1− e−σtS)χ) (39)

the problem here is that the extinction σt is usually a color, so we need to choose one channel to
do the sampling. We can pick the max, the min of some kind of average, but whatever choice we
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Figure 2: single lobe sampling, one-sample MIS (from left to right, equal time renders)

Figure 3: Slice of a homogeneous volume illuminated from above: max sampling, min-
sampling, MIS (from left to right, equal time renders)

make there are cases where the PDF does not match the extinction anymore and gives high variance
results. The problem becomes bigger the more satured exctinction is. Here again, by doing MIS
between channels we can get a better image.

When choosing the maximum extinction, the shallow scattering is not resolved enough and we get
a noisy yellow scattering. If on the other side we choose to sample the minimum extinction, then
in that case the deep scattering is not sampled correctly and we get blue fireflies. The MIS image
shows a nice convergence thoughout the thickness of the volume (Fig. 3).
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5 Conclusion

At first glance it may seem that we only use very basic sampling techniques in production, whereas
every year we see novel new algorithms being published. There are a few reasons for this. Contrary
to architectural renders, time contraints are severe in movie production where we have to render
animations, and even with large render farms, single frame renders need to stay typically within a few
hours to few dozen hours. The other important limitation is that when working interactively, lighters
get noisy unconverged images quickly but these should nonetheless give them a good estimate of the
final result. That means the noise needs to be predictable, and this is one of the reasons we have yet
to see good usage of MCMC techniques in production rendering.

One additional variable is that a large part of the scene construction is up to the artist, who can
use procedural geometry and patterns on surfaces and volumes, and this introduces complexity and
unpredictability.

Only a few algorithms can fulfill all the above contraints and MIS is one of them. It is still possible to
sometimes find special cases that are important enough to get special treatment (for example, usage
of control variates for diffuse and domelights [6]), but those are the exception. And even MIS is not
without problems, because it’s just a combination of many sampling techniques, its cost increases
with the number of strategies. We are still therefore looking to try new techniques, from the light
integration point of view (better integration of difficult light paths [3] [4]), to better bsdf [1], hair [9],
volume models, but also more fundamental sampling improvements [8]. Fortunately experimenta-
tion is now much easier since the whole rendering pipeline has moved to raytracing and physically
based rendering.

References
[1] Per H. Christensen, Brent Burley: Approximate Reflectance

Profiles for Efficient Subsurface Scattering Siggraph 2015:
http://graphics.pixar.com/library/ApproxBSSRDF/SIGGRAPH Tech Talk.pdf,
2015.

[2] A.S. Glassner: Principles of Digital Image Synthesis 1. Morgan Kaufmann:
http://books.google.com/books?id=wOt9IBunyrkC, 1995.

[3] Iliyan Georgiev, Jaroslav Krivnek, Toms Davidovis, and Philipp Slusallek: Light
Transport Simulation with Vertex Connection and Merging Siggraph Asia 2012:
http://cgg.mff.cuni.cz/ jaroslav/papers/2012-vcm/, 2012.

[4] T. Hachisuka, J. Pantaleoni, and H. W. Jensen: A Path Space Ex-
tension for Robust Light Transport Simulation Siggraph Asia 2012:
http://www.ci.i.u-tokyo.ac.jp/ hachisuka/ups.pdf, 2012.

[5] Eric Heitz and Eugene dÉon: Importance Sampling Microfacet-Based BSDFs using the Dis-
tribution of Visible Normals EGSR 2014: http://hal.inria.fr/hal-00996995/en,
2014.

[6] Christophe Hery and Ryusuke Villemin: Physically Based Lighting at Pixar Siggraph Course
2013: http://graphics.pixar.com/library/PhysicallyBasedLighting/paper.pdf,
2013.

[7] James T. Kajiya: The Rendering Equation. In SIGGRAPH Comput. Graph.:
http://portal.acm.org, 1986.

87



[8] Andrew Kensler: Correlated Multi-Jittered Sampling. In Pixar Technical Memo.:
http://graphics.pixar.com/library/MultiJitteredSampling/paper.pdf,
2013.

[9] Leonid Pekelis, Christophe Hery, Ryusuke Villemin, Junyi Ling: A
Data-Driven Light Scattering Model for Hair. In Pixar Technical Memo.:
http://graphics.pixar.com/library/DataDrivenHairScattering/paper.pdf,
2015.

[10] Matt Pharr and Greg Humphreys: Infinite Area Light Source with Importance Sampling:
http://www.pbrt.org/plugins/infinitesample.pdf, 2004.

[11] Eric Veach and Leonidas J. Guibas: Optimally combining sampling techniques for Monte
Carlo rendering Proceedings of the 22nd annual conference on Computer graphics and interac-
tive techniques: http://doi.acm.org/10.1145/218380.218498, 1995.

88




