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ABSTRACT 

 
Landslides occurring in both natural and cut slopes often result in serious damage 

to both lives and properties. Generally speaking, there are two categorized triggering 

factor for landslide: (1) static factor (e.g. raining, hurricane), (2) dynamic factor (e.g. 

earthquake). Recent years, the catastrophic earthquake occurs frequently, which results 

in many fatal landslides. For instance, more than 3000 landslides have been reported in 

Nepal after the Gorkha earthquake, in 2015. Therefore, considering the landslide risk 

reduction, it is very important to improve the stability of slopes. Especially, more focus 

should be put on the seismic performance of the earthquake induced landslide.  

Stabilizing piles, as one of the most widely used application in reinforcement of 

slopes, has been proved to be an efficient solution against landslides. For dynamic 

analysis of pile reinforced slopes, the two-dimensional (2D) analytical method based on 

pseudo-static approach is usually used. However, it is commonly acknowledged that 2D 

plane-strain solutions are conservative to analyze slope stability comparing with three-

dimensional (3D) solutions. Seeking a more accurate prediction of seismic stability in 

3D cases could benefit the construction of slope. In this sense, it is necessary to provide 

a comprehensive accurate solution for reinforced slope subjected to seismic loading in 

3D condition. 

3D dynamic analysis of the pile reinforced slope stability involves two main 

aspects: (i) estimating of resistance force provided by the piles, (ii) 3D limit analysis of 

the reinforced slope subjected to specific seismic load. However, on one hand, in the 

previous literatures, the analytical solution of the soil-pile pressure (lateral force) of the 

pile is limited because of the different distribution between the predictions and field test 

results, which results in the misestimation of the slope stability. On the other hand, 

literature on the 3D seismic analysis of reinforced slope is scarce, which results in the 

miscalculation of the slope constructions.  

Consequently, this study aims to present a comprehensive method to analyze the 

seismic performance of the pile-reinforced slope in 3D condition, incorporating the 
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static analysis of stabilizing piles. Furthermore, this study also focuses on clarifying the 

soil-pile interaction and the failure mechanism of the pile-reinforced slope in dynamic 

condition. Specifically, two major approaches for the analysis of slope reinforced with 

piles have been studied. One is to propose a new method to provide an accurate 

prediction of the lateral force. The other is to calculate the permanent displacement of 

reinforced slope subjected to seismic load in 3D condition. 

In the first approach, the theory of plastic deformation is modified by considering 

soil arching effects. A new analytical method is presented for estimating the ultimate 

lateral force due to soil movement, which provides a more accurate prediction than 

previous studies. Furthermore, the effect of the inclination of the moveable soil layer on 

lateral force is also analyzed.  

In the second approach, earthquake induced sliding displacements are commonly 

used to assess the seismic performance of slopes. Therefore, an analytical method is 

proposed to evaluate the cumulative displacement of reinforced slope induced by 

specific earthquake load. The lateral forces provided by the piles are evaluated by the 

presented approach mentioned above. In the presented dynamic analysis, the 2D 

analytical procedure for displacement assessment is extrapolated to 3D condition.  

The thesis comprises the following chapters. 

Chapter 1 introduces (1) background of this study, (2) two main issues in current 

study, namely lateral force and the earthquake-induced permanent displacement, (3) the 

scope and objectives of this study, and (4) the organization of the thesis. 

Chapter 2 reviews two aspects of existing studies on the subject of slope 

reinforced with piles: analyses of slope stabilized with a row of piles and landslide 

movement calculation. The merits and demerits of each method are stated. 

Chapter 3 analyses the lateral force acting on piles due to soil movement. 

Combining with the ‘plastic deformation theory’, soil arching effects along the depth of 

the moveable soil between two neighboring piles are considered to estimate lateral force. 
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Comparisons of the in situ observed results (from literatures) and the calculate results 

show that the proposed method yields satisfactory predictions.  

Chapter 4 develops a limit equilibrium method to analyze the slope angle effect on 

the lateral force distribution of stabilizing piles. The soil arching zone is determined by 

Mohr’s circle, which is a function of slope inclination. In addition, the lateral force in 

sandy slopes is obtained by considering the soil arching effects and the ‘squeezing 

effect’ between two neighboring piles proposed by Ito and Matsui. The numerical 

simulation results obtained by FLAC3D and the experimental data from the published 

literature are used to evaluate the proposed approach. It is shown that the proposed 

model could reasonably predict the distribution shape of the soil-pile pressure acting on 

the stabilizing piles. Parametric analysis is carried out to investigate the influence of the 

slope angle on the distribution of the soil-pile pressure. It is shown that the slope angle 

affects the distribution of the lateral force, rather than the magnitude. 

Chapter 5 presents 3D limit analysis of seismic stability of slopes reinforced with 

one row of piles. The lateral forces provided by the piles are evaluated by the presented 

approach mentioned above. Based on the kinematic theory within the frame of the 

pseudo-static approach, a 3D model is proposed for evaluating the yield (or critical) 

acceleration. Furthermore, Newmark’s analytical procedure is employed to estimate the 

cumulative displacement induced by the given earthquake loads. A simple example is 

studied, and the findings are: the yield accelerations of 2D mechanism are less than that 

in 3D mechanism with the same soil properties; the displacements in 2D mechanism are 

much larger than that in 3D conditions; it is possible to reduce the seismic displacement 

of the soil slopes using stabilizing piles both in 2D and 3D conditions. 

Chapter 6 concludes the results and achievements of the study, and states the 

problems to be solved in future studies. 
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CHAPTER 1 
 INTRODUCTION 

1.1 BACKGROUND  

1.1.1 LANDSLIDE  

A landslide, also known as a landslip, is a geological phenomenon that includes a 

wide range of downward and outward ground movements, such as rockfall, deep failure 

of slopes and shallow debris flows (Cruden, 1991). The term “landslides” encompasses 

five basic types of movement: flows, slides, topples, falls and spreads. In addition, the 

actual movements of the landslides usually combine two or more basic types of 

movements according to Glossary of Geology (Jackson, 1997) and other references 

(Varnes, 1974; Hutchinson, 1988; WP/WLI, 1990; Cruden and Varnes, 1996; Highland 

and Bobrowsky, 2008; Gokceoglu and Sezer, 2009). Landslides can occur in offshore, 

coastal and onshore environments. Although the action of gravity is the primary reason 

for a landslide to occur, there are other contributing factors affecting the original slope 

stability.  

Actually, almost every landslide has multiple causes. Slope movement occurs when 

forces acting down-slope (mainly due to gravity) exceed the strength of the soil 

materials that compose the slope. Causes include factors that increase the effects of 

down-slope forces and factors that contribute to low or reduced strength. Landslides can 

be initiated in slopes already on the verge of movement by rainfall, snowmelt, changes 

in water level, stream erosion, changes in ground water, earthquakes, volcanic activity, 

disturbance by human activities, or any combination of these factors (Guzzetti, 2006).  

Each year, landslides cause thousands of casualties and billions of dollars in 

damages across the world (UNEP, 1997; EM-DAT, 2003). For example, (1) in Japan, 
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disasters from single landslide events include a large scale failure of Ontake San, 

Nagano Prefecture in 1984 (volume:3.4×107m3, 15 deaths), Tamanoki Landslide of 

Ohmi-Cho, Niigata Prefecture in 1985 (10 deaths), Jizuki Yama Landslide, Nagano City 

in 1985 (26 deaths), and others. More than 300 landslides and slope failures have been 

reported since the Southern Hyogo Earthquake of January 17, 1995; (2) it is estimated 

that in the United States, they cause in excess of $1 billion in damages and from about 

25 to 50 deaths each year (Highland, 2006); (3) it is reported that at least 10 million 

people in China are exposed to landslide risk, and landslides result in more than 500 

deaths and missing each year. Since 2001, more than 400 fatal landslide events have 

been reported. These fatal landslides caused at least 3000 people dead and missing, and 

more than $ 100 billion in property damage (Wen et al., 2005). Especially in 2008, more 

than 150,000 landslides induced by Wenchuan earthquake caused about 20,000 fatalities; 

(4) in the period 1968-2006, a total of 517 fatal landslides have been recorded in Nepal, 

causing a total of 2931 deaths, representing an average of about 75 fatalities occurring in 

just 13 fatal landslides per annum. The average number of fatalities per fatal landslide is 

5.7 deaths (Petley et al., 2007). In addition, the recent Gorkha earthquake in Nepal 

caused countless landslides. The details of the earthquake induced landslides can be seen 

in following section. Table 1.1 lists the worldwide most catastrophic landslides of 20th 

century. It is modified from Schuster (1996). Actually, more than 30 catastrophic 

landslides have been reported in 20th century, just a few of them are listed herein.  

Globally, landslides cause hundreds of billions of dollars in damages and hundreds 

of thousands of deaths and injuries each year. Therefore, it’s very important to study the 

landslide so as to mitigate the potential disaster from landslide. 

1.1.2 EARTHQUAKE-INDUCED LANDSLIDES 

The destructive impact of earthquakes, in many parts of the world, is greatly 

enhanced by the triggering of landslides during or after the shaking. There can be little 

doubt that after the direct effect of structural damage due to the strong ground-motion 

caused by earthquake, landslides are the most important consequence of earthquake 
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shaking. As well as causing disruption to communications, earthquake induced 

landslides can, in some cases, contribute significantly to the death toll. Indeed, the vast 

majority of the more than 1000 victims of the EI Salvador earthquake of 13 January 

(Mw = 7.7) and 13 February 2001 (Mw = 6.7) were directly caused by landslides 

(Bommer and Rodriguez, 2002). Moreover, many serious damages caused by the 

earthquake induced landslides have been reported for the last few decades, especially 

after a series of disastrous earthquake events occurred in recent years. For example, in 

1999, Chi-Chi earthquake (Ms = 7.6) induced 9272 landslides, which caused 2400 

deaths, more than 8000 casualties and over 10 billion US$ of economic loss in Taiwan 

(Chang et al., 2005). Less than three years later, the 2008 Wenchuan earthquake shocked 

the Sichuan province and induced as many as 60,104 landslides (Gorum et al., 2011), 

which directly caused more than 20000 deaths (Yin et al, 2009). A quarter of the total 

deaths, and over one third of the total lost was caused by the earthquake induced 

landslides. Recently, the landslide situation in the aftermath of the Gorkha earthquake in 

Nepal is steadily becoming more clear due to the efforts of the National Aerospace and 

Space Administration (NASA)-U.S. Geological Survey-Interagency Volunteer 

Earthquake Response Team. To date, the response teams have identified over 3000 

landslides, and assembled a database of over 250 identified landslides and other large 

mass movements. The Google Earth map of the 250 landslides is shown in Figure 1.1. 

The landslides are concentrated in the northern area of the earthquake affected region, 

and many are along highways. Figure 1.2 shows one of the landslides occurred in 

Langtang region after the Gorkha earthquake in Nepal. It is reported more than 8200 

people dead in the earthquake and the aftershock. The casualties caused by the 

earthquake induced landslides are not clear so far. As seen, a strong earthquake can 

induce a large amount of landslides and cause very serious property damage and human 

casualties. Table 1.2 shows earthquakes responsible for triggering landslides. 

A number of studies on slopes subjected to seismic load have been carried out and a 

series of countermeasures have been developed to mitigate the landslide disasters. 

However, these studies are usually carried out based on the two-dimensional (2D) slope
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Table 1.1 The most Catastrophic Landslides of the 20th Century - Worldwide 

Year 
Country 

(State/Province) 
Name & type(s) Triggering process Impact 

1911 
Tadzhik Rep. 

(Formerly USSR) 
Usoy rock slide Usoy earthquake  Destroyed Usoy village; 54 killed 

1919 Indonesia (Java) Kalut lahars 
Eruption of Kalut 

volcano 

5,110 killed; 104 villages destroyed or 

damaged 

1920 China (Ningxia) Haiyuan landslides Haiyuan earthquake 100,000 killed; many villages destroyed 

1949 
Tadzhik Rep. 

(formerly USSR) 
Khait rock slide Khait earthquake  

12,000 - 20,000 killed or missing; 33 

villages destroyed 

1958 Japan (Shizuoka) 
Kanogawa slides and mud/debris 

flows 
Heavy rain 

1,094 dead/missing; 19,754 homes 

destroyed or badly damaged 

1967 
Brazil (Serra das 

Araras) 

Serra das Araras slides, avalanches, 

debris/mud flows 
Heavy rain 1,700 dead from landslides and floods 

1980 
United States 

(Washington) 

Mount St. Helens rock slide-debris 

avalanche 

Eruption of Mount St. 

Helens 

World 1s largest historic landslide; only 

5-10 killed, but major destruction of 

homes, highways, etc.; major debris 

flow; deaths low because of evacuation 

1987 Ecuador (Napo) Reventador landslides Reventador earthquakes  1,000 killed; total losses: US$ 1 billion  

1998 

Honduras, 

Guatemala, 

Nicaragua, El 

Salvador 

Hurricane Mitch flooding 

Landslides debris-flows 
Hurricane Mitch 

Approximately 10,000 people killed in 

the flooding and landslides 
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Figure 1.1 250 identified landslides surveyed by NASA-U.S. Geological Survey-

Interagency Volunteer Earthquake Response Team (Photo from the landslide blog of 

American Geophysical Union). 

 

 
Figure 1.2 Landslide in Langtang region in Nepal (Photo from NASA Landsat8). 

 
models. It is commonly acknowledged that 2D plane strain solutions are conservative to 

analyze slope stability when compared with three-dimensional (3D) solutions 

(Cavounidis, 1987). It is necessary to analyze the seismic loaded slopes using 3D 
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models. The failure mechanisms of the 3D slopes and the displacement of slopes due to 

the seismic load should be analyzed because it is quite different from that of the 2D 

conditions. Furthermore, the influence of the countermeasures utilized to mitigate the 

landslide disasters under dynamic loading condition should be evaluated as well.  

1.2 PREVENTIVE COUNTERMEASURES  

In landslide mitigation engineering, there are two principles, active and passive 

countermeasures. The passive measures are mainly land-use planning keeping the 

endangered areas free of settlements and infrastructure to prevent economic damages. 

Active countermeasures, which may be used as single or in combination, are: drainage; 

modification of the slope profile by excavation and/or filling; restraining and other 

structures, including anchors, piles, and so on; erosion control, both local to the 

particular site and catchment-wide. They are reviewed in detail by Hutchinson (1977). 

The following discussion in this section concentrates on the first three of the above 

methods, which are those most generally used at present. 

1.2.1 DRAINAGE  

The first task is always to deal with surface water and to lead it away from the 

landslide area. Concerning sub-surface drainage, two approaches exist. One is to attempt 

to intercept the ground-water, by cut-off trenches and the like, before it reaches the slide 

area: this may be practicable for small landslides but is difficult to accomplish reliably in 

the case of large ones. Furthermore, in some cases the precipitation falling on the slope 

itself may be important. 

The alternative approach is to aim to reduce the ground-water pressures directly at 

the locations which matter, that is, on the slip surfaces (Hazarika, 2007a, 2007b). It 

should be borne in mind that, in clays, drainage measures may take a year or more to 

become fully effective and additional measures may thus have to be taken to secure 

stability in the short-term. 
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Table 1.2 Earthquakes responsible for triggering landslides 

Earthquake Country 
Date Magnitude 

Focal 

depth 

Maximum 

intensity 

Area 

affected by 

landslides 

Number 

of slides 

Day/month/year Ms Mw km MMI km2  

Coalinga USA 02 05 1983 6.7 6.2 7 VIII 650 >10,000* 

San Salvador El Salvador 10 10 1986 5.4 5.7 12 VIII 380 1,000-10,000* 

Spitak Armenia 07 12 1988 6.8 6.7 5 IV 2200 1,000-10,000* 

Loma Prieta USA 17 10 1989 7.1 6.9 8 VIII 14000 1,000-10,000* 

Manjil Iran 20 06 1990 7.3 7.4 19 X 1000 100-1,000* 

Luzon Philippines 16 07 1990 7.8 7.7 25 VIII 3000 100-1,000* 

Valle de la 

Estrella 
Costa Rica 22 04 1991 7.6 7.5 21.5 IX 2000 1,000-10,000* 

Northridge USA 17 01 1994 6.8 6.7 18 IX 10000 >10,000* 

Paez Colombia 06 06 1994 6.6 6.8 12 X 250 1,000-10,000 

Hyogu-Ken 

Nanbu 
Japan 17 01 1995 6.8 6.9 22 X 910 100-1,000 

Chi-chi Taiwan, China 21 09 1999 7.3 7.6 8 XI 10000 ≈10000 

Wenchuan China 12 05 2008 8.0 7.9 19 XII >50000 >60,000 

Note: * data from Rodríguez et al., 1999. 
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1.2.2 PROFILE CHANGES BY CUTTING AND FILLING 

It is instructive to study the effects of cuts and fills on a landslide by applying the 

influence line concept, familiar from structural engineering. A fill may be simulated by a 

downward influence load, a cut by an upward one. 

Vertical cut slopes should not be used unless the cut is in rock or very well 

cemented soil. Long-term stable cut slopes in most soils and geographic areas are 

typically made with about a 1:1 or ¾:1 (horizontal: vertical) slope.  

Slope failures, or landslides, typically occur where a slope is over-steep, where fill 

material is not compacted, or where cuts in natural soils encounter groundwater or zones 

of weak material. To prevent failures, the slide area should be stabilized by removing the 

slide material, flattening the slope, adding drainage, or using structures.  

1.2.3 PILES, ANCHORS, RESTRAINING STRUCTURES 

A vast variety of methods can be used to either internally or externally stabilize the 

unstable slope. Internally stabilized systems, such as the soil nailing slopes or micro 

piles (or anchors) stabilized slopes, are in-situ reinforcement methods. On the other 

hand, the method of using retaining walls or sheet piles can be classified as an externally 

stabilized system.  

In this thesis, we focus on the internally stabilized systems. Using a row of piles 

can be categorized as an internally stabilized system. There are some advantages of 

using a row of piles to stabilize the slope include: i) the availability of the construction 

equipment for piles; ii) the piles are structurally capable of resisting long-term 

environmental effects and iii) the economic benefits of using piles in comparison to 

other slope stabilization methods. 

1.3 SCOPE AND OBJECTIVES  

In the planning and design of stabilizing piles, it is necessary to analyze the soil-

pile pressure acting on the piles. In addition, since the earthquake-induced landslides 
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occur frequently in recent years, it is important to analyze the seismic performance of a 

potential landslide under seismic loadings. And commonly, earthquake induced sliding 

displacements are used to assess the seismic performance of slopes. Therefore, the 

current study focuses on analysis of (1) soil-pile pressure acting on the piles (lateral 

force), and (2) the permanent landslide movement due to seismic load. 

Two major approaches for the analysis of slope reinforced with piles have been 

studied so far. One is to estimate the soil-pile pressure per unit length of the pile in static 

condition. The other is to calculate earthquake-induced permanent displacement of the 

three-dimensional (3D) slope with/without reinforcement.  

For the soil-pile pressure analysis, the most widely used method is proposed by Ito 

and Matsui (1975). In their model, the squeezing effect between two neighboring piles is 

analyzed by the theory of plastic deformation. However, the predictions by Ito and 

Matsui’s method show the linear distribution of the soil-pile pressure, which is different 

from the field observed data. Moreover, many researchers analyze the behavior of the 

stabilizing piles in slopes without considering the effects of slope angle, while the 

natural slopes always have inclination with different angles.  

For the landslide movement analysis, there are four general categories methods: (1) 

experimental methods, (2) empirical methods, (3) analytical methods and (4) numerical 

simulation methods. According to the results of these methods, some laws or codes have 

been proposed to guide the engineering practice. For example, based on statistical 

results, the distance of twice of maximum slope height is taken as the danger slopes zone 

in Japan (refer to Figure 1.3) (Chand et al. 2011). However, the 3D analytical analysis 

for the slopes reinforced with piles is scarce. Especially, considering the seismic load, 

the failure mechanism of the slope with or without the reinforcement should be studied 

in depth. 

The objectives of this study are to solve the problems mentioned above, namely: 

(1) To evaluate the soil-pile pressure acting on the piles due to the lateral soil 

movement based on the modified plastic deformation theory 
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(2) To present a new method for evaluating the effects of slope angle on the soil-pile 

pressure of the piles. 

(3) To evaluate the effects of seismic loading on earthquake-induced permanent 

displacement of 3D slopes based on Newmark’s method (1965).  

(4) To develop numerical tool for evaluating the failure mechanisms of the 3D slopes 

reinforced with one row of stabilizing piles subjected to seismic load.  

 
Figure 1.3 Abstracting the Japanese method to measure the dangerous slopes in the 

vicinity of building. 

1.4 THESIS ORGANIZATION 

The thesis comprises the following chapters. 

Chapter 1 introduces (1) background of this study, (2) two main issues in current 

study, namely soil-pile pressure per unit length of the pile in static condition and the 

earthquake-induced permanent displacement, (3) the scope and objectives of this study, 

and (4) the organization of the thesis. 

Chapter 2 reviews two aspects of existing studies on the subject of slope 

reinforced with piles: analyses of slope stabilized with a row of piles and landslide 

movement calculation. The merits and demerits of each method are stated. 

Chapter 3 analyses the soil-pile pressure per unit length of the pile under static 

loading. The theory of plastic deformation is adopted, and the model proposed by Ito and 



 

11 

 

Matsui is modified by considering the soil arching effects along the depth of the 

moveable soil between two neighbouring piles. In addition, the parametric analysis is 

carried out to investigate the influence of the governing factors, which includes the 

geometric and mechanical parameters. The results shows that the all the parameters 

impart significant influence on the lateral force. In situ observed tests from the 

literatures are employed to validate the proposed approach. The comparison charts 

illustrate that the prediction due to the proposed approach shows greater agreement with 

the test results comparing with Ito and Matsui’s solution (1975). 

Chapter 4 presents a limit equilibrium method to analyse the lateral force (soil-pile 

pressure per unit thickness) on stabilizing piles embedded in semi-infinite slopes. In 

addition, the soil arching effects between two neighbouring stabilizing piles are 

analysed, and the lateral active stress in the rear of the piles is obtained. Furthermore, the 

squeezing effect between two piles proposed by Ito and Matsui is combined with the 

lateral active stress in the slope to evaluate the distribution of the soil-pile pressure per 

unit length of the stabilizing piles in sandy slopes. A numerical simulation using 

FLAC3D is used to evaluate the proposed approach. The simulation shows that the 

proposed model could reasonably predict the shape of the distribution of the soil-pile 

pressure acting on the stabilizing piles, while some discrepancy exists between the 

numerical results and predicted values. Furthermore, the prediction of the proposed 

model is also evaluated through comparison to the experimental data from the published 

literature. Parametric analysis is carried out to investigate the influence of the slope 

angle on the distribution of the soil-pile pressure. The shape of the distribution of the 

soil-pile pressure acting on the piles varies with the angle of the slope, while the 

magnitude of the soil-pile pressure remains in the same order. 

Chapter 5 presents three-dimensional (3D) limit analysis of seismic stability of slopes 

reinforced with one row of piles. A 3D rotational mechanism for earth slope is adopted. 

The lateral forces provided by the piles are evaluated by the theory of plastic deformation. 

Expressions for calculating the yield acceleration coefficient are derived. A random 

iteration method is employed to find the critical acceleration coefficient for the 3D slopes 
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with or without reinforcement. Based on the kinematic theory within the frame of the 

pseudo-static approach, a 3D model is proposed for evaluating the critical state and the 

subsequent displacement response. Furthermore, the Newmark’s analytical procedure is 

employed to estimate the cumulative displacement induced by given earthquake loads. An 

example is shown to illustrate the influence of the piles on the seismic displacement of the 

3D slopes.  

Chapter 6 concludes the results and achievements of the study, and states the 

problems to be solved in future studies. 

The organization of this thesis is shown in Figure 1.4. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION  

When piles are subjected to soil movement, these piles are known as passive piles. 

Soil movement is encountered in practice when piles are placed in an unstable slope, 

landslides, adjacent to deep excavation, tunnel operation, marginally stable riverbank 

with high fluctuating water level and also in piles supporting bridge abutment adjacent 

to approach embankments. The design of such piles may be based on the assumptions 

that forces from moving soil will act against the piles and ‘squeeze’ past the piles. On 

the other hand, active piles referred to a pile subjected to an external horizontal force.  

As mentioned above, the stabilizing piles used to enhance the stability of the slopes 

are considered as the passive piles. The characterization of the problem of landslides and 

the use of piles to improve the stability of slopes requires better understanding of the 

integrated effect of laterally loaded pile behavior and soil-pile interaction above the 

sliding surface. Therefore, a representative model for the soil-pile interaction above the 

failure surface is required to reflect and describe the actual distribution of the soil 

driving force along that particular portion of the pile. 

In this chapter, limit equilibrium analyses of slopes reinforced with piles are briefly 

discussed. In addition, different uncoupled analysis methods proposed in the literature 

for piled-slopes are reviewed followed by discussions of the available methods found in 

the literature to predict the limit soil pressure provided by stabilizing piles. Besides the 

analytical methods, the experimental methods and numerical methods are also discussed 

herein. 
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2.2 STABILIZING PILES UNDER STATIC LOAD CONDITION 

2.2.1 EXPERIMENTAL METHODS  

Poulos et al. (1995) described a series of laboratory tests on single instrumented 

model piles embedded in calcareous sand undergoing lateral movement. The 

experimental apparatus consisted of a testing vessel made from steel sheet of 3.2 mm 

thickness, and having internal dimensions of 450 mm wide by 565 mm long and by 700 

mm in height, as shown in Figure 2.1. Key parameters influencing the maximum 

bending moment in the pile for a constant soil density have been identified to be pile 

head fixity condition, the ratio of the depth of moving soil to the pile embedded length, 

and pile diameter and stiffness. Normalized expressions for maximum bending moment 

are also presented in their research. A boundary element analysis was used to predict the 

experimental results, and the theoretical predictions were generally in good agreement 

with the measured values. The predicted maximum bending moments were generally 

within ± 20% of those measured, and the position of the maximum bending moment was 

very well predicted in all cases, even for the cases where the agreement between the 

predicted and the measured magnitude was not as satisfactory. 

After that, Chen et al. (1997) investigated the pile-soil-pile interaction using the 

same apparatus, but the setup of the piles is different from the former tests. The findings 

of the test are: (1) for piles in a single row, the maximum bending moment decreased 

with decreasing pile spacing and, in general, was not significantly affected by either the 

number of piles or the pile head condition; (2) for piles in a line, each pile generally 

behaved differently; (3) the extent of the group effect on the lateral response of a pile in 

a group was dependent on a number of factors, including the position of the pile in the 

group, the pile spacing, the number of piles and head fixity. 

Guo and his group (Guo and Ghee, 2004; Guo and Qin, 2005; Ghee and Guo, 2005) 

investigated the response of a pile due to lateral soil movement and axial load. Typical 

results deduced from single pile tests in sand were presented previously in terms of 

effect of pile diameter, soil movement profile, sliding depth and magnitude of axial 
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Figure 2.1 Experimental apparatus used in the researches of Polous et al.(1995) and 

Chen et al.(1997). 
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Figure 2.2 Experimental apparatus used in the researches of Guo and Ghee (2006). 

 
load. After that, a laboratory experiment on the behavior of axially loaded pile groups 

was conducted by Guo and Ghee (2006). The experimental apparatus is shown in Figure 

2.2. Results from the tests were reported, which were conducted on two instrumented 

pile groups embedded in sand subjected to a uniform lateral soil movement at a sliding 

depth of 0.57Le (Le = pile embedment length). Analysis revealed the effect of the 

direction and depth of soil movement, together with the magnitude of axial load, which 

are illustrated via profiles of bending moment, shear force, soil reaction, and pile 

deflection along instrumented piles in groups at various stages. 

There are many other experiments on the behavior of piles subjected to lateral soil 

movement. For example, (1) performance of piles has been investigated through 
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centrifuge modelling (Springman, 1989; Stewart et al., 1994; Bransby and Springman, 

1997; Ellis and Springman, 2001; Leung et al., 2000, 2003, 2006; Ong et al., 2006,2009; 

Abdoum et al., 2003; Dobry et al., 2003; Dobry, 2007; Finn, 2005; Bhattacharya et al., 

2004; Brandenberg et al., 2007); (2) Performance of piles has been investigated through 

laboratory model tests for piles subjected to lateral soil movements (Fukuoka, 1977; 

Chen, 1994; Pan et al., 2000, 2002a; Tsuchiya et al., 2001; White et al., 2008).  

2.2.2 ANALYTICAL METHODS 

The analytical methods used to analyze the responses of stabilizing piles can 

generally be classified into two categories. The first is stress-based methods as proposed 

by Broms (1964), De Beer and Wallays (1972), Viggiani (1981), Randolph and Houlsby 

(1984), Ito and Matsui (1975). The second is displacement-based methods as proposed 

by Hull et al. (1992), Poulos (1995b), Lee et al. (1995), and Jeong et al. (2003). In the 

stress-based approach, some researchers make use of the ultimate soil pressure to be 

applied to the shafts in order to estimate the pile response utilizing several procedures. 

Reversely, in the displacement-based approach, the relative displacement between the 

soil and pile is considered. The response of the pile is derived based on the deformation 

of the pile subjected to a lateral soil movement. 

2.2.2.1 Stress-based method  
Broms (1964) used the Rankine passive pressure coefficient Kp, and the effective 

overburden pressure σʹvo to estimate the ultimate soil-pile pressure (Py) in sand for single 

pile. The equation is expressed as following: 

y B p voP K                                                                       (2.1) 

in which, αB is a coefficient ranging between 3 and 5.  

A similar method was utilized by Randolph and Houlsby (1984) to derive exact 

solutions for limiting lateral resistance of a circular pile in cohesive soil. Their analyses 

were based on a perfectly plastic soil response. They reported that the limiting pressures 

that can develop were 9.14 cu and 11.94 cu for perfectly smooth and perfectly rough piles 
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respectively. 

De Beer & Wallays (1972) proposed a semi-empirical method to estimate the 

maximum bending moment for piles subjected to asymmetrical surcharges. An 

assumption is made that a constant lateral pressure distribution acted on the pile in the 

soft layer. The magnitude of this lateral pressure was a function of the total vertical 

overburden pressure. They suggested that the lateral loading was caused by horizontal 

consolidation and creep, implying that their method was primarily intended to design 

piles in the long term (Kok, et al., 2009). The method cannot be used to calculate the 

variation of bending moment with depth along the pile. 

Viggiani (1981) categorized the failure mechanisms of piles subjected to moving 

ground by considering different factors. First of all, the real pile-soil interaction problem 

was simplified by making the following assumptions: 

1) The ground has two layers of soil, with the top layer sliding uniformly over a 

layer of underlying soil. 

2) Both the ground surface and the slip surface are horizontal. 

3) Both soil layers are saturated clays in undrained conditions. 

4) The undrained shear strength (cu) is constant in each layer. 

Based on these assumptions, Viggiani identified six different failure mechanisms 

for piles embedded into a two layered purely cohesive soil, which depend on the yield 

moment of the pile section, the strength parameters of the stable and sliding soil layers, 

the thickness of the sliding soil mass and the length and diameter of the pile. His 

proposed approach was based on the concepts developed by Broms (1964) to evaluate 

the ultimate load of a vertical pile subjected to a horizontal point load. 

Viggiani’s solutions are idealized, but enable the potential failure mechanisms of 

piles subjected to lateral soil movement to be categorized and understood. However, 

many aspects of real landslides, such as an inclined ground surface and slip plane, and 

long-term drained strength parameters, are not considered. 
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Ito and Matsui (1975) proposed a theoretical method to analyze the growth 

mechanism of lateral forces acting on stabilizing piles when the soil flowed to squeeze 

between piles. The method was developed to specifically estimate pressures acting on 

passive piles in a row. The force that the failing mass exerts on a row of piles can be 

expressed as a function of the soil strength, the pile diameter, spacing, and location. 

Assuming that a portion of that force is counteracting the driving forces of the slope, the 

safety factor of the slope after the placement of piles can be calculated as a function of 

pile size and position.  
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Figure 2.3 State of plastic deformation in the ground just around piles (after Ito and 

Matsui, 1975). 

 
It is assumed that piles placed in plastically deforming ground can prevent further 

plastic deformations. In order to design the piles, the lateral forces need to be estimated 
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as accurately as possible. These forces, however, are a function of the movement of the 

sliding mass. They may vary from zero in case of no movement, to an ultimate value, in 

case of large movements (Hassiotis, et al., 1997). The theory developed by Ito and 

Matsui (1975) estimates an ultimate value for the lateral force, assuming that no 

reduction in the shear resistance along the sliding surface has taken place due to strains-

softening caused by the movement of the landslide. For that reason, only the soil around 

the piles is assumed to be in a state of plastic equilibrium, satisfying the Mohr-Coulomb 

yield criterion. Then, the lateral load acting on the piles can be estimated regardless of 

the state of equilibrium of the slope. Inherent in this approach is the assumption that the 

soil is soft and able to plastically deform around the piles. The theory of plastic 

deformation is based on the following additional assumptions: 

1. When the soil layer deforms, two sliding surfaces, AEB and A'E'B', occur 

making an angle of (φ/4 + π/2) with the x-axis (Figure 2.3). 

2. The soil is in a state of plastic equilibrium only in the area AEBB'E'A' where the 

Mohr-Coulomb yield criterion applies. 

3. The active earth pressure acts on lane AA'. 

4. Plane strain conditions exist with respect to depth. 

5. The piles are rigid. 

6. The frictional forces on surfaces AEB and A'E' B' are neglected when the stress 

distribution in the soil AEBB'E'A' is considered. 

In this method, the lateral force per unit length of the pile (PD) at each depth is 

given as follows: 
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in which, 2tan ( )
2 4
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D

  
 , c is the cohesion of the soil, D1 is 

the center-to-center pile spacing in a row, D2 is the clear spacing between the piles 

(referring to Figure 2.3), φ is the internal friction angle, γ is the unit weight of the soil, z 

is an arbitrary depth from the ground surface.  

Ito and Matsui’s method (1975) is still widely referred by other researchers 

(Hassiotis, et al., 1997; Cai and Ugai, 2000; Won et al., 2005; Defae and Knappett, 2015; 

Hajiazizi and Azaheri, 2015). However, the differences exist between the linear 

predictions of the lateral force by this method and the non-linear observed data. The 

author finds that a more accurate prediction can be obtained if the soil arching effects is 

taken into account, which is developed between two neighboring pile along the depth of 

the moveable soil. The modified method will be discussed in the following chapter. 

2.2.2.2 Displacement-based method 
As mentioned previously, this method estimate the pile response based on using 

relative lateral displacements between the pile and the soil. Displacement-based 

approaches are considered more complicated than the stress-based approaches because 

the relationship between the movements of the pile and the soil are interrelated.  

Poulos (1973) developed a computer program PALLAS to simulate the pile 

response by a given soil movement, using the simplified boundary element method. Hull 

et al. (1992) developed a program with the ability to model the pile head and tip loading 

by using a modified nonlinear boundary element approach. Poulos (1995) and Lee et al. 

(1995) carried out numerical analyses using a computer program, ERCAP (CPI, 1992), 

to present an approach for the design of slope stabilizing piles by assessing their 

response to lateral ground movement. The pile was modelled as a simple elastic beam, 

and the soil as an elastic continuum. To impose the lateral load on the pile, the unstable 

soil was moved downslope along the drag zone (or slip surface) as a rigid body (refer to 

Figure 2.4). 
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Figure 2.4 Basic problem of a pile in unstable slope (Poulos, 1995). 
 
Poulos (1995) highlighted three different failure modes via the analysis of ERCAP: 

(i) Flow mode: when the depth of the slip plane is shallow, the unstable soil 

becomes plastic and flows around the stationary pile (see Figure 2.5). The pile 

deflection is considerably less than the soil movement under “flow mode”. For 

practical uses, Poulos endorsed the flow mode that creates the least damage 

from soil movement on the pile. 

(ii) Short pile mode: when the slip plane is relatively deep and the length of the 

pile in the stable soil is relatively shallow, the unstable sliding soil carries the 

pile through the stable soil layer (Figure. 2.6). 

(iii) Intermediate mode: when the depth of the failure surface is relatively deep and 

the soil strength along the pile length in both unstable and stable layers is fully 

mobilized (Figure 2.7). In this mode, the pile deflection at the upper portion 

exceeds the soil movement and a resisting force is applied from downslope to 

this upper portion of the pile. 
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Figure 2.5 Flow mode of failure (Poulos, 1995). 

 
Figure 2.6 Short pile mode of failure (Poulos, 1995). 

 
The following observations were made by Poulos (1995): (1) the maximum shear 

force in the pile is developed at the level of the slide plane; (2) for the flow mode, the 

maximum moment occurs below the slide plane, in the stable soil, and the pile 

movement is considerably less than the soil movement; (3) for the short-pile mode, the 

maximum moment occurs well above the slide plane in the unstable soil, and the soil 

and pile movements are similar; and (4) for the intermediate mode, large moments are 

developed both above and below the slide zone, and the pile head movement can exceed 
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the soil movement. 

 
Figure 2.7 Intermediate mode of failure (Poulos, 1995). 

 

2.2.2.3 Limit analysis method 
Ausilio et al. (2001) used the kinematic approach of limit analysis to analyze the 

stability of earth slopes reinforced with piles. In their research, the analysis involved two 

steps: (1) the case of slope without piles was considered and a procedure was developed 

to calculate the safety factor for the slope, which was defined as a reduction coefficient 

for the strength parameters of the soil; (2) the stability of slopes reinforced with piles 

was analyzed. To account for the presence of the piles, a lateral force and a moment 

were assumed and applied at the depth of the potential sliding surface. Expressions were 

derived allowing the assumed force to increase the safety factor to a desired value and 

the most suitable location of piles within the slope to be evaluated.  

Based on the limit analysis, Ausilio et al. (2001) found that: (1) installing a row of 

piles was an effective remedy to improve slope stability especially when the sliding 

surface for the unreinforced slope was relatively shallow; (2) the optimal location of the 

piles within the slope was near the toe of the slope where the stabilizing force needed to 

increase the safety factor to the desired value takes a minimum value. 

Nian et al. (2008) developed a similar approach to analyzing the stability of a slope 
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with stabilizing piles in nonhomogeneous and anisotropic soils. The research indicated 

that the optimal location of a row of piles within the slope was near the toe of the slope. 

This conclusion was in line with the results of Ausilio et al. (2001). Furthermore, Nian et 

al. (2008) pointed out that Piles also appeared to be very effective when they were 

installed in the region from the middle to the toe of the slope in the case of lower design 

safety factor Fs, anisotropic coefficient kac, and gentle slope. The study also showed that 

both the anisotropy and non-homogeneity of the soil strength strongly affected the 

required lateral stabilizing force provided by piles, especially the effect of anisotropy. 

2.2.3 NUMERICAL METHODS 

In recent decades, numerical methods have been used by several researchers 

(Chow, 1996; Jeong et al., 2003; Zeng and Liang, 2002; Yamin and Liang, 2010; 

Kourkoulis et al., 2012) to investigate the soil-pile interaction in pile reinforced slopes. 

These methods are becoming increasingly popular because they offer the ability to 

model complex geometries, 3D soil-structure phenomena (such as pile group effects), 

and soil and pile non-linearity. However, numerical methods are computationally 

intensive and time-consuming. 

More recently, Kourkoulis et al. (2012) introduced a “Hybrid” method for analysis 

and design of slope stabilizing piles, combining the accuracy of rigorous three-

dimensional (3D) finite element (FE) simulation with the simplicity of widely accepted 

analytical techniques. This approach consists of two steps: (1) evaluating the required 

lateral resisting force per unit length of the slope (Flr) required to increase the safety 

factor of the slope to the desired value; and (2) estimation of the optimum pile 

configuration that offers the required Flr for a prescribed deformation level. The first step 

utilizes the results of conventional slope-stability analysis. A novel approach is proposed 

for the second step, which involves decoupling the slope geometry from the computation 

of the piles’ lateral capacity, which allows for the numeric simulation of only a limited 

region of soil around the piles. In modeling only a representative region of the soil 

around the pile, the ultimate resistance is computed by imposing a uniform displacement 
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profile onto the model boundary. 

2.3 SLOPES WITH/ WITHOUT REINFORCEMENT UNDER SEISMIC LOAD 

2.3.1 TWO DIMENSIONAL SLOPES UNDER SEISMIC LOAD 

Three types of methods have been developed to date to assess the stability of slopes 

subjected to earthquakes: (1) pseudo-static methods, (2) dynamic sliding block methods, 

and (3) stress-strain methods. Each method has strengths and weaknesses, and each can 

be appropriately applied in different situations (Jibson, 2011). 

This section reviews these three categories methods and discusses their advantages 

and limitations. 

2.3.1.1 Pseudo-static method 
The pseudo-static method was first presented by Terzaghi (1950). It is a simple 

method can be applied to natural or artificial slopes for evaluating of seismic stability of 

a slope. It is assumed that the effect of the earthquake force acting on the whole or an 

element of the slope is represented by a horizontal force and/or a vertical force equal to 

the product of the gravitation force and a coefficient k. The schematic of the pseudo-

static method applied in a slope is shown in Figure 2.8. 

Thus the assumed seismic acceleration a is k times the gravitational acceleration g, 

i.e. as=kg. In the direction of horizontal and vertical, the assumed pseudo-static forces 

acting on a potential sliding mass of weight W can be expressed respectively as  

h
h h

v
v v

a
f W k W

g

a
f W k W

g

 

 

                                                                     (2.3) 

where ah and av are horizontal and vertical pseudo-static accelerations, respectively, kh 

and kv are horizontal and vertical pseudo-static coefficients, respectively. The factor of 

safety (FOS) is expressed as the ratio of the resisting force to the driving force,  
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Figure 2.8 Earthquake Forces acting on a slope in pseudo-static slope stability analysis. 

 
There are three points for the pseudo-static seismic force mentioned: (1) magnitude, 

(2) direction and (3) point of application, which should be determined in the application 

of the pseudo-static methods. 

(a) Magnitude 

According to Eq. 2.3, the magnitude of the assumed pseudo-static force is 

determined by the seismic coefficient. The key problem for the pseudo-static procedure 

is how to select an appropriate seismic coefficient under an acceptable FOS. There have 

been studies for determining the most appropriate pseudo-static coefficient by a matter 

of experience and judgment. 

Terzaghi (1950)'s classical paper, probably the earliest recommendations on the 

values of the seismic coefficient published by a renowned geotechnical engineering or 

engineering geologist, made the original suggestion to use of kh=0.1 for severe 

earthquakes, kh=0.2 for violent and/or destructive earthquakes, and of kh=0.5 for 

catastrophic earthquakes. 
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There are many other researches on the study of seismic coefficients (Makdisi and 

Seed, 1977; Seed, 1979; Marcuson and Franklin, 1983; Hynes-Griffin and Franklin, 

1984; Bray and Rathje, 1998; Kramer, 1996; Pyke, 1991; Krinitzsky, 1993; Kavazanjian 

et al., 1997; Stewart et al., 2003). The recommendations for selecting the seismic 

coefficients proposed by these researchers are listed in Table. 2.1. All of these 

recommended pseudo-static coefficients can fall into two categories: (1) magnitude-

based coefficients and (2) peak ground acceleration (PGA)-based coefficients (Zhang, 

2013). 

(b) Direction 

In most of the research mentioned above, only the horizontal acceleration is taken 

into account for evaluating the stability and deformation of a slope. It is because that, as 

shown in Figure 2.8, the horizontal force clearly increases the driving force and 

decreases the FOS. Conversely, the vertical pseudo-static force typically has less 

influence on the FOS than the horizontal pseudo-static force does because the vertical 

pseudo-static reduces both the driving force and resisting force. As a result, the effects of 

vertical accelerations are frequently omitted in pseudo-static analysis (Kramer, 1996). 

Analyses performed by several investigators with an inclined seismic force (i.e. 

coupled with vertical component of the earthquake force) have shown that the 

inclination can have a significant influence on the seismic slope stability analysis 

(Chopra, 1966; Ling, 1998). 

(c) Point of application 

The pseudo-static force in an analysis, which presents the earthquake effects in 

horizontal direction, requires a decision as to its point of application. Usually, it is 

applied at the centre of gravity of a potential sliding mass or of a typical vertical slice in 

any method of slices. Alternatively, the force also can be applied at the level of the base 

of a slice. Different points of application of pseudo-static force induce a significant 

difference in the result. Seed (1979) provided a well-known example, the analysis of 

Sheffield Dam. In his study the seismic forces were applied at the base and the center of 
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gravity of each slice, respectively, and the results of factor of safety were 1.21 and 1.32, 

respectively (Chowdhury et al., 2010). 

Table 2.1 Pseudo-static coefficient from several studies (Zhang, 2013) 

Recommended 

pseudo-static  

coefficient (k/g) 

FOS 

Permanent 

displacement 

(D/m) 

Original 

application 
References 

0.1 (R-F=IX) 

0.2 (R-F=X) 

0.5 (R-F=XI) 

>1.0 - 
Nature or 

artificial slope 
Terzaghi, 1950 

0.1 (M=6.5) 

0.15 (M=8.25) 
>1.5 <1 Earth dams 

Makdisi and Seed, 

1977 

0.1 (M=6.5) 

0.15 (M=8.25) 
>1.15 <1 Earth dams Seed, 1979 

(1/3~1/2)PGA >1.0 - - Marcuson, 1981 

1/2 PGA >1.0 <1 Earth dams 
Hyness-Griffin and 

Franklin, 1984 

1/2 PGA (M=8.25) 

1/3 PGA (M=7.5) 

1/4 PGA (M=7.0) 

1/5 PGA (M=6.5) 

>1.0 - - Pyke, 1991 

0.15 >1.1 - Dams CDCDMG, 1997 

(0.6~0.75) PGArock >1.0 <0.15~0.3 
Soild-waste 

landslides 

Bray and Rathje, 

1998 

(0.25~0.75) 

PGArock 
>1.0 <0.05~0.15 

Urbanized 

slopes 
Stewart, 2003 

Note: R-F is Rossi-Forel earthquake intensity scale, IX: severe earthquake, X destructive 

earthquake, XI catastrophic earthquake; M is earthquake magnitude; PGA is peak 

ground acceleration, in terms of acceleration of gravity. 

 

Generally speaking, it is recommended that pseudo-static analysis, which provides 

only a very rough approximation of slope behavior during earthquake shaking, should be 

used only for preliminary assessments and screening procedures, then followed by more 

sophisticated analysis (Stewart et al., 2003; Wasowski et al., 2011; Jibson et al., 2011) 

2.3.1.2 Dynamic sliding block methods 
Displacement-based dynamic sliding block method is another widely used approach 

to evaluate the seismic slope stability in earthquake geotechnical engineering. This 

method regards the permanent displacement as the index of slope performance. 
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Newmark (1965) first proposed the basic elements of a procedure for evaluating the 

potential displacements of an embankment due to earthquake shaking. Newmark 

envisaged that sliding would be imminent once the inertia forces on a potential failure 

block were large enough to overcome the yield resistance and that movement would stop 

when the inertia forces were reversed. 

In his analysis, a soil mass moving downward along a failure surface under inertia 

force due to earthquake shaking is considered to be analogous to a rigid block with 

weight and an external force sliding on an inclined plane as shown in Figure 2.9. Thus, 

the movement of slope would begin to occur if the inertia force induced by earthquake 

on a potential slide mass exceeds the yield acceleration. The failure mechanism and 

corresponding yield acceleration must be determined first so that the analogous inclined 

plane and external force can be simulated. Subsequently, the overall displacements of a 

failure slope under earthquake loads can be assessed (Chen et al., 1978; Chen, 1980). 

This can be achieved in the following step (Chang et al., 1984): 

W

khW

N

c+Ntanφ 

 

Figure 2.9 Rigid block on an inclined slope. 

 
1. Calculate the yield acceleration at which slippage will just begin to occur. 

2. Apply various values of the pseudo-static force to the slope. These values are 

obtained from a discretized accelerogram of an actual or simulated earthquake. 

3. According to the yield acceleration and accelerogram of an earthquake, the time 

history of velocity of the sliding soil mass of a slope can be calculated. The 
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magnitude of displacements can be evaluated by integrating all the positive 

velocity. 

4. Determine the “stability” of the slope on the basis of this estimated total 

displacement by rigid body sliding. 

In summary, a pseudo-static analysis is first used to calculate a critical or yield 

acceleration value ac. The permanent displacement for a sliding mass is then calculated 

by double integration of the earthquake acceleration time history data above the critical 

acceleration. Newmark showed that the critical or yield acceleration, parallel to the 

slope, of a potential landslide block is a simple function of the static factor of safety and 

landslide geometry, expressed as: 

(FOS 1) sinc ana g                                                                          (2.5) 

where ac is in terms of the gravity acceleration g; FOS is the static factor of safety; and 

αan is the angle from the horizontal of the sliding surface. 

It should be noted that Newmark’s concept implied that movements would stop 

when the inertia forces were reversed. Actually, the velocity could remain positive even 

if the inertia forces were reversed or the inertia forces were not reversed but less than the 

yield resistance on the potential failure surface. Positive velocity thereby causes sliding 

on the surface. On the other hand, the velocity could be negative even though the inertia 

forces were greater than yield resistance. It all depends on the magnitude and direction 

of both velocity and inertia force, while not either one alone. Besides, as also indicated 

by Newmark, the uphill resistance without serious error in the calculations, may be taken 

as infinitely large. In this situation, ground motions in the direction of the downward 

slope tend to move the mass downhill, but ground motions in the upward direction along 

the slope leave the mass without relative additional motion except where these are 

extremely large in magnitude. Thus, the negative velocity or velocity heading uphill is 

not allowed in this analysis. 

Since the rigid-block method was published in 1965 by Newmark, it has seen 

numerous applications. As reviewed by Garini et al., (2011), the applications in recent 
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years include (1) the seismic deformation analysis of earth dams and embankments 

(Yegian et al., 1991a; 1991b; Sawada et al., 1993; Kramer, 1996); (2) the displacements 

associated with landslides (Jibson, 1993; Del Gaudio et al., 2003); (3) the seismic 

deformation of landfills with geosynthetic liners (Bray and Rathje, 1998; Yegian et al., 

1998); (4) the seismic settlement of surface foundations (Richards et al., 1993); and (5) 

the potential sliding of concrete gravity dams (Danay and Adeghe, 1993; Fenves and 

Chopra, 1986). The extension of the analogue by Richards and Elms (1979) to gravity 

retaining walls has met worldwide acceptance, and has found its way into seismic codes 

of practice. Several other generalised applications have also appeared (e.g. 

Stamatopoulos, 1996; Rathje and Bray, 2000; Ling, 2001; Fardis, 2009; Wartman et al., 

2003). 

2.3.1.3 Stress-strain methods 
With the developments of computer technology and simulation approach in recent 

decades, the numerical simulation method is becoming increasingly used in engineering 

practice and more and more popular for the real dynamic analysis. These methods can be 

categorized into continuous methods, e.g. finite element method (FEM) (Clough, 1960), 

finite difference method (FDM) (Mitchell and Griffiths, 1980), boundary element 

method (BEM) (Brebbia and Wrobel, 1980), and discontinuous methods, e.g. rigid block 

spring method (RBSM) (Kawai, 1977; 1978), discrete element method (DEM) (Cundall, 

1971) and discontinuous deformation analysis (DDA) (Shi and Goodman, 1985; 1989). 

2.3.2 TWO DIMENSIONAL (2D) SLOPES REINFORCE WITH PILES UNDER SEISMIC LOAD  

Li et al. (2010) used the kinematic theorem of limit analysis method to analyze the 

seismic stability of 2D slopes reinforce with a row of piles. In their method, a 

homogeneous and isotropic soil slope reinforced with a row of piles is considered. Based 

on the requirement of limit analysis, the soil is assumed to deform plastically according 

to the normality rule associated with the Mohr-Coulomb yield condition. It has been 

proved that of the various failure mechanisms of the slope, the rotational one has been 

found to be the most adverse for earth slopes (Chen and Liu, 1990). So the rotational 
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log-spiral collapse mechanism, which had been earlier examined by Chen (1975) and 

other researchers, was adopted in their approach. The geometry of the failure surface 

(Figure 2.10) is described by the log-spiral equation, which can be expressed as  

0( ) tan

0r r e
  

                                                              (2.6) 

where φ is the internal friction angle of the soil, and r0 is the radius of the log spiral with 

respect to angle θ0. The failing soil mass rotates as a rigid body about the Point O with 

angular velocity ω. The slope geometry is defined by height H, and angles α and β, 

which are also indicated in Figure 2.10. 

 
Figure 2.10 Rigid rotation collapse mechanism for a slope reinforced with piles. 

 
In their method, the resistant forces provided by the installed piles were estimated 

by plastic deformation theory (Ito and Matsui, 1975). It is assumed that only the soil 

around the piles is to be in a state of plastic equilibrium satisfying the Mohr-Coulomb’s 

yield criterion. Then, the lateral load acting on the piles can be calculated regardless of 

the state of equilibrium of the slope. Based on the assumptions used, the lateral force per 
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unit thickness of the layer acting on the piles was estimated by Eq. 2.2. The total lateral 

force acting on a pile due to the plastically deforming layer around the pile, Ft, can be 

obtained by integrating Eq. 2.2 along the depth of the pile in the failing wedge. Then, the 

stabilizing force per unit width of soil, Fp (Figure. 2.10), provided by the pile can be 

calculated by dividing Ft with the center-to-center distance between the piles. 

In summary, Li et al. (2010) used the upper-bound theorem of limit analysis to 

determine the yield seismic coefficient and its corresponding failure mechanism. In 

addition, to account for the presence of the piles, a lateral force is assumed to be applied 

at the failure mass. For slopes without piles, the calculated results of the critical 

acceleration coefficient are fairly coincident with that obtained by Newmark’s method. 

The seismic displacement investigation shows the efficiency of piles in limiting the 

deformation of the slope under earthquake loading. 

2.4 SUMMARY AND CONCLUSIONS 

Firstly, the studies in the field of the stabilizing piles under static load condition are 

reviewed, which include three parts of contents, i) experimental methods, ii) analytical 

methods, and iii) numerical methods. Secondly, the 2D slopes with or without 

reinforcement under seismic load are reviewed. Some conclusions can be drawn: 

(a) Three kinds of methods can be used to analyse the responses of the piles 

subjected to lateral soil movement. In detail, experimental method can provide 

the qualitative and quantitative observations on the obtained results although 

this method is time-consuming, expensive and of limited utility. Especially, it is 

difficult to obtain an effective empirical formula from a laboratory experimental 

test to evaluate the realistic pile response accurately. Analytical method can be 

more directly used without the need of statistically-significant database of 

previous events. Numerical simulation method can be used to provide more 

information, and it is a very useful method to validate the analytical method.  

(b) Three categories methods can be used to analyse the seismic stability of a slope. 

Each of these types of methods has strengths and weaknesses and each can be 
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appropriately applied in different situations. In detail, pseudo-static methods 

can simply and directly determine the FOS and the critical coefficient kc of a 

slope, while the widely used Newmark’s methods and its extensions can 

determine the co-seismic deformation of a slope. Furthermore, the permanent 

displacement of the slope, which is reinforced with piles, can be evaluated using 

the kinematic theorem of limit analysis within the framework of the pseudo 

static approach. 
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CHAPTER 3 

SOIL-PILE PRESSURE OF STABILIZING PILE UNDERGOING LATERAL 

SOIL MOVEMENT 

3.1 INTRODUCTION  

Landslide occurring in both natural and cut slopes often results in serious damage 

to both human lives and properties (Liu and Zhao, 2013; Cai and Ugai, 2004). Lots of 

research has been carried out to reduce the damage of landslide disasters. Stabilizing 

piles, as one of the most widely used countermeasure in reinforcement engineering of 

slopes, has been proved to be an efficient solution to landslides (Guo 2013). Stabilizing 

piles as passive piles are embedded into a stable base of slope to provide additional 

stability (see Figure. 3.1). The distributions of the soil-pile pressure acting on passive 

piles are dependent on soil movements. Due to the complex plastic deformation of soil, 

estimation of the lateral force on passive piles cannot be easily solved. 

Several previous researchers have attempted to estimate the soil-pile pressure 

(lateral force) exerted on stabilizing piles by experimental approach and theoretical 

analysis approach. A number of instrumented field cases have been reported. For 

example, Franx and Boonstra (1948), Heyman and Boersma (1961), Heyman (1965), 

Leussink and Wenz (1969) and Nicu et al. (1971) (a summary of these and other cases 

was made by Marche and Lacroix, 1972). In most of the above mentioned cases, the 

piles have been in bridge abutments where the horizontal displacements of the soil arose 

from the construction of an embankment at the soil surface. Leussink and Wenz (1969) 

have described a test on a pile near an ore-storage large to cause structural failure of the 

pile. From an examination of case records, Marche and Lacroix (1972) attempted to  



 

50 

 

 

Figure 3.1 Stabilizing pile used in various reinforcement engineering: (a) remediation of embankment slope in San Diego; (b) 

Spanish Peaks Landslide Stabilization; (c) bank remediation along Harrods Creek using piles.  
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relate the ratio of the horizontal displacement of a pile to the embankment settlement 

with the relative flexibility of the pile, and found that this ratio increases with increasing 

pile-flexibility. 

De Beer and Wallays (1972) have described a relatively simple method of 

determining bending moments and forces in a pile when an unsymmetrical surcharge is 

placed around the pile. Ito and Matsui (1975) proposed an analysis to evaluate the lateral 

force acting on a single row of piles due to soil movement. Their analysis was carried 

out in the light of the theory of plastic deformation, simultaneously the interaction 

between piles and soil was considered. It is convenient to estimate the ultimate soil 

pressure on pile segment embedded in the sliding soil layer using this method, because 

the pressure depends on only 4 parameters: the cohesion c, the internal friction angle φ, 

pile diameter, and spacing between piles. This method has been widely referred by other 

researchers (Hassiotis, 1997; Cai and Ugai, 2000, Hazarika et al, 2000).  

As mentioned previously, Poulos (1995) presented a method in which a boundary 

element method was employed to analyze the response of a row of passive piles 

incorporated in limit equilibrium solutions of slope stability in which the pile is modeled 

as a simple elastic beam. The method evaluates the maximum shear force that each pile 

can provide based on an assumed input free field soil movement (Ashour and Ardalan, 

2012). Poulos (1995) revealed the existence of three modes of failure: (i) the “flow 

mode”, (ii) “intermediate mode”, and (iii) the “short-pile mode”. These three modes of 

failure highlighted by Polous definitely promote the application of analysis of stabilizing 

piles. This classification of failure modes was diffusely adopted by researchers (Chen 

and Poulos, 1997; Ashour et al. 2000, 2004; Won et al. 2005; Jeong et al. 2003; Nian et 

al. 2008; Suleiman et al. 2014). In this chapter a row of piles in the deforming ground 

with the “flow mode” mechanism is analyzed, here the soil movement is larger than the 

pile deflection. In addition, the soil arching effects along the height of the sliding layer 

between two neighboring piles are considered to provide the non-linear distribution of 

lateral force on each pile.  
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In this chapter, the lateral force on a row of piles under laterally movement of the 

sliding layer is analyzed. In Section 3.2, the soil arching theory is introduced and the 

analysis is carried out in deforming ground considering the arching effects in the rear of 

piles. The distribution of the soil stress exerted on the piles is non-linear based on the 

soil arching theory. In Section 3.3, from parametric analysis of the factors utilized in the 

proposed formulae, it reveals that all the factors including the internal friction angle, the 

cohesion, the pile diameter, the height of the unstable soil layer influenced the lateral 

stress enormously. What’s more, In Section 3.4, the numerical simulation results 

together with field experiments from literatures are introduced to validate the proposed 

approach. 

3.2 PLASTIC THEORY CONSIDERING SOIL ARCHING EFFECTS  

3.3.1 INTRODUCTION OF SOIL ARCHING EFFECT 

Soil arching was described by Terzaghi (1936, 1943) as one of the most universal 

phenomena in the field of soil mechanics. Transferring of soil pressure from a yielding 

support to an adjacent non-yielding support is the essence of the phenomena (Bosscher 

and Gray, 1985).  

In silos and ditches, some equations have been set up by many researchers to 

estimate the soil pressure by considering the soil arching effects. However, the shape of 

the soil arching in their research was not defined (Janssen, 1895; Marston, 1913). It is 

considered that loosely added contents of silos and trenches are partially supported by 

friction from vertical walls (Figure 3.2). Unlike a free-standing structural arch, the 

arching that acts in partial support of granular contents cannot be represented by 

trajectory of the major stress because, instead of being a continuous curve, it rises to 

vertical at the center. The flat “arch” of Figure 3.2 derives from supportive friction F (at 

the ends), which equals lateral force times a coefficient of friction μ, the lateral force 

being obtained from vertical stress times a lateral stress ratio, K, which was obtained 

experimentally by Janssen for grain (1895), but was later assumed by Marston and 

Anderson to be equal to the ratio of principal stresses, Ka = σ1/σ3, which is the Rankine 
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ratio with a level ground surface. This assumption was also advanced by Terzaghi (1943) 

and others, until corrected in 1945 by Krynine (1945).  

h V

dh γBdh

Sagging ground surface

V+dV

B

V
K dh

B

V
K dh

B


 
Figure 3.2 Differential element in classical representation of soil arching (after 

Handy, 1985). 

 
Krynine (1945) considered that if friction at the ends of the flat "arch" is the 

product of Kaμ, it must equal σ1/σ3, but σ3 is a principal stress that, by definition, must 

act on a plane of zero friction. This is a paradox: It must be wrong to be right. Krynine 

resolved the problem by use of the Mohr circle, showing that rotation of the principal 

stresses gives wall pressure σh, instead of σ3 in Figure 3.3, and the shearing stress is at 

PA rather than M (Handy, 1985). Krynine derived an expression for the ratio of 

horizontal-to-vertical stress at a wall with fully mobilized friction: 

2

2

1 sin

1 sin

h

v

K
 

 


 


                                                                   (3.1) 
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However, the K of Eq. (3.1) is not appropriate either, since σv at the wall is less than 

the average σav across the continuum and in equilibrium with the fill depth and density. 

 
Figure 3.3 (a) Mohr Circle to show arching stresses at rough wall, enabling deviation of 

Eq. (3.1); (b) continuous inverted arch defined by trajectory of minor principal stresses; 

(c) shear line direction and randomized shears, r, s and t, to give net vertical movements 

(after Handy, 1985). 

 
Handy (1985) used the Mohr Circle to analyze the arching effects between two 

retaining walls. It is assumed that two parallel, unyielding, vertical settling of the fill 

occurs that its weight becomes partially supported by fully developed friction on the 

walls. Minor principal planes drawn through the Mohr circle poles (Figure 3.3(a)) show 

radiating major principal stress directions, whereas the trajectory of the minor principal 

stress, σ3, defines a continuous compression arch that dips downward instead of upward 

(Figure 3.3(b)). This "minor arch" may also be defined by intersections of shear lines 
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drawn by the numerical method of Sokolovskii (1965) that is also based on the Mohr 

diagram (Figure 3.3(c)). This argument requires that the soil be in a state of plastic 

equilibrium, which in turn requires that slip occur only along directions defined by the 

slip lines.  

Furthermore, Handy (1985) noticed that the arching element of Figure 3.3(b) is 

bounded by surfaces representing principal planes of zero shearing stress. Thus, moment 

equilibrium requires that the stresses be constant throughout the arch. If the element is of 

uniform density and thickness and, thus, of uniform weight throughout, the shape will be 

a catenary, namely the shape taken by a chain held at ends. It must dip downward if the 

arch is supportive, or upward if the reverse is true, which may explain some of the 

difficulty in intuitively visualizing an internal, partially supported soil arch. Perhaps it is 

simplest to imagine a tensile analogue for the direction of least compression. 

The equation for catenary is: 

[exp( ) exp( )]
2

ca

ca ca

a x x
y

a a
                                                                   (3.2) 

in which aca is a coefficient and x is a relative distance from the center line and has 

limits ± 1. Differential equation can be expressed: 

1
[exp( ) exp( )] cot

2 ca ca

dy x x

dx a a
                                                       (3.3) 

where θde is the angle showing in Figure 3.3(a). For fully developed wall friction, 

θdemax = ±(45º+φ/2) when x = 1 at the walls, enabling evaluation of a.  

Based on the analysis using Mohr Circle, Handy (1985) found that: (1) soil arching 

initiated from a rough wall in two stages. The first stage was rotation of minor and major 

principal stresses at the wall. This produced wall pressures appreciably higher than those 

predicted from Rankine or Coulomb analyses, and is essentially hydrostatic or triangular 

in distribution; (2) as wall movement proceeded, arching action becomes continuous in 

soil between two walls, or forms a semi-arch between the wall and a boundary slip 
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surface separating mobile from immobile soil where the minor principal stress becomes 

horizontal. This second state of arching, or bin effect, reduced vertical and horizontal 

pressures, particularly near the base of the wall; (3) in its second stage, arching action 

reduced wall pressures significantly below those from the Coulomb analysis, but placed 

their center of action higher on the wall.  

Other researchers have analyzed the soil arching effects assuming the arch shaped 

as elliptic and parabolic (Livingston, 1961; Walker, 1966; Stevic et al., 1979). 

Furthermore, the trajectory of the arch was examined theoretically by Kingsley (1989). 

It is shown that the minor principal stress arch can be approximated by a catenary or a 

circle. More recently, the soil arching theory has been developed to study on retaining 

wall based on the catenary and circle shaped arch respectively (Wang, 2000; Paik and 

Salgado, 2003). In the following section, a circle shaped arch proposed by Paik and 

Salgado (2003) is adopted and extended to c-φ soil, and the limit equilibrium of the 

differential element in the soil arching zone is analyzed to investigate the lateral active 

soil stress 

3.3.2 SOIL ARCING EFFECTS BETWEEN TWO NEIGHBORING PILES 

When the sliding layer moves laterally, the soil around the piles deforms. Between 

two neighboring piles, the soil arching occurs along the height of the sliding layer. In the 

rear of piles the direction of major and minor principal stress of the soil rotates in the 

soil arching zone. In this analysis, the soil arching zone in the rear of piles is shown as 

the dashed area in Figure 3.4. The plane view of soil deforming between two 

neighboring piles is depicted in Figure 3.5. In addition, a typical cross section, UU′, as 

shown in Figure 3.6, is employed to display the soil stress in the rear of the plane AA′ 

(Figure 3.5). In this section, the analysis is conducted in two stages. Firstly, the soil 

pressure acting on the plane AA′ is analyzed based on the soil arching theory. Secondly, 

considering the squeezing effect between the piles, the lateral force acting on the piles is 

calculated. 
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Figure 3.4 The soil arching zone in the rear of stabilizing piles. 
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Figure 3.5 Plastic deformation of soil between neighboring piles (after Ito and 

Matsui, 1975). 
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Figure 3.6 Cross section of the deformation in soil ground in the rear of piles. 

 

As mentioned previously, the trajectory of soil arching is assumed to be an arc of a 

circle. In addition, in order to inquire into the state of soil stress in the rear of the plane 

AA′ (Figure 3.5), we assume that when soil layer deforms, the plane AA′ (Figure 3.5) is 

in active. Furthermore, when the active stress on the plane AA′ is analyzed, only the area 

between the two parallel lines AG and A′G′ (Figure 3.5) is considered. It is noted that 

assumption of the active stress is same to that of Ito and Matsui (1975). Moreover, they 

assumed that the Coulomb’s active earth pressure was applied on the plane. However, 

some recent research indicates that the active earth pressure predicted by soil arching 

theory provides more accurate result than that by Coulomb’s method. Based on soil 

arching theory proposed by Paik and Salgado (2003), the active stress on plane AA′ 

(Figure 3.5) in deforming ground are discussed. 

When soil layer deforms, the actual soil arching zone would be complicated. In this 

study, assumption mentioned previously is utilized to simplify the analysis. The cross 

section UU′ is shown in Figure 3.6. The angle between sliding plane and the horizontal 

is β1. In the deforming ground, the rotation of the principal stress on the line FF′ (Figure 

3.6) is described as Figure 3.7. In the rear of the line FF′, the shape of the soil arching is 

an arc of a circle which dips downward instead of upward. The trajectory of minor 
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principal stress on the differential element is represented by the dotted lines, while the 

direction of major principal stress is the normal of the arch. 

The active earth pressure acted on the line FF′ includes two components: the active 

lateral stress σh and the shear stress τ. A theoretical approach has been proposed by Paik 

and Salgado (2003) to estimate the active lateral stress σh behind a retaining wall for 

cohesionless soil. This approach is adopted herein and extended for c-φ soil. 
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Figure 3.7 Stress on differential element in the soil arching zone (after Paik and 

Salgado, 2003). 
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Considering the force equilibrium in the triangular element at point A in Figure 3.7, 

the lateral stress is obtained as: 

2 2

1 3cos sinh w w                                                                       (3.4) 

At an arbitrary point D of the arch, whose original location is point B, a similar 

equation is given by 

2 2

1 3cos sinah                                                                     (3.5) 

where ѱ is the angle between the normal of the arch at point D and the horizontal, σah the 

lateral stress at point D. Considering that the soil is in active state, the Mohr-Coulomb’s 

yielding criterion is applied: 

1/2

3 1 2  N cN                                                                               (3.6) 

where, N = tan2(π/4−φ/2), c is the cohesion of soil. Substituting Eq. (3.6) into Eq. (3.4), 

the lateral stress at point D is obtained: 

2 2 1/2 2

1(cos sin ) 2 sin      ah N cN                                       (3.7) 

Since σah-σ3=σ1-σav, substitution for σah gives 

2 2 1/2 2

1(sin cos ) 2 cos      av N cN                                      (3.8) 

where σav is the vertical stress at an arbitrary point D. As depicted by Eq. (3.8), the 

vertical stress varies with angle ѱ, which changes from θw to π/2. In this problem, it 

seems impossible to calculate the vertical stress at every point in the analyzing zone, so 

the average vertical stress v is introduced, which can be expressed as: 

v

V

S
                                                                                              (3.9) 

in which V is the total vertical stress across the differential element and S the width of 

the differential element. The total vertical stress V of the differential element can be 

calculated by the following formula: 
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
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   (3.10) 

where dV is the differential vertical force on the shaded portion at arbitrary point B , and 

dA the width of the shaded portion at point B. 

Substituting Eq. (3.10) into Eq. (3.9), and considering S=R·cosθ, the average 

vertical stress is obtained as follow: 

/2 /2
2 2 1/2 2

1

sin sin
(sin cos ) 2 cos

cos cosw w
v

w w

N d cN d
 

 

 
      

 
              (3.11) 

Integrating of Eq. (3.11) yields 

2 1/2 2

1

1 2
(1 cos ) cos

3 3
v w w

N c
N   


                                                        (3.12) 

The Eq. (3.12) can be rewritten as: 

1/2 2

1 2

3 2 cos

3 (1 )cos

v w

w

cN

N

 







 
                                                                              (3.13) 

Substituting Eqs. (3.6) and (3.13) into Eq. (3.4), the lateral stress is obtained 

2 2
1/2 2 1/2 2

2

3(cos sin ) 2
( cos ) 2 sin

3 (1 )cos 3

w w
h v w w

w

N c
N cN

N

 
   




  

 
                (3.14) 

in which θw=45º+φ/2 when the line FF′ is in the active condition. In order to simplify the 

expression of Eq. (3.14), let 

2 2

2

3(cos sin )

3 (1 )cos

w
an

w

N
K

N

 






 
                                                                             (3.15) 

and 
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                           (3.16) 

Then the Eq. (3.14) can be expressed as: 

h an vK T                                                                                               (3.17) 

Eq. (3.17) shows that the active lateral stress consists of two components: the 

cohesion effect and non-cohesion effect. In cohesionless soil, the relation between active 

lateral stress and average vertical stress on the line FF′ is succinct, which can be written 

as h an vK  . 

3.3.2 LIMIT EQUILIBRIUM EQUATION IN SOIL ARCHING ZONE 
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Figure 3.8 Soil stress on differential element 

 
The stress on the differential element in the soil arching zone is shown as Figure 

3.8. The angle β1 is assumed to be 45º+φ/2. It has been proved that the right edge of the 

differential element, namely the triangular area ABC, is in the state of limit equilibrium, 

so that the stress in this area can be neglected when total stress on the differential 
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element is analyzed. At left edge of the differential element, the shear stress along the 

line FF′ should be taken into account, which can be expressed as: 

tan ( ) tan        h an vc K T c                                                      (3.18) 

In the vertical direction of Figure 3.8, considering the width of soil arching zone, 

all the vertical force must be in equilibrium. The equation is set up as follow: 

2 2 2 2( ) tanan v vS D dz K T D dz cD dz S D d                                          (3.19) 

in which  v  is the average vertical stress, S is the width of the differential element, 2D  

is the clear interval between two neighboring piles, dz is the thickness of the differential 

element. Diving by 2D  in both sides of Eq. (3.19), and considering S = (H-z)/tanβ 

(Figure 3.8), the general solution of Eq. (3.19) is obtained: 

1
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           (3.20) 

where H is the thickness of the sliding soil layer, z the depth below the surface of the 

soil, γ the unit weight of the soil, C1 an integration constant. Considering the condition of 

overload acting on the surface of the ground (Figure 3.9), Substituting the boundary 

condition that  v q  when z = 0, the constant C1 is obtained 

1 tan tan 1
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
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in which q is the overloading exerted on the surface of the ground. The average vertical 

stress at an arbitrary depth is given by Eq. (3.22) 
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(3.22) 

Combining Eq. (3.17) with Eq. (3.22), the active lateral stress is obtained 
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                (3.23) 

It is noted that, when Eq. (3.23) is utilized to estimate the active lateral stress in 

pure cohesive soil whose internal friction angle equals to zero, the parameter φ should be 

substituted by a value close to 0, such as 0.01º. 
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Figure 3.9 Soil stress on differential element with overloading on the surface of the 

ground. 

3.3.3 THE SQUEEZING EFFECTS OF THE SOIL BETWEEN NEIGHBORING PILES 

In order to analyze the lateral force acting on the piles, the squeezing effects of the 

soil between neighboring piles should be taken into account. Some assumptions have 

been made by Ito and Matsui (1975) to estimate the squeezing effects. In this analysis, 
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the assumptions of the deforming soil around the piles made by Ito and Matsui are 

adopted. Based on these assumptions and soil arching theory, the active stress on plane 

AA′ (Figure 3.5) in the theory of plastic deformation proposed by Ito and Matsui (1975) 

is replaced by Eq. (3.23). Then, the lateral force acting on a stabilizing pile p per unit 

thickness of the layer in the direction of x-axis can be estimated by new formula. As 

derived in Appendix, the equations for the squeezing effects between two neighboring 

piles can be expressed as Eq. (3.24) and (3.25) respectively for cohesionless soil and c-φ 

soil. 

Cohesionless soil (c=0): 
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c-φ soil: 
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(3.25) 

in which z is the arbitrary depth of the sliding soil layer, σh can be obtained by Eq. (20), 

N1 = tan2(45º+φ/2).  

3.3 PARAMETRIC ANALYSIS  

Eqs. (3.24) and (3.25) show that the lateral forces exerted on the stabilizing piles 

vary with many parameters. In both cohesionless soil and c-φ soil, the common 

parameters are unit weight γ, the height of the unstable soil layer H, the depth of the 

analyzed soil z, pile diameter D1-D2, and the interval between two neighboring piles D1. 

Besides, there are two mechanical parameters, the internal friction angle φ, and the 
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cohesion c. In the present paper, the effects of all the parameters are evaluated. 

The height of the unstable soil layer 

 

Figure 3.10 Lateral force distribution along the unstable soil layer with respect to 

different height of sliding layer: (a) cohesionless soil (c = 0 kN/m2), (b) c-φ soil (c = 10 

kN/m2). 
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Figure 3.11 The distribution of lateral force versus the internal friction angle along the 

height of the sliding soil for (a) cohesionless soil (c = 0 kN/m2) and (b) c-φ soil (c = 10 

kN/m2). 

 

Figure 3.10 displays the distribution of the lateral force along the normalized depth 

of unstable soil with respect to different H. In both cohesionless soil and c-φ soil, the 

height of the sliding soil layer changes from 2 m to 8 m, but the shape of distribution of 

the lateral force does not change much with the variation of H. However, the magnitude 
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of the lateral force increases with the growth of the height H. It is found from Fig. 8 that 

the magnitude of the lateral force in c-φ soil is greater than that in cohesionless soil in 

the same depth with the same internal friction angle. In addition, peak value of the force 

is always in the range of 0.6H~ 0.8H. 

Internal friction angle and cohesion 

As the Mohr-Coulomb’s criterion is utilized to estimate the lateral force, the 

internal friction angle and cohesion are the most affecting parameters for the lateral 

force. Figure 3.11 displays the lateral force distribution on pile with the internal friction 

angle varying from 5º to 40º, and the depth of the sliding layer is 6 m. Figures 3.11(a) 

and (b) display the lateral forces on piles in cohesionless soil and c-φ soil, respectively.  

Figure 3.11 reveals that for both cohesionless soil and c-φ soil as the internal 

friction angle increases, the lateral force acting on the stabilizing pile increases at every 

depth. The magnitude of the lateral force in both kinds of soils in the same depth is in 

the same order. The maximum value of the lateral force is in the range of 0.8H ~0.85H 

when the internal friction angle is less than 20º. The height of the point of the peak value 

decreases while the internal friction angle increases. When φ = 40º the maximum value 

of the force is in the range of 0.6H ~0.7H. 

As mentioned above, the peak value is in the range of 0.6H~ 0.8H, the lateral 

forces at depth 0.7H versus ratio D2/D1 is shown in Figure 3.12. The two figures show 

that when the ratio D2/D1 is less than 0.7, and the internal friction angle φ more than 20º, 

the lateral force calculated from Eqs. (3.24) and (3.25) may be a big value. The trend of 

the lateral force versus internal friction angle on basis of the proposed method is similar 

to that of Ito and Matsui’s analysis (1975). 

The effect of the cohesion is shown in Figure 3.13. It is found in the figure that the 

lateral force increases while the cohesion grows. However, the increment of the lateral 

force due to the effect of cohesion is less than that due to internal friction angle. Note 

that a value of φ closes to 0º that 0.01º is substituted to calculate the force, it is because 

the internal friction angle cannot be zero in Eq. (3.25). 
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Figure 3.12 The effect of internal friction angle for (a) cohesionless soil (c = 0 kN/m2) 

and (b) c-φ soil (c = 10 kN/m2). 

 
The total lateral force on a stabilizing pile is shown in Figure 3.14. It is clear that 

the toatal lateral force increases with the increase of internal friction angle φ and the 

cohesion c of the soil. Note that the four curves in Figure 3.14 are nearly parallel to 

each other. It implies that the increment between two curves is nearly constant. For 

instance, when φ =10º, the increment of the force at c = 5 kN/m2 and c=10 kN/m2 is 

about 1.5 t. Comparing that when φ =30º, the increment is 1.6 t.  
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Figure 3.13 The effect of cohesion for (a) cohesive soil with internal friction angle 

approximates 0º (φ = 0.01º) and (b) c-φ soil with φ = 10º. 
 

Pile diameter  

The lateral force on the depth 0.7H with different pile diameter is presented in 

Figure 3.15. Both in cohesionless soil and c-φ soil, the increase of the pile diameter 

leads to the rise of the lateral force. Generally speaking, it means the piles in greater 

diameter provide more additional resistance than the smaller ones. For instance, Figure 

3.15(b) shows that when the diameter is 0.3 m and D2/D1 = 0.3, the lateral force is 
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nearly 10 t/m; and when the diameter is 1.2 m and D2/D1 = 0.3, the lateral force is nearly 

40 t/m, which is 4 times larger than the previous condition. It reveals that the lateral 

force increases in proportion to the pile diameter.  

 

 
Figure 3.14 The total lateral force on the stabilizing piles. 

 
The range of effective height  

A limitation of Eq. (3.25) may exist when this equation is applied in c-φ soil in 

which the value of internal friction angle φ is small. It means that when Eq. (3.25) is 

utilized to calculate the lateral force acting on a stabilizing pile in c-φ soil with small 

value of internal friction angle, a negative value might be obtained in the depth that z is 

very close to the height of the sliding soil layer H. In this paper the critical depth in 

which the positive lateral force on piles can be calculated by Eq. (3.25) is defined as the 

effective height. What’s more, the depth where the negative value exists is defined as 

the negative value area. In the negative value area, the lateral force is let equal to 0. 

That’s because in many field experiments and numerical simulation results (Fukumoto, 

1972 and 1974; Lirer, 2012 ), it is shown that when the depth that z is very close to the 
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Figure 3.15 The effect of diameter of pile for (a) cohesionless soil (c = 0 kN/m2) and (b) 

c-φ soil (c = 10 kN/m2). 

 

height of the sliding soil layer H, the value of lateral force on the piles is small. We will 

demonstrate in the following section that the negative value area is quite tiny that can be 

ignored so the treatment of the lateral force in the negative value area doesn’t affect the 

prediction of the force. The calculated negative value between the effective height and 

the failure surface is considered to be a limitation of this approach because the 
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prediction of the lateral force on the pile in the ground above the failure plane should be 

positive. However this limitation can be neglected because the effective height always 

approximately equal to the real height of the sliding layer. The value of the effective 

height is studied as following.  

 

Figure 3.16 Change of effective height with mechanical parameters for (a) pure 

cohesive soil with internal friction angle approximates 0º and (b) c-φ soil with φ = 10º. 
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The ratio Hc/H versus H with respect to different mechanical parameters is shown 

in Figure 3.16, in which Hc is the effective height, H the height of the sliding soil layer. 

Fig. 13 displays that the effective height varies with the mechanical parameters, and the 

ratio Hc/H changes from 0.99 to 1. The variation of the ratio Hc/H indicates that the only 

a tiny discrepancy exists between effective height and the real height of sliding soil layer. 

It means that Hc ≈ H. 

It should be noted that if the calculated value on the failure plane is positive, it 

means there is no negative value area in these kinds of soils. In these soils the effective 

height Hc equals to H, and there is no need to modify the calculated value on the failure 

surface.  

3.4 NUMERICAL AND EXPERIMENTAL VERIFICATION  

In order to validate the proposed approach for cohesionless soil, the literature data 

is introduced. A numerical simulation on the response of piles subjected to mudslide 

was carried out by Lirer (2012). The dimensions of the numerical model are 300 m in 

length, 8 m in width, and 25 m in height. The sliding soil layer in this model is 4.5 m. 

The material properties are listed in Table 3.1. In which, γ is unit weight of the soil, E is 

the elastic modulus, c is cohesion of the soil, φ is the internal friction of the soil,  is the 

dilation angle of the soil. The pile used in the numerical simulation has a diameter of 0.4 

m, and a length of 10 m. The center-to-center interval between two neighboring piles in 

a row is 1.3 m. The source reference gives details of the numerical model. The 

prediction of the lateral force and the numerical results are compared one another shown 

as Figure 3.17. 

Table 3.1 Material properties in Lirer’s numerical model (Lirer (2012)). 
 Sliding body Shear zone Stable layer Pile 

γ (kN/m3) 19 19 19 - 

E (Pa) 2·107 1·107 5·107 2·1011 

ν 0.34 0.34 0.34 0.25 

c (Pa) 0 0 1·106 14·107 

φ (º) 28 25 30 0 

 (º) 0 0 0 0 
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Ignoring the negative force within the top few meter of the ground, Fig. 14 displays 

that in cohesionless soil the prediction by the proposed approach coincides with 

numerical results. Both the numerical results and the prediction show that the lateral 

force decreases near the sliding surface after the first gradually increases along the depth 

of the sliding soil layer. In the depth of 3.5 m ~ 4 m, both the prediction and the 

numerical results reach the peak value. The trend of the distribution of the force 

estimated by the proposed method shows a high degree of consensus with the numerical 

simulation data.  

 
Figure 3. 17 Calculated and numerically simulated lateral force on a pile.  

 
Verification for the c-φ-soil and cohesive soil 

In Ito and Matsui’s research (1975), the theoretical values were compared with the 

experimental results, which was originally given by Fukumoto (1972 and 1974) for the 

typical landsides areas in Japan, including Katamachi, Higashitono, and Kamiyana 

landsides areas. In this research, for the purpose of comparison, the measured data of 
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Fukumoto (1972 and 1974) is used again. The conditions of the stabilizing piles in these 

areas are summarized as follows. In Katamachi landslide area, the hollow concrete piles 

with diameter of 300 mm, and wall thickness of 60 mm were adopted. In the other 

landslide areas, the steel pipe piles with the diameter of 318.5 mm, and wall thickness of 

6.9 mm were adopted. All the piles were set up zigzag in two rows at 4 m intervals, and 

the line space between two rows was 2 m. Furthermore, The head of the Katamachi B 

pile is 2.17 m depth under the ground, the Kamiyama No. 2 pile and the Higashitono No. 

2 piles are both 1 m depth under the ground. 

The soil properties are shown in Table 3.2. Note that the internal friction angles in 

Kamiyama and Higashitono landslide areas are 0.01º, while the original values of the 

angles are 0º. As mentioned previously, in the pure cohesive soil, when the internal 

friction angle equals to zero, a value approximated 0 is substituted.  

Table 3.2 Soil properties of plastically deforming ground. 
Pile Kitamachi B Kamiyama No.2 Higashitono No.2 

Unit weight γ (kN/m3) 19 19 19 

Angle of internal 

friction φ (º) 
2 0.01 0.01 

Cohesion c (kN/m2) 25 41 44 

Generally speaking, in Figure 3.18 (a) ~ (c) the experimental results display the 

similar trend of the distributions of lateral force. Ignoring the negative force exerted on 

the pile within the top few meters, the lateral force by the experiment increases 

gradually, and then reduces near the sliding surface after reaching the peak value. The 

predictions of the lateral forces by the proposed method in several landslides area are 

almost in line with the experimental results.  

In Figure 3.18 (a) ~ (c), it is obvious that the distributions of the lateral force computed 

by Ito and Matsui’s approach are linear along the stabilizing piles from top of the soil to 

the sliding surface. Furthermore, the maximum values calculated by Ito and Matsui’s 

method are on the sliding surface. However, the experimental results show that the value 

of the force reduces radically when it reaches the maximum. Especially on the sliding 
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surface it usually appears to be a small value. The lateral force by the proposed method 

shows the nonlinear distribution, which results from the soil arching effect. Both the 

values due to the two theoretical methods are in the same order of magnitude with the 

observed ones. In Figure 3.18 (a), the maximum force of the experimental result is 

about 3.18 t/m in the depth of 7 m below the ground, while the prediction of the 

proposed approach shows a maximum force of 4.97 t/m, which occurs in the depth of 7 

m as well, comparing that the maximum force by Ito and Matsui’s method is 6.46 t/m in 

the depth of 8.4 m, i.e. on the sliding surface. In Figure 3.18 (b), the total lateral force 

on the pile in the sliding layer by the experiment the proposed approach and Ito & 

Matsui’s method are about 14.85 t, 19.21 t, and 20.94 t. The peak value of the 

experimental result is about 4.30 t within the depth of 4.6 m ~ 5.5 m, while the 

maximum value by the prediction of the proposed approach is about 5.0 t within the 

depth of 4 m ~ 5 m, comparing the maximum force of 6.29 t in the depth of 6.47 m by 

the traditional prediction.  

 

(a) Katamachi B pile, height of sliding soil layer H is 8.4m; effective height Hc is 

8.399m; 
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(b) Kamiyama No. 2 pile, height of sliding soil layer H is 6.47m; effective height Hc is 

6.452m; 

 

(c) Higashitono No. 2 pile, height of sliding soil layer H is 6.07m; effective height Hc is 

6.045m. 

Figure 3.18 Comparison between the observed and the theoretical values of lateral force 

acting on stabilizing piles. 
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The study of case histories indicates that the predictions by the proposed method 

are consistent with the field measurements for both c-φ soil and pure cohesive soil. 

Especially, the proposed method shows the nonlinear distribution of the force, i.e. the 

soil-pile pressure increases gradually and then decreases to 0 at the failure surface. This 

distribution compares well with the measurements.  

3.5 CONCLUSIONS  

The estimation of the lateral force acting on the stabilizing pile due to the soil layer 

movement is discussed in this chapter. The previous theoretical method shows the 

lineardistribution of the lateral force along the sliding soil layer, which can evaluate the 

magnitude of the lateral force. In this paper, the plastic deformation theory proposed by 

Ito and Matsui is modified by considering the soil arching effect between two 

neighboring piles. The prediction by the modified approach provides the nonlinear 

distribution of the lateral force, which is more consistent with the field measurement.  

For cohesionless and c-φ soil, the lateral forces on the pile are discussed separately, 

and two new formulae are proposed. The parameters in these formulae are studied for 

each soil. Generally speaking, the parametric study shows the lateral force increase with 

the growth of the height of the unstable soil layer H, the internal friction angle φ, the 

cohesion c, and the pile diameter D1-D2. 

The comparisons for cohesionless soil, c-φ soil and pure cohesive soil are carried 

out respectively. The calculated value shows highly consistent with the numerical 

simulation result. The comparisons in the c-φ soil and pure cohesive soil indicate that 

the prediction by the proposed approach compares well with the experimental result, 

especially the maximum force and the corresponding position calculated by the 

proposed method is in line with the field measurement. In addition, all the comparisons 

in this chapter display that in the flow mode the nonlinear distribution of the force on the 

stabilizing pile in the sliding soil layer is predicted by the proposed approach, which 

shows a satisfactory agreement with the experimental value. What’s more, the proposed 

method reveals that the lateral force on the pile segment embedded in the sliding soil 
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layer would increase from the top of the ground surface, and then decrease to a small 

value on the sliding surface after culminates. This behavior of the distribution of the 

lateral force coincides with the experimental data, ignoring the negative force within the 

little depth below the ground surface.  
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CHAPTER 4 

ANALYSIS OF EFFECTS OF THE SLOPE ANGLE ON THE DISTRIBUTION 

OF SOIL-PILE PRESSURE 

4.1 INTRODUCTION 

In the past several decades, installing rows of drilled shafts for slope stabilization 

has proved to be a reliable and effective technique to prevent excessive slope movement 

(Ito and Matsui. 1975; De Beer 1977; Liang and Zeng 2002; Lirer 2012; Galli and Prisco 

2013). Piles are installed through the unstable soil layer and embedded into the stable 

layer below the sliding surface. The slope is stabilized by piles, which are able to 

transfer part of the force from the failing mass to the stable soil layer. For passive piles, 

the soil-pile pressure applied on the piles by the unstable layer is dependent on the soil 

movement, which is in turn affected by the presence of the piles (Wei and Cheng 2009). 

Evaluating soil-pile pressure acting on stabilizing piles is of great significance for 

the study of slope stabilization. In previous research, a horizontal semi-infinite soil 

ground was typically used for the theoretical analysis of the soil-pile pressure on piles 

(Ito and Matsui 1975; Poulos 1995; Viggiani 1981). Satisfactory results have been 

predicted by these methods. In subsequent research (Ito et al. 1981 and 1982; Hassiotis 

1997; Ausilio 2001; Won et al. 2005; Li et al. 2010; Kourkoulis et al. 2011), these 

methods have been adopted and developed. The interaction between piles is governed by 

the so-called arching effect. Durrani et al. (2006) suggested that the Rankine passive and 

active pressure coefficients should be employed to estimate the maximum spacing 

resulting in arching between piles. Viggiani (1981) suggested designing slope stabilizing 

piles using the limit equilibrium method. With such an approach, the stabilizing 
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contribution given by a single pile depends on the pile characteristics (diameter, length, 

and ultimate bending moment), the soil strength and slide thickness (Lirer 2012). 

Poulos (1995) presented an analysis method in which a simplified form of the 

boundary element method (Poulos 1973) was employed to study the response of a row 

of passive piles incorporated in limit equilibrium solutions of slope stability. This 

method revealed the existence of three modes of failure: (i) “flow mode”, (ii) “short-pile 

mode”, and (iii) “intermediate mode”. This finding contributed to the practical design of 

stabilizing piles. Poulos (1995) highlighted that the flow mode created the least damage 

effect of soil movement on the pile; if the piles required protection, efforts should be 

made to promote this mode of behaviour. 

Norris (1986) developed a strain wedge (SW) model to predict the response of a 

flexible pile under lateral loading. Generally speaking, the SW model allows the 

assessment of the nonlinear p-y curve response of a laterally loaded pile based on the 

envisioned relationship between the three-dimensional response of a flexible pile in the 

soil to its one-dimensional beam on elastic foundation parameters (Ashour et al. 1998). 

The SW model has been improved and modified to accommodate a laterally loaded pile 

embedded in multiple soil layers (Ashour et al. 1998 and 2000). Undoubtedly, great 

improvements have been made on the SW model to predict the response of flexible piles 

under lateral loading (Ashour et al. 2000 and 2004). In the SW model, the “flow mode” 

mechanism (Poulos 1995) mentioned previously was adopted in Ashour and Ardalan’s 

research (2012). Such a slope-pile displacement mechanism is also adopted in the model 

presented here.  

In this chapter, the author propose a simple method for estimating the ultimate soil-

pile pressure per unit length of the pile, which is induced by flowing soil, assuming that 

the soil displacement is larger than the pile deflection (Figure 4.1). The theory of plastic 

deformation (Ito and Matsui 1975) is modified, and the soil arching effects between two 

neighbouring piles are considered, which leads to the nonlinear distribution of the soil-
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pile pressure per unit length of piles. Furthermore, the theoretical analysis of the effect 

of the slope angle on the soil-pile pressure distribution in sandy slopes is carried out.  
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Figure 4.1 Soil-pile displacement as employed in the model presented here (Ashour and 

Ardalan, 2012). 

 
In this chapter, the soil-pile pressure per unit length of the stabilizing pile is 

analysed in a semi-infinite sandy slope, as shown in Figure 4.2. The general analysis of 

the soil-pile pressure acting on the piles involves three main steps: (1) analysing the soil 

arching zone adjacent to the piles in the slope; (2) analysing the active lateral stress in 

the soil arching zone between two neighbouring piles; and (3) substituting the active 

lateral stress into Ito and Matsui’s approach (1975) to estimate the soil-pile pressure 

acting on each pile. The piles are assumed to be flexible. In step 1, when the unstable 

soil layer slides along the potential sliding surface, the soil layer deforms. Additionally, 

soil arching occurs adjacent to the two neighbouring piles in the failing mass. The plan 

view of the soil arching zone between two neighbouring piles is shown by the hatched 

area in Figure 4.3(a). A typical cross section UU  is shown in Figure 4.3(b). The area 

of the soil arching zone is dependent on the slope angle and the properties of the soil, 
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which are discussed later in this paper. In step 2, to simplify the analysis of the active 

stress on the plane AA  (referring to Figure 4.4), an assumption is made that when the 

active stress on the plane AA  is analysed, the area between the parallel lines AG and 

AG  is considered to be the soil arching area. This soil arching area is shown as the 

shadowed portion in Figure 4.4, where σh is the active soil stress induced by the soil 

arching effects, D1 is the centre-to-centre interval between two neighbouring piles, and 

D2 is the clear interval between piles. In addition, the limit equilibrium condition of the 

differential element in the soil arching zone is analysed to obtain the active stress. In 

step 3, the approach proposed by Ito and Matsui (1975) is adopted, and the squeezing 

effects between the piles are evaluated. This procedure yields the soil-pile pressure per 

unit length of the pile.  

Soil-pile pressure, p(z)

Potential sliding surface

Unstable soil layer

Stable soil layer

Stabilizing pile

Slope surface

 
Figure 4.2 Stabilizing pile embedded into a semi-infinite slope (adopted from Ashour 

and Ardalan 2012). 

 
For the purpose of verifying the proposed model, a numerical simulation was 

performed. The shear strength reduction method (SRM) is used in the code of FLAC3D. 
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SRM has been used in the stability analysis of slopes without piles by many previous 

researchers (Zienkiewicz et al. 1975, Ugai and Leshchisky 1995, Griffiths and Lane 

1999, Wei et al. 2009). This method is extended to analyse the safety factor of a slope 

stabilized with piles. In the studies by Martin and Chen (2005), Won et al. (2005), Wei 

Slope surface

Potential sliding 

surface

D1D2

d

U

(a)
Stabilizing pile

(b)

A

B

Uʹ 

 

Figure 4.3 Soil arching adjacent to the stabilizing piles in a slope: (a) plan view of the 

soil arching zone; (b) cross section of the soil arching zone in the slope. 

 
and Cheng (2009), and Lirer (2012), FLAC3D is used to analyse the response of the 

stabilizing piles or the safety factor of the reinforced slope with piles. FLAC3D is a 

widely used tool for estimating the response of the stabilizing piles. In this study, the 

authors use the three-dimensional finite difference code FLAC3D by SRM to analyse the 
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soil-pile pressure acting on stabilizing piles during slope slides. The numerical 

simulation results are compared to the prediction obtained from the proposed model. 

Furthermore, the laboratory experiments carried out by Chen et al. (1997) and Guo and 

Ghee (2006) are introduced to evaluate the proposed model.  

Finally, the validated model is used to evaluate the effect of slope angle on the 

distribution of the soil-pile pressure per unit thickness on the stabilizing piles. The main 

finding of this paper is that the distribution shape of the soil-pile pressure varies with the 

slope angle, while the magnitude of the soil-pile pressure remains in the same order. 
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Figure 4.4 Plastic deformation of soil between neighbouring piles (adopted from Ito and 

Matsui, 1975). 
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4.2 LIMIT EQUILIBRIUM CONSIDERING SOIL ARCHING IN SLOPES 

4.2.1 SOIL ARCHING ZONE IN SLOPES 

In a semi-infinite inclined soil mass, the soil arching that occurs adjacent to 

stabilizing piles has been studied by Wang and Yen (1974). However, the area of the soil 

arching zone was not specified. Paik and Salgado (2003) assumed that the slip plane 

behind a retaining wall had an angle of 45º+φ/2 and that the area between the slip plane 

and the wall was the soil arching zone. In this section, the soil arching zone is analysed 

using geometry. It is assumed that when the unstable soil layer slides along the potential 

sliding surface, the soil layer deforms, and a slip plane occurs behind the piles, which is 

inclined at an angle θs with respect to the slope surface (Figure 4.5). The area ABC in 

Figure 4.5 is the soil arching zone. The geometry in the soil arching zone is analysed 

using Mohr Circle, and shown as follows: 

A

B

Slope surface

Potential sliding 

surface



s


1

Slip plane

C

 
Figure 4.5 Profile of the soil arching zone and the geometric relationships in the zone. 

 
When the soil stress on the line AB (Figure 4.5) is active, the differential element 

(Figure 4.6) and the corresponding Mohr’s circle (Figure 4.7) are used to determine the 

geometric relationship between the stresses. The process of solving the angle θ is  
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(a) In a rectangular coordinate system, because the internal friction angle φ 

was investigated in advance, the strength envelope is determined as the line OP 

shown in Figure 4.7.  

(b) The two lines OL and OLʹ are drawn above and below the σ axis; the 

angle between each line and the σ axis is β. 

A

B

Slope surface

Potential sliding 

surface

z
z

dz





90 
a

b

c

d

cosz 



90






(a) (b)

 

Figure 4.6 The stress state: (a) the stress state of a differential element in a semi-finite 

slope; (b) the generic element. 

 
(c) On the line OL, we set OA = σz = γzcosβ. Point A in Figure 4.7 represents 

the stress acting on the surface (Figure 4.6(b)), including the normal stress and 

the shear stress.  

(d) In the negative direction of the σ axis, an arbitrary point Dʹ is set. A circle 

can then be drawn with centre Dʹ and with tangency point Bʹ on the line OPʹ. The 

circle Dʹ and the line OE intersect at point Aʹ. 

(e) Parallel to AʹDʹ, a line AD is drawn with the point D located on the σ 

axis. Taking AD as the radius and point E as the centre, a circle is drawn. This 
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produces the circle D, which is tangential to the line OP at point B.  

(f) The angle between AD and BD is equal to 2θ1. 
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Figure 4.7 The geometric relationship in the soil arching zone illustrated by Mohr’s 

Circle. 

 
According to the geometric relationships in Figure 4.7, it is obvious that 

sinCD OD                                                                           (4.1) 

sinAD BD OD                                                                            (4.2) 

sin sin
cos

sin sin

CD OD
ADC

AD OD

 

 
   

                                                        (4.3) 

sin
arccos

sin
ADC




 

                                                                           (4.4) 

1 sin
( arccos )

2 sin


  


  

                                                                    (4.5) 
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1

1 sin
( arccos )

2 sin


  


  

                                                                    (4.6) 

4.2.2 LIMIT EQUILIBRIUM EQUATION ON THE DIFFERENTIAL ELEMENT 

In the study of retaining walls, soil arching is assumed to occur in a circular arc. 

Paik and Salgado (2003) have evaluated the active soil stress based on the soil arching 

theory. In this paper, the approach proposed by Paik and Salgado (2003) is adopted and 

extended to analyse an inclined soil mass. The rotation of the principal stress on the line 

AB (Figure 4.5) is described in Figure 4.8(a) and (b). In the rear of line AB, the 

trajectory of the minor principal stress on the differential element is represented by 

dotted lines assumed as an arc, while the major principal stress is the normal to the arc. 

The active earth pressure acting on line AB includes two components: the active lateral 

stress σh and the shear stress τ.  

As shown in Figure 4.8(a), on the left side of the differential element, the force 

equilibrium in the triangular element at point E is considered. The lateral stress is 

calculated as follows: 

2 2

1 3cos sinh w w                                                                           (4.7) 

Similarly, at an arbitrary point D on the arc, whose original location is point F, the 

lateral force is given by 

2 2

1 3cos sinah                                                                          (4.8) 

where   is the angle between the normal of the arc at point D and the horizontal, and 

σah is the lateral stress at point D. Considering when the soil is in an active condition, 

substituting σ3/σ1 = 1/N1 into Eq.(4.8) yields  

2 2

1

1

1
(cos sin )ah

N
                                                                      (4.9) 

where N1=tan2(45º+φ/2). 
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(a) The major and minor principal stresses 
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(b) Schematic of the vertical total force on the differential element 

Figure 4.8 Stress on the differential element in the soil arching zone: (based on Paik and 

Salgado 2003). 

 
In Figure 4.9(a), the vertical stress σv, which is applied on the surface of the 

differential element, includes two components: one perpendicular to the line EP, v  , 

and one parallel to the line EP, σf. The ratio of σv to v   is as follows:  

1
/

cos
v v 


                                                                          (4.10) 

Because σah-σ3=σ1-σv, substituting for σah yields 
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2 2

1 1

1
cos (sin cos )v

N


  




                                                            (4.11) 

Because the angle   (Figure 4.8(a)) is not a constant, an average stress v   is 

introduced to replace v   at every point. This average stress is given by 

v

V

S



                                                                                (4.12) 

where V   is a component of the total stress applied on the differential element, which is 

perpendicular to EP, and S is the width of the differential element (referring to Figure 

4.8(b)). Considering the geometry depicted in Figure 4.8(b), S is calculated by 

cos( )

cos( )

wS R
 

 





                                                                     (4.13) 

where ξ is the angle between the normal line OQ and the vertical and R is the radius 

of the circle. 

The stress V   on the differential element can be calculated by  

/2

w

V dV
 





                                                                         (4.14) 

where dV   is the differential force on the shaded element at point F, which is 

perpendicular to EP (referring to Figure 4.8(a)). This perpendicular differential force is 

expressed as  

2 2

1

1

1 sin
cos (sin cos )

cos
v

Rd
dV dA

N

 
    


                                        (4.15) 

Solving Eq. (4.12) to Eq. (4.45) yields 

21
1

1

cos( ) 1
cos (1 cos )

cos( ) 3
v w w

w

N

N

 
   

 

   


                                                   (4.16) 

To simplify the analysis process, the angle ω (referring to Figure 4.8) is assumed to 
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be 0. 
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Figure 4.9 Stress on the differential element: (a) major and minor principal stresses 

applied on the right edge of the differential element; (b) two components of the vertical 

stress on the differential element; (c) stress on the main part of the differential element 

 
Comparing this result to Eq. (4.10), it is reasonable to express the average vertical 

stress on the differential element as 

1

cos
v v 


                                                                            (4.17) 

Substituting Eq. (4.16) into Eq. (4.17) yields 
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2

1

cos( ) 1
cos (1 cos )

cos( )cos 3
v w w

w

N

N

 
   

  

 
 


                             (4.18) 

Using Eq. (4.7) and Eq. (4.18), a ratio Kan of the active lateral stress acting on the 

plane AB to the average vertical stress over the differential element is derived: 

2 2

2

cos( )cos 3( cos sin )

cos( )cos 3 ( 1)cos

h w w w
an

v w w

N
K

N N

     

    

 
  

  
                                     (4.19) 

The limit equilibrium equation on the differential element 

To evaluate the lateral stress on the line AB (Figure 4.8(a)), a detailed analysis of 

the differential element is required. On the right edge of the differential element (Figure 

4.8(a)), because the direction of the major principal stress is along the line OG, the 

major and minor principal stresses are considered to be applied on surfaces GP and GQ, 

respectively, of the triangular differential element GPQ, which is shown in Figure 

4.9(b). In Figure 4.9(b), the triangular element GPQ is shown in an equilibrium state, 

which allows this triangular element to be ignored when analysing the vertical stress for 

the entire differential element. In Figure 4.9(c), the minor principal stress σ3 is loaded 

on the line GQ, σ3v, which is the vertical component of σ3 and is expressed as 

3 3

cos
sin

cos( )
v


  

 



                                                                    (4.20) 

where ξ is the angle between the normal line OQ and the vertical. Based on the geometry 

between the slip surface and the major principal plane, ξ is calculated by 

1

1

4 2

1 sin
( cos )

2 2 sin

 
 

 






  

  

                                                                (4.21) 

In addition, on the left edge of the differential element, the shear stress is 

tan tanh v anK                                                                            (4.22) 
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Ignoring the stress loaded on the segment MG and considering the clear interval 

between the two neighbouring piles, the summation of all vertical forces acting on the 

main part of the differential element (Figure 4.9(c)) gives 

2 2 2 3 2 2

cos
tan tan sin

cos( )
v v an v and SD K D dz K D dz dz D S hD


       

 
        


  

(4.23) 

Using σ3 = σ1/N, Eq. (4.17) and Eq. (4.18), the minor principal stress is 

3 2 2cos sin

an
v

w w

K

N
 

 



                                                              (4.24) 

Substituting Eq. (4.24) into Eq. (4.23) and considering that S = (H-z)cosθ1/sinθ, 

h=cosβ·dz, Eq. (4.23) is solved as 

1

sin
( tan tan )
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1
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[(1 ) (1 )]
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 
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       (4.25) 

where m is a function of β, given by 

2 2

sin cos

( cos sin )cos( )

an

w w

K
m

N

 

   


 
                                                         (4.26) 

where θw = π/4+φ/2. Multiplying Eq. (4.25) by Kan, the lateral soil stress on the line AB 

(Figure 4.8(a)) is estimated by 

1
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1
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 
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  

      (4.27) 

Note that as mentioned previously, the analyses of the active earth pressure σh are 

based on Paik and Salgado’s outstanding work (2003), so that Eqs. (4.7) through (4.9) 

are similar to their research. However, the incline of the soil mass is considered in this 

paper, which leads to different boundary conditions and different expressions of the 
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earth pressure σh. Moreover, if β = 0, Eq. (4.27) simplifies to be the same as the equation 

proposed by Paik and Salgado (2003). This reveals that the equation in Paik and 

Salgado’s research (2003) is the special case of this proposed model. 

The squeezing effects between two neighbouring piles 

Ito and Matsui (1975) have proposed a plastic deformation model to evaluate the 

squeezing effects between two neighbouring piles. In this paper, a similar concept is 

used; all of the assumptions for the soils implied by Ito and Matsui (1975) are also 

adopted. The soil-pile pressure per unit length of the stabilizing piles in sandy slopes is 

expressed as  

1
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1 1
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(4.28) 

The details of the derivation of Eq. (4.28) are given in APPENDIX A. In addition, 

the details of the formulae used to calculate the total lateral force on a pile and the point 

application of the force are included in APPENDIX B. 

4.3 NUMERICAL VALIDATION  

A numerical model of the stabilized slope with piles was constructed in the 

numerical finite difference program FLAC3D. Additionally, SRM was used to analyse 

the soil-pile pressure on the piles when the slope failed. In the numerical model, the piles 

were formatted by the intrinsic structure element. The slope model is shown in Figure 

4.10 with a vertical to horizontal gradient of 1:3. Three piles with a length of 9 m were 

installed in a row in the middle of the slope. The interval between two neighbouring 

piles was D1 = 3 m and D2 = 2.6 m. The width of the model was 9 m. At the bottom 

boundary of the model mesh, zero displacement was imposed. Stress boundary 

conditions were imposed at both the uphill and downhill truncation planes. The soil was 
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modelled using the Mohr-Coulomb model, and the material properties are shown in 

Table 4.1. 

X

Y
Z

Pile
Shear zone

Sliding body

Stable layer
30m

60m

3.6m

8m

0.3 m

(a)

 

 
Figure 4.10 The slope model: (a) the two-dimensional schematic mode, (b) three 

dimensional mesh used in FLAC3D. 
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Table 4.1 Material properties adopted in the numerical model 
 Sliding body Shear zone Stable layer Pile 

γ(kN/m3) 19 19 20 25 

E(Pa) 3.8e7 2e7 7.8e7 3e10 

 μ 0.32 0.32 0.32 0.2 

c(kPa) 0 0 100 - 

φ(º) 32 30 30 - 

(º) 0/2 0 0 0 

 

The model was first brought to equilibrium under gravity loading. Next, a gradual 

reduction of the shear strength was imposed along the shear zone. To simulate the 

existence of an accumulation zone, the SRM was not imposed on the downslope final 

stretch of the shear zone for a length of 10 m. This method of simulating the resistance 

of the accumulation zone was proposed by Lirer (2012). Incorporating the soil properties, 

pile geometries and the height of the sliding soil above the shear zone, the soil-pile 

pressure acting on the piles was calculated by Eq. (4.28), and the results are shown in 

Figure 4.10(a). For comparison, a prediction using Ito and Matsui’s approach (1975) 

and the results from FLAC3D are included in Figure 4.10(a) as well. 

Table 4.2 Material properties adopted in Lirer’s model 
 Sliding body Shear zone Stable layer Pile 

γ(kN/m3) 19 19 19 - 

E(Pa) 2e7 1e7 5e7 2e11 

μ 0.34 0.34 0.34 0.25 

c(kPa) 0 0 1000 14e4 

φ(º) 28 25 30 - 

(º) 0 0 0 0 

 

A well-instrumented field trial was carried out by Lirer (2012) to study the influence of 

the row of piles on the local and overall mudslide displacement field, as well as to 

quantify the shear forces and bending moments within the piles. The experimental 

findings have been back analysed by numerical simulation (Lirer 2012). In this study, in 

addition to the numerical model mentioned above, both the observed data of the field 

trial and the numerical result obtained by Lirer (2012) were used to validate the 

proposed approach. The material properties used in Lirer’s model are shown in Table 

4.2. The section of Lirer’s model was similar to Figure 4.10, replacing the dimensions 
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with 300 m in length, 25 m in height, and 8 m in width. In addition, the slope angle was 

11º in Lirer’s research. For more details of the field experiment and Lirer’s numerical 

model, see the source reference. The comparison is shown in Figure 4.11(b). 

 
Figure 4.11 Comparison between the numerical results and predictions: (a) slope angle 

of 18.4º; (b) slope angle of 11º. 

 
Figure 4.10(a) shows the comparison between the numerical simulation results and 

the prediction of two theoretical methods with a slope angle of 18.4º. Figure 4.10(b) 
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shows the observed data, the numerical results and the theoretical methods estimations 

with a slope angle of 11º. Both figures reveal that the distribution of the soil-pile 

pressure computed by the proposed model is nonlinear, while the prediction from Ito and 

Matsui’s approach appears to be linear; however, the orders of magnitude of the two 

theoretical methods’ results are in line with each other. In Figure 4.10(b), the observed 

data shows that in the upper part of the sliding soil, within approximately 1 m depth, the 

soil-pile pressure is negative. Such a distribution of the soil-pile pressure on top of the 

pile is thought to have been obtained as a result of influences of the pile deformation and 

the non-uniform movements of the sliding soils. However, the prediction of the soil-pile 

pressure on the top of the pile is positive because the flow mode (Polous 1995) is 

considered in this proposed model, where the soil displacement is assumed to be larger 

than the pile deflection and the soil movement is uniform. Ignoring the negative force on 

the top of the piles, the distribution of the soil-pile pressure on the piles predicted by the 

proposed approach shows the same trends as the numerical results and the observed data. 

Particularly in the lower part of the sliding soil, the numerical results and the prediction 

of the proposed method show that the soil-pile pressure decreases after the first increase, 

while Ito and Matsui’s approach shows linear increases of the soil-pile pressure. Figure 

4.11 reveals that the shape of the distribution of the soil-pile pressure estimated by the 

proposed model is similar to that of the numerical and observed results, while the values 

are overestimated. For instance, in Figure 4.11(a), the maximum value provided by the 

numerical analysis is 3.64 t/m (z = 3.6 m), compared to 6.39 t/m (z = 3.5 m) and 7.6 t/m 

(z = 4 m) predicted by the proposed model and Ito and Matsui’s approach, respectively. 

In addition, the order of magnitude of the predicted values agrees with that of the 

numerical and observed results. As presented in Figure 4.11, the proposed model allows 

the assessment of the soil-pile pressure based on soil and pile properties assuming that 

the soil movement is larger than the pile deflection. However, the limited accuracy of 

the prediction implies that the proposed model needs to be improved in the future.  

A simulation with the piles formatted by a number of zones is carried out. The piles 

with a diameter of 0.6 m and a centre-to-centre interval of 2 m were installed in the 
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slope. The stress contour around the stabilizing piles is plotted in Figure 4.12. The 

passive soil wedge behind each pile and the arching zone between neighbouring wedges 

are apparent. The shape of the soil arching zone in the stress contours from the plane 

view appears to be sector. However, as mentioned previously, the soil arching zone in 

the plane is assumed to be a rectangle for the purpose of simplifying the analysis of the 

active stress.  

 
Figure 4.12 The stress contours (σxx) around the piles. 

 

4.4 PUBLISHED EXPERIMENTAL STUDIES  

Chen et al. (1997) have reported on the model tests of pile groups subjected to 

lateral soil movement. The experimental setup is briefly described below and more 

details can be found in Polous et al. (1995). The main part of the apparatus consisted of a 

testing vessel made from a steel sheet and having internal dimensions of 450 mm wide 

by 565 mm long and 700 mm high. Two vertical steel plates, consisting of two parts 

hinged at mid-height, were placed across the width inside the box. With a loading 

system attached to the steel vessel, the upper part of each steel plate could be rotated 
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simultaneously around its hinge and consequently cause the upper part of the sand to 

move (Chen et al. 1997). The model piles were made from aluminium tubes and were 1 

m in length and 25 mm in diameter with a 1.2 mm wall thickness. On the instrumented 

piles, ten full bridge circuit strain gauges were placed at 100 mm intervals inside each 

pile for measuring the bending moments in the pile. Based on the measured bending 

moments M(z), the shear forces T(z) and the soil-pile pressure per unit thickness p(z) 

can be computed by successive derivations as follows: 

dM(z)
T(z)

dz
                                                                        (4.29) 

2

2

d M(z)
p(z)

d z
                                                                      (4.30) 

 

Figure 4.13 Comparison of the prediction and the experimental values based on the 

research of Chen et al. (1997). 

The dry sand used in the model test was calcareous sand taken from Bass Strait, 

Australia (Chen et al. 1997). The piles were installed into the sand bed in a row. The 

properties of the sand and the pile spacing are shown in Figure 4.13. The soil-pile 
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pressure per unit length of the pile is calculated based on Eq. (4.30), which implies that 

the depth of the real failure surface around the piles is approximately 0.3 m. The 

comparison of the predicted and the experimental values is shown in Figure 4.13. 

In Figure 4.13, the prediction using the proposed approach shows a similar trend of 

soil-pile pressure distribution as the experimental data. The maximum soil-pile pressure 

obtained by the experiment is 0.094 t/m at a depth of 0.2 m. Meanwhile, the calculated 

maximum soil-pile pressure is at the same depth and is 0.043 t/m. Figure 4.13 shows 

that the maximum value from the experiment is approximately two times larger than that 

of the prediction. The sand in the test was subjected to a triangular profile of horizontal 

movement with depth, while the proposed model is based on a mode of the uniform soil 

movement. However, compared to Ito and Matsui’s approach, the proposed model 

provides a relatively similar distribution shape of the soil-pile pressure as the 

experimental data, although some value discrepancy does exist. 

Guo and Ghee (2006) conducted the experiment on group effects of piles due to 

lateral soil movement. The apparatus consisted of a shear box and a loading system that 

allow different soil movement profiles and vertical loading to be applied simultaneously. 

The experimental setup is briefly introduced here. 

The shear box has internal dimensions of 1 m by 1 m and is 0.8 m in height. The 

upper moveable part of the box consisted of the desired number of 25 mm thick square 

laminar aluminium frames to achieve a thickness of Lm (< 400 mm). They were moved 

together by a rectangular loading block to generate uniform lateral soil movement. The 

lower fixed section of the box was a timber box 400 mm in height with a number of 

laminar aluminium frames to achieve a stable sand layer of thickness Ls (≥ 400 mm). For 

details of the apparatus and tests, see the source reference.  

The sand used in the test was oven-dried medium-grained quartz, Queensland sand. 

The model piles used in the tests were made of aluminium tube, 1200 mm in length and 

32 mm in outer diameter with a 1.5 mm wall thickness (Guo and Ghee 2006). Two piles 

were installed into the fixed timber box. The centre-to-centre “joining” line of the piles 
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was perpendicular to the direction of the soil movement. The properties of the sand and 

the pile spacing are shown in Figure 4.14. 

 
Figure 4.14 Comparison of the prediction and the experimental values based on the 

research of Guo and Ghee (2006). 

 
Figure 4.14 compares the predicted and the experimental values. Above the failure 

surface, the soil-pile pressure per unit length of the pile predicted by the proposed 

approach shows the same distribution as the experimental values. In the upper half of the 

moveable soil, the predicted soil-pile pressure increases linearly until the increment 

slows down at the depth of 0.2 m–0.3 m. The maximum soil-pile pressure obtained by 

the experiment is approximately 0.103 t/m at a depth of 0.26 m, while the predicted 

maximum value is 0.147 t/m at 0.28 m. Figure 4.14 indicates that the order of 

magnitudes of the soil-pile pressure from the prediction and the experiment are in line 

with each other. 
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4.5 PARAMETRIC STUDY 

A parametric analysis is carried out based on the proposed analytical model to 

investigate the influence of the slope angle and the internal friction angle on the 

distribution of the soil-pile pressure per unit length of the piles. Because the proposed 

model aims to predict the distribution of the soil-pile pressure on stabilizing piles 

embedded in a semi-infinite slope, which differs from the models designed for 

horizontal soil grounds, the angle of the semi-infinite slope is considered to be one of the 

governing factors. In addition, because the internal friction angle of soils is a primary 

mechanical property, its effect on the soil-pile pressure distribution of the piles also 

needs to be analysed.  

In the following discussion, the soil-pile pressure distribution, the soil-pile pressure 

on different pile depths, the total lateral force and the point application of the force with 

respect to different slope angles and different internal friction angles are analysed. 

Additionally, for comparison, the corresponding values from Ito and Matsui’s approach 

are also calculated.  

4.5.1 THE INFLUENCE OF SLOPE ANGLE  

Figure 4.15 shows the distribution of the soil-pile pressure along the stabilizing 

piles when the sliding soil layer is 4 m thick. The soil properties and geometric 

parameters are also shown in Figure 4.15. The soil-pile pressure on the pile has a 

nonlinear distribution at every slope angle β. Additionally, with a slope angle β varying 

from 0º to 30º, the order of magnitude of the soil-pile pressure does not change. The 

maximum soil-pile pressure and the height of the centroid of the soil-pile pressure 

increases while the slope angle β increases from 0º to 25º. However, when β varies from 

25º to 30º, the maximum soil-pile pressure decreases. Furthermore, Figure 4.15 implies 

that if the magnitude of the soil-pile pressure on a pile is the only factor considered, 

ignoring the change of the point application of the force with slope angle, it is 

reasonable to use a horizontal soil model (β = 0º) as a simplified way to estimate the 

response of stabilizing piles in slopes (β ≠ 0º).  
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Figure 4.15 Distribution of the soil-pile pressure along the piles with respect to different 

slope angles. 

 
Figure 4.16 shows the soil-pile pressure at different pile depths with respect to 

different internal friction angles. The calculated soil-pile pressure denoted by the solid 

line remains the same while the slope angle varies from 10º to 0º. Moreover, the soil-pile 

pressures at different depths are almost parallel to each other, which is consistent with 

the linear distribution of the soil-pile pressure on a pile above the failure surface based 

on Ito and Matsui’s approach. Conversely, the dotted lines intersect with each other, 

which reveals the nonlinear distribution of the soil-pile pressure along the pile. For 

instance, in Figure 4.16(b), when the depth z is equal to 1.5 m and 2.5 m, the soil-pile 

pressures are nearly parallel to each other, which indicates that on the top of the pile, the 

soil-pile pressure increases linearly. However, when z is 3.95 m (close to the failure 

surface), the soil-pile pressure is less than that at z = 2.5 m and 3.5 m, which indicates a 

sharp decrease near the failure surface. 
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Figure 4.16 Soil-pile pressure at different depths of the pile with respect to different 

internal friction angles: (a) β = 10º; (b) β = 0º. 

 
In Figure 4.15, the area enclosed by the nonlinear distribution of the soil-pile 

pressure and the vertical coordinate axis represents the total force acting on the pile, 

which can be obtained by Eq. (B-2). The prediction of the total force as the slope 

changes is shown in Figure 4.17. According to the proposed model, the total force 
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decreases after the first increase when the slope angle varies from 0º to 30º. As the slope 

angle increases, the total force increases because of the increase of the component of the 

gravity along the direction of sliding. However, when the slope angle is approximately 

equal to the internal friction angle, the total force decreases because of the decrease in 

slope stability. 

 
Figure 4.17 Effect of the slope angle on the total force on a pile. 

 
The height of the resultant lateral force versus the slope angle is displayed in 

Figure 4.18. The height of the resultant lateral force predicted by Ito and Matsui’s 

approach remains constant at 0.33H, even if the slope angle varies from 0º to 30º. 

However, the height of the resultant lateral force is a function of the slope angle and the 

internal friction angle based on the proposed model (Eq. (B-4)). For instance, when φ = 

45º, the height of the resultant lateral force varies from 0.423H to 0.351H when the slope 

angle changes from 0º to 30º. The height of the resultant lateral force appears to be 

affected by the soil arching that occurs between two neighbouring piles. 
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Figure 4.18 Change in the height of the resultant lateral force. 

 

4.5.2 THE INFLUENCE OF THE INTERNAL FRICTION ANGLE  

The soil-pile pressure acting on a pile with respect to different internal friction 

angles is shown in Figure 4.17, and the soil properties and geometric parameters are 

shown in Figure 4.19. The distribution shapes of the soil-pile pressure are similar to 

each other when the internal friction angle varies from 25º to 40º. Additionally, the 

maximum soil-pile pressure appears in the range of 0.7H (2.8 m) to 0.9H (3.6 m). The 

maximum soil-pile pressure for φ = 40º is nearly twice as large as that for φ = 25º. 

Additionally, the soil-pile pressure on the pile increases when the internal friction angle 

increases. Compared to Figure 4.15, Figure 4.19 shows that the internal friction angle 

has a greater effect on the magnitude of the soil-pile pressure on the pile than the slope 

angle does. 
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Figure 4.19 Effect of the internal friction angle on the soil-pile pressure acting on a pile. 

 

 
Figure 4.20 Effect of the internal friction angle on the total force on a pile. 

 

Figure 4.20 displays the effect of the internal friction angle on the total force on the 
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pile. The trends of the total force on the pile from both Ito and Matsui’s approach and the 

proposed model are similar: when the internal friction angle increases, the total force 

increases. Additionally, when φ = 24º, the dotted line reveals that the closer that the 

slope angle approximates the internal friction angle, the smaller the total force estimates. 

Furthermore, when φ is much larger than β, such as when φ = 44º, the total force appears 

to approach to the same value among the three different slope angles. 

Figure 4.21 shows the effect of the internal friction angle on the height of the 

resultant lateral force. The height of the resultant lateral force remains constant (0.33H) 

according to Ito and Matsui’s approach. However, based on the proposed model, for 

instance when β = 10º, the height of the resultant lateral force varies from 0.375H to 

0.395H as the internal friction angle increases from 24º to 44º. This difference occurs 

because in Ito and Matsui’s approach, Rankine theory is used to estimate the lateral 

active stress, which leads to the constant height of the resultant lateral force. Conversely, 

when the effects of soil arching are considered, the proposed model displays a height 

that changes with respect to different internal friction angles. 

Figure 4.22 displays the soil-pile pressure at different pile depths with respect to 

different slope angles. The internal friction angle φ is 45º. Figure 4.22 shows the same 

trends of the distribution of the soil-pile pressure as Figure 4.16. Moreover, along the 

upper half of the pile, the soil-pile pressures calculated by Ito and Matsui’s approach are 

always less than that calculated using the proposed method. Along the lower half of the 

pile, changeover of the soil-pile pressure occurs. 

4.5.3 DISCUSSION  

This work attempts to develop a simple method to analyse the soil-pile pressure per 

unit length of the pile. The model is based on the theory of plastic deformation and is 

modified by considering both the inclination of the sliding ground and the soil arching 

effects along the depth of the sliding soil between two neighbouring piles. Comparisons 

have been made previously between the predicted results and the data from literature, as  
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Figure 4.21 Effect of the internal friction angle on the height of the resultant lateral 

force. 

 
Figure 4.22 Soil-pile pressure at different pile depths with respect to different slope 

angles. 
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well as the results from Ito and Matsui (1975). The proposed model performs better than 

that of Ito and Matsui when predicting the soil-pile pressure per unit length of the pile in 

the slope. However, the prediction using the proposed method shows limited accuracy. 

Figure 4.11, Figure 4.13 and Figure 4.14 show some differences between the 

predictions and the numerical and experimental results. The assumption of neglecting 

the deformation of the piles during the movement of the soil is thought to result in the 

limited prediction. Furthermore, because the “squeezing effects” between two 

neighbouring piles are adopted from the theory of plastic deformation, the limitation of 

this theory is inherited as well (Poulos 1995; Lee et al. 1995). The comparison 

mentioned above indicates that the proposed model is able to describe the distribution of 

the soil-pile pressure varying with the slope angle and that the trends of the soil-pile 

pressure are consistent with the literature data, but some differences in the values exist. 

To improve the prediction results, the model needs further modification in the future. 

4.6 CONCLUSION  

In this chapter, the interaction between stabilizing piles and granular soil is 

analysed in a semi-infinite inclined sandy slope. A new theoretical model is proposed to 

evaluate the soil-pile pressure on stabilizing piles in a sandy slope based on the 

assumption that the soil displacement exceeds the pile deflection. In the proposed model, 

the soil arching zone is analysed using stress geometry. The soil arching effects are then 

considered to estimate the lateral active stress between two piles. Furthermore, the 

squeezing effects (Ito and Matsui 1975) between two neighbouring piles due to the 

deformation of the surrounding soils are adopted. To evaluate the proposed model, 

numerical simulations are implemented by FLAC3D. Comparing the predicted results 

from the proposed model, Ito and Matsui’s approach and the simulations results reveals 

that Ito and Matsui’s approach provides a linear solution for estimating the soil-pile 

pressure, while a nonlinear solution is obtained from the proposed model, which shows 

better agreement with the simulation results. In addition, the limited accuracy of the 

proposed model is also evaluated through comparison to the experimental data from the 

published literature. 
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A parametric analysis is also carried out on the slope angle and the internal friction 

angle. Both the slope angle and internal friction angle affect the distribution of the soil-

pile pressure per unit length of the pile; the shape of the distribution of the soil-pile 

pressure is mainly affected by the slope angle, whereas the internal friction angle has a 

greater effect on the magnitude of the soil-pile pressure on the pile than the slope angle. 

Additionally, the height of the resultant lateral force varies with the slope angle and the 

internal friction angle in the proposed model, whereas it remains constant in Ito and 

Matsui’s approach. 
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CHAPTER 5 

THREE DIMENSIONAL SLOPE REINFORCED WITH PILES SUBJECTED TO 

SEISMIC LOAD 

5.1 INTRODUCTION 

Earthquake induced slope failure and landslides occur extensively in the world and 

frequently result in a tremendous toll of death and destruction of properties. Records 

show that these kinds of earthquake induced landslides occur most frequently on sloping 

earth masses. They are observed on the slopes of dams, embankments, and other man 

made cuts; on the banks of rivers, lakes, reservoirs, and along coasts as well as on 

mountain slopes (Koh and Chen, 1978). For simplicity, such sloping earth masses will 

be referred to as ‘earth slopes’ throughout this chapter. 

Earthquake induced permanent displacement or deformation can be estimated by a 

number of approaches of varying degrees of sophistication. On one hand, stress-

deformation methods can be used to model the dynamic deformation of geotechnical 

structure (e.g. Elgamal et al., 1987; 1990; Prevost et al., 1981; 1985; Seed et al., 1975; Serff 

et al., 1976). On the other hand, dynamic sliding block methods based on Newmark’s 

original double-integration approach (Newmark, 1965) can also be used to provide a 

measure of permanent displacement of a potentially sliding block (e.g. Chen 1980; Seed et 

al. 1969; Seed, 1979; Sarma 1975; Makdisi and Seed, 1978; Constantinou and Gazetas, 

1987; Franklin and Chang, 1977; Lin and Whitman, 1983; Ambraseys and Menu, 1988; 

Ling et al. 1997; Michalowski 1998; Michalowski and You 2000). However, stress-

deformation methods with the drawbacks of complex input parameters and high 

computational requirements only suit for site-specific investigations where high density and 

high quality soil property data can be obtained. By contrary, dynamic block methods have a 
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wide range of applications because of its advantages in simple input parameters and 

relatively low computational complexity. 

An analysis based on upper bound limit analysis and Newmark’s (1965) analytical 

procedure was implemented to assess the soil displacement of 2D slopes without 

reinforcement (Chang et al. 1984). This method was later adopted to analyze the directed 

sliding mechanism for geosynthetics reinforced soil structures (Ling et al. 1997). 

Applications of Newmark model to the development of a permanent displacement analysis 

for geosynthetics reinforced slopes subjected to seismic loads was found in literatures (Ling 

et al. 1998; Michalowski and You 2000). Additionally, the seismic displacement of slopes 

reinforced with piles was analyzed by Li et al. (2010). All the literatures mentioned above 

analyzed two-dimensional (2D) plane-strain failure mechanisms. However, it was 

commonly acknowledged that 2D solutions were conservative to analyze slope stability 

compared with 3D solutions (Cavounidis 1987; Gao et al. 2012). In order to provide a more 

accurate prediction of the displacement of the reinforced slopes subjected to seismic loads, 

3D analysis of the slopes should be considered. 

Michalowski and Drescher (2009) have proposed a class of 3D admissible rotational 

failure mechanisms for slopes (referring to Fig. 1), which definitely promotes the 

application of the limit analysis method in 3D stability of earth slopes (Gao et al. 2012). In 

this chapter, the 3D failure mechanism is adopted for estimating the permanent 

displacement of earth slopes reinforced with a row of piles subjected to seismic load. 

Furthermore, the random iteration method (Hammersley and Handscomb 1964) is used to 

find the critical failure surface. The kinematic approach of limit analysis is used to 

calculate the yield acceleration of the reinforced slope. Considering the seismic loads 

applied on the slope, the cumulative displacement induced by the earthquake is estimated 

by Newmark model. Therefore, the 3D admissible rotational failure mechanisms for slopes 

proposed by Michalowski & Drescher (2009) are introduced and summarized in following 

section. 
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5.2 REVIEW OF THE 3D ROTATIONAL FAILURE MECHANISMS 

5.2.1 KINEMATIC METHOD OF LIMIT ANALYSIS IN SLOPE STABILITY  

Limit analysis aims at evaluating bounds on the limit load inducing or resisting 

failure in structures built of perfectly plastic materials. In application to slopes, the limit 

load can be identified with forces acting on top of the slope, or the weight of the soil, 

alternatively, a bound on the geometry of the slope (e.g. height) can be sought if the unit 

weight of the soil is given. An upper bound on the load or height can be obtained from 

the kinematic method, the essential element of which is a kinematically admissible 

velocity field defining the possible mechanism of failure. The term admissible implies 

that the strain rates resulting from the velocity field must satisfy the flow rule that is 

associated with the yield condition (strength criterion) of the material, and the velocities 

satisfy the boundary conditions.  

The Mohr-Coulomb criterion is usually used as the yield condition for soils. It 

contains two material constants: the internal friction angle φ and the cohesion intercept 

c. This yield condition is used here to describe the strength of overconsolidated soils. 

Reduced tensile strength can be accounted for by postulating a tension cut-off. 

Incorporating this modification, however, increases the complexity of admissible 

kinematic field, and is not considered in this chapter. Because the flow rule associated 

with the Mohr-Coulomb yield condition (for soils with φ > 0) predicts large dilation than 

that measured in experiments, the non-associated flow rule is often postulated. Although 

no rigorous bounds on limit loads can be found for non-associated materials, an upper 

bound for an associated material is also an upper bound for a non-associated one with 

the same yield condition (Radenkovic, 1962), and this warrants the construction of 

admissible kinematic solutions satisfying the normality flow rule. 

In the case of a 3D and continuous deformation field, the flow rule requires the 

following relationship among the principal strain rates 

1 2 3 1 2 3( )sin 0                                                                (5.1) 
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The velocity fields satisfying equation (5.1) is a difficult task, and no solutions 

other than axisymmetric have been reported in the literature (Drescher, 1986). The task 

simplifies greatly if the material is purely cohesive (φ = 0), the problem is of the plane 

strain-type ( 2 0  ), or the failure mechanism is of the rigid-block motion type. In the 

last case, strain rates are zero within the rigid block, and equation (5.1) is satisfied 

within blocks identically. The blocks are separated as limits of thin material layers 

undergoing shear and possibly dilation. When equation (5.1) is applied to these thin 

layers, it leads to the condition where the velocity jump vectors must be inclined at angle 

φ to the discontinuities: that is  

[ ] [ ]tann tv v                                                                  (5.2) 

where [vn] and [vt] are the normal and tangential components of the velocity jump vector 

[vi] respectively. This requirement is equally mandatory in 2D and 3D mechanisms. 

Numerous 2D translational and rotational mechanisms have been considered in the 

literature for φ ≥ 0, when the velocity discontinuities are straight lines (planes) or 

logarithmic spirals (circles for φ = 0). Baligh & Azzouz (1975) and Gens et al. (1988) 

considered 3D rotational mechanisms for purely cohesive soils (φ = 0), for which any 

surface of revolution is an admissible velocity discontinuity, and the velocity jump 

vectors are tangential. These surfaces are generated by rotating a straight line or a curve 

about an axis of rotation parallel to the slope crest: examples are a cylinder, a cone, and a 

paraboloid. 3D translational mechanisms with planar surfaces for φ > 0 can be found in 

Drescher (1983) and Michalowski (1989). Solutions with three-dimensional blocks 

undergoing rotation for soils discontinuity surfaces in such mechanisms are neither 

planar nor surfaces of revolution. A class of admissible rotational mechanisms proposed 

by Michalowski & Drescher (2009) is discussed in this chapter. 

For a kinematically admissible velocity field an upper bound on the limit load (or 

on the slope height) is determined by equating the rate of work of externally forces W to 

the rate of work D, dissipated internally in the failure balance, with no forces on the 

slope surface, the rate of external work is provided only by the weight if the soil, and it 
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is calculated as an integral of the dot product of the unit weight vector γi and the velocity 

vector vi. In rotational mechanisms, the work rate of the weight (Wγ) can be calculated as 

the dot product of the total weight of a block Wi and the velocity of the block centroid c

iv  

c

i i i i
V

W v dV W v                                                                   (5.3) 

with V being the volume of the rotating block. In general, the rate of dissipated work D 

is the sum of dissipation within volume V, Dv, and over the velocity discontinuity 

surface St, Dt. In term of the principal strain rates, the dissipation with the deformation 

volume can be expressed as  

1 2 3cos ( )v
V

D c dV                                                        (5.4) 

whereas for velocity discontinuity surface St the dissipation rate can be written as  

[ ]

cos [ ]

t

t

v t t
S

t
S

D c v dS

c v dS








                                                              (5.5) 

In the case of planar discontinuities (translational mechanisms) it is relatively simple to 

calculate Dt. It becomes more involved if the boundaries are complex curvilinear 

surface, typical of rotational mechanisms. For materials with φ > 0 an advantageous 

alternative to the integration given in equation 5.4 and 5.5 is use of the methodology 

suggested by Michalowski (2001). This methodology is based on the observation that, 

using the divergence theorem, the sum if volumetric strain rates in the failure mechanism 

can be expressed as  

1 2 3( )

t r

i
ii

V V V
i

i i
S

i i t i i r
S S

v
dV dV dV

x

v n dS

v n dS v n dS

   


    


 

  

  



 

                                                    (5.6) 

where the surface S bounding the mechanism is divided into kinematic discontinuities St 
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and the remaining part Sr; ni is the outward unit vector normal to surface S, and vi is the 

corresponding velocity. Making use of equation 5.1 and 5.6, equation 5.4 can be written 

as  

cot

cot cot
t r

V i i
S

i i t i i r
S S

D c v n dS

c v n dS c v n dS



 



 



 
                                               (5.7) 

At the discontinuity surface St bounding the mechanism vi= [vi], and the dot product 

vini= -[vt]sinφ. Thus the first term on the right-hand side in equation 5.7 is opposite in 

sign, and equal in magnitude, to the dissipation given in equation 5.5. This implies that 

the total dissipation in the mechanism D= DV+Dt on the right-hand side in equation 5.7. 

in the case of a slope, surface Sr consists of two planar surface (part of the top surface of 

the slope, and the face of the slope). This procedure is equally valid if the mechanism 

contains kinematic discontinuities within volume V.   

Note that equation 5.7 cannot be used when φ = 0, and the dissipation must be 

determined from equation 5.4 and equation 5.5, for continuous deformation and for 

discontinuities respectively.  

In evaluating an upper bound to the height H of a slope at failure (critical height), it 

is convenient to introduce a dimensionless group γH/c, and seek its minimum as a 

function of slope geometry and friction angle φ. The dimensionless group is sometimes 

referred to as the stability factor, and it is a reciprocal of the stability number c/γH, used 

earlier by Taylor (1937). Alternatively, for a slope of given geometry, it is possible to 

evaluate the safety factor, defined as  

tan

tand d

c
F

c




                                                                      (5.8) 

where cd and φd are developed soil strength parameters required for the slope to become 

unstable. In seeking the factor of safety, the energy balance yields γH/cd as a function of 

φd, and F is determined by using equation 5.8. Finding F is explicit when φ = 0, and 

implicit (iterative) otherwise. 
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5.2.2 THREE DIMENSIONAL ROTATIONAL FAILURE MECHANISMS IN SLOPES 

A class of kinematically admissible three-dimensional rotational mechanisms for 

slopes is discussed in this section. Both frictional/cohesive and purely cohesive soils are 

considered. 

Frictional/cohesive soil (c > 0, φ = 0) 

As implied in equation (5.1) and (5.2), the plastic yielding of soils with φ > 0 is 

accompanied by dilation, and this causes difficulties in constructing kinematically 

admissible fields. More specifically, in a rigid rotation mechanism (no volume changes 

within the rotating block), equation (5.2) must be satisfied across the velocity 

discontinuity surface bounding the rotating volume.  

Among the various admissible mechanisms a particular class is suggested now in 

which all radial cross-sections are circular. An example of such a mechanism is 

illustrated in Figure 5.1(a). The linear velocity in the mechanism is a function of radius 

ρ and angle θ, tis direction is perpendicular to radius ρ, and its magnitude is given by 

v                                                                                       (5.9)  

where ω is the angular velocity about the axis passing through point O. The shape of this 

mechanism resembles that for continuous and translational velocity limit load on 

rectangular footings. 

This mechanism has the shape of a curvilinear cone (a ‘horn’) with apex angle 2φ. 

This surface is smooth (with the exception of the apex), and has one symmetry plane, a 

portion of this surface intersects the slope. The trace if the mechanism (discontinuity 

surface) on the symmetry plane is described by two log-spirals, AC 

0( ) tan

0r r e
  

                                                                          (5.10) 

and AʹCʹ 
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Figure 5.1 Three-dimensional rotational mechanism: (a) a ‘horn-shape’ surface; (b) 

alternative mechanism (Michalowski & Drescher (2009)). 
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0( ) tan

0r r e
                                                                            (5.11) 

with r0 and θ0 as shown in Figure 5.1(a). With the trace of the surface intersecting the 

toe point C, angle θ0 and θh, and ration r0ʹ/r0 uniquely determine the location of the 

‘horn’ surface in the space. 

 

B

β 

β 

H

H

B

b

(a)

(b)
 

Figure 5.2 (a) Schematic diagram of the 3D mechanism; (b) mechanism with plane 

insert (Michalowski & Drescher (2009)). 

 
The rate of work of the external forces (weight) and the dissipation rate were 

calculated from equation 5.3 and the second term of equation 5.7 respectively. The best 

(lowest) estimate of ratio γH/c was obtained by varying the ratio r0ʹ/r0 and angles θ0 and 

θh.  

The shape of this mechanism can be regarded as being generated by rotating a 
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circle of increasing diameter (shaped area in Figure 5.1(a)) about an axis passing 

through point O outside the circle. If the circle is rotated about an axis passing through 

the circle, a different mechanism is generated (Figure 5.1(b)). This time, however, the 

upper contour AʹCʹ of the generated block is defined by the log-spiral 

0( ) tan

0r r e
                                                                             (5.12) 

Previous experience (e.g. Duncan, 1996) has shown that plane-strain mechanisms 

of failure are more critical than three-dimensional ones. Calculations for the mechanisms 

in Figure 1 have shown, however, that the minimum ratio γH/c is found at some finite 

width of the mechanism, even if no constraints are placed on the width of the slope. To 

allow transition to plane-strain mechanisms, the three-dimensional failure patterns 

(Figure 5.2(a)) were modified with a ‘plane insert’, by splitting and separating laterally 

the halves of the 3D surface, as illustrated in Figure 5.2(b). 

Cohesive soil (undrained shear strength c > 0, φ = 0) 

Soils are described as purely cohesive when their shear strength is independent of the 

level of stress. This is typical of clays subjected to undrained conditions. Constructing 

rotational mechanisms for such soils is relatively simple, as their deformation occurs 

without volume change (incompressibility). Consequently, any surface of revolution 

provides an admissible surface of sliding. An example of such a surface is illustrated in 

Figure 3(a). The rotating block has the shape of a portion of a torus, and it is a special 

case of the first mechanism considered in the previous section. Figure 3(b) shows the 

case where the axis of rotation passes through the circle generating the surface. These 

mechanisms can be modified with cylindrical inserts, to ensure transition to a plane 
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Figure 5.3 Rotational failure mechanisms for soil under undrained conditions 

(incompressible): (a) torus-type failure surface; (b) alternative mechanism (Michalowski 

& Drescher (2009)). 

 
mechanism with an increase in the width of the insert. The mechanisms in Figure 5.3 

are particular examples if the mechanisms considered earlier by Baligh & Azzouz 
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(1975). Baligh & Azzouz considered a cylindrical mechanism in ‘cohesive slopes’, with 

a variety of ‘ends’ to form an overall three-dimensional mechanism. Similar failure 

patterns were also considered by Gen et al. (1988). 

5.3 LIMIT ANALYSIS APPROACH 

5.3.1 CRITICAL ACCELERATION FOR 3D SLOPES REINFORCED WITH PILES 

In this section, the soil of the slopes is considered to be homogeneous and isotropic. 

The failure surface in the 3D slopes is assumed to be the curvilinear cone (the shape is 

similar to a horn), with upper and lower contours defined by log-spirals (Michalowski 

2009), as shown in Figure 5.4. The shape of the failure surface is smooth, and has one 

symmetry plane. The trace of the mechanism on the symmetry plane is described by two 

log-spirals, which is the same to equation 5.10 and 5.11, namely: 

AC 

0( ) tan

0r r e
  

                                                                                          (5.10) 

and A′C′ 

0( ) tan

0

    r r e                                                                                      (5.11) 

where r0 is the radius of the log spiral with respect to angle θ0, shown as Figure 

5.4(a). φ is the internal friction angle of the soil. The location of the ‘horn’ for a specified 

slope is uniquely determined by the angles θ0, θh, the ratio r0′/ r0, and the resistance force 

FP. The failure soil mass rotates as a rigid body about the point O with angles velocity ω. In 

order to allow the 3D failure surface to transitioned to plane-strain mechanisms, the 3D 

failure surface model is split from the symmetry plane (Figure 5.4(a)), and then separated 

laterally into two halves. Additionally, an ‘insert plane’ with a width of b is inserted 

(Figure 5.5(b)). This ‘plane insert’ modification has been proposed by Michalowski and 

Drescher (2009)).  
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Figure 5.4 Three-dimensional rotational toe-failure mechanism in stabilized slopes: (a) a 

‘horn-shape’ surface; (b) alternative mechanism (based on Michalowski & Drescher, 

2009). 
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Figure 5.5 Schematic diagram of 3D rotational failure mechanism with limited width B 

for slopes stabilized with piles: (a) 3D mechanism; (b) mechanism with plane insert 

(based on Michalowski & Drescher, 2009). 

 
The rate of work of the failing soil weight in block CDEFGQ (Fig. 2(b)) during an 

incipient rotation about point O is calculated as 

2 3D DW W b W                                                                                  (5.13) 

where the superscript 3D denotes the work rates for the 3D portion of the failure 

mechanism (block CDEFG in Figure 5.5(a))and 2D relates to the plane insert (Figure 

5.5(b)). The details of the equation used in calculations are shown in Appendix.  
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Once the slope is subjected to horizontal shaking, the rate of the inertial force Ws 

should be considered in the energy balance equation. According to the pseudo-static 

approach, the horizontal force acting at the center of gravity is calculated as the product of 

a seismic coefficient k and the weight of potential failing soil mass to represent the effect of 

the earthquake loading on the failing soil mass. The rate of external work due to the inertial 

force can be written as 

2 3

3

0 1 2 3 4( ) 2

D D

s s s

s s s s

W W b W

k r b f f f kf  

  

   
                                               (5.14) 

where the superscript has the same meaning with Eq. (5.13), k is the seismic coefficient, γ 

is the unit weight of the soil. The coefficient f1
s ~ f4

s can be found in Appendix.  

Considering the resistance provided by the piles, the total energy dissipation rate D 

is the sum of Dc and Dp, shown below  

2 3

c P

D D

P

D D D

D b D D

 

   
                                                                                      (5.15) 

where Dp is the dissipation rate induced by the reinforcement, Dc is the rate of work 

dissipation caused by soil cohesion. Additionally, the work dissipation rate caused by soil 

cohesion involves two terms: the 3D term (D3D) and the plain-strain term (D2D·b). The soil 

reinforcement plastically deforms at the slope limit state, and the rate of dissipated work 

associated with the reinforcement plastic deformation depends on its distribution 

throughout the unstable soil height. In order to simplify the calculation, the work 

dissipation rate induced by each pile is assumed to be the same, which equals to that caused 

by the pile embedded on the symmetry plane of the composite 3D slope (referring to 

Figure 5.5(b)). Based on the distribution of the lateral force acting on piles (referring to 

Figure 5.4) the rate of work dissipation caused by the piles can be calculated as follow 

 sinP p p pD F n r                                                                                              (5.16) 

in which Fp is the total lateral force exerted on a stabilizing pile due to the plastically 

deforming layer around the pile; θp specifies the position of the stabilizing piles; rp is the 
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radius of Fp about the rotation center; n is the number of the piles. In this chapter a trade-off 

is made that we ignored the vertical resistance. In fact, vertical resistance of the pile is still 

a scientific challenge in this field, and currently, no method is available (Ito and Matsui 

1975; Polous 1995; Ashour and Ardalan 2012; Ausilio, et al. 2001; Li et al. 2010). For this 

reason, this study majorly focuses on the lateral force acting on piles, and has to ignore the 

effect of vertical resistance to slope. 

To evaluate the force Fp, a theory developed in Chaper 2 to specifically estimate the 

pressure acting on the passive piles is chosen in this present work. The lateral force per unit 

thickness of the layer acting on the pile proposed in their work is integrated here to 

calculate the force Fp, which is shown as 

1/2
1 1
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1 1 2
1

1 2
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1 1 1 1
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}
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   


    

    (5.17) 

in which D1 is the center-to-center interval between neighboring piles; D2 is the clear 

interval between neighboring piles; γ is the unit weight of soil; H is the height of the 

unstable soil layer from ground surface to the failure surface; Nφ = tan2(π/4+φ/2); A= 

D1(D1/D2)(Nφ
1/2tanφ+ Nφ−1). Additionally, when the spacing between two neighboring 

piles is small, i.e., that the ratio D2/D1 is below to about 0.5~0.6, the Eq. (5.17) provides an 

overestimation of the total force on a pile. A suggestion given by Li et al. (2010) is adopted, 

which implies that the simple passive earth pressure should be introduced to check the 

applicability of Eq. (5.17) in using this method.  

In order to obtain the critical acceleration coefficient kc, according to the limit analysis 

theory, we let the rate of internal work dissipation equal to the external rate of work  

sW W D                                                                           (5.18) 
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Substituting Eqs. (5.13) ~ (5.16) into Eq. (5.18) yields: 

 

2 3 2 3

3

0 1 2 3 4

sin ( )

( ) 2

D D D D

P P P

s s s s

D b D F n r W b W
k

r b f f f f

  

  

     
 

  
                                   (5.19) 

Note that k′ is the function of the independent variable parameters θ0, θh, r0′/ r0, b/H. 

So the critical acceleration coefficient kc can be obtained when the parameters θ0, θh, r0′/ r0, 

b/H satisfy the following conditions  

0

0
k







, 0

h
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r r
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


, 0
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k

b H





                                                  (5.20) 

Eq. (5.17) accompanied with Eq. (5.20) is used to calculate the best value of k′. The 

minimum value k′ equals to kc. When the seismic coefficient k′ reaches its critical value kc, 

the slope will be in limit equilibrium, then the work rate balance equation becomes 

3 2 3

0 1 2 3 4( ) 2s s s s D D

c c PW k r b f f f k f D b D D                                  (5.21) 

5.3.2 ASSESSMENT OF SEISMIC DISPLACEMENT OF SLOPES REINFORCED WITH PILES 

When the ground acceleration exceeds the critical value, the block CDEFGQ will start 

rotating with acceleration. An equation has been proposed to analyze the rotating 

acceleration by Chang et al. (1984) for the 2D slopes with rotational failure mechanism. 

This method was adopted by other researchers to analyze the 2D slope reinforced with 

geosynthetics or piles (Michalowski and You 2000; Ling et al. 1997; Li et al. 2010). 

Recently, this method was utilized by Nadukuru and Michalowski (2013) to analyze the 

displacement of 3D slope subjected to seismic loads. In this present work, this approach is 

developed to 3D slopes reinforced with on row of piles, so balancing the work rate equation 

yields 

3 2 3 2

0 1 2 3 4( ) 2s s s s D D

P

G
W k r b f f f kf D b D D l

g
                             (5.22) 

where G = weight of block CDEFGQ; l = distance from gravity center of CDEFGQ to 

point O; g = gravity acceleration. The expressions of G and l can be found in Appendix. 
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The block CDEFGQ stats sliding when the seismic coefficient k exceeds its critical value kc, 

simultaneously, the velocity of the failing block increases from 0 to its maximum while the 

ground acceleration drops down to its critical level. Additionally, according to the 

Newmark’s model (1965), when the ground acceleration decreases to a certain value, the 

block velocity decreases to 0, but will never be negative. It is because the Newmark’s 

model indicated that the uphill resistance was taken as infinitely large in the calculation. In 

this situation, the negative velocity or velocity heading uphill is not allowed in this work. 

Eq. (5.21) is subtracted from Eq. (5.22), so the rotating acceleration of 3D block 

CDEFGQ can be written as  

3

0 1 2 3 4

2

( ) 2
( )

s s s s

c

r b f f f f
k k g

Gl

 


  
                                                      (5.23) 

This expression is similar to the ones developed by other researchers for slopes 

without reinforcement (Chang et al. 1984) and those for 2D slopes reinforced with 

geosynthetics and piles (Michalowski and You 2000; Li et al. 2010). Comparing with these 

researches mentioned above, it is clear that both in 2D and 3D conditions, the block 

accelerations are not directly related to the reinforcement. However, the reinforcement 

impacts the critical acceleration coefficient kc and the optimization process of the failure 

mechanism.  

For a selected earthquake, Chang et al. (1984) has proposed a procedure to assess the 

cumulative displacement of 2D slopes. Michalowski and You (2000) summarized this 

procedure with an integration equation. In this work, the integration equation is 

extrapolated from 2D to 3D, which is shown as follow 

sin

( )

x h h
t t

c
t t

u r dtdt

C g k k dtdt

 

 

 

 
                                                                                (5.24) 

where  

0( ) tan 30
0 1 2 3 42

[ ( ) 2 ]sinh s s s s

h

r
C e r b f f f f

Gl

  


                                          (5.25) 
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Note that Eq. (5.25) contains the 2D seismic coefficient terms f1
s ~ f3

s, and the 3D term 

f4
s. So it is clear that the geometry of the slopes and the failure mechanism are both 

contained in coefficient C. what’s more, the properties of the soil and reinforcement have 

effect on the value of C as well. According to Newmark’s theory, this integration interval 

starts from the time at which the first positive motion acceleration occurs (Eq. (5.23) > 0). 

Simultaneously, the slope starts to slide downhill. Since a small displacement is allowed in 

this work, the total rotation θ is assumed to be small enough (<0.25rad or 15º) so that the 

approximation tanθ = θ is valid (Michalowski and You 2000). 

5.3.3 MONTE-CARLO METHOD 

A random search approach (Hammersley and Handscomb 1964) is used to find the 

critical acceleration coefficient kc. This approach has been utilized to find the minimum 

factor of safety by other researchers (Boutrup and Lovell 1980; Siegel et al. 1981). As 

mentioned in Chen’s research (1992), a large number of searches are needed to obtain 

sufficiently accurate solution when the random search approach is used. So in this work, 

400,000 trials are performed to find kc for each condition.  

For a specified slope (the properties and geometry are given), different upper bound 

values to the critical height γH/c have been provided by Michalowski and Drescher (2009) 

and Gao et al. (2012) using different computational approaches for 3D toe-failure 

mechanism. In order to validate the random search approach, the critical height γH/c 

computed by the random trials method is compared with the results obtained by the 

researchers mentioned above. The comparison is shown in Table 5.1. It can be seen from 

Table 5.1 that the values of the critical height γH/c by this study are between the estimation 

obtained by Michalowski & Drescher (2009) and Gao et al. (2012). In addition, a 

comparison is carried out between the critical values of cu/γHF calculated by random 

search approach and those presented by others for undrained slopes. It is shown in Figure 

5.6 that the trends of upper-bound results are similar to those of Gens et al. (1998) and 

(Gao et al. 2013), but the critical values of cu/γHF obtained by this method are slightly 

lower than those presented by Gens et al. (1998). This means that the factors of safety 
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derived from the limit analysis method are higher than those calculated from the limit 

equilibrium method. The limit equilibrium method leads to conservative estimates of the 

safety of 3D slopes. This is in good agreement with the research of Gao et al. (2013). 

Moreover, comparing to the critical seismic acceleration coefficient kc analyzed by Li et al. 

(2010) for 2D slopes, under the condition of the parameter B/H = 15 in 3D mechanism, a 

verification of the accuracy of kc using the random trials method is shown in Table 5.2. 

Additionally, it is validated that for finding kc, the transition from the 3D toe-failure 

mechanism with a ‘plane insert’ to 2D mechanism is feasible. (This transition has been 

illustrated by researchers for finding the critical value of γH/c, considering that the 

constraint on the width of the mechanism is sufficiently large, e.g. B/H > 10. (Michalowski 

and Martel (2011); Gao et al. (2013)).  

 
Figure 5.6 Comparisons between the critical values of cu/γHF obtained by this study and 

those presented by others for undrained slopes. 

 
Recently, Nadukuru and Michalowski (2013) employed the kinematic theorem of 

limit analysis and described the 3D displacement of slopes subjected to seismic loads. 

The critical seismic acceleration coefficient is calculated for 3D slope failures. In this 
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paper, the critical seismic acceleration coefficients on two example slopes calculated by 

random iteration method are compared with Nadukuru and Michalowski’s results 

(2013). The characteristics of the two slopes are listed in Table 5.3 and Table 5.4 

respectively. Table 5.3 shows that the critical seismic acceleration coefficients obtained 

by this method are in line with those presented by Nadukuru and Michalowski’s results 

(2013). In addition, it is shown in Table 5.4 that the calculation from this method is 

slightly lower than the results of Nadukuru and Michalowski (2013). This implies that a 

higher estimation of the displacement is obtained by this method when slope B is 

subjected to seismic loads. All the comparisons shown in Table 5.1 ~ 5.4 imply that the 

random iteration method is available in finding the critical seismic acceleration 

coefficient for 3D toe-failure mechanism. 
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Table 5.1.Comparison of the results of critical height (vertical slope) 

 
θ0: degrees θh: degrees r0′/r0 b/H 

γH/c 
Present 

study 

Michalowski & 

Drescher (2009) 

Gao et al. 

(2012) 

φ = 15º, 

B/H = 1.5 
22.20 59.65 59.65 0.409 6.776 7.124 6.783 

φ = 15º, 

B/H = 5.0 
35.04 60.58 60.58 3.493 5.473 5.504 5.456 

φ = 30º, 

B/H = 0.8 
16.03 62.94 62.94 0.004 12.444 14.368 12.263 

φ = 30º, 

B/H = 3.0 
40.68 66.01 66.01 1.762 7.640 7.974 7.632 

 

 

 

Table 5.2 Results of critical seismic acceleration coefficient 

 

B/H b/H 

kc 

Present study Li et al. (2010) 

φ = 10º,  

c = 23.94 
15 13.10 0.060 0.061 

φ = 15º,  

c = 23.94 
15 12.63 0.165 0.182 

φ = 15º,  

c = 18 
15 12.96 0.087 0.089 
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Table 5.3 Comparison of the results of critical seismic acceleration coefficient 

(Slope A) 

B/H 
θ0: 

degrees 

θh: 

degrees 
r0′/r0 b/H 

kc 

Nadukuru and 

Michalowski 

(2013) 

Present study 

1.5 37.0214 112.4188 0.4917 0.1916 0.27 0.2691 

2 36.72 114.4241 0.3954 0.5301 0.21 0.2149 

3 35.0919 115.9807 0.3324 1.4702 0.17 0.1704 

5 35.5194 115.777 0.1125 3.2229 0.14 0.1403 

Slope A with characteristics β = 30º, φ = 10º, c = 18.1 kN/m2, γ = 17kN/m3, H = 10 m. 

 

Table 5.4 Comparison of the results of critical seismic acceleration coefficient 

(Slope B) 

B/H 
θ0: 

degrees 

θh: 

degrees 
r0′/r0 b/H 

kc 

Nadukuru and 

Michalowski 

(2013) 

Present study 

1.5 45.4282 107.3830 0.3974 0.1072 0.61 0.5706 

2 49.5788 106.3162 0.4650 0.5517 0.52 0.4934 

3 51.8178 107.5518 0.4512 1.4288 0.44 0.4317 

5 52.5442 107.3106 0.3868 3.3483 0.39 0.3912 

Slope B with characteristics β = 45º, φ = 20º, c = 45 kN/m2, γ = 20 kN/m3, H = 15 m. 

 

5.4 EXAMPLE 

Based on the previously derived equations, the displacements of the 3D slopes 

subjecting to seismic load are analyzed by kinematic theory within the frame of the pseudo-

static approach. The slopes with/without reinforcement are considered respectively. 

Furthermore, the results including the effect of the reinforcement on the 3D conditions and 
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the plane-strain conditions are compared herein. 

 

H=12m

x=8.6 m
pile

γ = 18 kN/m3 

D1 = 4 m

D2 = 3.4 m

β =35º 

 

Figure 5.7 The reinforcement in the symmetry plane of the 3D composite slopes. 

 
Figure 5.7 shows the reinforcement in the symmetry plane of the composites 3D 

slopes. The properties of the slope soil and piles are shown as well. In this section, the 

displacement of this slope is analyzed when the seismic load is subjected to it. The 

consideration of progressive block rotation is based on the premise that the rotating 

angular acceleration in Eq. (5.23) can be integrated over time to yield the angular 

velocity of the sliding block, and the time integrated velocity will yield the angular 

displacement (angle of rotation). Seismic acceleration varies during the seismic event, 

and integration of acceleration is carried out for intervals with positive angular velocity 

 . For a single interval, the velocity increases rapidly, encounters an inflection point 

when the acceleration is at its peak, and reaches its maximum when the ground 

acceleration drops down to the yield level. Past that point, the angular velocity of the 

sliding block will start decreasing, to reach zero at some level of ground acceleration 

below the yield acceleration (further decreases in ground acceleration will produce the 

reversal of the inertial force, but the acceleration causing upward failure in slope is 

uncommon). The time integral of the angular velocity yields the angular displacement, 



 

147 

 

and the total angular displacement is the sum of displacements calculated during interval 

when the velocity was not zero (Nadukuru and Michalowski (2013)). 

 
Figure 5.8 Acceleration Records of Kobe Earthquake (Kakogawa Station) with PGA = 

0.345 g, D5-95 = 13.2 s. 

 
Figures. 5.8~5.10 show the earthquake records used for calculating the displacements 

of slopes (D5–95 is the duration, in seconds, of the motion from 5% to 95% of Arias 

intensity). Figure 5.8 is the Kobe earthquake record (Kakogawa station) with PGA = 0.345 

g. Figure 5.9 is the Imperial Valley-06 earthquake records (Aeropuerto Mexicali station) 

with PGA = 0.307 g. The constant time interval of each earthquake record mentioned above 

is 0.01 second. Figure 5.10 is the Parkfield-02 earthquake record (Parkfield-Cholame 2WA 

station) with PGA = 0.373 g. and a constant time interval of 0.005 second. These three 

earthquake records are used one after another to estimate the performance of the slopes 

(with or without reinforcement) subjected to seismic loads. The results are listed in Table 

5.5. 

Table 5.5 indicates that for the same soil properties, the constraint of the width 
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significantly affects the results of the critical acceleration coefficient and seismic 

displacement. When B/H = 2, and φ = 15º, the seismic forces of Kobe earthquake, Imperial 

Valley-06 Earthquake and Parkfield-02 Earthquake are exerted on  the slope, resulting in 

the displacement of 0.25 cm, 0 cm, and 3.33 cm respectively. So for this small-

displacement slope, there is no need to embed any pile to enhance the stability. When B/H 

= 5, the number of the piles n is designed differently for different internal friction angle. 

For example, when φ = 15º (B/H = 5), the displacement of the slope (without reinforcement) 

induced by Parkfield-02 Earthquake is only 16.78 cm, so the width of the ‘plane insert’ is 

considered when the number of the piles is determined (12 piles with the interval D1 =4 m 

can roughly cover the width of ‘plane insert’ b, which is about 42 m). However when φ = 

10º (B/H = 5), the displacement of the slope is quite large (83.21 cm), which implies that 

the total width B should be taken into account (16 piles are embedded to cover the total 

width). When B/H = 10, the 2D failure mechanism is considered to be acting on the slopes. 

Figures 5.11 and 5.12 display the response of the example slope (with/ without 

reinforcement) subjected to Kobe Earthquake. It is clear that the displacement of the slope 

induced by the seismic load is significantly reduced by the stabilizing piles. Furthermore, 

using the composite 3D mechanism, it is able to calculate the different numbers of the 

needed piles for stabilizing slopes based on different soil properties. 
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Figure 5.9 Acceleration Records of Imperial Valley-06 Earthquake (Aeropuerto 

Mexicali Station) with PGA = 0.307 g, D5-95 = 9.8 s. 

 

 
Figure 5.10 Acceleration Records of Parkfield-02, CA Earthquake (Parkfield - Cholame 

2WA Station) with PGA = 0.373 g, D5-95 = 7.0 s. 
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Figure 5.11 The response of example slope (γ = 18kN/m3, c = 24 kPa, φ = 15º, b/H = 10) 

without reinforcement subjected to Kobe Earthquake: (a) the velocity of the failure 

block, (b) the irreversible displacement. 
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Figure 5.12 The response of example slope (γ = 18kN/m3, c = 24 kPa, φ = 15º, b/H = 

10) stabilized with one row of 24 piles subjected to Kobe Earthquake: (a) the velocity of 

the failure block, (b) the irreversible displacement. 
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5.5 CONCLUSIONS 

This model is an extension and modification of the 3D rotational failure mechanisms 

and the pseudo-static slope analysis. It should be viewed as a useful estimating approach 

for the displacement of the reinforced slopes with constraint on the width. In addition, since 

a ‘plane insert’ with width b is inserted into the 3D mechanism, it is possible to assess the 

displacement on the condition of 2D mechanism when b is sufficient large. In this chapter, 

the following two phase of the work are presented: (1) the determination of the yield 

acceleration and its corresponding failure mechanism (especially the width of the ‘plane 

insert’ is determined) in 3D mechanism; (2) the estimation of the seismic displacement of 

the 3D reinforced slope. 

In order to calculate the yield acceleration, the limit analysis theory is utilized for the 

first phase. Additionally, the proposed approaches in Chapter 3 and 4 are introduced to 

evaluate the lateral force and work dissipation of the piles. Based on the calculated yield 

acceleration and its corresponding failure mechanism, Newmark’s analytical procedure is 

employed to estimate the soil displacement of the earth slope which is subjected to design 

earthquakes. Furthermore, the random trials method is used for the computational 

proceeding, which is validated by the literature data. A simple example is given herein, and 

the findings are: the yield accelerations of 2D mechanism (B/H = 10) are less than that in 

3D mechanism with the same soil properties; the displacements in 2D mechanism are much 

large than that in 3D conditions; it is possible to reduce the seismic displacement of the soil 

slopes using stabilizing piles both in 2D and 3D conditions. 
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Table 5.5 Numerical results of the critical coefficient and seismic displacement for different soil properties 

 Without piles With piles 

B/H 2 5 10 2 5 10 

c (kPa) 24 24 24 24 24 24 

φ (degree) 15 10 15 10 15 10 15 10 15 10 15 10 

b/H 0.646 0.633 3.442 3.547 8.184 8.317 - 0.710 3.532 3.571 8.317 8.295 

kc 0.307 0.199 0.2278 0.125 0.208 0.105 0.307 0.244 0.275 0.184 0.252 0.159 

n - - - - - - - 4 12 16 24 30 

u (cm) 

Earthquake  

1a 
0.25 14.5 6.24 80.69 12.09 31.03 0.25 3.44 1.26 28.74 3.01 50.03 

Earthquake  

2b 
0 5.05 2.04 35.09 4.17 59.24 0 0.93 0.071 10.34 0.67 18.95 

Earthquake  

  3c 
3.33 24.07 16.78 83.21 22.51 119.68 3.33 13.32 8.45 41.46 14 61.92 

Example slope characteristics: β = 35º, γ = 18 kN/m3, H = 12 m. 

a: Kobe Earthquake (Kakogawa station) with PGA = 0.345 g, constant time interval of 0.01 second. 

b: Imperial Valley-06 Earthquake (Aeropuerto Mexicali station) with PGA = 0.307 g, constant time interval of 0.01 second. 

c: Parkfield-02 Earthquake (Parkfield-Cholame 2WA station) with PGA = 0.373 g, constant time interval of 0.005 second. 

 

 

 



 

154 

 

REFERENCES 

1. Ambraseys, N., and Menu, J. 1988. Earthquake‐ induced ground displacements. 

Earthquake Engineering & Structural Dynamics, 16(7): 985-1006. 

2. Ashour M., Ardalan H. (2012). Analysis of pile stabilized slopes based on soil-pile 

interaction. Computers and Geotechnics, 39:85-97. 

3. Ausilio E., Conte E., and Dente G. (2001). Stability analysis of slopes reinforced with 

piles. Computers and Geotechnics, 28 (8): 591-611.  

4. Boutrup, AW., and Lovell, C.W. (1980). Search technique in slope stability analysis. 

Engineering Geology, 16(1-2):51-61. 

5. Chang, C. J., Chen, W. F., and Yao, J. T. P. (1984). Seismic displacements in slopes by 

limit analysis. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 

110(7): 860–874. 

6. Chen, W. F., (1980). Plasticity in Soil Mechanics and Landslides. Journal of the 

Engineering Mechanics Division, ASCE, 106(3): 443-464. 

7. Chen, Z.Y., (1992). Random trials used in determining global minimum factors of 

safety of slopes. Canadian Geotechnical Journal, 29, 225-233. 

8. Constantinou, M., and Gazetas, G. 1987. Probabilistic seismic sliding deformations of 

earth dams and slopes. In: Probabilistic Mechanics and Structural Reliability, 

ASCE, pp: 318-321. 

9. Elgamal, A.-W.M., Abdel-Ghaffar, A.M., and Prevost, J.-H. 1987. 2-D elastoplastic 

seismic shear response of earth dams: applications. Journal of Engineering 

Mechanics, 113(5): 702-719. 

10. Elgamal, A.-W.M., Scott, R.F., Succarieh, M.F., and Yan, L. 1990. La Villita dam 

response during five earthquakes including permanent deformation. Journal of 

Geotechnical Engineering, 116(10): 1443-1462. 

11. Franklin, A.G., and Chang, F.K. 1977. Permanent displacements of earth 

embankments by Newmark sliding block analysis. Earthquake Resistance of Earth 

and Rock-Fill Dams. Report 5. 

12.. Gao, Y. F., Zhang, F., Lei, G. H., and Li, D. Y. (2012). An extended limit analysis of 



 

155 

 

three-dimensional slope stability. Geotechnique, 63(6): 518–524. 

13.. Gao, Y.F., Zhang, F. Lei, G.H., Li, D.Y.,Zhang, N., (2013). “Stability charts for 3D 

failure of Homogeneous slopes.” Journal of Geotechnical and Geoenvironmental 

Engineering, ASCE, 139(9): 1528-1538. 

14. Hammersley, J.M., and Handscomb, D.C., (1964). “Monte Carlo method.” Methuen 

Co. Ltd., London. 

15. Ito, T., and Matsui, T., (1975). Methods to estimate lateral force acting on stabilizing 

piles. Soils and Foundations, 15(4): 43–59. 

16. Li, X., He, S., and Wu, Y., (2010). Seismic displacement of slopes reinforced with 

piles. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 136(6): 

880-884. 

17. Lin, J.S., and Whitman, R.V. 1983. Decoupling approximation to the evaluation of 

earthquake‐ induced plastic slip in earth dams. Earthquake Engineering & 

Structural Dynamics, 11(5): 667-678. 

18. Ling, H. I., Leshchinsky, D., and Perry, E. B. (1997). Seismic design and 

performance of geosynthetic-reinforced soil structures. Geotechnique, London, 

47(5): 933–952. 

19. Ling, H. I., and Leshchinsky, D. (1998). Effects of vertical acceleration on seismic 

design of geosynthetic reinforced soil structures. Geotechnique, 48(3): 347–373. 

20. Makdisi, F.I., and Seed, H.B. 1978. Simplified procedure for estimating dam and 

embankment earthquake-induced failures. Journal of the Geotechnical Division, 

ASCE, 104: 849–861. 

21. Michalowski, R. L. (1998a). Soil reinforcement for seismic design of geotechnical 

structures. Computers and Geotechnics, 23(1–2): 1–17. 

22. Michalowski, R. L., and Drescher, A. (2009). Three-dimensional stability of slopes 

and excavations. Geotechnique, 59(10): 839–850. 

23. Michalowski, R. L., and Martel, T., (2011). Stability charts for 3D failure of steep 

slopes subjected to seismic excitation. Journal of Geotechnical and 

Geoenvironmental Engineering,2, 183-189. 



 

156 

 

24. Michalowski, R. L., and You, L. (2000). Displacement of reinforced slopes subjected 

to seismic loads. Journal of Geotechnical and Geoenvironmental Engineering, 

126(8), 685–694. 

25. Nadukuru, S. S., and Michalowski, R. L. (2013). Three-dimensional displacement 

analysis of slopes subjected to seismic loads. Canadian Geotechnical Journal, 

50(6): 650-661. 

26. Newmark, N. W., (1965). Effects of Earthquakes on Dams and Embankments. The 

Fifth Rankine Lecture of the British Geotechnical Society, Geotechnique, 15(2): 

137-160. 

27. Poulos, H.G., (1995). Design of reinforcing piles to increase slope stability. 

Canadian Geotechnical Journal, 32(5): 808–818. 

28. Prevost, J.H. 1981. DYNA-FLOW: a nonlinear transient finite element analysis 

program. Princeton University, Department of Civil Engineering, School of 

Engineering and Applied Science. 

29. Prevost, J.H. 1985. Wave propagation in fluid-saturated porous media: an efficient 

finite element procedure. International Journal of Soil Dynamics and Earthquake 

Engineering, 4(4): 183-202. 

30. Sarma, S.K. 1975. Seismic stability of earth dams and embankments. Geotechnique, 

25(4): 743-761. 

31. Seed, H. B., Lee, K. L., and Idriss, I. M., (1969) “Analysis of the Sheffield Dam 

Failure.” Journal of the Soil Mechanics and Foundations Division, ASCE, 95(6): 

1453-1490. 

32. Seed, H.B., Lee, K., Idriss, I.M., and Makdisi, F. 1975. The slides in the San 

Fernando dams during the earthquake of February 9, 1971. Journal of Geotechnical 

and Geoenvironmental Engineering, 101(ASCE# 11449 Proceeding). 

33. Seed, H. B., (1979) “Considerations in the Earthquake-Resistant Design of Earth and 

Rockfill Dams.” Geotechnique, 29(3): 215-263. 

34. Serff, N. 1976. Earthquake induced deformations of earth dams. College of 

Engineering, University of California. 



 

157 

 

35. Siegel, R.A., Kovacs, W.D., and Lovell, C.W. (1981). “Random surface generation 

in stability analysis.” ASCE, journal of Geotechnical Engineering, 107: 996-1002. 



 

158 

 

  



 

159 

 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1  SUMMARY AND CONCLUSIONS  

Slope failures and landslides occur extensively in all parts of the word and 

frequently result in a tremendous toll of death and destruction of properties. It is 

therefore of prime importance to devise the means to enhance the stability of the slopes. 

The term landslide refers to a sudden rupture of a mass of rock or soil and its movement 

downslope by the force of gravity. Stabilizing piles, as one of the most widely used 

countermeasure in reinforcement engineering of slopes, has been proved to be an 

efficient solution to landslides. In the planning and design of stabilizing piles, it is 

necessary to analyze the soil-pile pressure acting on the piles. In addition, since the 

earthquake-induced landslides occur frequently in recent years, it is important to analyze 

the movement behaviors of a potential landslide under seismic loadings. Therefore, the 

current study focuses on analysis of (1) soil-pile pressure acting on the piles and (2) 

landslide movement behaviors.  

For the soil-pile pressure analysis, the author modified the analytical model (Ito and 

Matsui (1975)) by considering soil arching effects along the depth of the moveable soil 

between two piles. In addition, many researchers analyze the behavior of the stabilizing 

piles in slopes without considering the effects of slope angle, while the natural slopes 

always incline with different angles. Therefore, the effects of the slope angle on the 

distribution of the lateral force acting on the piles are analyzed as well. 

For the landslide movement analysis, the three dimensional (3D) failure 

mechanisms are considered. In addition, the lateral forces provided by the piles are 

evaluated by the formulation proposed in Chapter 3. Based on the kinematic theory 

within the frame of the pseudo-static approach, a 3D model is proposed for evaluating 
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the critical state and the subsequent displacement response. Furthermore, the Newmark’s 

analytical procedure (1965) is employed to estimate the cumulative displacement 

induced by given earthquake loads. 

Detailed contributions in regard to these two mentioned aspects are listed below: 

(1) A larger number of analysis examples show that the influence of soil 

arching effects between two neighboring piles is significant on the 

distribution of lateral force acting on piles. The lateral force predicted by 

Ito and Matsui (1975) can be modified if the soil arching effects are 

considered.  

(2) The soil arching theory proposed by Paik and Salgado (2003) is extended 

for c-φ soil. The trajectory of soil arching in c-φ soil is assumed to be an 

arc of a circle. The soil arching zone is determined in the c-φ soil, and 

subsequently, the active soil stress between two neighboring piles is 

analyzed.  

(3) Combining the soil arching effects and the ‘squeezing effect’ between two 

neighboring piles, two new formulae are proposed to estimate the ultimate 

lateral force acting on piles due to the soli movement for cohesionless soil 

and c-φ soil respectively. Furthermore, it should be noted that the overload 

pressure exerted on the ground surface in cohesionless soil is also taken 

into account when the soil arching effects are analyzed.  

(4) Comparing to the field observed data, it illustrates that the prediction of 

the proposed model shows a greater agreement than the results of Ito and 

Matsui’s method. Especially, the maximum force and the corresponding 

position calculated by the proposed method are in line with the field 

measurements. In addition, a result by numerical simulation conducted by 

other researcher is introduced to validate the proposed model. 

(5) The parametric study shows the lateral force increase with the growth of 

the height of the unstable soil layer H, the internal friction angle φ, the 

cohesion c, and the pile diameter D1-D2. 
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(6) Considering the inclination of the slope, a new method is proposed to 

estimate the effects of slope on the distribution of the lateral force acting 

on piles. The numerical results and laboratory experimental results 

conducted by others are introduced to validate the proposed model. It is 

shown that Ito and Matsui’s approach provides a linear solution for 

estimating the soil-pile pressure, while a nonlinear solution is obtained 

from the proposed model, which shows better agreement with the 

simulation results. 

(7) The parametrical study of the effect of slope angle implies that if the 

magnitude of the soil-pile pressure on a pile is the only factor considered, 

ignoring the change of the point application of the force with slope angle, 

it is reasonable to use a horizontal soil model (β = 0º) as a simplified way 

to estimate the response of stabilizing piles in slopes (β ≠ 0º). 

(8) It is also shown that in the inclined slope model, both the slope angle and 

internal friction angle affect the distribution of the soil-pile pressure per 

unit length of the pile; the shape of the distribution of the soil-pile pressure 

is mainly affected by the slope angle, whereas the internal friction angle 

has a greater effect on the magnitude of the soil-pile pressure on the pile 

than the slope angle. Additionally, the height of the resultant lateral force 

varies with the slope angle and the internal friction angle in the proposed 

model, whereas it remains constant in Ito and Matsui’s approach. 

(9) Three-dimensional (3D) limit analysis of seismic stability of slopes 

reinforced with one row of piles is presented. A 3D rotational mechanism 

for earth slope is adopted. The lateral forces provided by the piles are 

evaluated by proposed formula in Chapter 3. Expressions for calculating 

the yield acceleration coefficient are derived. A random iteration method is 

employed to find the critical acceleration coefficient for the 3D slopes with 

or without reinforcement. Based on the kinematic theory within the frame 

of the pseudo-static approach, a 3D model is proposed for evaluating the 
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critical state and the subsequent displacement response. Furthermore, the 

Newmark’s analytical procedure is employed to estimate the cumulative 

displacement induced by given earthquake loads. 

(10) Based on the limit analysis, the following two phase of the work are 

presented: (1) the determination of the yield acceleration and its 

corresponding failure mechanism (especially the width of the ‘plane insert’ 

is determined) in 3D mechanism; (2) the estimation of the seismic 

displacement of the 3D reinforced slope. A simple example is given, and 

the findings are: the yield accelerations of 2D mechanism (B/H = 10) are 

less than that in 3D mechanism with the same soil properties; the 

displacements in 2D mechanism are much large than that in 3D conditions; 

it is possible to reduce the seismic displacement of the soil slopes using 

stabilizing piles both in 2D and 3D conditions. 

6.2  FUTURE STUDIES 

(1) More investigations and shaking table tests should be carried out to 

validate the effects of soil arching on the lateral force distribution acting 

on piles. Furthermore, the prediction using the proposed method shows 

limited accuracy. Thus, to improve the prediction results, the model needs 

further modification in the future by considering the soil movement and 

the corresponding pile deflection. 

(2) 3D limit analysis method for slope displacement analysis based-on the 

rotational failure mechanism is presented. However, both natural and 

constructed slopes exhibit a complex configuration, which means that the 

tension failure has been observed in many earthquake-induced landsides, 

top surface of potential landslides and shaking table tests. Therefore, 3D 

limit analysis method for seismic slope stability based-on tension-shear 

failure mechanism should be presented. And other external forces (e.g. 

surcharge, pore water press, anchor force and so on) should be considered. 

(3) The seismic permanent displacement of slope should be further studied 
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using a complex model rather than a simple single sliding block. In 

addition, rigorous elastic-plastic model should be presented to take the 

more realistic feature of sliding mass rather than rigid-plastic model. 

(4) The toe-failure mechanism a lone is considered in this thesis. However, in 

general, the slope collapse can be divided into three types: toe failure, face 

failure and base failure. The effects of the reinforcement of piles in face 

failure and base failure mechanisms should be studied in further.  
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APPENDIX A 

The squeezing effects between two neighboring piles (Derivation of Eqs. (3.24) and 

(3.25).) 

x x xd 


tanc  



dx
D

d
D



D

tanc  



 
Figure A1 Differential element (EBBʹEʹ) between two neighboring piles (Ito and Matsui 

(1975)). 

 

The squeezing effects have been proved by Ito and Matsui (1975). It is summarized 

as follows. 

Firstly, all the assumptions they made are adopted in this paper. In the zone EBB′E′ 

(Figure 3.4), the equilibrium of the forces in x direction on a differential element is 

considered (as shown in Figure A1): 
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 tanc  

x  x xd

dx



tanc  

2
D

 
Figure A2 Differential element (AEEʹAʹ) between two neighboring piles (Ito and Matsui 

(1975)). 

 

2 [ tan( ) tan ] 0
4 2

x xdx c Dd dD 

 
                                     (A-1) 

The normal stress σα on the surface EBB′E′ (Figure 3.4) is assumed to equal to the 

principal stress σx. The Mohr-Coulomb’s yield criterion is expressed as: 

1/2

1 12xN cN                                                                                    (A-2) 

in which N1 = tan2(π/4+φ/2). The geometrical condition gives: 

( / 2)

tan( / 4 / 2)

d D
dx

 



                                                                                (A-3) 

Substituting Eq. (A-2) and (A-3) into Eq. (A-1), and then making integration, 

1/2
1 1( tan 1) 1/2 1/2

1 1 1

1/2

1 1
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N N
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C D c N N

N N

 




    


 
                                   (A-4) 

where, C1 is an integration constant. 
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Then, in the zone AEE′A′ (Figure 3.4), the equilibrium of the forces on a small soil 

element in x direction is also considered, as shown in Figure A2. 

2 2( tan )xD d c dx                                                                               (A-5) 

Substituting Eq. (A-2) into Eq. (A-5), and integrating it, 

1/21
2 1

2

1

2 tan
exp( ) (2 tan 1)

tan
x

N
C x c N

D

N







 

                                               (A-6) 

where, C2 is an integration constant. 

 

The solution for lateral force acting on stabilizing pile in cohesionless ground 

For cohesionless soil, the active earth pressure acts on the plane AA′ is obtained by 

Eq. (3.23), where c = 0, thus the equation can be expressed as  

tan tan tan tan

0[ ] [(1 ) (1 )] (1 )
1 tan tan

an anK Kan
x x h an

an

HK z z z
K q

K H H H

   
 

 
       



(A-7) 

in which, z is an arbitrary depth below the ground surface, γ the unit weight of the soil, q 

the vertical pressure exerted on the surface of the ground. The Eq. (A-7) is considered as 

the boundary condition of Eq. (A-6), then, 

2 1 tanhC N                                                                     (A-8) 

Substituting Eq. (A-8) into Eq. (A-6) yields 

1 2
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The constant C1 in Eq. (A-4) is obtained by considering the Eq. (A-9) as the 

boundary condition. Then,  
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                (A-10) 

The Eq. (A-4) and Eq. (A-10) are used to obtain the solution of lateral force PBB’ 

acting on the plane BB′ per unit thickness of layer in x direction, which is shown as 

follow: 

1/2
1 1( tan 1)1 1 2

' 1 1

2 2
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8 4

N N

BB h

D D D
p D N

D D
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                 (A-11) 

Finally, subtracting the active lateral force acting on the plane 'AA  from PBB’, the 

lateral force acting on a pile per unit thickness of layer in x direction is obtained. 
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(A-12) 

Eq. (A-12) is the solution for lateral force acting on a pile in the cohesionless 

ground. 

Similarly, in the c-φ soil ground, the solution is obtained,  
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APPENDIX B 

Total lateral force and the point application of the force 

The total lateral force pt on a pile can be obtained by integrating Eq. (4.28) with 

respect to z: 

0

H

tp pdz                                                                     (B-1) 

Substitution of Eq. (4.28) into the above equation yields 
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The height of the point application of the force is obtained by dividing the moment 

of the soil-pile pressure about the failure surface by the total lateral force on a pile. The 

moment M of the soil-pile pressure about the failure surface is obtained as follow: 
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Dividing Eq. (A-21) by Eq. (A-20) yields the height of the point application of the 

force, hp: 
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APPENDIX C 
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The integration limits along x are 
2 2x R a   and 

2 2x R d   in the first and 

second integral respectively, with R, rm, a and d all being function s of θ, shown as 

following 
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The integration limits x and the variable parameters R, rm, a, d are the same with 

Eq. (A1). 
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in which G2D is the weight of the 2D sliding block bounded by the log-spiral failure and 

the insert plane with width b; G3D is the weight of the 3D sliding block (CDEFG, 

referring to Fig.2 (a)). 
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In this Appendix, only the equations relate to the 3D portion of the composite 

mechanism are presented. As to the equations needed for the calculation of the 2D 

portion, including the work rate of the soil weight and the dissipation, can be found in 

literatures (e.g. Chen 1975; Chen and Liu 1990). 

 


