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1 Introduction

Let d ∈ {2, 3, . . . } and L ∈ N ≡ {1, 2, 3, . . . }. Consider a box in the d-dimensional hypercubic
lattice BL = {−L,−L + 1, . . . , L}d ⊂ Zd, where Z denotes the collection of all integers. We
impose periodic boundary conditions for all d directions and obtain a lattice on a torus (toroidal),
which is denoted by ΛL. The number of sites in ΛL is given by |ΛL| = (2L+1)d. In the present
paper we study a family of Markov processes on ΛL, ht = {ht(z)}z∈ΛL

, with discrete-time
t ∈ N0 ≡ {0} ∪ N.

Assume n,m ∈ N and let

a =
m

2dn
and hc = 2d(1 + a).

Define a real symmetric matrix with size (2L+ 1)d,

∆L(x,y) =



hc, if x = y,
−1, if |x− y| = 1,
0, otherwise,

(1.1)

where x = (x1, . . . , xd),y = (y1, . . . , yd) ∈ ΛL and |x − y| =
√∑d

i=1(xi − yi)2. Let 1(ω) be
the indicator function of an event ω; 1(ω) = 1, if ω occurs and 1(ω) = 0, otherwise. The
configuration space is

SL =

{
0,
1

n
,
2

n
, . . . , hc −

1

n

}ΛL

.

Given a configuration ht ∈ SL, t ∈ N0, ht+1 ∈ SL is determined by the following algorithm.

(i) Choose one site in ΛL at random. Let x be the chosen site and define

ηx(1)(z) = ht(z) +
1

n
1(z = x), z ∈ ΛL.

If ηx(1)(x) < hc, then η
x
(1) ≡ {ηx(1)(z)}z∈ΛL

∈ SL. In this case, we set ht+1 = η
x
(1).
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Abstract

We introduce a family of abelian sandpile models with two parameters n,m ∈ N defined
on finite lattices on d-dimensional torus. Sites with 2dn + m or more grains of sand are
unstable and topple, and in each toppling m grains dissipate from the system. Because of
dissipation in bulk, the models are well-defined on the shift-invariant lattices and the infinite-
volume limit of systems can be taken. From the determinantal expressions, we obtain the
asymptotic forms of the avalanche propagators and the height-(0, 0) correlations of sandpiles
for large distances in the infinite-volume limit in any dimensions d ≥ 2. We show that both
of them decay exponentially with the correlation length

ξ(d, a) = (
√
d sinh−1

√
a(a+ 2) )−1,

if the dissipation rate a =
m

2dn
is positive. Considering a series of models with increasing

n, we discuss the limit a ↓ 0 and the critical exponent defined by νa = − lim
a↓0

log ξ(d, a)

log a
is

determined as

νa =
1

2

for all d ≥ 2. Comparison with the q ↓ 0 limit of q-state Potts model in external magnetic
field is discussed.

Key words. Abelian sandpile models, Dissipation, Avalanches, Height correlations, Determi-
nantal expressions, Correlation length exponent.
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Such a series of toppling is called an avalanche. (Note that, if τ = 1, toppling does not occur.
Even in such a case, we call the transition from ht to ht+1 an avalanche, which is just a random
deposit of a grain of sand.) Define

T (x,y, h) =

τ(x,h)−1∑
ℓ=1

1(y ∈ Ax
(ℓ)(h)), x,y ∈ ΛL, h ∈ SL. (1.2)

This is the number of topplings at site y ∈ ΛL in an avalanche caused by a deposit of a grain of
sand at a site x ∈ ΛL in the configuration h ∈ SL.

We have assumed that n,m ∈ N in the above definition of processes. If we set n = 1,m = 0,
however, we have a = 0 and ∆L|a=0 gives the ‘rule matrix’ of the sandpile model introduced by
Bak, Tang and Wiesenfeld (BTW) [2, 3]. The BTW model have been studied on finite lattices
with open boundary conditions in order to make τ be finite. For example, the BTW model is
considered on a box BL. The boundary of box BL is given by ∂BL = {y = (y1, · · · , yd) ∈ BL :
1 ≤ ∃i ≤ d s.t. yi = −L or L}. In the BTW model defined on BL,

∑
z:z∈ΛL

∆L|a=0(y, z) = 0
if y ∈ BL \ ∂BL; that is, the number of grains of sand is conserved in any toppling in the bulk
of system. By imposing the open boundary condition, we have

∑
z:z∈ΛL

∆L|a=0(y, z) > 0 for
y ∈ ∂BL and dissipation of grains of sand can occur in topplings at the boundary sites. In the
present model, in every toppling at any site y ∈ ΛL,

∑
z:z∈ΛL

∆L(y, z)n = m grains of sand
dissipate from the system and hence τ < ∞ is guaranteed in the shift-invariant system. The
quantity a indicates the rate of dissipation in a toppling.

The present process belongs to the class of abelian sandpile models (ASM) studied by Dhar
[6]. We define the operators {a(x)}x∈ΛL

following Dhar by

ht+1 = a(x)ht, x ∈ ΛL,

where ht, ht+1 ∈ SL and the site x is the chosen site in the first step (i) of the algorithm at time
t. That is, a(x) represents an avalanche caused by a deposit of a grain of sand at x. Then the
above algorithm guarantees the abelian property of avalanches (see Lemma 2.1 in Section 2.1)

[a(x), a(y)] ≡ a(x)a(y)− a(y)a(x) = 0, ∀x,y ∈ ΛL. (1.3)

We call the present Markov process the d-dimensional dissipative abelian sandpile model
(DASM for short). The two-dimensional case was studied numerically [10] and analytically
[30, 28, 18]. In the present paper, we will discuss the models in general dimensions d ≥ 2
in finite and infinite lattices. See also [29]. As shown in [17, 26, 16] the DASM is useful to
construct the infinite-volume limit of avalanche models. Importance of the abelian sandpile
models in the extensive study of self-organized criticality in the statistical mechanics and related
fields is discussed in [25].

2 Basic Properties of Dissipative Abelian Sandpile Model

2.1 Abelian property

First we prove the abelian property of avalanches (1.3).
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Figure 1: A toppling for the DASM with the parameters d = 2, n = 2 and m = 1. In this case
hc = 2dn+m = 9, and thus the site x with height h(x) = 10 is unstable. In a toppling, hc = 9
grains of sand drop from the site x, in which n = 2 grains land on each nearest-neighbor site,
m = 1 grain is dissipated from the system, while h(x)− hc = 1 grain remains on the site x.

(ii) If ηx(1)(x) = hc, then η
x
(1) /∈ SL. In this case, we consider a finite series of configurations

{ηx(1), · · · , η
x
(τ)} with ∃τ ∈ N recursively as follows. Assume that ηx(ℓ) /∈ SL with ℓ ≥ 1, then

Ax
(ℓ)(ht) ≡ {z ∈ ΛL : η

x
(ℓ)(z) ≥ hc} ̸= ∅ and define

ηx(ℓ+1)(z) = η
x
(ℓ)(z)−

∑
y:y∈Ax

(ℓ)
(ht)

∆L(y, z), z ∈ ΛL.

If ηx(ℓ+1) ∈ SL, then τ = ℓ + 1 and ht+1 = η
x
(τ). Remark that τ = τ(x, ht) and τ < ∞ by∑

z:z∈ΛL
∆L(y, z) > 0, ∀y ∈ ΛL as explained below.

We think that 1/n is a unit of grain of sand and ht(z)n represents the height of sandpile at
site z measured in this unit. The step (i) simulates a random deposit of a grain of sand. In the
step (ii), for each 1 ≤ ℓ ≤ τ , the sites y ∈ Ax

(ℓ)(ht) are regarded as unstable sites and the process

{ηx(ℓ)(z)}z∈ΛL
→ {ηx(ℓ)(z)−∆L(y, z)}z∈ΛL

,

is called a toppling of the site y such that

∆L(y,y)n = hcn = 2dn+m grains of sand drop from the unstable site y

and

|∆L(y, z)|n = n grains of sand land on each nearest-neighbor site z, |x− z| = 1.

Since there are 2d nearest-neighbor sites of each site, m grains are annihilated in a toppling.
(See Fig.1.) The total number of grains on ΛL decreases in each toppling and it guarantees
τ < ∞. The configuration space SL is a set of all stable configurations of sandpiles in which
height of sandpile is less than the threshold value hc at every site; h(z) < hc, ∀z ∈ ΛL. From
a stable configuration ht to another stable configuration ht+1,

∑τ−1
ℓ=1 |Ax

(ℓ)(ht)| topplings occur.

60

60



Such a series of toppling is called an avalanche. (Note that, if τ = 1, toppling does not occur.
Even in such a case, we call the transition from ht to ht+1 an avalanche, which is just a random
deposit of a grain of sand.) Define

T (x,y, h) =

τ(x,h)−1∑
ℓ=1

1(y ∈ Ax
(ℓ)(h)), x,y ∈ ΛL, h ∈ SL. (1.2)

This is the number of topplings at site y ∈ ΛL in an avalanche caused by a deposit of a grain of
sand at a site x ∈ ΛL in the configuration h ∈ SL.

We have assumed that n,m ∈ N in the above definition of processes. If we set n = 1,m = 0,
however, we have a = 0 and ∆L|a=0 gives the ‘rule matrix’ of the sandpile model introduced by
Bak, Tang and Wiesenfeld (BTW) [2, 3]. The BTW model have been studied on finite lattices
with open boundary conditions in order to make τ be finite. For example, the BTW model is
considered on a box BL. The boundary of box BL is given by ∂BL = {y = (y1, · · · , yd) ∈ BL :
1 ≤ ∃i ≤ d s.t. yi = −L or L}. In the BTW model defined on BL,

∑
z:z∈ΛL

∆L|a=0(y, z) = 0
if y ∈ BL \ ∂BL; that is, the number of grains of sand is conserved in any toppling in the bulk
of system. By imposing the open boundary condition, we have

∑
z:z∈ΛL

∆L|a=0(y, z) > 0 for
y ∈ ∂BL and dissipation of grains of sand can occur in topplings at the boundary sites. In the
present model, in every toppling at any site y ∈ ΛL,

∑
z:z∈ΛL

∆L(y, z)n = m grains of sand
dissipate from the system and hence τ < ∞ is guaranteed in the shift-invariant system. The
quantity a indicates the rate of dissipation in a toppling.

The present process belongs to the class of abelian sandpile models (ASM) studied by Dhar
[6]. We define the operators {a(x)}x∈ΛL

following Dhar by

ht+1 = a(x)ht, x ∈ ΛL,

where ht, ht+1 ∈ SL and the site x is the chosen site in the first step (i) of the algorithm at time
t. That is, a(x) represents an avalanche caused by a deposit of a grain of sand at x. Then the
above algorithm guarantees the abelian property of avalanches (see Lemma 2.1 in Section 2.1)

[a(x), a(y)] ≡ a(x)a(y)− a(y)a(x) = 0, ∀x,y ∈ ΛL. (1.3)

We call the present Markov process the d-dimensional dissipative abelian sandpile model
(DASM for short). The two-dimensional case was studied numerically [10] and analytically
[30, 28, 18]. In the present paper, we will discuss the models in general dimensions d ≥ 2
in finite and infinite lattices. See also [29]. As shown in [17, 26, 16] the DASM is useful to
construct the infinite-volume limit of avalanche models. Importance of the abelian sandpile
models in the extensive study of self-organized criticality in the statistical mechanics and related
fields is discussed in [25].

2 Basic Properties of Dissipative Abelian Sandpile Model

2.1 Abelian property

First we prove the abelian property of avalanches (1.3).

61

x x

Figure 1: A toppling for the DASM with the parameters d = 2, n = 2 and m = 1. In this case
hc = 2dn+m = 9, and thus the site x with height h(x) = 10 is unstable. In a toppling, hc = 9
grains of sand drop from the site x, in which n = 2 grains land on each nearest-neighbor site,
m = 1 grain is dissipated from the system, while h(x)− hc = 1 grain remains on the site x.

(ii) If ηx(1)(x) = hc, then η
x
(1) /∈ SL. In this case, we consider a finite series of configurations

{ηx(1), · · · , η
x
(τ)} with ∃τ ∈ N recursively as follows. Assume that ηx(ℓ) /∈ SL with ℓ ≥ 1, then

Ax
(ℓ)(ht) ≡ {z ∈ ΛL : η

x
(ℓ)(z) ≥ hc} ̸= ∅ and define

ηx(ℓ+1)(z) = η
x
(ℓ)(z)−

∑
y:y∈Ax

(ℓ)
(ht)

∆L(y, z), z ∈ ΛL.

If ηx(ℓ+1) ∈ SL, then τ = ℓ + 1 and ht+1 = η
x
(τ). Remark that τ = τ(x, ht) and τ < ∞ by∑

z:z∈ΛL
∆L(y, z) > 0, ∀y ∈ ΛL as explained below.

We think that 1/n is a unit of grain of sand and ht(z)n represents the height of sandpile at
site z measured in this unit. The step (i) simulates a random deposit of a grain of sand. In the
step (ii), for each 1 ≤ ℓ ≤ τ , the sites y ∈ Ax

(ℓ)(ht) are regarded as unstable sites and the process

{ηx(ℓ)(z)}z∈ΛL
→ {ηx(ℓ)(z)−∆L(y, z)}z∈ΛL

,

is called a toppling of the site y such that

∆L(y,y)n = hcn = 2dn+m grains of sand drop from the unstable site y

and

|∆L(y, z)|n = n grains of sand land on each nearest-neighbor site z, |x− z| = 1.

Since there are 2d nearest-neighbor sites of each site, m grains are annihilated in a toppling.
(See Fig.1.) The total number of grains on ΛL decreases in each toppling and it guarantees
τ < ∞. The configuration space SL is a set of all stable configurations of sandpiles in which
height of sandpile is less than the threshold value hc at every site; h(z) < hc, ∀z ∈ ΛL. From
a stable configuration ht to another stable configuration ht+1,

∑τ−1
ℓ=1 |Ax

(ℓ)(ht)| topplings occur.

60

61



�L

�L

Figure 2: The set of recurrent configurations RL is closed under avalanches.

2.2 Recurrent configurations

Consider a subset of SL defined by

RL = {h ∈ SL : ∀x ∈ ΛL, ∃k(x) ∈ N, s.t. (a(x))k(x)h = h},

which is called the set of recurrent configurations.

Lemma 2.2 (Dhar [6]) If h ∈ RL, then a(x)h ∈ RL for any x ∈ ΛL. That is, RL is closed
under avalanches (see Fig.2).

Proof. By definition, if h ∈ RL, then for any y ∈ ΛL, ∃k(y) ∈ N, s.t. (a(y))k(y)h = h. If we
operate a(x),x ∈ ΛL on the both sides of this equation, then we have a(x)(a(y))

k(y)h = a(x)h.
By Lemma 2.1, LHS= (a(y))k(y)a(x)h. This equality implies that a(x)h ∈ RL. Since it is valid
for any x ∈ ΛL, the proof is completed.

Consider a (2L + 1)d-dimensional vector space VL, in which the orthonormal basis is given
by {e(z)}z∈ΛL

. For each configuration η ∈ XL, we assign a vector

η =
∑

z:z∈ΛL

η(z)e(z) =
∑

z:z∈ΛL

nη(z)
e(z)

n
, (2.4)

where 1/n denotes the unit of grain of sand. Assume that h ∈ RL; for each x ∈ ΛL, there is
k(x) ∈ N such that

(a(x))k(x)h = h. (2.5)

Consider the vector corresponding to the configuration (d(x))k(x)h,

η =

(
h(x) +

k(x)

n

)
e(x) +

∑
z:z̸=x

h(z)e(z) ∈ VL. (2.6)

Then (2.5) claims that there exists a set {r(z) ∈ N : z ∈ ΛL} such that

h = η +
∑

z:z∈ΛL


 ∑

y:y∈ΛL

r(y)∆L(y, z)


 e(z). (2.7)
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Lemma 2.1 (Dhar [6]) Assume that the avalanche operators {a(x)}x∈ΛL
act on SL. Then

[a(x), a(y)] = 0, ∀x,y ∈ ΛL.

Proof. Let XL = ZΛL . Define three sets of maps from XL to XL; {t̃(x)}x∈ΛL
, {t(x)}x∈ΛL

and
{d(x)}x∈ΛL

as follows. For x ∈ ΛL and η = {η(x)}x∈ΛL
∈ XL define

t̃(x)η(z) = η(z)−∆L(x, z),

t(x)η(z) =

{
η(z)−∆L(x, z), if η(x) ≥ hc,
η(z), otherwise,

d(x)η(z) = η(z) +
1

n
1(z = x), z ∈ ΛL.

By definition of t̃,

t̃(y)̃t(x)η(z) = η(z)−∆L(x, z)−∆L(y, z), z ∈ ΛL.

Similarly we have

t̃(x)̃t(y)η(z) = η(z)−∆L(y, z)−∆L(x, z), z ∈ ΛL.

Therefore t̃(y)̃t(x)η = t̃(x)̃t(y)η, ∀η ∈ XL, that is

[̃t(x), t̃(y)] = 0, ∀x,y ∈ ΛL. (2.1)

Assume that y ̸= x. Then

t̃(y)η(x) = η(x)−∆(y,x) =
{
η(x) + 1, if |x− y| = 1,
η(x), if |x− y| > 1.

It implies that if η(x) ≥ hc then t̃(y)η(x) ≥ hc, ∀y ̸= x, that is, any site cannot be stabilized by
topplings which occur at other sites. Therefore, the definition of t(x) and (2.1) give

[t(x), t(y)] = 0, ∀x,y ∈ ΛL. (2.2)

It is obvious that
[t(x), d(y)] = 0, ∀x,y ∈ ΛL. (2.3)

Consider the situation that h ∈ SL and A
x
(ℓ)(h) ̸= ∅, 1 ≤ ℓ ≤ τ . By (2.2),

∏
z:z∈Ax

(ℓ)
(h) t(z) is

independent of the order of the products of t(z)’s. Then we can write

a(x)h =



τ−1∏
ℓ=1




∏
z:z∈Ax

(ℓ)
(h)

t(z)





 d(x)h, x ∈ ΛL, h ∈ SL.

By (2.2) and (2.3), the lemma is proved.
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n
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n

)
e(x) +
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∑
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
 ∑
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
 e(z). (2.7)
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Lemma 2.1 (Dhar [6]) Assume that the avalanche operators {a(x)}x∈ΛL
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p

Figure 4: A primitive cell of Ω on the lattice (Z/n)ΛL . Since the unit of grain of sand is 1/n,
the origin p of lattice Ω should be at a site of (Z/n)ΛL .

2.3 Stationary distribution

For h ∈ RL, let Ph
L be the probability law of the DASM starting from the configuration h0 = h.

Definition 2.4 If we restrict {a(x)}x∈ΛL
to RL, inverse of the avalanche operator can be defined

by
a(x)−1 = a(x)k(x)−1, x ∈ ΛL.

Assume that h ∈ RL is given. Define

µt(X) = Ph(ht = X),

W (X → Y ) = Ph(ht+1 = Y |ht = X), t ∈ N0, X, Y ∈ RL.

Consider the Master equation

µt+1(X) = µt(X)−
∑

Y :Y ∈RL

µt(X)W (X → Y ) +
∑

Y :Y ∈RL

µt(Y )W (Y → X),

where we have used the assumption that h0 = h ∈ RL and Lemma 2.2. By definition of the
DASM, we can find that, for X,Y ∈ RL,

W (X → Y ) =
∑

x:x∈ΛL

Prob(x is chosen)1(a(x)X = Y )

=
1

|ΛL|
∑

x:x∈ΛL

1(a(x)X = Y )

=
1

(2L+ 1)d

∑
x:x∈ΛL

1(X = a−1(x)Y ).

Then we have

µt+1(X)− µt(X) =
1

(2L+ 1)d

∑
x:x∈ΛL

{µt(a(x)−1X)− µt(X)}, ∀X ∈ RL.

It implies that the uniform measure on RL,

µ(X) =
1

|RL|
1(X ∈ RL) =

1

n(2L+1)d det∆L

1(X ∈ RL), X ∈ XL

is a stationary distribution of the process.
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Note that (2.7) is written as

h = η +
∑

y:y∈ΛL

r(y)v(y)

with
v(x) =

∑
z:z∈ΛL

∆L(x, z)e(z), x ∈ ΛL. (2.8)

v(y)

v(x)h

η

Figure 3: Hypercubic lattice Ω with the basis {v(x)}x∈ΛL
in VL. Every avalanche from an

unstable configuration η given by (2.6) to a recurrent configuration h ∈ RL is represented by a
lattice path η � h on Ω.

We can say that, given h ∈ RL, all points {η} given by (2.6) are identified with sites of a
hypercubic lattice Ω with the basis {v(x)}x∈ΛL

in VL. (See Fig.3.) Consider a primitive cell
(fundamental domain) of the lattice defined by

UL =



∑

x:x∈ΛL

c(x)v(x) : 0 ≤ c(x) < 1,x ∈ ΛL


 ⊂ VL. (2.9)

By definition, the intersection of the lattice Ω and UL is a singleton, say p. We assume that
the origin of this lattice is given by p and express the lattice by Ωp. We consider a collection
of all lattices with the same basis (2.8) having distinct origin in UL, {Ωp : p ∈ UL}. Then there
establishes a bijection between RL = {h} and {Ωp : p ∈ UL}.

Lemma 2.3 (Dhar [6]) The number of recurrent configuration is given by

|RL| = n(2L+1)d det∆L.

Proof. The above bijection implies |RL| = |{Ωp : p ∈ UL}|. Since the unit of grain of sand is
1/n, the origins {p} of lattices {Ωp} should be in (Z/n)ΛL , and hence (see Fig.4)

|{Ωp : p ∈ UL}| =
���UL ∩ (Z/n)ΛL

��� = n(2L+1)d × (the volume of UL).

The volume of UL given by (2.9) with (2.8) is det∆L and the proof is completed.
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Proof. In the proof of Lemma 2.5 we have shown that h ∈ RL and all recurrent stares are
reachable from this configuration h. We can prove that h ∈ AL as follows. We assume that the
contrary; there exists a finite nonempty set F ⊂ ΛL satisfying (2.12). In the DASM, however,
for any y ∈ F , h(y) = hc − 1/n = 2d + (m − 1)/n ≥ 2d ≥

∑
x:x∈F :x ̸=y(−∆L(x,y)), which

contradicts our assumption. Since both RL and AL include h, it is enough to show that AL is
closed under the process of avalanche to prove the lemma, since we have already proved that RL

is so in Lemma 2.2. Remark that addition of particles only increases h and such procedure on
an allowed configurations cannot create any FSC. Here we assume that there exists an allowed
configuration h such that by a single toppling at the site x it becomes to contain a FSC. Write
h′ = t(x)d(x)h, that is,

h′(y) = h(y) +
1

n
1(y = x)−∆L(x,y), ∀y ∈ ΛL. (2.13)

By assumption, there exists F ̸= ∅ such that

h′(y) <
∑

z:z∈F :z̸=y

(−∆L(z,y)), ∀y ∈ F. (2.14)

Combining (2.13) and (2.14) gives

h(y) <
∑

z:z∈F,z̸=y

(−∆L(z,y)) + ∆L(x,y), ∀y ∈ F \ {x}.

Since ∆L(x,y) ≤ 0 for x ̸= y, this inequality means that h has a FSC on F \ {x} and this
contradicts our assumption that h is allowed. Since any avalanche consists of addition of a
particle and a series of topplings, the proof is completed.

Definition 2.8 Given a pair (ΛL,∆L), let G
(v)
L = ΛL ∪ {r} with an additional vertex r (the

‘root’), and G
(e)
L be the collection of |∆L(x,y)|n = n edges between x,y ∈ ΛL,x ̸= y, and∑

y:y∈ΛL
∆(x,y)n = m edges between x ∈ ΛL and r. (See Fig.5.) Graph GL associated to

(ΛL,∆L) is defined as

GL = (G
(v)
L , G

(e)
L ).

Definition 2.9 We say a graph T on GL is a spanning tree, if the number of vertices of T is

|G(v)
L | = |ΛL|+ 1, the number of connected components is one, and the number of loops is zero.

Lemma 2.10 Let TL = {spanning tree on GL associated to (ΛL,∆L)}. Then

|TL| = n(2L+1)d det∆L.

Proof. See p.133 of [20] and Theorem 6.3 in [4].

Lemma 2.11 (Majumdar and Dhar [20]) There establishes a bijection between AL and TL.
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Lemma 2.5 The DASM on ΛL is irreducible on RL.

Proof. Consider the configuration h ∈ SL, such that h(x) = hc − 1/n, ∀x ∈ ΛL. Now we take
two arbitrary configurations X and Y from RL. We have

h =
∏

x:X(x)<hc−1/n

(a(x))hc−1/n−X(x)X =
∏

x:Y (x)<hc−1/n

(a(x))hc−1/n−Y (x)Y. (2.10)

Since this means that the configuration h is reachable form X and Y by avalanches, Lemma
2.2 guarantees that h ∈ RL. Since we have assumed that Y ∈ RL, (a(x))

k(x)Y = Y with some
k(x) ∈ N for any x ∈ ΛL. Therefore, the second equality of (2.10) gives (see Definition 2.4)

Y =
∏

x:Y (x)<hc−1/n

(a(x))k(x)−(hc−1/n−Y (x))h. (2.11)

Combining (2.10) and (2.11) gives

Y =
∏

x:Y (x)<hc−1/n

(a(x))k(x)−(hc−1/n−Y (x))
∏

y:X(y)<hc−1/n

(a(y))hc−1/n−X(y)X.

Let σ =
∑

x:Y (x)<hc−1/n{k(x)− (hc − 1/n− Y (x))}+
∑

x:X(x)<hc−1/n{hc − 1/n−X(x)}. Then
we see

Ph0(ht+s = Y |ht = X) ≥
(

1

|ΛL|

)σ

for s ≥ σ.

Since RHS is strictly positive for finite L, this completes the proof.

Then the following is concluded by the general theory of Markov chains (see, for example,
Chapter 6.4 of [12]).

Proposition 2.6 The stationary distribution of the DASM is uniquely given by the uniform
measure on RL.

We write the probability law of the DASM on ΛL in the stationary distribution as PL and its
expectation as EL.

2.4 Allowed configurations and spanning trees

Dhar also introduced a subset of SL called a collection of allowed configurations AL [6]. He
defined that for h ∈ SL, if there is a subset F ⊂ ΛL such that F ̸= ∅ and

h(y) <
∑

x:x∈F,x̸=y

(−∆L(x,y)), ∀y ∈ F, (2.12)

then h ∈ SL has a forbidden subconfiguration (FSC) on F . Then define

AL = {h ∈ SL : h has no FSC}.

Lemma 2.7 For the DASM on ΛL,
RL ⊂ AL.
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Proposition 2.12 For the DASM on ΛL, RL = AL.

3 Avalanche Propagators

3.1 Integral expressions for propagators

Define
GL(x,y) = EL[T (x,y, h)], x,y ∈ Λ,

where T (x,y, h) is given by (1.2) and the expectation is taken over configurations {h} in the
stationary distribution PL. GL(x,y) is regarded as the avalanche propagator from x to y [6].
Sometime in an avalanche caused by a deposit of a grain of sand at x, this site x topples many
times. The set of topplings between the first and the second toppling at x is called the first
wave of toppling. There can occur many waves in one avalanche and GL(x,x) gives the average
number of waves of topplings in an avalanche [15].

Consider the stationary distribution PL of the DASM. For addition of a particle at any
site x ∈ ΛL, the averaged influx of grains of sand into a site z ∈ ΛL is given by 1(z = x) +∑

y:y ̸=zGL(x,y)|∆L(y, z)|n, and the averaged outflux of them out of z by GL(x, z)∆L(z, z)n
using the avalanche propagators. In PL, equivalence between influx and outflux must hold at
any site z ∈ ΛL. This balance equation is written as

∑
y:y∈ΛL

GL(x,y)∆L(y, z) =
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n
1(z = x) ∀x, z ∈ ΛL
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GL(x,y) =
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n
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−1
L (x,n) =

1

(2L+ 1)d/2
exp

(
2π

2L+ 1
x · n

)
,

where x · n =
∑d

i=1 xini, as

∑
x:x∈ΛL

∑
y:y∈ΛL

UL(n,x)∆L(x,y)U
−1
L (y,m)
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2π

2L+ 1
ni
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Figure 5: A part of the graph GL = (G
(v)
L , G

(e)
L ) associated to the DASM (ΛL,∆L) is illustrated

for the case that d = 2, n = 2 and m = 1. In this case, each pair of the nearest-neighbor vertices
are connected by n = 2 edges and each vertex is connected to the ‘root’ r by m = 1 edge.

Proof. First we order all edges incident on each site x ∈ G(v)
L in some order of preference. For

each configuration h ∈ AL, we consider a following discrete-time growth process of graph on
GL, which is called a burning process on (GL, h). Let Ṽ0 = V0 = {r}, E0 = ∅ and T0 = (V0, E0).
Assume that we have nonempty sets Tt = (Vt, Et) and Ṽt with t ∈ N0. Let

Ṽt+1 =



y ∈ G(v)

L \ Vt : h(y) ≥
∑

x:x∈G(v)
L \Vt

(−∆L(x,y))



.

For each y ∈ Ṽt+1, consider

Ẽt+1(y) =
{
e ∈ G(e)

L : e connects y and a site in Ṽt

}
.

We must have
h(y) ≤

∑

x:x∈G(v)
L \Vt

(−∆L(x,y)) + |Ẽt+1(y)|,

since h ∈ SL. If |Ẽt+1(y)| = 1, then name that edge as e(y). If |Ẽt+1(y)| ≥ 2, then write

h(y) =
∑

x:x∈G(v)
L \Vt

(−∆L(x,y)) +
s

n
,

and choose the (s+ 1)-th edge in Ẽt+1(y) as e(y). We define

Vt+1 = Vt ∪ Ṽt+1, Et+1 = Et ∪ {e(y) : y ∈ Ṽt+1}, and Tt+1 = (Vt+1, Et+1).

By the assumption h ∈ AL, there is a finite time σ < ∞ such that Vσ = G
(v)
L and Eσ = G

(s)
L .

By the construction, Tσ = (Vσ, Eσ) is a spanning tree on GL. Since this growth process of
Tt, t ∈ {0, 1, · · · , σ} is deterministic for a given configuration h ∈ AL, it gives an injection from

AL to TL. This fact and Lemma 2.10 give |AL| ≤ |TL| = n(2L+1)d det∆L. On the other hand,

Lemmas 2.3 and 2.7 give n(2L+1)d det∆L ≤ |AL|. Then we can conclude |AL| = n(2L+1)d det∆L

and the burning process gives a bijection between AL and TL.

Combining Lemmas 2.3, 2.7, 2.10, and 2.11, we have the following proposition.
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Proposition 2.12 For the DASM on ΛL, RL = AL.
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3.2 Long-distance asymptotics

Now we consider the asymptotic form in |x| ↑ ∞ of G(x). Here we follow the calculation found
in Section XII.4 of [21] for the asymptotic expansion of two-point spin correlation function of
the two-dimensional Ising model. By using the identity

∫ ∞

0
dse−αs =

1

α

and the definition of the modified Bessel function of the first kind

In(z) =

∫ π

−π

dϕ

2π
e−

√
−1nϕ+z cosϕ,

we have

G(x) =
1

2dn

∫ ∞

0
dse−(1+a)s

d∏
i=1

Ixi(s/d).

The asymptotic expansion of In(z) for large n is found on p.86 in [9],

In(z) =
1√
2π

exp
[
(n2 + z2)1/2 − n sinh−1(n/z)

]

(n2 + z2)1/4
× (1 +O(1/n)) ,

and we obtain

G(x) =
1

2dn

(
1

2π

)d/2 ∫ ∞

0
ds

d∏
i=1

1

[x2i + (s/d)
2]1/4

exp[−g(x, s)]

×
(
1 +O(max

i
{1/xi})

)
, (3.5)

where

g(x, s) = (1 + a)s−
d∑

i=1

[
x2i +

(s
d

)2]1/2
+

d∑
i=1

xi sinh
−1

(
d

s
xi

)
.

We can evaluate (3.5) by the saddle-point method and obtain the following result.

Theorem 3.3 Let

c1(d, a) =
1

4π(a+ 1)

[√
a(a+ 2)d

2π(a+ 1)

](d−3)/2

(3.6)

and

ξ(d, a) =
1√

d sinh−1
√
a(a+ 2)

. (3.7)

Then, for the DASM with d ≥ 2,m, n ∈ N, a = m/(2dn),

lim
r↑∞

−1
r
log

[
nr(d−1)/2

c1(d, a)
G(x(r))

]
=

1

ξ(d, a)
, (3.8)

where

x(r) =

(
r√
d
, · · · , r√

d

)
∈ Zd, r > 0. (3.9)
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Then, (3.1) is obtained as

GL(x,y) =
1

n

∑
n:n∈ΛL

∑
m:m∈ΛL

U−1
L (x,n)[∆−1

L ](n,m)UL(m,y)

=
1

2dn

1

(2L+ 1)d

∑
n:n∈ΛL

e−2π
√
−1(x−y)·n/(2L+1)

(1 + a)− (1/d)
∑d

i=1 cos(
2π

2L+1ni)
.nonumber (3.2)

Lemma 3.2 There exists a limit G(x− y) = limL↑∞GL(x,y),x,y ∈ Zd and

G(x) =
1

2dn

d∏
i=1

∫ π

−π

dθi
2π

e−
√
−1x·θ

(1 + a)− (1/d)
∑d

i=1 cos θi
, x ∈ Zd. (3.3)

Proof. Consider the Euler-Maclaurin formula for f ∈ C2(R),

M∑
n=0

f(b+ nc) =
1

c

∫ b+Mc

b
f(θ)dθ +

1

2
[f(b) + f(b+Mc)] +

1

12
c2

M−1∑
n=0

f (2)(b+ c(n+ ϕ)), (3.4)

where M ∈ N, b, c ∈ R, f (2)(θ) is the second derivative of f(θ), and 0 < ϕ < 1 (see, for instance,
Appendix D in [1]). Assume that

f(θ) =
e−

√
−1α1θ

(1 + a)− (1/d)(cos θ + α2)
,

where a, α1, α2 are constants. Applying the Euler-Maclaurin formula (3.4) with b = −2πL/(2L+
1), M = 2L and c = 2π/(2L+ 1), we have

2L∑
n=0

e−2π
√
−1α1(n−L)/(2L1+1)

(1 + a)− (1/d){cos( 2π
2L+1(n− L)) + α2}

= (2L+ 1)

∫ 2πL/(2L+1)

−2πL/(2L+1)

dθ

2π

e−
√
−1α1θ

(1 + a)− (1/d)(cos θ + α2)

+
1

2

[
f

(
− 2πL

2L+ 1

)
+ f

(
2πL

2L+ 1

)]

+
1

12

(
2π

2L+ 1

)2 2L−1∑
n=0

f (2)
(

2π

2L+ 1
(n+ ϕ− L)

)
.

By dividing the both sides of the equality by 2L+ 1 and take the limit L ↑ ∞, we obtain

lim
L↑∞

1

2L+ 1

L∑
n=−L

e−2π
√
−1α1n/(2L1+1)

(1 + a)− (1/d){cos( 2π
2L+1n) + α2}

=

∫ π

−π

dθ

2π

e−
√
−1α1θ

(1 + a)− (1/d)(cos θ + α2)
.

Repeating this procedure d times, we can prove Lemma 3.2.
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and

g(2)(x, s0(x)) =
1√
d

(a(a+ 2))3/2

a+ 1

1

r
+O(1/r2).

Then we have the estimation

G(x) =
c1(d, a)

n

1

r(d−1)/2
exp

[
− r

ξ(d, a)
− λ(a)

d∑
i=1

εi

]
× (1 +O(1/r)) , as r ↑ ∞

for x = (r/
√
d + ε1, · · · , r/

√
d + εd), where c1(d, a) and ξ(d, a) are given by (3.6) and (3.7),

respectively, and

λ(a) ≡
√
d

ξ(d, a)

= sinh−1
√
a(a+ 2)

= log(1 + a+
√
a(a+ 2)). (3.11)

If we put εi = 0, 1 ≤ i ≤ d, then G(x) is reduced to be

G(x(r)) = Ḡ(r)× (1 +O(1/r)) , as r ↑ ∞

with

Ḡ(r) =
c1(d, a)

n

e−r/ξ(d,a)

r(d−1)/2
. (3.12)

It proves the theorem.

4 Height-0 Density and Height-(0, 0) Correlations

For

α, β ∈
{
0,
1

n
,
2

n
, . . . , hc −

1

n

}
,

define

Pα,L(x) = EL[1(h(x) = α)],

Pαβ,L(x,y) = EL[1(h(x) = α)1(h(y) = β)], x,y ∈ ΛL. (4.1)

Pα,L(x) is the probability that the site x has the height αn measured in the unit of grain of
sand, 1/n, and Pαβ,L(x,y) is the (α, β)-height correlation function [19, 5, 23].

For the two-dimensional BTW model on BL with open boundary condition, Majumdar and
Dhar [19] proved the existence of the infinite-volume limits

P0 = lim
L↑∞
P0,L(x),

P00(x(r)) = lim
L↑∞
P00,L(0,x(r)),

73

Proof. Let g(1)(x, s) and g(2)(x, s) be the first and second derivatives of g(x, s) with respect to
s,

g(1)(x, s) = (1 + a)− 1

d

d∑
i=1

[
1 +

(
d

s
xi

)2
]1/2

,

g(2)(x, s) =
d

s3

d∑
i=1

x2i

[
1 +

(
d

s
xi

)2
]−1/2

.

For each x, let s0(x) be the saddle point at which g
(1)(x, s) vanishes,

g(1)(x, s0(x)) = 0. (3.10)

Then

G(x) =
1

2dn

(
1

2π

)d/2 d∏
i=1

1

(x2i + s0(x)
2/d2)1/4

exp[−g(x, s0(x))]

×
∫ ∞

−∞
du exp

[
−1
2
g(2)(x, s0(x))u

2

]
×
(
1 +O(max

i
{1/xi})

)

=
1

2dn

(
1

2π

)d/2 d∏
i=1

1

(x2i + s0(x)
2/d2)1/4

exp[−g(x, s0(x))]

×
(

2π

g(2)(x, s0(x))

)1/2

×
(
1 +O(max

i
{1/xi})

)
.

Here we can prove that the higher derivatives of g(x, s) only give the contributions of order
O(maxi{1/xi}). See p.304 in [21]. Now we consider the case

xi =
r√
d
+ εi,

in which εi’s are finite and fixed and r ≫ 1. The equation (3.10) for the saddle point is now

d∑
i=1

(
1 +

d2

s0(x)2

(
r√
d
+ εi

)2
)1/2

= (1 + a)d,

and it is solved as

s0(x) =

√
d

a(a+ 2)

(
r +

1√
d

d∑
i=1

εi +O(1/r)

)
.

This gives

g(x, s0(x)) =

d∑
i=1

(
r√
d
+ εi

)
sinh−1

[
d

s0(x)

(
r√
d
+ εi

)]

=
√
dr sinh−1

√
a(a+ 2) + sinh−1

√
a(a+ 2)×

d∑
i=1

εi +O(1/r)
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1

r
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n

1

r(d−1)/2
exp

[
− r

ξ(d, a)
− λ(a)

d∑
i=1

εi

]
× (1 +O(1/r)) , as r ↑ ∞

for x = (r/
√
d + ε1, · · · , r/

√
d + εd), where c1(d, a) and ξ(d, a) are given by (3.6) and (3.7),

respectively, and

λ(a) ≡
√
d

ξ(d, a)

= sinh−1
√
a(a+ 2)

= log(1 + a+
√
a(a+ 2)). (3.11)

If we put εi = 0, 1 ≤ i ≤ d, then G(x) is reduced to be

G(x(r)) = Ḡ(r)× (1 +O(1/r)) , as r ↑ ∞

with

Ḡ(r) =
c1(d, a)

n

e−r/ξ(d,a)

r(d−1)/2
. (3.12)

It proves the theorem.

4 Height-0 Density and Height-(0, 0) Correlations

For

α, β ∈
{
0,
1

n
,
2

n
, . . . , hc −

1

n

}
,

define

Pα,L(x) = EL[1(h(x) = α)],
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sand, 1/n, and Pαβ,L(x,y) is the (α, β)-height correlation function [19, 5, 23].

For the two-dimensional BTW model on BL with open boundary condition, Majumdar and
Dhar [19] proved the existence of the infinite-volume limits

P0 = lim
L↑∞
P0,L(x),

P00(x(r)) = lim
L↑∞
P00,L(0,x(r)),
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Proof. Let g(1)(x, s) and g(2)(x, s) be the first and second derivatives of g(x, s) with respect to
s,

g(1)(x, s) = (1 + a)− 1

d

d∑
i=1

[
1 +

(
d

s
xi

)2
]1/2

,

g(2)(x, s) =
d

s3

d∑
i=1

x2i

[
1 +

(
d

s
xi

)2
]−1/2

.
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(1)(x, s) vanishes,
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G(x) =
1

2dn

(
1

2π

)d/2 d∏
i=1

1

(x2i + s0(x)
2/d2)1/4

exp[−g(x, s0(x))]

×
∫ ∞

−∞
du exp

[
−1
2
g(2)(x, s0(x))u

2

]
×
(
1 +O(max

i
{1/xi})

)

=
1

2dn

(
1

2π

)d/2 d∏
i=1

1

(x2i + s0(x)
2/d2)1/4

exp[−g(x, s0(x))]

×
(

2π

g(2)(x, s0(x))

)1/2

×
(
1 +O(max

i
{1/xi})

)
.

Here we can prove that the higher derivatives of g(x, s) only give the contributions of order
O(maxi{1/xi}). See p.304 in [21]. Now we consider the case

xi =
r√
d
+ εi,

in which εi’s are finite and fixed and r ≫ 1. The equation (3.10) for the saddle point is now

d∑
i=1

(
1 +

d2

s0(x)2

(
r√
d
+ εi

)2
)1/2

= (1 + a)d,

and it is solved as

s0(x) =

√
d

a(a+ 2)

(
r +

1√
d

d∑
i=1

εi +O(1/r)

)
.

This gives

g(x, s0(x)) =

d∑
i=1

(
r√
d
+ εi

)
sinh−1

[
d

s0(x)

(
r√
d
+ εi

)]

=
√
dr sinh−1

√
a(a+ 2) + sinh−1

√
a(a+ 2)×

d∑
i=1

εi +O(1/r)
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4.2 Determinatal expressions of P0,L(0) and P00,L(0,x)

Let ei, 1 ≤ i ≤ d be the i-th unit vector in Zd. Define a real symmetric matrix with size (2L+1)d

as

B
(0)
L (v,w) =





−hc + 1/n, if v = w = 0,
−1, if v = w, |v| = 1,v ̸= −ed,

−1 + 1/n, if v = w = −ed,
1, if v = 0, |w| = 1,w ̸= −ed,

1− 1/n, if v = 0,w = −ed,
0, otherwise,

where v,w ∈ ΛL.

Lemma 4.3 Let EL be the unit matrix with size (2L+ 1)d. Then

P0,L(0) = det
(
EL + nGLB

(0)
L

)
.

Proof. Define a set of allowed configurations conditioned h(0) = 0,

A(0)
L = {h ∈ AL : h(0) = 0}.

By definition (4.1), Proposition 2.6 with Lemma 2.3 and Proposition 2.12 gives

P0,L(0) =
|A(0)

L |
n(2L+1)d det∆L

. (4.4)

Assume that h ∈ A(0)
L . Then as shown in the proof of Lemma 2.11 we can uniquely define a

burning process Tt, t ∈ {0, 1, . . . ,∃ σ} on (GL, h) associated that Tt becomes a spanning tree on
GL at time t = σ. Define a configuration h

′ as

h′(z) =



h(z)− 1, if |z| = 1, z ̸= −ed,
h(z)− 1 + 1/n, if z = −ed,
h(z), otherwise

for z ∈ ΛL. Now we consider a new DASM which is defined by the matrix ∆′
L given by

∆′
L = ∆L +B

(0)
L , (4.5)

and let A′
L be a set of all allowed configurations of this DASM and G′

L be an associated graph
to (ΛL,∆

′
L). Then we consider a burning process T

′
t = (V

′
t , E

′
t), t ∈ {0, 1, . . . , σ} on (G′

L, h
′). By

definition of ∆′
L and h

′, we can make

Vt = V
′
t , ∀t ∈ {0, 1, . . . , σ},

and T ′
σ gives a spanning tree on G

′
L. By Lemma 2.11, this means h

′ ∈ A′
L. Since there is a

bijection between h and its associated burning process Tt, t ∈ {0, 1, . . . , σ}, we have a bijection
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where x(r) = (r/
√
2, r/

√
2). They gave an 8 × 8 matrix ML(r), whose elements depend on L

and r, such that

P00,L(0,x(r)) = detML(r), ∀L > r√
2
,

and showed that every elements converge in the infinite-volume limit L ↑ ∞ with a finite r. Then
the matrix M(r) = limL↑∞ML(r) is well-defined and we have the determinantal expression

P00(x(r)) = detM(r).

Moreover, they showed that
lim
r↑∞
P00(x(r)) = P

2
0 ,

and

C00(x(r)) ≡
P00(x(r))− P 2

0

P 2
0

≃ −1
2
r−4, as r ↑ ∞. (4.2)

Majumdar and Dhar claimed [19] that the result (4.2) is generalized for the d-dimensional BTW
model with d ≥ 2 as

C00(x(r)) ∼ r−2d, as r ↑ ∞. (4.3)

In an earlier paper [28], all these facts also hold for the two-dimensional DASM, if we prepare
10 × 10 matrix ML(r). (See also [5] and [23] for other generalizations of [19].) Here we show
the result for the height-0 density and the height-(0, 0) correlations of the DASM with general
d ≥ 2.

4.1 Nearest-neighbor correlations

First we prove the following Lemma.

Lemma 4.1 Any configuration h ∈ SL, in which there are two adjacent sites z1, z2 ∈ ΛL,
|z1 − z2| = 1, such that h(z1) < 1 and h(z2) < 1, is not allowed.

Proof. Let F = {z1, z2} ⊂ ΛL. Then∑
x:x∈F,x ̸=z1

(−∆L(x, z1)) = −∆L(z2, z1) = 1,

and ∑
x:x∈F,x ̸=z2

(−∆L(x, z2)) = −∆L(z1, z2) = 1,

by (1.1). Then if h(z1) < 1 and h(z2) < 1, the condition of FSC (2.12) is satisfied.

By Propositions 2.6 and 2.12, the above lemma implies the following.

Proposition 4.2 For any L ≥ 2,

Pαβ,L(0,±ei) = 0, 1 ≤ i ≤ d, α, β ∈
{
0,
1

n
,
2

n
, . . . , 1− 1

n

}
.

Then,

Pαβ(0,±ei) = lim
L↑∞
Pαβ,L(0,±ei) = 0, 1 ≤ i ≤ d, α, β ∈

{
0,
1

n
,
2

n
, . . . , 1− 1

n

}
.
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Proposition 4.2 For any L ≥ 2,
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n
,
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n
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n

}
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4.3 Infinite-volume limit

Since the number of nonzero elements of B
(0)
L (resp. B

(0,x)
L ) is only 6d + 1 (resp. 2(6d + 1)),

we can replace the matrix EL + nGLB
(0)
L (resp. EL + nGLB

(0,x)
L ) with size (2L + 1)d by a

matrix with size (2d+ 1) (resp. 2(2d+ 1)) without changing the value of determinant. Explicit
expressions are given as follows.

Let

qi =




0, if i = 1,
ei−1, if 2 ≤ i ≤ d+ 1,
−ei−d−1, if d+ 2 ≤ i ≤ 2d+ 1.

Define a matrix G(L)(x) = (G(L)
ij )1≤i,j≤2d+1 with elements

G(L)
ij (x) = GL(0,x+ qj − qi), 1 ≤ i, j ≤ 2d+ 1. (4.6)

We also define a real symmetric matrix B = (Bij)1≤i,j≤2d+1 with elements

Bij =




−hc + 1/n, if i = j = 1,
−1, if 2 ≤ i = j ≤ 2d,
−1 + 1/n, if i = j = 2d+ 1,
1, i = 1, 2 ≤ j ≤ 2d,
1− 1/n, if i = 1, j = 2d+ 1,
0, otherwise.

Then define 2(2d+ 1)× 2(2d+ 1) matrices

G̃(L)(0,x) =

(
G(L)(0) G(L)(x)
tG(L)(x) G(L)(0)

)
, x ∈ ΛL,

where tG(L)(x) is a transpose of G(L)(x), and

B̃ =
(

B 0
0 B

)
.

We have
P0,L(0) = det

(
E + nG(L)(0)B

)
(4.7)

and
P00,L(0,x) = det

(
E + nG̃(L)(0,x)B̃

)
, (4.8)

where E denotes the unit matrix with size 2d + 1 in (4.7) and with size 2(2d + 1) in (4.8),
respectively.

It should be remarked that the sizes of the matrices in the RHS’s are independent of the
lattice size L and determined only by the dimension d of lattice. The dependence of L is
introduced only through each elements of G(L)(x) given by (4.6). Lemma 3.2 guarantees the
existence of infinite-volume limit L ↑ ∞ of these elements and we put

Gij(x) = lim
L↑∞

G(L)
ij (x) = G(x+ qj − qi), 1 ≤ i, j ≤ 2d+ 1,

G(x) = (Gij(x))1≤i,j≤2d+1,

G̃(0,x) = lim
L↑∞

G̃(L)(0,x) =

(
G(0) G(x)
tG(x) G(0)

)
,

77

between A(0)
L and A′

L. By Lemmas 2.10 and 2.11, |A
(0)
L | = |A′

L| = n(2L+1)d det∆′
L. Combining

(4.4) and (4.5) gives

P0,L(0) =
det∆′

L

det∆L

= det(∆−1
L ∆′

L)

= det(EL +∆
−1
L B

(0)
L ).

Then we use Lemma 3.1 and the proof is completed.

Next we consider the two-point function P00,L(0,x), where we assume that 2 ≤ |x| < L. We
define a real symmetric matrix with size (2L+ 1)d as follows. For v,w ∈ ΛL,

B
(0,x)
L (v,w) =




−hc + 1/n, if v = w = 0 or if v = w = x,
−1, if v = w, |v| = 1,v ̸= −ed,

or if v = w, |v − x| = 1,v ̸= x− ed,
−1 + 1/n, if v = w = −ed, or if v = w = x− ed,

1, if v = 0, |w| = 1,w ̸= −ed,
or if v = x, |w − x| = 1,w ̸= x− ed

1− 1/n, if v = 0,w = −ed,
or if v = x,w = x− ed,

0, otherwise.

Following the same argument as P0,L(0) we can prove the next lemma. (See Fig.6.)

Lemma 4.4 For 2 ≤ |x| < L,

P00,L(0,x) = det
(
EL + nGLB

(0,x)
L

)
.

r

x

0

Figure 6: The matrix ∆′′
L ≡ ∆L + B

(0,x)
L is considered for P00,L(0,x) with |x| = r. In the

corresponding graph G′′
L the site 0 (resp. x) is connected to −ed (resp. x− ed) by a single edge,

but all other edges between 0 (resp. x) and its nearest-neighbor sites are deleted.
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where

γ̄ =
1

2d

d∏
i=1

∫ π

−π

dθi
2π

1− e−2
√
−1(θ1+θ2)

1− (1/d)
∑d

i=1 cos θi
.

In the following, we will explain how to prove this theorem. Let

M (1)(r) = E + nG̃(0,x(r))B̃, r > 0, x(r) ∈ Zd,

where E is a unit matrix with size 2(2d+ 1). That is,

M (1)(r) =

(
m(1) m̃(1)(r)

m̂(1)(r) m(1)

)
,

where for 1 ≤ i ≤ 2d+ 1

m
(1)
ij =




1(i = 1) +
∑2d+1

k=1 nGik(0)
−{(1− 1/n) + hc}nGi1(0)− Gi 2d+1(0), if j = 1,

1(i = j) + n[Gi1(0)− Gij(0)], if 2 ≤ j ≤ 2d,
1(i = 2d+ 1) + (1− 1/n)n[Gi1(0)− Gi 2d+1(0)], if j = 2d+ 1,

m̃
(1)
ij (r) = n×




∑2d+1
k=1 Gik(x(r))
−{(1− 1/n) + hc}Gi1(x(r))− (1/n)Gi 2d+1(x(r)), if j = 1,

Gi1(x(r))− Gij(x(r)), if 2 ≤ j ≤ 2d,
(1− 1/n)(Gi1(x(r))− Gi 2d+1(x(r))), if j = 2d+ 1,

m̂
(1)
ij (r) = n×




∑2d+1
k=1 Gki(x(r))
−{(1− 1/n) + ηc}G1i(x(r))− (1/n)G2d+1 i(x(r)), if j = 1,

G1i(x(r))− Gji(x(r)), if 2 ≤ j ≤ 2d,
(1− 1/n)(G1i(x(r))− G2d+1 i(x(r))), if j = 2d+ 1.

We find that

m
(1)
i1 +

2d+1∑
j=2

m
(1)
ij = 1− 2danGi1(0),

m̃
(1)
i1 (r) +

2d+1∑
j=2

m̃
(1)
ij = −2danGi1(x(r)),

m̂
(1)
i1 (r) +

2d+1∑
j=2

m̂
(1)
ij = −2danG1i(x(r)), 1 ≤ i ≤ 2d+ 1.
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where G(x) is explicitly given by (3.3). Then we have the following.

Proposition 4.5 There exist the infinite-volume limits

P0 = lim
L↑∞
P0,L(0), P00(x) = lim

L↑∞
P00,L(0,x), x ∈ Zd,

and they are given by
P0 = det (E + nG(0)B)

and
P00(x) = det

(
E + nG̃(0,x)B̃

)
, x ∈ Zd.

4.4 Evaluations of determinantal expressions

From the determinantal expressions of P0 and P00(x) given in Proposition 4.5, the following
explicit evaluations of these quantities are obtained.

Theorem 4.6 (i) Define

γ1 =
1

2d

d∏
i=1

∫ π

−π

dθi
2π

1

(1 + a)− (1/d)
∑d

i=1 cos θi

and

γ2 =
1

2d

d∏
i=1

∫ π

−π

dθi
2π

e−2
√
−1(θ1+θ2)

(1 + a)− (1/d)
∑d

i=1 cos θi
.

Then, for the DASM with d ≥ 2,m, n ∈ N,

P0 =
1− 2daγ1
2dn

[
2{1− d(γ1 − γ2)}+ (1− 4dγ1)a− 2dγ1a2

]

×
[
2(d− 1)(γ1 − γ2)− (1− 4dγ1)a+ 2dγ1a2

]2

×
[
{1− (γ1 − γ2)}2 − {(2d(1 + a)2 − 1)γ1 − (2d− 1)γ2 − (1 + a)}2

]d−2
, (4.9)

where a = m/(2dn).

(ii) Let

C00(x) =
P00(x)− P 2

0

P 2
0

, x ∈ Zd. (4.10)

Then, there exists a nonzero factor c2(d, a, n) such that for the DASM with d ≥ 2,m, n ∈ N

lim
r↑∞

−1
r
log

[
rd−1

c2(d, a, n)
C00(x(r))

]
=

2

ξ(d, a)
, (4.11)

where a = m/(2dn), ξ(d, a) and x(r) are given by (3.7) and (3.9), respectively, and that

lim
a↓0

c2(d, a,m/(2da))

a(d+1)/2
=

(
d

2π2

)(d−3)/2 [d{1 + (d− 1)γ̄}
2π(d− 1)γ̄

]2
, (4.12)
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where n(r, λ) = (nij(r, λ))1≤i,j≤2d+1 with elements,

nij(r, λ) =





−2da, if i = j = 1,
(1− e−λ), if i = 1, 2 ≤ j ≤ d+ 1,
(1− eλ), if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)(1− eλ), if i = 1, j = 2d+ 1,
−2daeλ, if 2 ≤ i ≤ d+ 1, j = 1,
−2dae−λ, if d+ 2 ≤ i ≤ 2d+ 1, j = 1,
eλ(1− e−λ), if 2 ≤ i, j ≤ d+ 1,
eλ(1− eλ), if 2 ≤ i ≤ d+ 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)eλ(1− eλ), if 2 ≤ i ≤ d+ 1, j = 2d+ 1,
e−λ(1− e−λ), if d+ 2 ≤ i ≤ 2d+ 1, 2 ≤ j ≤ d+ 1,
e−λ(1− eλ), if d+ 2 ≤ i, j ≤ 2d,
(1− 1/n)e−λ(1− eλ), if d+ 2 ≤ i ≤ 2d+ 1, j = 2d+ 1.

We obtain a matrix M ′(r) from M(r) by subtracting (the first row) ×eλ from the i-th row
with 2 ≤ i ≤ d+1, (the first row) ×e−λ from the i-th row with d+2 ≤ i ≤ 2d+1, (the (2d+2)-th
row) ×e−λ from the i-th row with 2d+ 3 ≤ i ≤ 3d+ 2, and (the (2d+ 2)-th row) ×eλ from the
i-th row with 3d+ 3 ≤ i ≤ 2(2d+ 1). We have

M ′(r) =

(
m′(λ) m̃′(r, λ)
m̃′(r,−λ) m′(−λ)

)

with

m′
ij(λ) =




1− 2danG11(0), if i = j = 1,
nϕ(1,1),(1,j)(0), if i = 1, 2 ≤ j ≤ 2d,
(1− 1/n)nϕ(1,1),(1,2d+1)(0), if i = 1, j = 2d+ 1,

(1− eλ)− 2dan(Gi1(0)− eλG11(0)), if 2 ≤ i ≤ d+ 1, j = 1,
(1− e−λ)− 2dan(Gi1(0)− e−λG11(0)), if d+ 2 ≤ i ≤ 2d+ 1, j = 1,
1(i = j) + n[ϕ(i,1),(i,j)(0)− eλϕ(1,1),(1,j)(0)], if 2 ≤ i ≤ d+ 1, 2 ≤ j ≤ 2d,
1(i = j) + n[ϕ(i,1),(i,j)(0)− e−λϕ(1,1),(1,j)(0)], if d+ 2 ≤ i ≤ 2d+ 1,

2 ≤ j ≤ 2d,
(1− 1/n)
×n[ϕ(i,1),(i,2d+1)(0)− eλϕ(1,1),(1,2d+1)(0)], if 2 ≤ i ≤ d+ 1, j = 2d+ 1,

1(i = 2d+ 1) + (1− 1/n)
×n[ϕ(i,1),(i,2d+1)(0)− e−λϕ(1,1),(1,2d+1)(0)], if d+ 2 ≤ i ≤ 2d+ 1,

j = 2d+ 1,

(4.15)

and with

m̃′
ij(r, λ) = nḠ(r)×




−2da(1 +O(1/r)), if i = j = 1,
(1− e−λ)(1 +O(1/r)), if i = 1, 2 ≤ j ≤ d+ 1,
(1− eλ)(1 +O(1/r)), if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)(1− eλ)(1 +O(1/r)), if i = 1, j = 2d+ 1,
O(1/r), otherwise,

(4.16)
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For 1 ≤ i ≤ 2d+ 1, let

mij =

{
1− 2danGi1(0), if j = 1,

m
(1)
ij , if 2 ≤ j ≤ 2d+ 1,

m̃ij(r) =

{
−2danGi1(x(r)), if j = 1,

m̃
(1)
ij (r), if 2 ≤ j ≤ 2d+ 1,

m̂ij(r) =

{
−2danG1i(x(r)), if j = 1,

m̂
(1)
ij (r), if 2 ≤ j ≤ 2d+ 1.

Then

P0 = detm(1) = detm,

P00(x(r)) = detM (1)(r) = detM(r) with M(r) =

(
m m̃(r)
m̂(r) m

)
. (4.13)

Note that, if we introduce the the dipole potential

ϕ(i1,j1),(i2,j2)(x(r)) = Gi1j1(x(r))− Gi2j2(x(r)), 1 ≤ i1, i2, j1, j2 ≤ 2d+ 1,

the elements of the matrix M(r) are expressed as follows; for 1 ≤ i ≤ 2d+ 1,

mij =



1− 2danGi1(0), if j = 1,
1(i = j) + nϕ(i,1),(i,j)(0), if 2 ≤ j ≤ 2d,
1(i = 2d+ 1) + (1− 1/n)nϕ(i,1),(i,2d+1)(0), if j = 2d+ 1,

(4.14)

m̃ij(r) = n×




−2daGi1(x(r)), if j = 1,
ϕ(i,1),(i,j)(x(r)), if 2 ≤ j ≤ 2d,
(1− 1/n)ϕ(i,1),(i,2d+1)(x(r)), if j = 2d+ 1,

m̂ij(r) = n×




−2daG1i(x(r)), if j = 1,
ϕ(1,i),(j,i)(x(r)), if 2 ≤ j ≤ 2d,
(1− 1/n)ϕ(1,i),(2d+1,i)(x(r)), if j = 2d+ 1.

Now we study the asymptotics of P00(r) in r ↑ ∞. Theorem 3.3 and its proof given in Section
3 implies that with any finite ci’s,

G

(
x(r) +

d∑
i=1

ciei

)
= Ḡ(r) exp

(
−λ(a)

d∑
i=1

ci

)
× (1 +O(1/r)) , as r ↑ ∞

with (3.6),(3.7), (3.11), and (3.12). Then we see

m̃(r) = nḠ(r)n(r, λ)(1 +O(1/r)),
m̂(r) = nḠ(r)n(r,−λ)(1 +O(1/r)), as r ↑ ∞,

80

80



where n(r, λ) = (nij(r, λ))1≤i,j≤2d+1 with elements,

nij(r, λ) =





−2da, if i = j = 1,
(1− e−λ), if i = 1, 2 ≤ j ≤ d+ 1,
(1− eλ), if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)(1− eλ), if i = 1, j = 2d+ 1,
−2daeλ, if 2 ≤ i ≤ d+ 1, j = 1,
−2dae−λ, if d+ 2 ≤ i ≤ 2d+ 1, j = 1,
eλ(1− e−λ), if 2 ≤ i, j ≤ d+ 1,
eλ(1− eλ), if 2 ≤ i ≤ d+ 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)eλ(1− eλ), if 2 ≤ i ≤ d+ 1, j = 2d+ 1,
e−λ(1− e−λ), if d+ 2 ≤ i ≤ 2d+ 1, 2 ≤ j ≤ d+ 1,
e−λ(1− eλ), if d+ 2 ≤ i, j ≤ 2d,
(1− 1/n)e−λ(1− eλ), if d+ 2 ≤ i ≤ 2d+ 1, j = 2d+ 1.

We obtain a matrix M ′(r) from M(r) by subtracting (the first row) ×eλ from the i-th row
with 2 ≤ i ≤ d+1, (the first row) ×e−λ from the i-th row with d+2 ≤ i ≤ 2d+1, (the (2d+2)-th
row) ×e−λ from the i-th row with 2d+ 3 ≤ i ≤ 3d+ 2, and (the (2d+ 2)-th row) ×eλ from the
i-th row with 3d+ 3 ≤ i ≤ 2(2d+ 1). We have

M ′(r) =

(
m′(λ) m̃′(r, λ)
m̃′(r,−λ) m′(−λ)

)

with

m′
ij(λ) =




1− 2danG11(0), if i = j = 1,
nϕ(1,1),(1,j)(0), if i = 1, 2 ≤ j ≤ 2d,
(1− 1/n)nϕ(1,1),(1,2d+1)(0), if i = 1, j = 2d+ 1,

(1− eλ)− 2dan(Gi1(0)− eλG11(0)), if 2 ≤ i ≤ d+ 1, j = 1,
(1− e−λ)− 2dan(Gi1(0)− e−λG11(0)), if d+ 2 ≤ i ≤ 2d+ 1, j = 1,
1(i = j) + n[ϕ(i,1),(i,j)(0)− eλϕ(1,1),(1,j)(0)], if 2 ≤ i ≤ d+ 1, 2 ≤ j ≤ 2d,
1(i = j) + n[ϕ(i,1),(i,j)(0)− e−λϕ(1,1),(1,j)(0)], if d+ 2 ≤ i ≤ 2d+ 1,

2 ≤ j ≤ 2d,
(1− 1/n)
×n[ϕ(i,1),(i,2d+1)(0)− eλϕ(1,1),(1,2d+1)(0)], if 2 ≤ i ≤ d+ 1, j = 2d+ 1,

1(i = 2d+ 1) + (1− 1/n)
×n[ϕ(i,1),(i,2d+1)(0)− e−λϕ(1,1),(1,2d+1)(0)], if d+ 2 ≤ i ≤ 2d+ 1,

j = 2d+ 1,
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with a matrix m∗(λ) = (m∗
ij(λ))1≤i,j≤2d+1 with elements

m∗
ij(λ) =





−2d, if i = j = 1,

(1− eλ)/a1/2, if i = 1, 2 ≤ j ≤ d+ 1,
(1− e−λ)/a1/2, if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)(1− e−λ)/a1/2, if i = 1, j = 2d+ 1,

(1− eλ)/a1/2
−2da1/2n(Gi1(0)− eλG11(0)), if 2 ≤ i ≤ d+ 1, j = 1,

(1− e−λ)/a1/2

−2da1/2n(Gi1(0)− e−λG11(0)), if d+ 2 ≤ i ≤ 2d+ 1, j = 1,
1(i = j) + n[ϕ(i,1),(i,j)(0)− eλϕ(1,1),(1,j)(0)], if 2 ≤ i ≤ d+ 1, 2 ≤ j ≤ 2d,
1(i = j) + n[ϕ(i,1),(i,j)(0)− e−λϕ(1,1),(1,j)(0)], if d+ 2 ≤ i ≤ 2d+ 1,

2 ≤ j ≤ 2d,
(1− 1/n)
×n[ϕ(i,1),(i,2d+1)(0)− eλϕ(1,1),(1,2d+1)(0)], if 2 ≤ i ≤ d+ 1, j = 2d+ 1,
1(i = 2d+ 1) + (1− 1/n),
×n[ϕ(i,1),(i,2d+1)(0)− e−λϕ(1,1),(1,2d+1)(0)], if d+ 2 ≤ i ≤ 2d+ 1,

j = 2d+ 1.

(4.19)

By the definition (4.10), we see

C00(x(r)) = a
2detm

∗(λ) detm∗(−λ)
(detm)2

(nḠ(r))2 × (1 +O(1/r)), as r ↑ ∞.

Since Ḡ(r) is given by (3.12), (4.11) of Theorem 4.6 (ii) is proved with

c2(d, a, n) = (ac1(d, a))
2detm

∗(λ)× detm∗(−λ)
(detm)2

.

Now the problem is reduced to the calculation of detm and detm∗(λ). Consider a matrix
R = (Rij)1≤i,j≤N with elements

Rij =




u, if i = j = 1,
b, if i = 1, 2 ≤ j ≤ d+ 1,
c, if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)c, if i = 1, j = 2d+ 1,
q, if 2 ≤ i ≤ d+ 1, j = 1,
e, if d+ 2 ≤ i ≤ 2d+ 1, j = 1,
f, if 2 ≤ i ≤ d+ 1, 2 ≤ j ≤ 2d, j ̸= i, j ̸= i+ d,
1 + v, if 2 ≤ i = j ≤ d+ 1,
h, if 2 ≤ i ≤ d, j = i+ d,
(1− 1/n)f, if 2 ≤ i ≤ d, j = 2d+ 1,
(1− 1/n)h, if i = d+ 1, j = 2d+ 1,
s, if d+ 2 ≤ i ≤ 2d+ 1, 2 ≤ j ≤ 2d, j ̸= i, j ̸= i− d,
t, if d+ 2 ≤ i ≤ 2d+ 1, j = i− d,
1 + k, if d+ 2 ≤ i = j ≤ 2d,
(1− 1/n)s, if d+ 2 ≤ i ≤ 2d, j = 2d+ 1,
1 + (1− 1/n)k, if i = j = 2d+ 1.

(4.20)
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so that
P00(x(r)) = detM(r) = detM

′(r), r > 0, x(r) ∈ Zd.

Now we expand detM ′(r) along the first and the (2d + 2)-th rows. Let |M ′(j, k)| be the de-
terminant of M ′(r) with the first and the (2d + 2)-th rows and the j-th and the k-th columns
removed and multiplied by −(−1)1+j × (−1)2d+2+k = (−1)j+k. Then we have

detM ′(r) =

2(2d+1)∑
j=1

2(2d+1)∑
k=1,k ̸=j

M ′(r)1jM
′(r)2d+2,k|M ′(j, k)|.

Remark that, by (4.15) and (4.16),

|M ′(j, k)| = O(1/r), as r → ∞,

if 1 ≤ j, k ≤ 2d+ 1 or 2d+ 2 ≤ j, k ≤ 2(2d+ 1), and

|M ′(j, k)| = |m′(j)(λ)| × |m′(k)(λ)| × (1 +O(1/r)), as r → ∞,

if 1 ≤ j ≤ 2d + 1 < k ≤ 2(2d + 1) or 1 ≤ k ≤ 2d + 1 < j ≤ 2(2d + 1), where |m′(j)(λ)| is the
(1, j)-cofactor of m′(λ). Then

detM ′(r) =




2d+1∑
j=1

m′
1j(λ)|m′(j)(λ)|






2d+1∑
j=1

m′
1j(−λ)|m′(j)(−λ)|




+




2d+1∑
j=1

m̃′
1j(r, λ)|m′(j)(−λ)|






2d+1∑
j=1

m̃′
1j(r,−λ)|m′(j)(−λ)|




= detm′(λ)× detm′(−λ) + det m̄(λ)× det m̄(−λ)×
(
nḠ(r)

)2
(1 +O(1/r)), (4.17)

where m̄(λ) = (m̄ij(λ))1≤i,j≤2d+1 with elements

m̄ij(λ) =




−2da, if i = j = 1,
1− eλ, if i = 1, 2 ≤ j ≤ d+ 1,
1− e−λ, if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)(1− e−λ), if i = 1, j = 2d+ 1,
m′

ij(λ), otherwise.

We find that
detm′(λ) = detm′(−λ) = detm. (4.18)

The determinantal expressions (4.13) with (3.12), (4.17), and (4.18) give

lim
r↑∞
P00(x(r)) = lim

r↑∞
{(detm)2 + det m̄(λ) det m̃(−λ)(nḠ(r))2}

= (detm)2 = P 2
0 .

Here we set
det m̄(λ) = a detm∗(λ),
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with a matrix m∗(λ) = (m∗
ij(λ))1≤i,j≤2d+1 with elements

m∗
ij(λ) =





−2d, if i = j = 1,

(1− eλ)/a1/2, if i = 1, 2 ≤ j ≤ d+ 1,
(1− e−λ)/a1/2, if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)(1− e−λ)/a1/2, if i = 1, j = 2d+ 1,

(1− eλ)/a1/2
−2da1/2n(Gi1(0)− eλG11(0)), if 2 ≤ i ≤ d+ 1, j = 1,

(1− e−λ)/a1/2

−2da1/2n(Gi1(0)− e−λG11(0)), if d+ 2 ≤ i ≤ 2d+ 1, j = 1,
1(i = j) + n[ϕ(i,1),(i,j)(0)− eλϕ(1,1),(1,j)(0)], if 2 ≤ i ≤ d+ 1, 2 ≤ j ≤ 2d,
1(i = j) + n[ϕ(i,1),(i,j)(0)− e−λϕ(1,1),(1,j)(0)], if d+ 2 ≤ i ≤ 2d+ 1,

2 ≤ j ≤ 2d,
(1− 1/n)
×n[ϕ(i,1),(i,2d+1)(0)− eλϕ(1,1),(1,2d+1)(0)], if 2 ≤ i ≤ d+ 1, j = 2d+ 1,
1(i = 2d+ 1) + (1− 1/n),
×n[ϕ(i,1),(i,2d+1)(0)− e−λϕ(1,1),(1,2d+1)(0)], if d+ 2 ≤ i ≤ 2d+ 1,

j = 2d+ 1.

(4.19)

By the definition (4.10), we see

C00(x(r)) = a
2detm

∗(λ) detm∗(−λ)
(detm)2

(nḠ(r))2 × (1 +O(1/r)), as r ↑ ∞.

Since Ḡ(r) is given by (3.12), (4.11) of Theorem 4.6 (ii) is proved with

c2(d, a, n) = (ac1(d, a))
2detm

∗(λ)× detm∗(−λ)
(detm)2

.

Now the problem is reduced to the calculation of detm and detm∗(λ). Consider a matrix
R = (Rij)1≤i,j≤N with elements

Rij =




u, if i = j = 1,
b, if i = 1, 2 ≤ j ≤ d+ 1,
c, if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)c, if i = 1, j = 2d+ 1,
q, if 2 ≤ i ≤ d+ 1, j = 1,
e, if d+ 2 ≤ i ≤ 2d+ 1, j = 1,
f, if 2 ≤ i ≤ d+ 1, 2 ≤ j ≤ 2d, j ̸= i, j ̸= i+ d,
1 + v, if 2 ≤ i = j ≤ d+ 1,
h, if 2 ≤ i ≤ d, j = i+ d,
(1− 1/n)f, if 2 ≤ i ≤ d, j = 2d+ 1,
(1− 1/n)h, if i = d+ 1, j = 2d+ 1,
s, if d+ 2 ≤ i ≤ 2d+ 1, 2 ≤ j ≤ 2d, j ̸= i, j ̸= i− d,
t, if d+ 2 ≤ i ≤ 2d+ 1, j = i− d,
1 + k, if d+ 2 ≤ i = j ≤ 2d,
(1− 1/n)s, if d+ 2 ≤ i ≤ 2d, j = 2d+ 1,
1 + (1− 1/n)k, if i = j = 2d+ 1.

(4.20)
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so that
P00(x(r)) = detM(r) = detM

′(r), r > 0, x(r) ∈ Zd.

Now we expand detM ′(r) along the first and the (2d + 2)-th rows. Let |M ′(j, k)| be the de-
terminant of M ′(r) with the first and the (2d + 2)-th rows and the j-th and the k-th columns
removed and multiplied by −(−1)1+j × (−1)2d+2+k = (−1)j+k. Then we have

detM ′(r) =

2(2d+1)∑
j=1

2(2d+1)∑
k=1,k ̸=j

M ′(r)1jM
′(r)2d+2,k|M ′(j, k)|.

Remark that, by (4.15) and (4.16),

|M ′(j, k)| = O(1/r), as r → ∞,

if 1 ≤ j, k ≤ 2d+ 1 or 2d+ 2 ≤ j, k ≤ 2(2d+ 1), and

|M ′(j, k)| = |m′(j)(λ)| × |m′(k)(λ)| × (1 +O(1/r)), as r → ∞,

if 1 ≤ j ≤ 2d + 1 < k ≤ 2(2d + 1) or 1 ≤ k ≤ 2d + 1 < j ≤ 2(2d + 1), where |m′(j)(λ)| is the
(1, j)-cofactor of m′(λ). Then

detM ′(r) =




2d+1∑
j=1

m′
1j(λ)|m′(j)(λ)|






2d+1∑
j=1

m′
1j(−λ)|m′(j)(−λ)|




+




2d+1∑
j=1

m̃′
1j(r, λ)|m′(j)(−λ)|






2d+1∑
j=1

m̃′
1j(r,−λ)|m′(j)(−λ)|




= detm′(λ)× detm′(−λ) + det m̄(λ)× det m̄(−λ)×
(
nḠ(r)

)2
(1 +O(1/r)), (4.17)

where m̄(λ) = (m̄ij(λ))1≤i,j≤2d+1 with elements

m̄ij(λ) =




−2da, if i = j = 1,
1− eλ, if i = 1, 2 ≤ j ≤ d+ 1,
1− e−λ, if i = 1, d+ 2 ≤ j ≤ 2d,
(1− 1/n)(1− e−λ), if i = 1, j = 2d+ 1,
m′

ij(λ), otherwise.

We find that
detm′(λ) = detm′(−λ) = detm. (4.18)

The determinantal expressions (4.13) with (3.12), (4.17), and (4.18) give

lim
r↑∞
P00(x(r)) = lim

r↑∞
{(detm)2 + det m̄(λ) det m̃(−λ)(nḠ(r))2}

= (detm)2 = P 2
0 .

Here we set
det m̄(λ) = a detm∗(λ),
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which are written as

g1 = (1 + a)g0 −
1

2d
,

g2 = [2d(1 + a)2 − 1]g0 − 2(d− 1)g3 − (1 + a). (4.23)

The formula (4.21) with (4.22) and (4.23) gives

P0 = detm =
1− 2dag0
2dn

[2{1− d(g0 − g3)}+ (1− 4dg0)a− 2dg0a]

×
[
2(d− 1)(g0 − g3)− (1− 4dg0)a+ 2dg0a2

]2

×
[
{1− (g0 − g3)}2 − (g2 − g3)2

]d−2
. (4.24)

It proves (4.9) of Theorem 4.6 (i).
It should be noted that, if we put n = 1 and take a ↓ 0 limit in (4.24), we have the formula

P0 =
4(d− 1)2

d
(1− dḡ03)ḡ203[(1− ḡ03)2 − ḡ223]d−2,

where
ḡ03 = lim

a↓0
(g0 − g3), ḡ23 = lim

a↓0
(g2 − g3).

In particular, ḡ03 = 1/π and ḡ23 = 1− 1/π for d = 2 [27], and thus we have

P0 =
2

π2

(
1− 2

π

)
, d = 2.

This coincides with the value of P0 obtained by Majumdar and Dhar [19] for the two-dimensional
BTW model.

We can also find that the matrix m∗(λ) defined by (4.19) is in the form (4.20) with

u = −2d, b = (1− eλ)/a1/2,
c = (1− e−λ)/a1/2, q = (1− eλ)/a1/2 − 2da1/2(g1 − eλg0),
e = (1− e−λ)/a1/2 − 2da1/2(g1 − e−λg0), f = (g1 − g3)− eλ(g0 − g1),
s = (g1 − g3)− e−λ(g0 − g1), v = (g1 − g0)− eλ(g0 − g1),
k = (g1 − g0)− e−λ(g0 − g1), h = (g1 − g2)− eλ(g0 − g1),
t = (g1 − g2)− e−λ(g0 − g1).

The formula (4.21) gives

detm∗(λ) = −2d
[
{1− (g0 − g3)}2 − (g2 − g3)2

]d−2 × detS,

where

detS = b1(d, a, λ) + b2(d, a, λ)
1

n
.

with some functions b1 and b2 of d, a, λ. Since (3.11) gives

eλ(a) = 1 + a+
√
a(a+ 2) = 1 +

√
2a1/2 +O(a), as a ↓ 0,
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We perform the following procedure on R.

(i) Subtract (the first row) ×q/u from the i-th row with 2 ≤ i ≤ d+ 1.

(ii) Subtract (the first row) ×e/u from the i-th row with d+ 2 ≤ i ≤ 2d+ 1.

(iii) Subtract the second row from the i-th row with 3 ≤ i ≤ d+ 1.

(iv) Subtract the (d+ 2)-th row from the i-th row with d+ 3 ≤ i ≤ 2d+ 1.

(v) Add the j-th column to the second column with 3 ≤ j ≤ d+ 1.

(vi) Add the j-th column to the (d+ 2)-th column with d+ 3 ≤ j ≤ 2d.

(vii) Add (the (2d+ 1)-th column) ×1/(1− 1/n) to the (d+ 2)-th column.

(viii) Subtract (the (d+j)-th column) ×(t−s)/(1+k−s) from the j-th column with 3 ≤ j ≤ d.

After these procedures, by changing the orders of rows and columns appropriately, we obtain
the following identity.

detR = u×
[
1 + v − f − t− s

1 + k − s
(h− f)

]d−2

× (1 + k − s)d−2 × detS, (4.21)

where S = (Sij)1≤i,j≤4 with elements

S11 = 1 + v + (d− 1)f − dbq/u, S12 = h+ (d− 1)f − dcq/u,
S13 = (1− 1/n)(f − cq/u), S14 = f − bq/u,
S21 = t+ (d− 1)s− dbe/u, S22 = 1 + k + (d− 1)s− dce/u,
S23 = (1− 1/n)(s− ce/u), S24 = s− be/u,
S31 = 0, S32 = 1/(n− 1),
S33 = 1 + (1− 1/n)(k − s), S34 = t− s,
S41 = 0, S42 = 0,
S43 = (1− 1/n)(h− f), S44 = 1 + v − f.

Define
g0 = nG(0), g1 = nG(e1), g2 = nG(2e1), g3 = nG(e1 + e2),

where G(x) is given by (3.3) and e1, e2 are the unit vectors in the first and second directions in
Zd. Since the system is isotropic, we can find that the matrix m defined by (4.14) is in the form
(4.20) with

u = 1− 2dag0, b = c = g0 − g1,
q = e = 1− 2dag1, f = s = g1 − g3,
v = k = g1 − g0, h = t = g1 − g2.

(4.22)

By Lemma 3.2 and the isotropy of the system gives

2d(1 + a)g0 − 2dg1 = 1,
2d(1 + a)g1 − (g0 + g2 + 2(d− 1)g3) = 0,
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which are written as

g1 = (1 + a)g0 −
1

2d
,

g2 = [2d(1 + a)2 − 1]g0 − 2(d− 1)g3 − (1 + a). (4.23)

The formula (4.21) with (4.22) and (4.23) gives

P0 = detm =
1− 2dag0
2dn

[2{1− d(g0 − g3)}+ (1− 4dg0)a− 2dg0a]

×
[
2(d− 1)(g0 − g3)− (1− 4dg0)a+ 2dg0a2

]2

×
[
{1− (g0 − g3)}2 − (g2 − g3)2

]d−2
. (4.24)

It proves (4.9) of Theorem 4.6 (i).
It should be noted that, if we put n = 1 and take a ↓ 0 limit in (4.24), we have the formula

P0 =
4(d− 1)2

d
(1− dḡ03)ḡ203[(1− ḡ03)2 − ḡ223]d−2,

where
ḡ03 = lim

a↓0
(g0 − g3), ḡ23 = lim

a↓0
(g2 − g3).

In particular, ḡ03 = 1/π and ḡ23 = 1− 1/π for d = 2 [27], and thus we have

P0 =
2

π2

(
1− 2

π

)
, d = 2.

This coincides with the value of P0 obtained by Majumdar and Dhar [19] for the two-dimensional
BTW model.

We can also find that the matrix m∗(λ) defined by (4.19) is in the form (4.20) with

u = −2d, b = (1− eλ)/a1/2,
c = (1− e−λ)/a1/2, q = (1− eλ)/a1/2 − 2da1/2(g1 − eλg0),
e = (1− e−λ)/a1/2 − 2da1/2(g1 − e−λg0), f = (g1 − g3)− eλ(g0 − g1),
s = (g1 − g3)− e−λ(g0 − g1), v = (g1 − g0)− eλ(g0 − g1),
k = (g1 − g0)− e−λ(g0 − g1), h = (g1 − g2)− eλ(g0 − g1),
t = (g1 − g2)− e−λ(g0 − g1).

The formula (4.21) gives

detm∗(λ) = −2d
[
{1− (g0 − g3)}2 − (g2 − g3)2

]d−2 × detS,

where

detS = b1(d, a, λ) + b2(d, a, λ)
1

n
.

with some functions b1 and b2 of d, a, λ. Since (3.11) gives

eλ(a) = 1 + a+
√
a(a+ 2) = 1 +

√
2a1/2 +O(a), as a ↓ 0,
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We perform the following procedure on R.

(i) Subtract (the first row) ×q/u from the i-th row with 2 ≤ i ≤ d+ 1.

(ii) Subtract (the first row) ×e/u from the i-th row with d+ 2 ≤ i ≤ 2d+ 1.

(iii) Subtract the second row from the i-th row with 3 ≤ i ≤ d+ 1.

(iv) Subtract the (d+ 2)-th row from the i-th row with d+ 3 ≤ i ≤ 2d+ 1.

(v) Add the j-th column to the second column with 3 ≤ j ≤ d+ 1.

(vi) Add the j-th column to the (d+ 2)-th column with d+ 3 ≤ j ≤ 2d.

(vii) Add (the (2d+ 1)-th column) ×1/(1− 1/n) to the (d+ 2)-th column.

(viii) Subtract (the (d+j)-th column) ×(t−s)/(1+k−s) from the j-th column with 3 ≤ j ≤ d.

After these procedures, by changing the orders of rows and columns appropriately, we obtain
the following identity.

detR = u×
[
1 + v − f − t− s

1 + k − s
(h− f)

]d−2

× (1 + k − s)d−2 × detS, (4.21)

where S = (Sij)1≤i,j≤4 with elements

S11 = 1 + v + (d− 1)f − dbq/u, S12 = h+ (d− 1)f − dcq/u,
S13 = (1− 1/n)(f − cq/u), S14 = f − bq/u,
S21 = t+ (d− 1)s− dbe/u, S22 = 1 + k + (d− 1)s− dce/u,
S23 = (1− 1/n)(s− ce/u), S24 = s− be/u,
S31 = 0, S32 = 1/(n− 1),
S33 = 1 + (1− 1/n)(k − s), S34 = t− s,
S41 = 0, S42 = 0,
S43 = (1− 1/n)(h− f), S44 = 1 + v − f.

Define
g0 = nG(0), g1 = nG(e1), g2 = nG(2e1), g3 = nG(e1 + e2),

where G(x) is given by (3.3) and e1, e2 are the unit vectors in the first and second directions in
Zd. Since the system is isotropic, we can find that the matrix m defined by (4.14) is in the form
(4.20) with

u = 1− 2dag0, b = c = g0 − g1,
q = e = 1− 2dag1, f = s = g1 − g3,
v = k = g1 − g0, h = t = g1 − g2.

(4.22)

By Lemma 3.2 and the isotropy of the system gives

2d(1 + a)g0 − 2dg1 = 1,
2d(1 + a)g1 − (g0 + g2 + 2(d− 1)g3) = 0,
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This exponent may be identified with the critical exponent ν = 1/2 obtained by Vespignani
and Zapperi by the generalized mean-field theory [30]. They claimed that they made only
use of conservation laws to evaluate ν = 1/2 and thus at least on this result their mean-field
theory is exact for any d ≥ 2. The present work justifies their conjecture. We can conclude
that with respect to the avalanche propagators and height-(0, 0) correlation functions the upper
critical dimension of the ASM is two. This result does not contradict to the result by Priezzhev
[24], since he studied the intersection phenomena of avalanches and for them the upper critical
dimension is four.

The results (5.1) and (5.2) suggest that there exists a scaling limit such that

lim
r↑∞,a↓0:

a1/2r=κ/
√
2d

rd−2nG(x(r)) = FG(κ),

lim
r↑∞,a↓0:

a1/2r=κ/
√
2d

r2dC00(x(r)) = FC(κ), 0 < κ <∞

with

FG(κ) = 2−(d+1)/2π−(d−1)/2κ(d−3)/2e−κ,

FC(κ) = 2−(d+1)π−(d−1)

[
1 + (d− 1)γ̄
(d− 1)γ̄

]2
κd+1e−κ,

This observation is consistent with the statement

G(x(r)) ∼ r−(d−2), as r ↑ ∞ (5.6)

and (4.3) claimed by Majumdar and Dhar [19] for the self-organized criticality realized in the d-
dimensional BTWmodel with d ≥ 2. (Note that for the two-dimensional BTWmodel, G(x(r))−
G(0) ≃ −(1/2π) log r, as r ↑ ∞.)

5.2 The q → 0 limit of the Potts model

Majumdar and Dhar [20] discussed the relationship between the ASM and the q ↓ 0 limit of the
q-state Potts model. For q ∈ {2, 3, . . . }, the q-state Potts model on the lattice GL = (G

(v)
L , G

(e)
L )

given by Definition 2.8 is defined as follows. At each vertex v ∈ G(v)
L = ΛL ∪ {r}, put a spin

variable s(x) ∈ {1, 2, . . . , q}. The Hamiltonian for the configuration s = {s(v)}
v∈G

(v)
L

is given

by

H(s) = −
∑

e={v,w}∈G
(e)
L

1(s(v) = s(w)).

The partition function of the Potts model in the Gibbs ensemble with a temperature T > 0 is
defined by

Z(q, T ) =
∑

s∈{1,2,...,q}G
(v)
L

e−H(s)/T

=
∑

s∈{1,2...,q}G
(v)
L

∏

e={v,w}∈G
(e)
L

[
1 + χ1(s(v) = s(w))

]
(5.7)
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we found that

b1(d, a, λ) = O(a2),

b2(d, a, λ) =
4(d− 1)
d

(g0 − g3){1− d(g0 − g3)}{1 + (d− 1)(g0 − g3)}+O(a1/2), as a ↓ 0.

Thus we obtain

lim
a↓0

detm∗(λ) detm∗(−λ)
(detm)2

=

[
2d{1 + (d− 1)ḡ03}

(d− 1)ḡ03

]2
.

Since lima↓0 c1(d, a)/a
(d−3)/4 = (d/(2π2))(d−3)/4/(4π), (4.12) of Theorem 4.6 is proved.

5 Discussions

5.1 Critical exponent νa

The results (3.8) of Theorem 3.3 and (4.11) of Theorem 4.6 mean that both of G(x(r)) and
C00(x(r)) decay exponentially as increasing r with a correlation length ξ(d, a). Since ξ(d, a) <∞
for any a > 0, the stationary state of the DASM is non-critical [28]. Moreover the theorems
imply that, if we make the parameter n be large with a fixed m, then the value of a = m/(2dn)
can be small and

nG(x(r)) ≃ c1(d)a
(d−3)/4 e

−r/ξ(d,a)

r(d−1)/2
, (5.1)

C00(x(r)) ≃ c2(d)a
(d+1)/2 e

−2r/ξ(d,a)

rd−1
, as r ↑ ∞, (5.2)

where c1(d) = (d/(2π
2))(d−3)/4/(4π) and c2(d) is given by (4.12).

Consider a series of DASMs with increasing n with a fixedm. Then we will have an increasing
series of correlation lengths {ξ(d, a)} and we will see the asymptotic divergence,

ξ(d, a) ≃ 1√
2d
a−νa as a→ 0 (5.3)

with

νa =
1

2
for all d ≥ 2. (5.4)

We notice that, if we identify a with a reduced temperature

t =
|T − Tc|
Tc

(5.5)

around a critical temperature Tc in the equilibrium spin system, (5.1) with (5.3) and (5.4) is
exactly in the Ornstein-Zernike form of correlations in the mean-field theory of equilibrium phase
transitions (see, for instance, Eq.(61) in Section 3.1 of [14]). This implies that we can regard
(5.3) as a critical phenomenon with a parameter a approaching to its critical value ac = 0 and
we can say that the associated critical exponent νa is exactly determined as (5.4). Vanderzande
and Daerden discussed the exponent νa for the DASM on more general lattices [29].
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and in the off-critical regions with L ↑ ∞, the correlation length ξ = ξ(t, b) behaves as

ξ(t, 0) ∼ t−νt with νt =
1

yt
,

ξ(0, b) ∼ b−νb with νb =
1

yb
, as t ↓ 0, b ↓ 0.

For the two-dimensional q-state Potts model, the critical exponents are determined as func-
tions of q through the parameter

u = u(q) =
2

π
cos−1

(√
q

2

)

as [31]

xϵ =
1 + u

2− u
, yt = 2− xϵ =

3(1− u)
2− u

,

xσ =
1− u2

4(2− u)
, yb = 2− xσ =

(3− u)(5− u)
4(2− u)

.

They give the limits

xϵ → 2, yt → 0, xσ → 0, yb → 2, as q ↓ 0⇐⇒ u ↑ 1.

Majumdar and Dhar [20] noted by their results (4.3) and (5.6) for the BTW models that the
avalanche propagator G(x(r)) and the height-(0, 0) correlation function C00(x(r)) in ASM play
the roles of the order-parameter density correlation function Gσ(r) and the energy density
correlation function Gϵ(r) in the critical phenomena, respectively. In particular, in the two-
dimensional case, the power-law exponents are respectively given as

2xσ

���
q↓0
= 0 = (d− 2)

���
d=2
, 2xϵ

���
q↓0
= 4 = 2d

���
d=2
.

Our interpretation of the present result (5.4) is that introduction of dissipation to the ASM may
correspond to imposing an external magnetic field B to the Potts models and hence νa = 1/2 is
identified with

νb

���
q↓0
=
1

yb

����
q↓0
=
1

2
.

We remark that the critical exponents for the specific heat α, for the order parameter β, and
for the magnetic-field susceptibility γ of the

α =
2(1− 2u)
3(1− u)

→ −∞, β = 1 + u

12
→ 1

6
, γ =

7− 4u+ u2

6(1− u)
→ ∞, as q ↓ 0⇐⇒ u ↑ 1.

We suspect some interpretation of the value β|q↓0 = 1/6 in the DASM.
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with χ = e1/T−1. We consider a subset of G(e)
L denoted by E ⊂ G(e)

L . Each connected component

in E is called a cluster. Let c(E) be the number of disconnected clusters of E; E =
∪c(E)

i=1 Ei,

where Ei ∩ Ej = ∅, i ̸= j. If a vertex v ∈ G(v)
L is not connected by any edge in E, we write

v /∈ E. By performing binomial expansions and taking the summation over spin configurations
in (5.7), we obtain the Fortuin-Kasteleyn representation of partition function,

Z(q, T ) =
∑

E⊂G
(e)
L

q|{v∈G
(v)
L ;v/∈E}|qc(E)χ|E|, (5.8)

where |E| denotes the number of edges in E. Note that we can regard (5.8) as a function of
q ∈ R and T > 0. We consider the asymptotics of (5.8) in the limit q ↓ 0. The dominant terms
in this limit should be with E such that c(E) = 1 and {v ∈ G(v)

L : v /∈ E} = ∅ ⇐⇒ E contains all
vertices in G

(v)
L ⇐⇒ E is a spanning subgraph of GL. If we further take the high-temperature

limit T ↑ ∞ ⇐⇒ χ ↓ 0, we have only spanning subgraphs with a minimal number of edges,
which are just the spanning trees. Then we have

lim
T↑∞

lim
q↓0
T (2L+1)dq−1Z(q, T ) = |TL|,

where TL is the collection of all spanning trees on GL. As shown in Section 2.4, there establishes
a bijection between TL and AL (Lemma 2.11) and AL = RL (Proposition 2.12). (The relation
between the q ↓ 0 limit of the q-state Potts model with finite temperatures and the ASM is
discussed in Section 7.2 in [7].) The two-dimensional q-state Potts model shows a continuous
phase transition associated with critical phenomena at a finite temperature 0 < Tc <∞ without
external magnetic field B = 0, when q = 2, 3 and 4 [31].

Usual critical phenomena of spin models are specified by the behavior of two-point correlation
functions for the energy density Gϵ(r, t, b, L) and for the order-parameter density Gσ(r, t, b, L).
Here r denotes the distance of two points, t the reduced temperature (5.5), b the reduced external
field

b =
|B|
Tc
,

and L the size of the lattice on which the model is defined. It is conjectured in the scaling theory
that, if L is sufficiently large and we observe the system in the very vicinity of the critical point;
t≪ 1, b≪ 1, the correlation functions behave as

Gϵ(r, t, b, L) = L
2xϵFϵ

( r
L
, tLyt , bLyb

)
,

Gσ(r, t, b, L) = L
2xσFσ

( r
L
, tLyt , bLyb

)
, (5.9)

with the scaling exponents xϵ, xσ, yϵ, yσ, and the scaling functions Fϵ,Fσ. If the system is of
d-dimensional, the hyperscaling relations xϵ+yt = d, xσ+yb = d hold (see, for instance, [13, 14]).
From the scaling forms (5.9), we expect the power-law behavior of correlation functions at the
critical point (t = b = 0, L ↑ ∞) such that

Gϵ(r) ∼ r−2xϵ , Gσ(t) ∼ r−2xσ , as r ↑ ∞,
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5.3 Recent topics on height correlations

In Section 4 the one-point and the two-point correlations of height-0 sites were calculated for
the DASM with general d ≥ 2. In the two-dimensional case, the three-point and the four-point
correlations were also calculated for height-0 sites and general property of ‘the height-0 field of
ASMs’ have been extensively studied from the view point of a c = −2 conformal field theory
[18, 8].

For the two-dimensional BTW model, in which the values of stable height of sandpile are
h = 0, 1, 2, and 3, the height correlations have been calculated also for h ≥ 1. Priezzhev
determined Pα for α ∈ {0, 1, 2, 3}, where the results with α ≥ 1 are expressed using multivariate
integrals of determinantal integrands [23]. Poghosyan et al. [22] claimed that the height-0 state
is the only one showing pure power-law-correlations and that general form of height correlations
for h ≥ 1 contains logarithmic functions. They showed that for α ≥ 1

C0α(x(r)) =
P0α(x(r))− P0Pα

P0Pα
≃ 1

r4
(c1 log r + c2), as r ↑ ∞

with some constants c1, c2. Moreover, they predicted that Cαβ(x(r)) ∼ log2 r/r4 if α ≥ 1 and
β ≥ 1. These results are discussed with the logarithmic conformal field theory. See also [11]. We
will see a lot of interesting open problems concerning height correlations for the BTW models
and the DASMs in higher dimensions.
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