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Parameter Estimation of Orthonormal Functions Using Block Toeplitz 
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Abstract: In many areas of signal, system, and control theory, orthogonal functions play an 

important role in issues of analysis and design. In this paper, we will expand and generalize the 

orthogonal functions as basis functions for dynamical system representations. The orthogonal 

functions can be considered as generalizations of, for example, the pulse functions, Laguerre func-

tions, and Kautz functions. A least-squares identification method is studied that estimates a finite 

number of expansion coefficients in the series expansion of a transfer function, where the expansion 

is in terms of recently introduced generalized orthogonal functions. The analysis is based on the 

result that the corresponding linear regression normal equations have a block Toeplitz structure. 

It is shown how we can exploit a block Toeplitz structure to increase the speed of convergence in 

a series expansion. 
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 1. Introduction 
 The use of orthogonal functions with the aim of 

adapting the system and signal representation to 
the specific properties of the systems and signal 
has a long history. The main part of this work 
dates back to the classical work of Lee.8 There has 
been interest in developing schemes for estimation 
of single-input single-output systems using so-called 
orthonormal basis functions. 3) 4) 11) 
The main applications are in system identifica-
tion and adaptive signal processing, where the 

parametrization of models in terms of finite expan-
sion coefficients is attractive because of the linear in 
the parameters model structure. This allows the use 
of linear regression estimation techniques to identify 
the system from observed input and output datas. 

A model of a linear stable time-invariant system 
with additive disturbance is given by: 

 y(t) = G°(q)u(t) + v(t)(1) 

where 
00 

G°(q) _ E 9kq-k,(2) 
k=1 

where u(t) and y(t) are the input and output sig-
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nals, respectively. Time shifts are represented by 
the delay operator q-lu(t) = u(t — 1). And v(t) 
is a unit-variance, zero-mean white noise process. 
System identification deals with the problem of 
finding an estimate of G° (z) from observations of 

{y(t), u(t)}t_1,...,n, see. 1) The identification prob-
lem simplifies to a linear regression estimation prob-

lem if the model can be represented by 

00 

G(z) z _d wk'lik(z),(3) 
k=1 

with {wk }k_1 2 ... the unknown model parameters. 
There are a number of research areas that deal with 
the question of either approximating a given system 
G with a finite number of coefficients in a series ex-
pansion as in (3), or identifying an unknown system 
in terms of a finite number of expansion coefficients 
through 

G(z) _  wkWk(z)(4) 
k=1 

where the accuracy of the model will be essentially 
dependent on the choice of basis functions (z). 
Note that the choice k(z) = z—k corresponds to 
the use of so-called FIR (finite impulse response) 
models.1) In section 2 we present the orthonormal 
functions, and we formulate an identification of ex-
pansion coefficients in section 3. In section 4 we 
introduce the inversion algorithm of block Toeplitz 
matrix. Finally, the proposed approximation tech-



nique is illustrated by a simple example. 

 2. Orthonormal Functions 
 The  FIR  model  {z-k}k-i ,2,...  is  not  a  suitable  op-

erator for short sampling intervals, the reason being 
that it has a too short memory. By using oper-
ators with longer memory, the number of param-
eters necessary to describe useful approximations 
can be reduced. We shall start by analyzing the 
continuous-time case, which gives useful informa-
tion about what can be expected for short sampling 
intervals. The problem of orthogonalizing a set of 
continuous time exponential functions has been ele-

gantly solved in 1). The key idea is to determine the 
corresponding Laplace transforms, which have very 
simple structures. The analogous discrete problem 
is summarized by the following theorem. 
The sequence of functions { Wk(z)} is determined as 
follows: 

W2k-1(z) = CT')(1 - a(ik)Z)r(k) (Z)(5) 

       =cTc)(14)z)r(k)(z)  W2k (Z)(6) 

where 

k-1 

Ho - Ojz)(1 -13;z) 
r(k) (z) ------------------------ 

H (z - 13i)(z - (3;) 
              j=1 

 CT=(1-0D(1 0;2)(10k0Z)  
(1 +(a)2)(1 +k) - 2C1j.k)(13k + 13Z ) 

 C(k)     -(1 -/1)(1-/(3Z2)(1 -/3k3)2 (1
+ (4)2)(1 + 0/0) — 24)(0k + 13Z) 

(1 + a(1k) 4)(1 +/3k/3) 

                (k) (k)            - (al + a2 )(0k + OZ) 0 (7) 

Here are complex numbers such that 10k1 < 1, 
and a are restricted by the condition (7). 
The functions {Wk(z)}k-1,2,... will be called the dis-
crete Kautz functions. 

 2.1 Laguerre Function 

For /3k = a, where a is real, we can take

  (k)(k) 1  a
1= a, a2 -                    a 

= (1 - a2)1, C a(1 - a2)1 

Then, Kautz functions { klik(z)} simplify to the real 
discrete Laguerre function 

-------- )Tk(Z) = L k(z , a) = - a2 (1 - azk-1 z-a kz-a) 
= L • G L(z)k-1(8) 

where 

    - a21 - az 
L --------- L(z) = ------- 

   z - az - a 

System identification using Laguerre models is stud-

ied in detail in 3)• By taking a = 0, the Laguerre 
function simplifies to an ordinary finite impulse re-
sponse (FIR) model. 

 2.2 Kautz Function 
Another special case is for /3k = 3. For this case 

one can take: 

 (k)1------------+ (k) a
1-=0          +04,7 

and thus 

               c2 (z - b)  1112k-1(Z) 
           Z2 + b(c - 1)z - c 

cz2 + b(c - 1)z + 1- k-1 
Z2 + b(c - 1)z - c 

         = K2k-1(z)Gk(z)k-1 

         ,\/(1 — c2)(1 — b2)  
 W2k(Z) =_ 

z2 + b(c - 1)z - c 
—CZ2 + b(c - 1)z +  
Z2 + b(c - 1)z - c 

= K2k(z)G k(z)k-1 
where 

            .V1 - c2 (z - b) 
 K2k— (Z) =- 

           Z2 + b(c - 1)z - c 

 K2k (2') =\/(1 - c2)(1 - b2) 
Z2 +b(c- 1)z - c



 Gk(z) =—cz2+b(c— 1)z + 1  
          z2 + b(c — 1)z — c 

 and b = (/3 + /3*)/(1 + 1313*), c = —130*. Since 
a(k) and a(k) are not unique, several other sets of 
{~Yk (Z)} are possible. 

 3. Expansion Coefficients 

 Using Laguerre and Kautz function a practical 
parameter identification method for linear time-
invariant systems is introduced. 
A linear model structure will be employed, deter-
mined by 

y(t) = E wkW k (z)u(t)(9) 
k=1 

Given data {u(t), y(t)}t=1,...,N taken from experi-
ments on this system, the corresponding prediction 
error is given by 

 E(t) = y(t) — EWk'W k(z)u(t) (10) 
k=1 

The corresponding estimated transfer function by 

G(z) = E WkW k(z)(11) 
k=1 

where {Wilk (z)} is a set of given basis functions and 

{wk } are the unknown model parameters. The least 
squares method can now be applied to estimate the 
model parameters 

 OT _ (wl,w2i•••,2UN) .(12) 

The input and output relation can be written in the 
linear regression form 

y(t) = zt 0(13) 

where 

Zt = [al (t), •2 (t), . . . , un (t)] 

uk(t) = k(z)u(t), 

Let 

ZT = [z1i • • • , zN], YT = [y(1), ... , y(N)]• 

Then, the least squares estimate of 0 minimizes the

loss function is such as: 

 J =NE (y(t) — zt 0)2 
           t=to 

= N (y — Z0)T (y — Z0).(14) 

The solution of this quadratic optimization prob-
lem is: 

eN = (RN)-1 fN(15) 

where 

      1                T  RN = N Ezt zt 
              t=to 

1 
.fN = Nzty(t)• 

              t=to 

The value of to depends on how the effects of un-

known initial conditions are treated. For large N, 

the effects of to will be negligible. RN is represented 

as follows 

U11 U12 • " (fin 

U21 U22 ••• U2 
RN =(16) 

                                                                                                      • _ Unl Un2 • ' • Unn _ 

where 

       [—UT.2-1u2j-1u2i-1u2j   Ut. = 
    —T—T— 

           u2iu2j-1u2iu'2j 

(i=1,2,.••,j=1,2,...) • 

Where RN is the block Toeplitz matrix of dimen-
sion n x n.4) 

 4. The Inversion Algorithm of Block 
    Toeplitz Matrix 

 Consider RN is a block Toeplitz matrix when we 
estimate a Kautz function. Let the block Toeplitz 
matrix RN be composed of n x n blocks of size p x p 
that is, 

- R
o R1 ... Rn-1 

R=R-1 Ro(17)      P,n 
• R1 

_ R—n+l . • • R-1R0 _ 

where, R3 is the p x p matrix



 r0 r1 • • rp-1 

R=T _ 1ro(18) 
• • rl 

_r_p ••• r_1 ro _ 

Let denote by Jp,n the exchange matrix, given by 

0 Jp 

• Jp,n=•(19) 
Jp0 

where Jj is the p x p matrix with ones in the antidi-
agonal and zeros elsewhere 

    0 1 
J~=. •(20) 

    1 0 

From (16), and (17) it follows that the sequence of 
matrices has a nested structure 

Rpn Rn 
Rp,n+1 =(21) 

RnTRo 

where 

       Rn 

 Rn =Rn=[Rn...R1]. (22) 
       R1 

Applying the well-known the matrix inversion 
lemma for a partitioned matrix to (22), (23), we ob-
tain 

          Rp,n+Wn1Vn Wna7,1 1
(23) Rp,n+1= 
          a-1VTa-1        nnn 

where 

Wn = -RP nRn(24) 

 ITT=-RnRp ,n(25) 
and 

an = Ro - R,nRp,n1 Rn.(26) 

Thus, a recursive scheme for the inversion of Rp ,n is 

possible, provided we can derive recursive schemes

for the computation of the matrices Wn,Vn and an. 
This aim let us first introduce the following nota-

tion. 

Rn 2 JpRn, Rn  Rn Jp 
 and 

~T 
     Rn~Jp,nRn,Rn~RnJp ,n(27) 

It follow from (24) (27) 

  Wn+1=-Rp,n+1Rn+1 

              1 

         _—Rp
,n+1`Ip,n+1Rn+1 

                  T~          ——Jp ,n+1Rp,n+1Rn+1 

Rp,n +VnanWn VnanT Rn 
= —Jp ,n+1 

        TT-T'~          a
n1nanRn+1 

Rp nRn + Vna,_T (WnRn + Rn+1) 
 = —Jp,n+1 __ 

              aTWTR+R 

                          (28) 
Thus, we obtain 

     WVn 
Wn+1 =—CC--tT /Qn (29) 

OpIp 

where 

Wn =Jp ,nWn(30) 

~n=WnRn+Rn+1•(31) 

Similarly, Vn+l can be rewritten as 

    VnWn 
        -1() V

n+1=-an'Yn32 
     OpIp 

where 

Vn= ~Ip,nVn(33) 

        T 

 7n = VnRn + R.(34) 

The recursion for an is obtained from (24) (27) 
and (33) (35) as follows



Fig. 1.: Impulse response

                   T -T  an+i = an - "Yn 1,-,n •(35) 

 Equations  (30)  (35)  and  (36)  constitute  the  re-
cursions necessary for carrying out the recursive in-
version scheme suggested by (24) (27). 

 5. Example 

 We give a simple example to illustrate the advan-
tage of using Kautz function for second order sys-
tem. Consider a contiuous time transfer function 

1  
G° (s) =(36) 

        s2 + 0.2s + 1 

with resonant frequency wo --= 1 and damping 0.1. 

This system is sampled using a zero-order hold with 

sampling period T = 0.5. 

Impulse response of system is Fig. 1. Fig. 2 is 

the result of FIR model where the order is 100. The 

choice a = 0.84, n = 12, which corresponds to the 

real part of the poles of the true system, is illus-

trated in Fig. 3, 4. Let use take b = 0.91 and 

c = —0.92. The Kautz approximation of order 6 is 

shown in Fig. 5, 6. And a Fig. 5 is the result 

that it was calculated by using the Block-Toeplitz 

matrix. 

 6. Conclusion 

 In this paper we have analysed some asymptotic 

properties of linear estimation schemes that identify 
a finite number of expansion coefficients in a series 

expansion of a linear stable transfer function, em-

ploying recently developed generalized orthogonal 
basis functions. The basis functions generalize the

Fig. 2. Bode plots: Solid line-true system, 

    dashed line-FIR model of order 100

Fig. 3. Bode plots: Solid line-true system, 

     dashed line-Laguerre model of order 12

Fig. 4. Bode plots: Solid line-true system, 

     dashed line-Laguerre model of order 12



Fig. 5. Bode plots: Solid line-true system, 

     dashed line-Kautz model of order 6

Fig. 6. Bode plots: Solid line-true system, 

     dashed line-Kautz model of order 6

well known pulse, Laguerre and Kautz basis func-

tions. We illustrated by numerical example that the 

presented method of identification can be performed 
with good accuracy using a rather smaller numbers 

of expansion terms than that for the case where the 

FIR model is used.
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