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Abstract

Stability of parallel flow of the compressible Navier-Stokes equation in a cylin-
drical domain is studied. It is shown that if the Reynolds and Mach numbers
are sufficiently small, then the linearized semigroup is decomposed into two
parts; one behaves like a solution of a one dimensional heat equation as time
goes to infinity and the other one decays exponentially. Based on the linearized
analysis, it is shown that if the Reynolds and Mach numbers are sufficiently
small, then parallel flow is asymptotically stable and the asymptotic leading
part of the disturbances is described by a one dimensional viscous Burgers
equation.
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1 Introduction

This paper studies the large time behavior of solutions of the initial boundary value
problem for the compressible Navier-Stokes equation

Op + div(pv) = 0,
p(dv + v - Vv) — pAv — (p + ') Vdive + Vp(p) = pg,
vlap, = 0,
(p,v)]t=0 = (po, o)

A~ /N A/~
S G S——y
N N
N N N N

in a cylindrical domain 2, = D, x R:
Q. ={z = (2, 23); 2’ = (21, 22) € D,, 23 € R}

Here D, is a bounded and connected domain in R? with smooth boundary 0D,;
p = p(z,t) and v = T(v!(z,t),v*(x,t),v3(z,t)) denote the unknown density and
velocity, respectively, at time ¢ > 0 and position z € €),; p(p) is the pressure that is
a smooth function of p and satisfies

P'(ps) >0
for a given positive constant p,; p and g’ are the viscosity coefficients that satisfy
>0, Zpu+u >0;

and g is an external force of the form g = "(g'(2'), g*(2'), ¢*(2’)) with ¢' and g¢°
satisfying
(gl(xl)v 92(37,)) = (8I1(I)(x/)7 axzq)(x,))v
where ® and ¢3 are given smooth functions of 2/. Here and in what follows - stands
for the transposition.
Problem (1.1)-(1.3) has a stationary solution @, = T(p,(2’),s(2’)) which repre-
sents parallel flow. Here p, is determined by

Px

Const. — ®(z') = [ @dn,
fD* ps - p*d‘r/ = 07

while 7, takes the form
7, = 1(0,0,72(2")),

3

where v

(z') is the solution of

_MA/G::’ = ﬁsgga
@Z’ ‘ap*: 0.

Here
A=0+02,



The purpose of this paper is to investigate the large time behavior of solutions
to problem (1.1)-(1.4) when the initial value (p,v) |;=0= (po, vo) is sufficiently close
to the stationary solution %, = 1(p,, v,).

As for the asymptotic behavior of multi-dimensional compressible Navier-Stokes
equations on unbounded domains, a lot of results have been obtained through the
studies on the problems about global existence, stability, convergence rates and so
on, see, e.g., [6, 8, 17, 19, 20, 21, 22, 23, 25] and references therein. Concerning the
stability of parallel flows, in [16], the stability of a plane Poiseuille type flow in an
infinite layer of R™ was considered under the disturbances in some L-Sobolev space
on the infinite layer. It was shown in [16] that the low frequency part of the linearized
semigroup behaves like n — 1 demensional heat kernel and the high frequency part
decays exponentially as ¢ — oo, provided that the Reynolds and Mach numbers
are sufficiently small and the density of the parallel flow is sufficiently close to the
given constant p,. The nonlinear problem was studied by Kagei [12]; and it was
proved that the stationary parallel flow is asymptotically stable under sufficiently
small initial disturbances in some L2-Sobolev space. Futhermore, the asymptotic
behavior of the disturbance is described by an n — 1 dimensional heat equation
when n > 3. When n = 2, the asymptotic behavior of the disturbance is no longer
described by a linear equation but by a one dimensional viscous Burgers equation.
( See also [3, 4, 5] for the stability of time periodic parallel flow.)

As for the case of the cylindrical domain €, lIooss and Padula [9] studied the
linearized stability of a stationary parallel flow in €2, under the disturbances periodic
in z3. It was shown in [9] that the linearized operator generates a Cy-semigroup in
L? on the basic periodicity cell under vanishing average condition for the density-
component. In particular, if the Reynolds number is suitably small, then the semi-
group decays exponentially as time goes to infinity. Furthermore, the essential
spectrum of the linearized operator lies in the left-half plane strictly away from
the imaginary axis and the part of the spectrum lying in the right-half to the line
Re) = —c for some number ¢ > 0 consists of finite number of eigenvalues with finite
multiplicities. As for the stability under local disturbances on €, i.e., disturbances
which are non-periodic but decay at spatial infinity, the stability of the motionless
state @, = 7(ps, 0) was studied in [18]; and it was shown in [18] that the disturbance
decays in L?*(€2,) in the order ¢~ if the initial disturbance is sufficiently small in
H3(Q,) N LY(Q,), where H3(£2,) denotes the L?-Sobolev space on €, of order 3.
Furthermore, the asymptotic behavior of the disturbance is described by a solution
of a one dimensional linear heat equation. (See also [10] for the analysis in LP(f2,).)

In this paper we will consider the stability of parallel flow % under local distur-
bances on €. After introducing suitable non-dimensional variables, the equations
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for the disturbance u = (¢, w) = T(v*(p — ps),v — v) takes the following form:

1 + v20,,0 + 2 div(psw) = £ (¢, w), (1.5)
Ow — ¥ Aw — LV divw + V<M¢)

+5t des + Vi0nw + (- V'0l)es = f(6,w), (1.6)

w |ga=0, (1.7)

(¢, w) [e=0= (¢, wo). (1.8)

Here Q, is transformed into Q@ = D x R with |D| = 1; us = (ps,vs) and P(p)
denote the dimensionless parallel flow and pressure, respectively; v, v and ~ are the
dimensionless parameters defined by

. ptp
p LV’ p LV

with the reference velocity V' which measures the strength of v5; e = 7(0,0,1) € R?
and V' = 1(0,,,0,,); f°(¢,w) and f(¢,w) are the nonlinearities given by

F(d.w) = —div(gw),
F(6.w) = —w- Vw + gt (= Aw + 426 — o Vdive

2V (2822) — 9 (P(p)6?) + Pa(ps, 6,000,

where

Py(ps, 6, 00 = vaps) AV (6 Pilp 0)
+ 2’y p2 V<P”(p5)¢2 ¢3P3(psa ¢)>

2

— eV (2P (006 + P ()8 + 256 Pylps, )

with )
Py(ps, &) = / (1= 02P"(p, + 6726)d

See Section 2.2 below for the definition of non-dimensional variables. This problem
is written as

Owu~+ Lu = F(u), u= T(gb,w), w lop=0, u |4=0= uo, (1.9)

where F(u) = T(f(¢,w), f(¢,w)); and L is the operator on L*(Q) defined by

Lo ¥ ydiv(ps-) N ( N 0 )
V(ZE)) —ZAL - Y Vdiv + v, - V S e @ (Vo))



with domain
D(L) = {u="(¢,w) € L*(Q); w € Hy(Q), Lu € L*(Q)}.

Here, for a = (a1, az,a3) and b = T(by, by, bs), we denote the 3 x 3 matrix (a;b;) by
a®b.

To investigate the nonlinear problem (1.9), we study spectral properties of the
linearized semigroup e~ *r. We prove that there exists a bounded projection P
satisfying Pye*F = e~*L' P, such that if Reynolds and Mach numbers are sufficiently
small, then, for the initial value ug = 7(¢g, wy), it holds that

e~ Poo — M) {00))u® (1) 2@ < CL+ 1) Huollwre- (1.10)

Here u(%) is some function of '; (¢) denotes the average of ¢y over D, (thus, (¢o)
is a function of z3 € R); and H(¢) is the heat semigroup defined by

H(t) = F e trmastro p

with some constants k; € R and kg > 0, where F and F ! denote the Fourier
transform on R and the inverse Fourier transform, respectively. Furthermore, the
(I — By)-part of e~ 'L satisfies the exponential decay estimate

_ _ _1
le™ (I = Po)uol| (o) < Ce dt{HUOHHl(Q)xﬁl(Q) +t72 |lwoll r2(0) } (1.11)

for a positive constant d. Here H'(Q) is the set of all locally H' functions in L2(€2)
whose tangential derivatives near 9€) belong to L*((2).

Based on the results on spectral properties of e~**, we investigate the nonlinear
problem (1.9). We prove that if the initial disturbance uy = (¢, wy) is sufficiently
small, then the disturbance u(t) exists globally in time and it satisfies

lu(t)l|z2) = O(t™T) (1.12)

u(t) = (0u®)|| L2 = O™+ (6 > 0) (1.13)

as t — oo. Here o0 = o(x3,1) satisfies the following one dimensional viscous Burgers
equation
00 — k07,0 + K105,0 + K204,(07) = 0

with initial value (¢y).

To prove (1.12) and (1.13), we first investigate spectral properties of the lin-
earized semigroup e~**. To do so, we consider the Fourier transform of the linearized
equation in 3 € R which is written as

O+ Leuw =0, U |—o= 1o,

where ¢ € R denotes the dual variable. The operator Eg has different properties
of the cases |¢| < 1 and |€] > 1. We thus decompose the semigroup e X into two

parts: e ' = F1 (e_tzé legj<1) + F ! (e_tif llg/>1). As for the low frequency part,
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we take a new approach. A straightforward application of the arguments in [16, 18]
seems to yield a more restrictive smallness conditions for the Reynolds and Mach
numbers. To overcome this, we combine the arguments in [16, 18] and the energy
method in [9]. Asin [16, 18], we decompose the low frequency part of the semigroup
according to the spectral properties of the linearized operator with zero-frequency.
The decay estimate for the L? norm is then established with the aid of the energy
method in [9] applied to the decomposed system. Based on the decay estimate for
L? norm, we obtain the estimate for the L? norm of the derivatives. We note that
this approach also enables us to improve the decay estimate in [16, Theorem 3.2].
On the other hand, in the case of the high frequency part, we employ the Fourier
transformed version of Matsumura-Nishida’s energy method as in [16, 18].

After establishing the decay estimates for the linearized semigroup, we then
investigate the spectrum of —L¢ for |£] < ¢ in more detail for some small 7o > 0.
The spectrum of —Zg for |£] < ry can be regarded as a perturbation from the
one with £ = 0, and we will show that the spectrum near the origin is given by
a simple eigenvalue \g(§) = —ikol — k1€ + O(|€]®) as €] — 0. Furthermore,
we will establish the boundedness of the eigenprojection ﬁ(f) for the eigenvalue
Ao(§) in some Sobolev space by investigating the regularity of the corresponding
eigenfunctions. Setting Py = F _11{|£|§T0}ﬁ(5)}" with a frequency cut-off function
1j¢)<roy such that 1ye<,oy = 1 for || < rg and 1yg<yy = 0 for [£] > ro, we find the
asymptotic behavior of e ** Py as described in (1.10).

The proof of (1.12) and (1.13) is then given by using the factorization of e % Py,
estimate (1.11) and the energy method. We decompose the disturbance u(t) into its
Py and I — P, parts. We then estimate the Py-part by representing it in the form of
variation of constants formula in terms of e~** Py and employ the factorization result
of et Py. For the (I — Py)-part of u(t), we employ the Matsumura-Nishida energy
method. In contrast to [3, 12], we make use of the estimate (1.11) and combine it
with the energy method. This simplifies the argument in [3, 12] where a complicated
decomposition is also used in the energy method to estimate the (I — Py)-part of
u(t), In this paper we do not need to use such a complicated decomposition of the
(I — Py)-part in the energy method due to (1.11).

This paper is organized as follows. In Section 2 we introduce notations and
non-dimensional variables. We then state the existence of stationary solution which
represents parallel flow. In Section 3 we state our main results of this paper. Sec-
tion 4 is devoted to the study of the linearized semigroup. We derive the decay
estimate of the low frequency part in Section 4.1, and the high frequency part in
Section 4.2. In Section 4.3 we will investigate the spectrum of —L, for |£] < 7o,
and in Section 4.4 we will establish a factorization of e7*' Py and prove (1.10). Sec-
tion 4.5 is devoted to the proof of (1.11). The nonlinear problem is then studied
in Section 5. In Section 5.1 we decompose the problem into the one for a coupled
system of the Py and I — Py parts of u(t). Section 5.2 is devoted to estimating the
Py-part of the disturbance u(t), while the (I — Py)-part is estimated in Section 5.3.
Section 5.4 is devoted to the estimates for the nonlinearities. The proof of (1.13) is
given in Section 5.5.



2 Preliminaries

In this section we introduce notations throughout this paper. We then introduce
non-dimensional variables and state the existence of stationary solution which rep-
resents parallel flow.

2.1 Notation

We first introduce some notations which will be used throughout the paper. For
1 < p < 0o we denote by LP(X) the usual Lebesgue space on a domain X and its
norm is denoted by || - ||zr(x). Let m be a nonnegative integer. H™(X) denotes the
m th order L? Sobolev space on X with norm || - ||gm(x). In particular, we write
L*(X) for H(X).

We denote by CJ*(X) the set of all C™ functions with compact support in X.
HJ'(X) stands for the completion of CJ*(X) in H™(X). We denote by H!(X) the

dual space of Hg(X) with norm || - ||g-1(x).

We simply denote by LP(X) (resp., H™(X)) the set of all vector fields w =
Tw!, w? w3) on X and its norm is denoted by || - [|r(x) (vesp., || [|am(x)). For u =
(¢, w) with ¢ € H¥(X) and w = T(w!, w?, w?) € H™(X), we define ||u||Hk X)xH™(X)
by ([ull e x)yxmmxy = 9l xy + l[wllamx

When X = 2 we abbreviate LP((2) as LP, and likewise, H™(Q2) as H™. The
norm || - ||rr(q) is written as || - || z», and likewise, || - || gm(q) as || - ||

In the case X = D we denote the norm of LP(D) by | - |,. The norm of H™(D)
is denoted by | - |gm, respectively. The inner product of L?(D) is denoted by

/f ' fge L3(D).

Here g denotes the complex conjugate of g. For u; = T(¢;,w;) (j = 1,2), we also
define a weighted inner product (uq,us) by

(U1, ug) = /¢1¢2 . <) g/ +/ wy - Wapsda',

where ps = ps(2’) is the density of the parallel flow us. As will be seen in Proposi-

tion 2.1 below, ps(z’) and % are strictly positive in D.

For f € L'(D) we denote the mean value of f over D by (f):

1 /
<f>=(f,1):m/Dfdx,

where |D| = [, da’. For u = (¢, w) € L'(D) with w = (w', w? w?®) we define (u)
by
(u) = (@) + (w1) + (w2) + (ws).

Partial derivatives of a function w in z, 2/, x3 and t are denoted by d,u, 0, u,
Opsu and Gyu. We also write higher order partial derivatives of u in x as 0%u =

(07 u; |a] = k).



We set

-

51 L
L1k = (L1007 @ eer)

10:f()[|2, k=0,
(0O + 2SO )", k=1
We define a function space Z(T') by

IDF @)l =

(ST

Z2(T) = {u="Tp,w) € C°([0,T}; H* x (H*> 0 Hy)) N CH([0,T); L?); |l z¢r) < o0}
where

1

T 2

lullzery = sup [u@®)z+ (Jo IDw(®IdE)*.
0<t<T

We denote the n x n identity matrix by I,,. We define 4 x 4 diagonal matrices
Qo and Q by

Qo = diag(1,0,0,0), Q = diag(0, 1,1, 1).

It then follows that for u = 7(¢, w) with w = T(w', w? w?),

() @ (2)

We denote the Fourier transform of f = f(z3) (z3 € R) by f or F[f]:

-~

7(6) = FIAE) = /R fas)e€dz, €€ R

The inverse Fourier transform is denoted by F~1:

FHf)(x3) = (2m) 7t /R f(&)e s de, x5 € R.

We denote the resolvent set of a closed operator A by p(A) and the spectrum by
a(A).

We finally introduce a function space which consists of locally H' functions in
L*(Q)) whose tangential derivatives near dD belong to L*(Q2). To do so, we first
introduce a local curvilinear coordinate system. For any T, € 0D, there exist a
neighborhood (’350 of 7, and a smooth diffeomorphism map ¥ = (¥, ¥s) : (5% —
B1(0) = {2’ = (21, 22) : |2/| < 1} such that

U(Oy N D) = {2 € By(0) : 21 > 0},
\11(65/0 NOD) ={z € B(0) : z = 0},
detV,¥ #0 on 656 NnD.

9



By the tubular neighborhood theorem, there exist a neighborhood Oz of 7j and a
local curvilinear coordinate system y' = (y1,%2) on O defined by

o' = yra1(y2) + 7H0,52) - R = Og, (2.1)

where R = {/ = (y1,45) : |y1]| < 01, |yo| < 2} for some &y, 05 > 0; a1 (y») is the unit
inward normal to 0D that is given by

vx’qjl

|vz’\111| '

a1 (y2) =

Setting y3 = x5 we obtain
Vo = e1(y2)0y, + J (Y )ea(y2)0y, + €30y,

T€1(92)
Vy= | 7y e2(t2) | Vo,

where

e1(y2) = (al(o‘%)) , ea(y2) = <a2(0y2)) , 3= § ; (2.2)

—ViU,
J(y) = |detV ¥, a = =z =
with V5, = 1(-9,,¥,, 0,,¥;). Note that d,, and 9,, are the inward normal
derivative and tangential derivative at 2’ = U=1(0,y5) € 9D N Oz , respectively. Let
us denote the normal and tangential derivatives by 0,, and 0, i.e.,

Op = 0y, 0 =0y,

Since 0D is compact, there are bounded open sets O, (m = 1,..., N) such that
0D Cc UN_,0,, and for eachm = 1, ..., N, there exists a local curvilinear coordinate
system 3 = (y1,%2) as defined in (4.68) with Oz, ¥ and R replaced by O,,, ¥

and R, = {y’ = (y1,92) : |y1| < g’ln, lya| < g;”} for some 5;”,'5;” > 0. At last, we
take an open set Oy C D such that

UN_yOm DD, OyNoD = ).

We set a local coordinate 3y’ = (y1,y2) such that y; = 21, y2 = 22 on Oy. We note
that if h € H%(D), then h |sp= 0 implies that 9*h |sprom= 0 (k =0, 1).
Let us introduce a partition of unity {x }>_, subordinate to {O,,}N_,, satisfy-
ing
N
> Xm=1onD, xu€CFOn) (m=012-- N).

m=0

10



We denote by H'(€2) the set of all locally H* functions in L2(Q2) whose tangential
derivatives near 92 belong to L*(Q2), and its norm is denoted by |lw|| 7. @

N
[l g1 gy = llwllz + [[0zs w2 + Ix00ww]]2 + 21||Xmaw||2-
Note that H}(€) is dense in H(€).

2.2 Stationary solution

In this subsection we rewrite the problem into the one in a non-dimensional form
and state the existence of stationary solution which represents parallel flow. Let
ko be an integer satisfying kg > 3. We introduce the following non-dimensional
variables:

¢
vt

= 2T 2
p=pViP, =40 g =57

x=VL0x, v=Vu, p=pp, L=

2 1
V= ety = 2o sup 0k 0= ([ ar)®
* * D*

k=0 x'€D.x
The problem (1.1)-(1.3) is then transformed into the following non-dimensional prob-
lem on 2 =D x R:

Opp + divz(pv) =0, (2.3)

PO+ 7T - Vi) — vAT — (v + V)Vadivad + P'(5)Vap = 57, (2.4)

U lop =0, (2.5)

(5, 0) lz=o= (po, Vo). (2.6)

Here D is a bounded and connected domain in R?; § = T(@glé, 05, P, 9*); and v and

V' are non-dimensional parameters:

!/

L
0V PV’

We also introduce a parameter :

7= /Py = YR,

Note that the Reynolds and Mach numbers are given by 1/v and 1/+, respectively.
In what follows, for simplicity, we omit tildes of Z, ¢, ¥, 7, 7, ﬁ, Zf>, D and Q
and write them as z, t, v, p, g, P, ®, D and 2. Observe that, due to the non-
dimensionalization, we have
D] = / o’ =1,
D

() = /D f(a!) de'

Let us state the existence of a stationary solution which represents parallel flow.

and thus,

11



Proposition 2.1. If & € C*(D), ¢* € H™(D) and |®|cx, is sufficiently small,
then (2.3)-(2.5) has a stationary solution u, = *(ps,vs) € C* (D). Here py satisfies
{ Const. — ®(2') = || ) 2 gy

n
Jppsdx’ =1, p1 < ps(2') < p2 (p1 <1< p2),

for some constants p1,ps > 0 and v, is a function of the form vy = T(0,0,v3) with
3 3

v? =v3(a’) being the solution of
—vAv] = psg°,
Ug ’aD: 0.

“

Furthermore, us = *(ps, vs) satisfies the estimates:

|ps(2') = 1en < O|®|en (14 |®|en )",

[02lex < Clog] sz < Cl@[or(1+ |@[cr)*|g° | x
fork=3,4,--- ko.

Proposition 2.1 can be proved in a similar manner to the proof of [24, Lemma
2.1].

Setting p = p, + 7 2¢ and v = v, + w in (2.3)-(2.6) (without tildes), we arrive
at the initial boundary value problem for the disturbance u = (¢, w) written in
(1.5)-(1.8) in section 1.

3 Main result

In this section we state the main result of this paper. Hereafter we set
v=v+v.

Theorem 3.1. There exist positive constant vy, Yo and wy such that if v > vy,
#2; > 72 and ||ps — 1|z < wo, then the following assertions hold. There is a
positive number ey such that if ug = T(¢g,wo) € [H? x (H> N HY] N L' satisfies
|uo||g2ar: < €0, then there exists a unique global solution u(t) = T(p(t),w(t)) of
(1.5)-(1.8) in CY([0,00); H*x (H*NHy))NC ([0, 00); L?); and the following estimates
hold

|0 u®ll = Ot ), (1=0,1) (3.1)

lu(t) = (Gu®) @)l = O(t+)  (v6 > 0) (32)

ast — oo. Here u® = u®(2') is a function given in Proposition 4.55 (iil) below;
and 0 = o(x3,t) is a function satisfying

oo — H;Oaggo- =+ ’flazga + '%28:103 (U2> =0,
7 0= [p ¢o(a', 5)da’

with some constants kg > 0 and k1, ko € R.

(3.3)

12



As in [3, 12], Theorem 3.1 is proved by combining the local solvability (Propo-
sition 5.23 below) and the appropriate a priori estimates. We will establish the
necessary a priori estimates in Section 5.

To establish the a priori estimates, we will use the results on spectral properties
of the linearized semigroup e~** which will be studied in Section 4. In Section 5.1,
we will decompose the problem into the one for a coupled system of the Py and I — F,
parts of u(t). The a priori estimates will then be derived in Section 5.2-Section 5.4.
The proof of (3.2) will be given in Section 5.5.

4 Linear problem
In this section, we treat the linearized problem of (1.5)—(1.8)
O + V30,50 + v div(psw) = 0,
dw — - Aw — LV divw + v(%gﬁ)

vAv3 3 / /,.3
Tap0es + v 0p,w + (W' - Vv))es = 0,

+
w |an=0,

(qbv w) |t:(): (§b07 wO)-
This problem is written as
O+ Lu=0, u="(¢,w), wlop=0, u |—o= uo, (4.1)

where L is the operator on L?*(§2) defined by

(v div(p,) 00
— V(M') —pLSA[:s—%VdiV—i—vS-V + ( vare, e3 @ (Vo?)

2p, ¥2p2

=L+ Lo
with domain
D(L) = {u="(¢,w) € L*(Q); w € Hy(Q), Lu € L*(Q)}.
In this section, we set

w = [lps = Hlcwo-

In a similar manner to that in [9], one can show that —L; generates a Cy-
semigroup on L%(€). Since || Lyulls < C/||ul]2, it follows from the standard perturba-
tion theory that —L generates a Cy-semigroup e % on L?(Q). It is not difficult to
prove that if ug € H'(Q) x HJ(2), then

e "uy € C(0,T); H'(Q) x Hy(2)),
Qoe tug € H! (O,T; LQ(Q)), (4.2)
Qe g € L2(0,T; H*(Q)) N HY (0, T; L*(2))

13



for all T > 0. Furthermore, since H}(Q) is dense in H(£), one can see from (4.2),
Lemma 4.50 and Lemma 4.51 below that if uy € H'(2) x H'(£2), then

e g € C([0,T); HY(Q) x HY(Q)) N C((0,T]; HY(Q) x HY(Q)),

~ - (4.3)
VQe "ug € L*(0,T; H'())

for all T > 0.

Our aim in this section is to analyze the spectrum of the linearized operator for
the purpose of the study of the nonlinear stability in Section 5. It is shown that if the
Reynolds and Mach numbers are sufficiently small, then the linearized semigroup
is decomposed into two parts; one behaves like a solution of a one dimensional
heat equation as time goes to infinity and the other one decays exponentially. We
first consider the decay estimate for the linearized semigroup in Section 4.1 and
Section 4.2. Furthermore, we analyze the spectrum of the linearized operator in
Section 4.3—-Section 4.5. Some estimates for the spectral projections are established,
which will also be useful for the study of the nonlinear problem.

Let us state the main results in this section. In Section 4.1 and Section 4.2, we

will obtain the decay estimate for e=**u.

Theorem 4.1. Suppose that ug = (¢, wo) € (H'(Q) x HF()) N LY(Q). There

exist positive constants vy, v, and wy such that if v > vy, 2;’—;, >y and w < wy,
then there holds the estimate

1 1 _
10 8% e~ Fuoll 2y < CLO+ 87272 Juoll e 22(py) + € ¥ |luoll () }
fort >0 and 0 < k+ 1 <1 with positive constants C and d.

tL

In Section 4.3-Section 4.5, we will analyze e™**uy more precisely.

Theorem 4.2. There exist positive constants vy, 1 and wy such that if v > vy,

2 .
21,1”, > 712 and w < wq, then e g is decomposed as

e tuy = e Pyug 4+ e Py ug.
Here Py and P, are projections satisfying
Py+Po=1 P?>=P,

PL C LP, Pe ' =¢tp

for P € {Py, Py }; and e 'L Py and e £ Py, have the following properties.
(i) Ifug € LY(2) N L2(Q), then e 'L Pyug satisfies the following estimates

1050% e~ Pyug|ly < Crp(1 4 1) 7572 Jugy (4.4)
uniformly fort >0 and for k=0,1,--- kg andl =0,1,---;
le™* Poug — [H () {60)Ju®]2 < C~|uol|x (4.5)
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uniformly fort > 0. Here
H(t){go) = F e tmaermos(go)],

where u®) = u©(2') is the function given in Lemma 4.6 below; and k1 € R and
ko > 0 are some constants satisfying

R1 = 0(1)7
—c2N +0(5H) + (2 + %) xO(24) ],

v2 o
where C'is a positive constant.
(i) If up € H(Q2) x H'(Q), then there exists a constant d > 0 such that e Py ug
satisfies
le™ = Poctg|| 111 < Ce™ ([l 72 + 12 wio]]2) (4.6)

uniformly fort > 0.
Remark 4.3. It is well-known that if ug = T(gbo,wo) € LY(Q), then ||H(t){(do)|l2 =
O(t_i), and o = o(x3,t) = H(t)(po) satisfies

Oyo — /{08530 + K104,0 =0,

g ‘t:OZ fD ¢0(Z’/, xg)dﬂf/.

To prove Theorem 4.1 and Theorem 4.2, we consider the Fourier transform of
(4.1) in x5 variable which is written as

06 +i€0l6 + 7"V - () + 722'/5/)3@3 =0, (4.7)
O — (N = )@ = JV/(V @ + i@’ + V' (5420) +igld =0, (48)
0" — £ (A — &) - %W’”+%W%H£”M@+%U

fp ¢+ - V'l =0, (4.9)
@ |op=0 (4.10)
for t > 0, and R R
(¢, @) ls=o="(¢0, Wo) = To. (4.11)
We thus arrive at the following problem
O+ L =0, T |mo= o (4.12)

with a parameter £ € R. Here u = T(¢(w t), w(z',t)) € D(Eg) (' € D, t > 0),
Uy € HY(D) x Hj(D), and ZE is the operator on L?*(D) of the form

where
0 0 0
A= |0 — (A = [E) L ,,%V’V" —ip%EV’ ,
0 —i &V — (A — [€) + e
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T3 Awiil . 2
ngs Y (ps) i7" ps§ 0 0

0

Be= | V(22 il o |,G=1] 0 0 0
vA'v3 T 3

Zf'yps 0 il 72032 (Vivg) 0

with domain of definition
D(L¢) = {@ = "(¢,®) € L*(D); @ € H}(D), L¢u € L*(D)}.

Note that D(L¢) = D(Lo) for all € € R, where Ly = Lg |¢o.
Asin the case of L, following [9], one can show that —fg generates a Cy-semigroup
on L?(D). Furthermore if uy € H'(D) x Hy(D), then

e ety € C([0,T); HY(D) x HY(D)),
Qoe ety € H'(0,T; H'(D)), (4.13)
Qe ety € L2(0,T; H*(D)) N H'(0,T; L*(D))

for any T > 0. Furthermore, we can see that if ug € H'(D) x H*(D), then

e ey € C([0,T); HY(D) x HY(D)) N C((0,T]; HY(D) x HY(D)),

_ ~ (4.14)
O Qe eug € L*(0,T; H' (D))

for any 7" > 0.
To prove Theorem 4.1 we decompose e~ "“uq in the following way. Fix a pos-
itive number ro. We define 1y,<rsy and lgyisroy by i<y (§) = 1 if [£] < ro,

Lini<roy(§) = 0 3f [§] > 7o, and 15} (€) = 1 — Ly i<y (§)-
We decompose e~ *Fuy as

tL

e Mug = Uy (t)ug + Use (t)ug,

where

Ur()uo = FH [Lgni<roy () Tho], - Uso(t)io = F [Ljgprg (e <o)

We can then obtain the following decay estimates for Uy (t)ug and Us(t)ug

Theorem 4.4. There exist positive constants vy, v, wi and d such that if v > vy,

% > v and w < wy, then for any | = 0,1,---, there exists a positive constant

C' = C(l) such that the estimates

“8i3U1(t)Uo"L2 <C(1+ Z5)71/44/2HUOHL1(R: L2(D))>
19,0k, U (#)uoll 2 < C{L(1 + )42 lwol| o re 20y + € (ol 22 + | Durttoll2) }

hold fort > 0.
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Theorem 4.5. There exist positive constants vy, y1, wi and d such that if v > vy,

#2; > 2 and w < wy, then the estimate

1Use(t)uo]lmrr < Ce™ [lug|

holds for t > 0 with a positive constant C'.

Theorem 4.1 follows from Theorem 4.4 and Theorem 4.5. In Section 4.1 we will prove
Theorem 4.4 and in Section 4.2 we will give an outline of the proof of Theorem 4.5.
In Section 4.3 we will investigate the spectrum of —L,¢ for || < 1. The proof of
Theorem 4.2 (i) will be given in Section 4.4; and more detailed properties of Py and
e ' Py will be given, where we will establish a factorization of e ** Py which will be
useful in the nonlinear analysis. Theorem 4.2 (ii) is proved in Section 4.5.

4.1 Decay estimate of the low frequency part

In this section we give a proof of Theorem 4.4. Theorem 4.4 is a consequence of
Proposition 4.17 and Proposition 4.25 below.

For simplicity we omit ~ of u, ¢ and w in (4.7)-(4.12).

To prove Theorem 4.4 we decompose u(t) based on a spectral property of /[:g
with & = 0, namely, EO. R

We introduce the adjoint operator L of L¢ with the weighted inner product (-, -).
We define ZZ by

L= A;+ B{ + C;

with domain of definition

D(L;) = {u="(¢,w) € L¥(D); w € HY(D), Lu € L*(D)},

where R R R R
AZ = Ag, Bg = —B¢
and 2 s
~ 00 7P’(p:;s
Co=10 0 Vv
00 0

Note that D(Zg) = D(Ez) for any £ € R. It follows that
(Ao, v) = (u, A0} = . ),

~ ~

(Beu,v) = (u, Biv) = —(u, Bev),

and



for u,v € D(Eg).

We begin with a lemma on the zero-eigenvalue of EO and Zg;

Lemma 4.6. (i) There exists a constant wy > 0 such that if %ﬁw < wi, then A =0
s a simple eigenvalue of EO and Z(’S
(i) The eigenspaces for A = 0 of Eo and EE‘; are spanned by u® and uO*, respec-
tively, where

u® =T w®),  w® =70,0,w*3)

and

Here

2 z! 2 s z’ -1
#0(@) = a0y, 0= ( /D 13<255z'§>d“’l) !
and w3 is the solution of the following problem

{ A3 — - Av3p©,

w3 |5p=0;

and .
¢\ (a') = Lo O(a').
(iii) The eigenprojections 1O gnd IO+ for A\=0 of ZO and Z(’g are given by
MOy = (u, u@*)u® = (Qou)u®,
1%y — (u, u(®)y O

for uw="1(¢,w), respectively.
(iv) Let u® be written as u©@ = ul” + ul”, where

uf” =7(0,0), i =70, ).
Then
and
(u, u®) = 29(¢) + (w0, w®?p,)

for u =", w) =", v’ w?).

Remark 4.7. (¥ = O(1), ag = O(1) and w3 = O(s) as 7 — <.
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Proof. Let Lou = 0 for u = “(¢, w', w?) € D(EO). Then
PV (psw’) = 0,
v v P'ps) 1\ _
_EA/w/ . Zvlvl . wl + V/( VQZS ¢) — 07
—plsA/w3 + #A/vg’gb +w' - Vi =0,

w |8D: 0.

(4.15)

We take the weighted inner product of (4.15) with 7(¢,w’,0) to get
v|V'W'[3 4+ 7|V - w'|3 = 0.
Since w’' € H}(D), we have w' = 0. It then follows that
Plps) 4\ —
V' (Z22¢) =0,
_A/wS — _+A,U3¢
7 ps s
w3 |8D: 0.

This implies that %gb is a constant since D is connected, and we conclude that

Ker(Ly) = span{u©®}. Note that [, ¢@da’ = 1.
Let Liu = 0 for u = %(¢, w’, w®). Then

21/
R GAVA (psw') + P7(pS)A/U§w3 =0,

v v P'(ps) 3 3 _
— LA = ZV'V ' = VI (5029) + wiVil =0,
—ZAw? =0,

Ps
w |8D: 0.

The third equation, together with w? |sp= 0, implies that w® = 0, and hence,

—*V' - (psw’) =0,
_p_VSAIw/ . p%v/v/ ' — v/(P;(ps)gb) =0,

Y Ps
w’ ’3[): 0.

Similarly to the case of Eo, one can show that w’ = 0 and PW,Q(—ZS_% is a constant. We

set ¢l0* = z—Zng(O)(x’). Note that [, qb(o)m%dx’ = 1. We thus proved (i), (ii)
and (iii) except the simplicity of A = 0. The assertion (iv) can be verified by direct
computations.

It remains to prove the simplicity of A = 0. Since we have already proved that
Ker (L) = span{u®} and Ker(L) = span{u(®*}, if we would prove the following
lemma, then the proof of the simplicity of A = 0 would be complete.

Lemma 4.8. There exists a constant wy > 0 such that if %gw < wq, then R(EO)
and R(EB) are closed; and there hold that

L*(D) = Ker(Lo) @ R(Lo), L*(D) = Ker(Ly) @ R(L}).
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To prove Lemma 4.8, we show the following proposition.

Proposition 4.9. There exists a constant wy > 0 such that if %’;w < wy, then for

any [ ="1f%¢g) = 1(f° d,¢%) € L*(D) with (f°) = 0, there is a unique solution
u="¢,w) e D(LO) of the following problem:

ZOU = fv
{ % =0, (4.16)

Proof. Let us prove that if (f°) = 0, then (4.16) has a unique solution u = (¢, w) €
L*(D) x Hg(D) with (¢) = 0. The problem (4.16) is rewritten as the following
system:

V' -w = F[w’, fl)]7

—vA"w + V/¢ = G/[¢7 wl; fO’ g/]7

4.17
w’ ‘BD: 07 ( )
(¢) =0
and
_UANwd = 3 1.3
v Go, w'; g7, (4.18)
w3 ’8D: 07
where
Flw'; f°] = V' ((1 — ps)w’) + 7%fo,
G'lo,w's 2,91 =0V Flw's f) + V' (1 = po)¢) + V'psp
£V (1= 282)0) + pug
Golo,w's %) = =2 Aid — paw' - V03 + pog’.
We define a set X by
X ={(p,v'); p € L*(D), v = "(v',0%) € Hy(D), (p) = 0}
with norm
[(p,v")x = Ipl2 + V|V'V'|2.
We assume that (5, w' ) € X. Let us consider the following problem
v/ ' = F[,&‘}“l’ f[)]7
—v AW+ V'o = G, 7 0, g, (4.19)

w’ ‘8D: 0.

It holds that
Fla'; f°) € L*(D), (F[a@"; f]) =0,
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G'lo. ' [°.g1 € HH(D),
where H~!(D) denotes the dual space to Hg(D) with norm |- |-1. In fact, we have
from the Poincaré inequality that

[F[@; oo < [V (1= po)@) |2 + 25| 02
< C{wl@'|m + 5112}
< C{w|V'@ | + 5|},
G'[6, @3 £, )|l < C{IV'FI@; £l + |V’((1 _ ps> ) -
+ V' ps6li- + 10,V (1 )\H LA 19}
< C{BIF[@; )]s+ wlol> + g |2}
< C{w(|dl: + PIV'@]s) + %2 + lg']2}-

From [26, I1I.1.4, Theorem 1.4.1], we see that there is a unique solution (¢, w’) € X
of (4.19) and there holds the following estimate

16)2 + V|V |y < C{|FIa"; |2 + |G 6, @5 0, g1}

< O{(iFh + 4 DIVTR) + 2+ ),
where C} is a positive constant. Let us define a map I' : X — X by
[(, @) = (p,w') for (p,@)€ X
where (¢,w') € X is a solution of (4.19). We see from (4.20) that
0@, @) < Co{w(|la+ (v + D) V'@ |2) + L[]+ |g']2}-

Since we have the estimate

(v, @) = DG, )| < Cro{[8lz + (v + ) V')
for ((Zl, wh), (52, 1) € X, if we take w sufficiently small satisfying w < 557 s

then we see that T' : X — X is a contraction map. This implies that there is a unique
(¢, w') € X such that T'(¢,w') = (¢,w'), i.e., there is a unique solution (¢, w’) € X
of (4.17).

Furthermore, for a solution (¢, w') € X of (4.17), since

G°lo,w's ¢°] € L*(D),
there is a unique solution w® € Hy(D) of (4.18). Consequently, we have

Eou = f in the sense of distribution,

where f = 1(f° ¢, ¢%) € L*(D) with (f°) = 0. Since f € L*(D), it holds that
Lou € L*(D). Tt then follows that

u € D(EQ)
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This completes the proof. Il

Proof of Lemma 4.8 We have already proved that

Ker(Lo) = I L2(D).

~

To prove R(EO) = (I —I'V)L*(D), we first show that
u="T¢,w)e (I -TO)VLAD) if andonlyif (¢) = 0. (4.21)
Let us prove (4.21). We can decompose u = T(¢, w) as
u = (¢)u® + u,.

Here
(p)u® e MOLX(D), wuy ="(¢1,w1) € (I —NY)L*(D).

This implies that if (¢) = 0, then
u=($)u” +u; =u; € (I - ﬁ(o))LZ(D).

On the other hand, if u = T(¢, w) € (I—ﬁ(o))LQ(D), then there exists u = T(;E, w) €
L?(D) such that N
u=u-— <¢>u(0).

It then follows that B _
(9) =(8) = (#) =0.
We thus conclude that (4.21) holds true.
We next show that R(EO) = (I—ﬁ(o))L2(D). Since <Q020u> = (V' (ps;w)) =0,
we see from (4.21) that Lyu € (I — V) L*(D), and, therefore,

R(Lo) ¢ (I -T1)L*(D).
On the other hand, if f =7(f°, ¢, ¢%) € (I - ﬁ(o))Lz(D), then it follows from (4.21)
that (f°) = 0. By Proposition 4.9, there exists a unique solution v = (¢, w) €
D(Lo) such that Lou = f with (¢) = 0. This implies that f € R(Lo), and, thus,
(I —1©)L*(D) c R(L).
Therefore we see that R(EO) = (I — ﬁ(o))L2(D). Consequently, we have R(ZO) is
closed and R R
L*(D) = Ker(Lo) ® R(Ly).

Similarly, one can prove that Ker (L) = T©*L?(D) and R(L) = (I-T1©*) L*(D).
We thus see that R(ZE‘)) is closed and

L*(D) = Ker(L;) @ R(Lp).
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This completes the proof of Lemma 4.6. 0

We are now ready to prove Theorem 4.4. We decompose u(t) as follows
u(t) = o(t)u® + uy(t),
o(t) = (Qou(t)) = (u(t),u®"),
ur(t) = (I = TO)u(t).

The density component of u; is denoted by ¢, and the velocity component is denoted
by w, namely,

Uy = T(¢1,w1)-
Note that (¢1) = 0 and w; |sp= 0; the latter follows from u(® € D(ZO) which
implies that w(®* |5p= 0.

Remark 4.10. (i) The boundary condition w;|sp = 0 implies that the Poincaré
inequality holds for wy: |wi|s < C|0pw1s.
(i) The vanishing mean value condition (¢1) = 0 implies that the Poincaré inequal-

ity holds for ¢1: |p1|s < C|0w@1la.

We define ]\A]g by
M = Le — Lo = A¢ + B,
where
0 0 0
Ag=Ac—Ay= (0 2&L, —ZiEV' |,
0 —p%ifV'~ %52

i&v} 0 ~%ips

ZfPl(pS) 0 i§U3
72 ps &

Decomposing u(t) in (4.12) as u(t) = o(t)u'® + u;(t), we obtain
Ay (ou® + uy) + Louy + J\Ajg(au(o) +uy) = 0.
Applying 11 and I — II¥) to this equation, we have

0o + <Q0]\A/[/§(au(0) +up)) =0,
6,5’&1 + L0u1 + ([ — H(O))Mg(au(o) + Ul) =0.

Since ﬁ(o)]\%u = <Q0]\zu>u(0) and QO]TJ{ = Qogg, we get

8t0 + <Q0§§(UU(O) + U1)> = O, (422)
Oyuy + /[:gul + ]\Z(au(o)) - <Q0§5(au(0) + u1)>u(0) =0, (4.23)
wy lop=0, 0(0) =00, u1(0) = 1wy, (4.24)
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where o0y and u; o are given by
og = <UO,U(O)*>, U,Lo = (] — ﬁ(o))UO
We see from (4.14) that if ug € H*(D) x Hj(D), then
oc H'Y(0,T),
uy € C([0,T); H'(D) x Hy(D)),
¢ € H'(0,T; H(D)),
wy € L*(0,T; H*(D)) N H'(0,T; L*(D))
for all T" > 0.
Lemma 4.11. For u; = (¢, wj,w}) € R(I — ﬁ(o))} there hold the estimates:

(i) ‘<Q0§§U(O)>‘ < Clgl.
(ii) ’<Q0§§U1>‘ < C|§|(|¢1|2 + 72|wi’|2),
(iii) ’<Q0§§U1>‘ < C([€]|p1]2 + 72V - w) +iw]s + Ywlw!]).

Lemma 4.11 can be proved by direct computations. We omit the proof.

We will employ an energy method to obtain the decay estimate on solutions of
(4.22)-(4.24). We write (4.23) as:

(Oip1 +ilvipr + 77V - (puwh) + 7 PiEpaw?

+icvtod® +12igp,ow®? — (QoBe(ou® +up) )o@ = 0,
Oy — (A" — ) — p—ZV'(V/ ) +ifwd) + V’(%gﬁl) + ivtw)

— ZieV' (ow %) = 0, (4.25)
O — L (A — ywi — Zig(V' - wh + igw) + i€ (2L y) + igvdud

+ 721;3 ANv3gy +wy - Vi + %52010(0)’3 +ifago

+icvdow®? — (QoBe(ou® + up)yw @ = 0.

\

Before proceeding further we introduce some notations. For u = (¢, w) we define

Eplu] by
/P,(ps)¢2_|_’ / w|2
'YZPS ) ps 2
T( 1

w', w?) we define De[w] by

Eo[lt] = ,YLQ

For w = T(w', w3) with w' =
Delw] = v(|V'wl3 + € |w]3) + 7|V - w' + iéw’]3.

For ¢ we define ¢ by '
¢ = 0 +i€v39.
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Proposition 4.12. There exist constants v > 0 and wy; > 0 such that if v > 14
and ”J“’w < w1, then there hold the estimates:

s (ol + Eofw]) + 3 Delun) < O (& + )Pl + (% + %)|ar3}. (4.26)
v | 1|2 VU VU Vv n

2|5 < C{ 2Pl + ZEIEP I + (1+ 220 Delw ]} (427)

Proof. Multiplying (4.22) by (¢) and taking real part of the resulting equation, we

have
14\ + Re{<QoBg oul +u1)> }=o0. (4.28)

Since Eg — — B and u©* = l—oué ) we see that

<Q0§§u1>6 = <§§U1, O'U(O)*>
= —(u, ég(UU(O)*)> (4.29)
—2(ur, Be(oug")),

where u”) = 7(¢®,0). On the other hand, since

<QoBg ou'® >U = Zf’U‘ { v ¢1 (v Psw§>}7

we have _
Re{(QoBe(ou ™))z} = 0. (4.30)

We thus obtain from (4.28)-(4.30) that
bilol? — £Reur By(ouf?) = (131)

We next take the weighted inner product of (4.25) with u;. The real part of the
resulting equation then gives

4 Folui] + Re<L0u1, u1> + Re<M§ au(o) + uy) u1>
— R€{<QoB£ au () +U1)>< (0),U1>} =0.

3 (4.32)

Since EE = —Bg, we see that Re<§§u1, u1> = 0. It then follows that

Re<zou1, uy) + Re<]\A/[/§(au(O) + u1),uy)
= Re<aou1, w) + R€<A\§U1, w) + Re<ﬁ£(au(0) ), ur) + Re<§5(au(0)) up)
= Re<Cou1, u1> + Dg[wl + Re<A§ ou 0) u1> + Re<B§ au u1>
This, together with (4.32), gives
14 Eolui] + Eg[wl] + Re<aou1, uy) + Re<gg(0u(0)), uy)

- - 4.33
+ Re<Bf(au(0)), uy) — Re{<QOB§(Uu(O) + u1)><u(0), u)} =0. (4:33)

25



We add 3 x (4.31) to (4.33), to get

32 (210 + Bolur]) + Delun] + Re(Cour, wn) + Re(Ae(ou®), ur)
+ Re( Be(oul®. ) — Ref(QuBe(ou® + ) (u®, )} =0,

where u§°) =7(0,w®). Here we used the equation

(4.34)

—Re<u1,Bg auo >~|— Re<B§ oul® u1> Re<B§ aul u1>
By the Poincaré inequality we have
[Re(Ae(ou®), u)| < C(%[ellolufle + Zlellol|V" - w) + iuf].)
< 1 Delun] + CZ|EP? |o|2,

Re(Be(out”), ur)| < Clello|(Z|dnl2 + Zlwil2)
< C( + ) lEPlo* + 5[5 + § Delwn].
Since (¢1) = 0, there holds that
(', un)| < Cslwilo.

Applying Lemma 4.11 and the Poincaré and Holder inequalities, we thus have the
following estimates:

[Re{(QoBe(0u® + 1)) (u®, )}
< C'|§|(|‘7| + |¢1|2+7 |wi’|2)7—2|wi’|2

< 1Dcfwn] + C(L:l6Plof® + eloul3 + L De[wn]),
|Re{<@0u1,u1>}‘ < C(%Wﬂ% + %ﬁg[wl]).
Therefore we find that there exists a constant v; > 0 such that if v > vy, then
L4 ( ol + Bolwn]) + $Delwn] < C{ (5 + ZE)I€PIol + (& + %)Ion 3}
We next estimate ¢;. By the first equation of (4.25) there holds that
#él = - (V/ ) (pswll) + Z.é‘pswily))
— H{i¢v00” + it paow®? — (QuBe(ou® +uy))}.

We thus obtain

. 2y =
Srlonls < CLKEPlof® + KlElPlenls + (35 + <) Delwi] }-

Multiplying by v 4+ v to both sides, we have the desired estimate. This completes

the proof. Il

Let us estimate |¢1],. We first introduce the Bogovskii lemma.
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Proposition 4.13. Let L2(D) be defined by

LX(D) = {f € I*(D) : {f) =0}.
There exists a bounded operator B : L2(D) — HY(D) such that

V' Bf =1,
VBl < CIl
for any f € LQ(D).
Proof. See, e.g., [7, 1.3, Theorem 3.2]. O

The proof of the following proposition is based on the argument in [9].

Propositi0n~4.14. There exist constants vy > 0 and wy > 0 such that if v > vy,
v >1 and iy”w < w1, then there hold the estimates:

%Jg[u ] 2y+1/|¢1|2 (4 35)
< O{ (s + 1) Delwon] + 51612 Delun) + (% + 2D)lePlo},
o]l < Cfsisslwnlf + st lenl3 )
where
Jolui] = #gRe(wiapsl/f/)
with ¢ = Bé,.
Proof. Set ¢ = B¢,. Taking the inner product of (4.25), with p,¢’, we get
Re(dwi, pst) + Re(V'(242¢y), pot)) = Rel, (4.36)

where
I == v(V'wy, V) = v& (i, o) + DV 0, 1) + Tig (w?, 61)
— i€(psvfwl, ¥') + Fig(ow D, 6u).
Let us estimate the first term of the left-hand side of (4.36). It holds that
Re (9w}, pst) = fRe(w), pst) — Re(wy, ps0t").

Since

—V'- 00 = 0y
and
Oipr = —{i&vid1 +7°V' - (pswy) +i67* powy
+ #0809 4 22,00 — (QoBe(ou + )60},
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we obtain

[Re(w}, psOi))|

< Clwil2|0w']s

< Clwy|2{[€]|d1]2 + 7|V - whlo + 2 w) o + 2 IEF|wila + [€]]o]}
slons +C{(v* + %)lelz (1 +72)EP|wn]3 + 7%V - wil3 + Z57[¢[* o]}
Yeul3 + C{ (2 + 2 + - 25) Delwi] + Z2[¢ P}

We next estimate the second term of the left-hand side of (4.36). There exists
wy > 0 such that if w < wy, then it holds that

Re(V/(24226)), puy’) = /7420 Re( 201, (Vpy) - v

IN

IN

> (1 —w)‘
> 2| l3.
As for I, we have
1] < %Wl‘g +C{(v+ ,,+—l, %)Eg[wl] + V!ﬂ?f)&[wl] + %\SIZIUP}-

Therefore it holds that
ARe(w), pst) + 3613 < C{(E+ % + iz + v + ;55) Delwi]
+ v[¢] Dg[le(if ”+” P o}

Multiplying by —= to both sides of this inequality, we have the desired estimate.
This completes the proof U

We next derive the estimate for 0. We introduce a notation. Let us define J; [u]
by
Tilu] = Re{i 5 (ps (A + [€]°) " psuri )7 }

for u = ou® + u; with u; = ¢y, wl, w? w}). Here A is an operator on L?*(D)
defined by

Ap=—-Ayp  for e D(A)=H*D)NHy(D).
Proposition 4. 15 There exist constants v1 > 0, 1 > 0, w; > 0 and oy > 0 such
that if v > vy, 1= A v and ”*”w < w1, then there hold the estimates:
%di((wru)'y |U’2+J1[ ]) 21/+1/’£‘ |U|2
< c{mw% A6 16113 + e max{ 1, €[ €21 2 (4.37)
Delw] + (557 + )\5|2D5[w1]}

A [u]] < Z5lof” + C gz w3,

+ (V+V)V

where g s a positive constant.
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Proof. Since

<Q0§§(0u(0) + u1)> = <Q0§§u(0)>0 + 72 (psw?) + i (v3ey),

(4.22) is written as

O +(QoBeu)o + it (powl) = i (vidn). (4.38)
Set B /
B = (igZed 0 o).
Smce )QS(O) = o, we have

0) . ,
gué 5 p ¢(0 i€ ag.

We thus obtain
—(A = )b = —%itop, — Louwd + I, (4.39)

Here
I} = —e{Cuy — Zig(V' - u/1 +igw?)
+ B£u1 + JM5 U1 <QOBg ou® + u1)>w(0)’3},

where 68 and 1\73 are 1 x 4 matrix operators defined by

M = (0 0 %jg?) + B 0= (W;pgA’vg T(V'y3) 0).

It then follows from (4.39) that
wi = —0igo(A+[€1°) " ps — (A+ [€11) 7 [Z 0] + (A + €)1}
Substituting this into (4.38) we obtain
00 + (QoBeu)o + 2= (p(A+ [E) " po)lélPo = I — I, (4.40)

where
I} = = ps(A+ €))7 IT) — i&(vid),
Iy = %€ (ps (A + [€*) T 2 0w?)).

Let us calculate (4.40) x @ and take its real part. Since Re{<@0§§u(0)>} = 0, we
have ,
sailol? + 2 (A+ €)7oy [P |o|* = Re(I}7) + Re(1)7).

Since (ps(A+ (€)% ps) = |(A+ |§|2)7%PS‘§ is continuous in & and is positive for all
¢ € R, we see that there exists a positive constant &y = O(|£]7?) as || — oo such
that

A (pa(A+ [6P) " pe) > 22
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for all £ € R with |{] < R. We thus obtain
La|of + 222 [¢[2|o|? < Re(I%9) + Re(197). (4.41)
As for the right-hand side of (4.41), we see from
(A+ 1) ple < g lpl2
that
[Re(177)| <82 (35 + C%) min{1, [¢]}|o]?
2
+ {1015 + (2 + ) ePlonls + % max{L, |EPHEPIo ;. (4.42)

+ B Delwn] + (W52 + 250 6 Delun .

We next derive the estimate for I9g. There holds that

Re(137) = Re{~y*i(ps(A+ [£*) ! (Z20w?) )T}
= 4Re{it L (p.(A + €))7 (paw}))7}
— Re{i€ L {ps(A + )7 (pewi)) 07}
= (T ) — Re{ie 2 (pu(A+ |E) " (puw})) i}

Let us estimate the second term of the right-hand side of this equation. We see from
(4.22) that

(4.43)

Re{ie2 (pu (4 + 1€P)pouilyo )

= ‘Re{i5§<ps(z‘1 +1E1) (pwd) ) {—(QoBeu) — 7*ig (paw?) — z’§<U§¢1>}H
<cy H‘%Q fwila{€llo] + A2 [€llwrlz + 1€]1¢12}

< 5% min{1, [¢°}ol? + C{2I¢P|é1[3 + L Defun]}.

- v

(4.44)

If £, 7% and ”;”’ are sufficiently small, it then follows from (4.41), (4.42), (4.43) and
(4.44) that

2(v4v a
14 (lof? + 22 1, [u)) + 35 g2 o

< O{lo1 3+ ZIelon 3 + % max{1, [€He[*| o1 3 (4.45)
+ Z—gﬁg[wl] -+ ( (V+V) + 1/(1/+1/))|§| Dg[wl]}

Furthermore we have the estimate

[ hfull = |Re(i€ 5 (oA + 1€) 7 [psui])7)|

4.4
< Lo+ C - un|? (4.46)
= 52 (v+0)2 1™7112-
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Multiplying by 2015 O both sides of (4.45), we obtain the desired estimates. This
completes the proof O

From Proposition 4.12, Proposition 4.14 and Proposition 4.15, we get the esti-
mate of ||, [¢1]2 and |wy|s.

Proposition 4.16. Let R > 0. There exist positive constants 21/1, Y1, wy independent
of R and an energy functional Ey[u] such that if v > y1R2 = > 2R2, ”+”w <wp
and |€] < R, then there hold the estimates:

L [u] + 75 (1610 + |¢2[2) + Defwi] < 0, (447)
3 (Galof* + Eolual) < CEfu) < §(3slol” + Eofu))

where C' is a positive constant independent of u.

Proof. For a given R > 0 we assume that |{| < R. Let by > 1 and by > 1 be
constants. Define F;[u] by

E [ ] = b1(1 + V(VJFV))(%’UP + Eo[ul]) -+ bgjo[ul] + MMQ + Jl[u]

Since we have
L(lo1l5 + [wi]3) < CoEolwr] < 3(|¢1]3 + |wrl3),

v 2
[Jolwd]| < Co{ gzl nls + s lwal3
|Ji[u]| < 7—12|<7|2 + C2ﬁ|wl|§a

if — V+17 <1, ”j” < land by > 8max{CyC1by, CoCsy, ay'}, then there exists a constant

C>0 suCh that

H(loP? + Bof]) < OBi[u] < 3(&1o? + Bofu)). (4.48)
Let us compute by x (1 -+ ﬁ) X (4.26) + by x (4.35) 4 (4.37) then
%%El[u] (1 + u(u+u)>D5[w1] bQ 1/+1/|¢1|2 2 I/+I/|€| |U|2
< C3{b1(1+ V(V+V))( 2 V';ZV)K’ ‘U’2+b1( I/(l;y-‘rl/))( )’¢1|2

+ b2 (57 + )P o] + b2 (1 + V(V+u))Ds[ w] + bz—~\5!2de1]
ol il o0 + g max(L, P00
+ V(V+V) Dg[wl] + ((V+V )|€’2D5[w1]}

Fix b; > 1 and by > 1so large that by > 16C3R? and b; > 16 max{CyC1by, CyCs, 0451,
Csby, C3R?}. We assume that v > vy and y > ; are so large that v > 16C3b; max{
agt byt 1} and 42 > 16C5(1 4+ &' +a~2) (v + D)max{by, by, b; ' (1 + R%)}. It then
follows that there exists a constant C' > 0 such that

+ C{V+V|€’2|O-|2 y+y’¢1|2 + D{ w1 } < 0. (449)
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We thus obtain the desired estimates. This completes the proof. Il

We are now in a position to prove the estimate of the L? norm of Ui (t)u.
Before proceeding further we introduce a notation. For R > 0 we define 14,<gy by
Limi<ry(§) = 1 for |¢] < R and 1<y (§) = 0 for [¢] > R.

Proposition 4.175 Let R > 0. There exist positive constants vy, v, and wy such

that if v > 1 R?, 2= > ~IR?, and #w < wy, then for anyl =0,1,---, there exists

) v4v

a constant C = C(l) > 0 such that the estimate

_ 4T~ _1_ 1
105, F  [Lgm<ry (&) o] |12 < C(1+ )77 2 |Juol| 2 mir2(my) (4.50)

holds for t > 0.

Proof. For a given R > 0, we assume that [¢| < R. Since
€170 + 16113 + Delwn] = dol€*(lof? + |15 + |wwal3)

for some constant CTO = CTO(R) > 0, we see from (4.47) that there exists a constant
do > 0 such that
G B[] (1) + dol€Pluf < 0.

This implies that -
|75 (€) | o < el [aig (6)] 2. (4.51)

We thus obtain the desired estimate. This completes the proof. 0

( )We next estimate derivatives of u. We introduce some notations. We define
J20 M by

JZ(O) [U] = —2Re<0u(0) =+ Uy, §£QU1> for u = O'U(O) + .
In addition, we set
B[] = (1+ 2) (3410 + Eofu]) + Dl

EP ) = B Tu] + 13 ul,

where b3 is a positive constant to be determined later. We note that there exists a
constant b} > 0 such that if b3 > b5 and v* > 1 then

0 (0 0
1B ) < B [u) < 2EOu).

Taking bs suitably large, we have the following estimate for E’éo) [u].
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Proposition 4.18. There exist constants bs > b3, v1 > 0 and wy > 0 such that if
v>uv,v2 > 1 and w < wy, then there holds the estimate:

0 2 ~
L4 By Ju] + 10 Delun] + 3v/ps00un 3
U 2 v+7)?
< C{(A+22 + B)ePlof + LR o (4.52)

+ (b &+ D)ol + ZlePlouls )

Proof. Since u is a solution of
Ou + zgu =0,

it holds that N R B
<8tu, 8tQu1> + <L§U, 3tQu1> =0. (453)

We first consider the first term on the left-hand side of (4.53). Since
atO' = —<Q0§§(UU(O) + U1)>,

<U(0)7 8t@u1> = <U§O), at@lb1>,
applying Remark 4.10 and Lemma 4.11, we obtain
Re<8tu, 8téu1> = Re{<8tau(0), 8t@u1> + <8tu1, at@u1>}
= Re{—<Q0§5(au(0) + U1)><U1 ,@Qu1> + \\/E(?twl\ } (454)
> V/psdaw |5 — C{5 16 (1o + 6113) + £ Delwn]}.
As for the second term on the left-hand side of (4.53), we see from Lou® =0 and
B(]U = 0 that
<Z§u, 8t@u1> = <]/\Z§(O'U(O)), Gt@u1> + <E§u1,8t@u1>
= (Ae(ou™), 8,Qui) + (Be(ou® +uy), 0,Quy ) (4.55)
+ <A\5U1, 8t@“1> + <60U17 8téu1>-
It follows from (4.53), (4.54) and (4.55) that

g\\/ﬁatwlg + Re<g§(au(0)), 8t@u1> + Re<§5(au(0) + Ul), 8t@u1>
+ Re<121\§u1, at@u1> + Re<60u1, 8t©u1> (4.56)
< C{%lEPlol* + [€?|¢n 3 + 5 Defwi] }.

Next we show the estimate

Re{(Be(ou® +uy), 8,Qui) + (Agur, ,Qui ) }
> gdi(Dg[le + 0]} el VP 3 (4.57)

— C{(& + ) I6Plo? + ZH1EPIoul3 + (2 + L + L) Defwn]}
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for any € > 0 with C' independent of €. In fact, it holds by integrating by parts that
Re<A§u1, GtQu1> = %di g[wl]. (4.58)

Since E* = —Eg, we see that
Re<Bg(0u0 atQu1> = dt{Re(auO ,BgQu1>} + Re(0y( oul’ BgQu1> (4.59)

By (4.22) we have N
0o = —(QoBe(au'® +up)).
It then follows from Lemma 4.11 that
‘Re<8t Juo ) BgQulﬂ = ‘Re{<Q0B£ ou® + ><u0 ,BgQu1>}|

4.60
< C{LIEP(o” + |61]3) + (22 + Z) Delun] }. o

Similarly to above, there holds the following equation:
R€<.§§U1, 8t@u1>
— g {Re(us, §EQU1>} + Re(dyu, égQU1> (4.61)
—%{Re<u1, E&QU,1>} + Re<8tQ0u1, E&QU1> + Re<8tQu1, EﬁQU1>
We estimate the second term on the right hand of (4.61). By (4.25) we have

8tQ0u1 = —Qo{igul + JE(UU(O)) - <Q0§§(au(0) + u1)>u(0)}
= —Qoggul — Qoég(au(o)) + <Q0§§(au(0) +up) )ul”.

Since <8thu1, Eg@u1> = <8tQ0u1, Q0§5@u1>, we see from Lemma 4.11 that
|Re(8,Qous, gg@“ﬁ‘
< C{|QoBeml, +[QoBe(ou )],
B (ou® O\ x 110uB.0 (462)
+ [(QoBe(ou™ + ua) ju® |, } x 55]Qo BeQual,
< C{BI(0 + 618) + (5 + 2) Defu]}.
The third term on the right-hand of (4.61) is estimated as
[Re(0Qun, BeQui)| < Cly/psdiannla(19'  (pawt) +ipswtla + [€]lwnl:)
< €e|y/ps0wi |3 + CL Defw]

for any € > 0 with C' independent of e. This, together with (4.61) and (4.62), leads
to the inequality

Re<§5u1, at©u1>
> — o {Re(ur, BeQui) } — el\/ps0rw |3 (4.63)
— C{LIeP o + 161B) + (i + 2 + L) Deluwn]}
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for any € > 0 with C' independent of €. Furthermore, we have

|Re<B§ ‘7“1 ) 8tQ7~01>| < Cly/psOiwn |2|i€ psow O3 4 igvdow @3,
< €|\/Eatw1|2+6’ € o)

for any € > 0 with C independent of e. By (4.59), (4.60), (4.63) and (4.64), we
obtain

(4.64)

Re<§§ au +u1) 8tQu1>
> —%% [ ] — €|\/Eatw1|2
— C{ (55 + Zx) [P0 + 5 1ElP|onls + (5 + % -+ 2) De[un]}.
This, together with (4.58), gives (4.57).
The remaining terms on the left-hand side of (4.56) are estimated as
}Re<A§ ou® 8tQu1>’
< C{PIENIV' DD + (v + D) [P |w 2 o} o] /psBiwnl (4.65)
< el paduun [} + CH{ZIEP |0l + L o]},

’Re<aou1,3téul>{ < 0(7—1'2|¢1|2 + |w/1|2)|\/E3tw1|2
< elv/peOiwn |} + C{%|¢1]3 + L Defwn]}.

Here € is an arbitrary positive number and C' is a constant independent of €. Taking
€ > 0 suitably small, we see from (4.56) with (4.57), (4.65) and (4.66) that if v > 1
and 72 > 1, then

(4.66)

4 (Belur] + IOl + 317w
< Cof (& + Z)IePlof? + L2 |e o ? (4.67)
7_4|¢1|2 72|§| 115 + %Dg[wl]}.

N |—

We take b3 as by > max{b}, 4Cy} and then add (4.67) to bg% x (4.26), to get (4.52).
This completes the proof. O

We next establish the estimate for higher order derivatives near the boundary
0D. We introduce the local curvilinear coordinate system.

For any 7}, € 0D, there exist a neighborhood (550 of 7, and a smooth diffeo-
morphism map U = (¥, U,) : 656 — B1(0) = {7 = (z1,29) : |Z/| < 1} such
that _

U(Ox ND) ={z € Bi1(0) : z1 > 0},
V(O NOD) ={z € By(0) : z; = 0},
detV,¥ #0 on 656 N D.
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By the tubular neighborhood theorem, there exist a neighborhood Oz of 7j and a
local curvilinear coordinate system y' = (y1,%2) on O defined by

' =yai(yp) + V0, 10) : R — Oz, (4.68)

where R = {y = (y1,42) : |n1| < &1, |ya| < 05} for some &y, 05 > 0; a1 (ys) is the unit
inward normal to 0D that is given by

Q) = ot
1 y2 - ‘Vx/\lfl‘

We set y3 = x3. It then follows that
Vx =€ (yQ)ayl + ‘](y/)e2(y2)ay2 + e3ay37

Tel(yz)
vy - ﬁTez (yQ) V;(;,

where

—-VLiv,
V0|
with V5, = 1(-9,,¥,, 0,,¥;). Note that d,, and 9,, are the inward normal

derivative and tangential derivative at 2’ = U=1(0,y5) € DN Oz , respectively. We
denote the normal and tangential derivatives by 0, and 0, i.e.,

Op =0y, 0=0,,.

J(y') = |detV U], as(yz) =

Since 0D is compact, there are bounded open sets O, (m = 1,..., N) such that
0D Cc UN_,0,, and for each m = 1, ..., N, there exists a local curvilinear coordinate
system 3 = (y1,%2) as defined in (4.68) with Oz, ¥ and R replaced by O,,, ¥

and Ry, = {y = (y1,12) : |n| < o™ lys| < 5;”} for some 7,07 > 0. At last, we
take an open set Oy C D such that
Y 0 DD, OynaD = .

We set a local coordinate y' = (y1,y2) such that y; = x1, yo = x5 on O,.
Note that if h € H?(D), then h |sp= 0 implies that O*h |spnon=0 (k = 0,1).
Let us introduce a partition of unity {x }>_, subordinate to {O,,}N_,, satisfy-
ing
N
ZXleoan Xm6080<0m) (m:O,l,---,N).
m=0

In the following we will denote by [A, B] the commutator of A and B, i.e.,
[A, B] = AB — BA.
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Lemma 4.19. For 1 < m < N there hold the following estimates.

(i) [0, 0,)h] < C|Owh| for he H*(D) and j =1,2.

(i) (Xm0 Ou, ), XmOh)| < ClxmOuh|3  for h e H*(D) and j = 1,2.

(iii) |(Xm[0, Oy, O, |1ty XxmOR)| < n\xmﬁxxah\g—i—(?(l—i—%) 02172 pro,,y  for alln >0,
h € H?(D) with Oh |apro,,= 0 and k,l =1,2.

Proof. (i) For 2/ € DN O, we set y = U™(x'), h(z') = h(y/). Then there exists
a smooth matrix valued function A;(y’) such that V,, = A;(y')V,,. We thus find
that B

[0, 05,1k = 00, h — O,,0h = 3 hy,1,0" 02 h,

0<l1,0<l2,l1+1l2=1

where hy,;, = hy,1,(y') are smooth functions depending only on D N O,,. Since
Eloyh| < [0uh] < Clo,hl

for some constant C' > 0, we have the desired inequality. This completes the proof
of (i).

(i) The estimate in (i) immediately follows from (i).

(iii) We have V= A;(y) V. We set A;(y) ' = (¥ (m’))w There holds that

2
(0, Oz )l = =Y {02,00,¢" 00 b+ 03, € 03, O 1+ Do, 0, O 1}

j=1
It follows from integration by parts that

| (Xm0, %02, O, b x|
= [ (Xm0 €70y 1y Xm0, OR) + (Xon Doy O, Do o, XoO) + (D, X3, 70y, 1, OD)|
S C{|Xma’£]h|2|xma$kah|2 + |Xmafvjh’2|Xmah‘2 + |a:rjh|L2(Dﬁ(’)m)|Xm8h|2}

1
< 77|Xmax’8h|§ + C(l + 5) |8x’h|%2(DﬂOm)'
This complete the proof of (iii). d

We are in a position to estimate higher order derivatives. We first derive the
estimate for d¢;.

Proposition 4.20. For1 <m < ]~V, there exist constants v1 > 0, w; >0 and b > 0
such that if v > vy, v* > 1 and “t2w < wy, then there holds the estimate:

P (ps 2 v+v ;|2
L (o 22061 |+ Dnyp0n[3) + 2 |xn0i
+ 50 (X V' 0wl + [P Xm0 [3) + 5P1xm(V' - Ol + i€0wi) 3
< C{(H+22)ePIol + (n+ H) ol + (0 + & + 28) ¢

+ (n+ 2)10u1 + (& + % + 2+ 1) Deluoa] + (2 + 1) €[> Delun] |

(4.70)

for any n > 0 with C independent of 1.
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Proof. Applying 0 to (4.25), we have

(0,001 + €030 + 2V - (p,0w)) 4+ 72i€pdud = FO,
owy — L(A’ [E[2)ows — £V'(V" - duwf + i€ow?)
+V/(54209,) + iguiout = G, (4.71)
00wy — ,,_S(A/ — [€]*)owi — ’%if(vl - Ow) + iEdwy)
+i£%a¢l + i§vdowy + WTI;%A’U:?@@ + ow) - Vi = G3

on DN QO,, and
8101 |8Dm(9m: 0.

Here FO = F0 + FY, G = G + G} and G3 = G3 + G3, with
—[0,i€03]¢1 — 1?10, V' - psJwy — %[0, i€ psJwy,
G} =v[o, /%SA’} wy — 10, pis|§|2]w’1 + [0, p%V’V’Jw'l + 1[0, p—tV'(z’f)}w:S
— [0, V'ELd] g, — [0, igvfw,
G} =vl[o, 1A}w1—y[ =&} wi + 70, Z§V’}w1—u[ ,p|£”w1
— 10, 555 A" 01 — [0, sz]cb — 10, i€v; ]w1 — 0. 1(V"0d)wy
Fy = —{i€od( (369) + iEod (a0 — {(QoBe(ou® +1u,))06 },
= —{-7icod (LV'w®?)},
Gy =—{(v+ 17)5203(%5111(0)’3) +i€o0(v3w?) — <Q0§5(Ju(0) +up) )ow V31,

We set F = T(FO, G, G3), Fy = T(F°, G, G3) and Fy = T(F, G}, G3). Taking the
weighted inner product of (4.71) with x2 du;, we have

; 2
14 (% /242001 + [ y/p0 )

+ I/{‘valawﬂ% + |£‘2|Xmaw1’§} + g’Xm(vl : awll + Zfaw%)@
= Re{(F, x2,0u;) — I},

(4.72)

where
=v(V'Owr, V'(x2,)0wr) + (V' - 0w + idws, V' (x2,) - Ow))
— (B0¢:, V' (x2,) - pe0w}) + (i&030wn, X2, pswn )
- (Wé’ps A'v30¢y, anawi’) + (Ow] - V'3, X2 psowd).

Let us estimate the right-hand side of (4.72). By Lemma 4.19 and the Poincaré
inequality we have

|Re(F1, x2,0u, )|

< (n+53)leul + ( + 5)IEPIo]5 + (1 + ) |0w b3
+ O (& + %+ 2+ L+ 1) Deun] + §v(|xm V'Owr [3 + [ [xmOwn|3)
+ 8V|Xm(V' 8w1 + 0w |3,
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IRel| <(n+ £)10, ¢1l2+0( + = S+ +1)D5[w1]
-+ gl/(]XmV Owy |3 + |€]? |Xm8w1\2) §V|Xm(vl - oW+ i&ow?) |3

for any n > 0 with C' independent of n > 0. By Lemma 4.11 and the Holder
inequality we deduce that

[Re(Fy, x3,0u)| < C{ (35 + 52 [P0 + (55 + 22) [E%|on]3 + (1 + 5) 0w nl3
+ (2 + L) Defwn) + (2 + 1) [€* Defuwn ] }

for any 7 > 0 with C independent of n > 0. Therefore we see from (4.72) that if
v>1,7>>1and w < 1, then

2
b (o 0001+ i)
+ 30|y V'O + € D0 3) + 37 (V - O + i€00)
< C{(5 +Z2)IEPlof* + (n+ 7_2)’¢1‘2 (n+ 5z + 50)1€F a5
+ (1 +$2)|0z/¢1|3+(%+$+5+1)Ds[wﬂ+(;+1)|§| Delunl}.

(4.73)

We next estimate d¢;. The first equation of (4.71) leads to

101 +iE0(v 39251))

506 — 4 (
F {722§Gv3¢1—|—V’ (psOwt) + i€psOwi }.

~

m|~ 2

We thus have
. 2 -~ .
L xm@1[2 < C{LIEPIo? + L1¢P1on P + LDeleor] + [xm(V - O} + i€0w?) ).

Take b > 0 suitably small and add bl’viﬂxmaq'ﬁl@ to (4.73). We thus obtain the
desired estimate. This completes the proof. [l

We next derive the estimate for 9,¢;.

Proposition 4.21. For1 <m < ]~V, there exist constants v1 > 0, wy >0 and b > 0
such that if v > vy, v > 1 and i}/”w < w1, then there holds the estimate:

2
%%(% P2(p5)8n¢1 ) 2,/+,,‘Xm n¢1|2+by+y‘Xm n¢1|2
{”“Iﬁl o* + (25 + sty 10l + S IEPIOS + (5 + 1) Delwn]  (4.74)

+ 525 €1 Delwn] + 55 (Xmndn [ + [P §) + 151 v/ps0a0n 3}

Xm

Proof. For a scalar field p(z’) on D N O,,, we set

py) =pla’) (v =¥"("), 2’ € DNOy).

39



Similarly we transform a vector field h(z') = T(h'(2’), h*(2’), h*(2')) into h(y) =
() P2y, PP (y) as

h(a') = E(y)h(y),
where E(y') = (e1(v}), e2(y2), e3) with e1(y2), e2(y2) and e3 given in (4.69). Note

that, since e3 = 7(0,0,1), the Fourier transform in z3 = y3 commutes with these

transformations. It then follows that ¢;(y) and @y (y) = Twi(y), wiy), w(y"))

are governed by the following system of equations
(061 + 60,701 + 70V, (7o) + €000 + g0 T
—<QOB§(017(0) 4 a1)>¢(0) —0,
Oyt + i(ﬂ)\ty@yal) — M(V dlvywl) + 0, (i’éﬁfs)%)
+#(A /?75)151 + z’&vs wi — ,Zggaylwm),s — 0,

Oyw? + (rot rot wl) - —(V dlvywl ( p5)¢1> (4.75)
+535 (A 0.) 61 + 0, W% — ZigoLa,, 70 =0,

Ows + (rot rot w1)3 — —(V dlvywl) i zf ¢
(Ay'Us) ¢1 +i&v,” w1 + w}('?ylvs + w%@mvs + %17520@(0),3
¢> + vasaw s <QOB§ au( + g >w =0

72

—i—zﬁ];

(
With 7u(y) = po(a’), B() = v3(@) and P'(5(y)) = P'(psla")). Here V,, div,
and rot, denote the gradient, diverger}vce an@v rotatign in tile curvilinear coordinate
y which are written for p = p(y') and h = T(h'(y/), B*(y/), R*(y')) as
VD = €10,,D + €20,,p + €30,,D,
divyh = L{8,, (JhY) + 9,82 + 9, (Jh®)},
rot,h = (rot,h)'e; + (rot,h)’es + (rot,h)’e;
with
(rot,h)' = 3{8,,h* — 8, (Jh*)},
(rot,h)? = 8y, h' — 8, h?,
(rot, h)? {8y1h2 8y2(JE1)},
and, therefore,
(rot,rot %) = 1{9,,(rot, h)? — Oy, (rotyﬁ)2},
(rot,rot h) = Oy, (rot, ) — 0, (roty%)?’,
(rot,rot, h)? = = {8y, (rot, )2 — Oy, (rotyﬁ)l};
the Fourier transformed gradient Vy is given by

Vyp =e10,p+ %@@/254‘ e3tép;
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and similarly &i\vy and ﬂ)\ty are obtained from div, and rot, by replacing 0,, with @£
respectively. Applying 0,, to the first equation of (4.75), we have

0,0y, &1 + 15,20, 01 + 72 Ps0y, div, iy
= _{Zfaw 1753(;1 + 7281/1 (&y(ﬁswl)) - 72,5883/1 &R"ywl (4'76)
+ €0y, (V] UQS(O ) +7%i€0,, (pso MU <QoBg o + ﬂ1)>8y15(0)}-

To eliminate the term d,,,,w; in this equation, we consider % X (4.75)9
(4.76). It then follows that

ﬁ—lsﬁt@ylgl + P;f;)@ylgl + p%z‘fﬁg’ﬁylggl =1, (4.77)
where [ = I; + I, with

1
= X
+p5

I = — 2 {5,0,@} + v(rot,rot, @)
+ 50y, (B2 ) + 575, (A T) 61 + €501}
— {i€L0,,0.°01 ++* L8y, (div, (7)) — 720y, divy i },
I = — 2= (—7ik0d,, 0"%) — {iLa,, (W0

v+v
+7 Zf -0y, (pso@ ) ~i<Q0§£ ou® + ﬂ1)>8y15(0)}.

Considering f\pm(Dmom) (4.77) x )anp Ps)ayl ¢1Jdy with X (y') = xm(2'), we see that

(# Xm\/ 52220y, ) +-L

:/ Ix 22000, 6,74y
W (DNOR)

(F&Cy@yal)l - 161,/2( 8y1(J ) %(%2@%) o Zg(Z&E} - ayﬂﬂil)))a

o~ ~ 12
XmP,SQS)ayﬁﬁl 9

[
S

Since

we obtain
v+U | V2 ~ 7 v+U ~ 7 ~ [~ ~
+ | Il|2 < C{(v—i—y + ~4 u+§))|Xm¢1|% + 7i4|§|2|Xm¢1|% + $|Xm psatwlg

~ ~ o~ l/2 ~ o~
+ (v + D) Xm0 |5 + 5P IXm@ |3 + Z5 16 Xm0 3

2 ~ ~ V2 |~ ~
(y—|—y)w |Xm /U}1|2 y+,7|§|2|>(may’wl|g+mb(may’awwll%}a

V;Z;Wm[z@ < O{%FI&IZIUIQ + %|§|2|¢1|i2(mm(pnom)) + v+ D)|@1|%2(qzm(pmom))}'
It then follows that

~/ . ~ 2
%%(% Xm \/ P(ps y1¢ ‘ ) Xm%aqusl 9
< C{V+V|€| o* + (55 + m)b(méﬁl@ + 22121172 (wm (Drom))
~ o~ 2 ~ ~
+ (v + V)|w1|L2(\I/m(DmOm)) + ﬁ|€|2|me1|§ m|§|4|me1|g

~ ~ ~ 2 ~ ~
+ (v + V)‘*’Q’Xmay’wlg V+V’§| Xm0 ’w1’2 V+;|Xmay’ay2wl|g

+ T VROE 3]

(4.78)
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We next consider d,, 51 where 51 = 8@1 + zg?fg&. (4.77) gives that

: ay1¢1 2~ (I + Zgaylagﬁbl 2({;‘:)311151)-

This equation leads to the estimate

)

> y’Xm y1¢1|2 < O{V+V mes(f+lﬁay15§¢1 |2 I,Jrl, X PéQS)gyﬁbl
jgmp(g yl(’gl }
2
Therefore if we take b > 0 suitably small and add b%f’)?mayl (51}2 to (4.78), we get
= 2 e -
4 (&]ony T2, 8] ) + 3|0 P220,,6 | +
v4v w? V2 ~ 7 v4v
< CL{EZIEPIoP + (25 + o) [Rmi + 221161 2 wm(oron)
~\ |~ ~ o~ 1/2 ~ o~
+ (VA DN L2 oy + 5 € Rm@i 3 + 25 ] Xm @3
o~ ~ ~ 2 |~ ~
+ (V + V)w2’Xma ’wl,g V+,,’£| |Xm ’w1’2 V+,7’Xmay’ay2wl|§

The desired estimate follows from (4.79) by inverting to the original coordinates z’
and noting that d,, = 0,, 9y, = 0. This completes the proof. U

< O{ LRl +

V—‘rl/

bquu

|Xm yl(bl‘g

N =

(4.79)

We next derive the interior estimate for the derivative of ¢.

Proposition 4.22. There exist constants v1 > 0, wy > 0 and b > 0 such that if
v >y, 7v* > 1 and Y220 < wy, then there holds the estimate:
2
P (Ps)a ,
T le 9

v+U L
14 (%o /22 + Xov/psdwn3) + D [xoDur b
+ 5 (IxoV' 0wl + 6P x0Dorwn]5) + 571x0(V" - Oy + €03
< c{ (& +22)|EPlol + Slonl3 + (& + 22 + 22 16P 613
+ (n+ 5) 100613+ (5 + % + £+ 1) Delu] + (£ + 1)|¢*Delun]}

for any n > 0 with C independent of 1.

(4.80)

Since supp(xow;) C D we have 0wy |apno,= 0. Therefore we can prove this
proposition similarly to the proof of Proposition 4.20. We omit the details.

Before proceeding further we introduce an energy functional. We define E§°) [u]

by
oy 420,61+ o7t
4005 (o Z206 | + P 0un) + 3 %
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where b4 is a %)osmve constant. Taking b4 suitably large, we have the following
estimate for Fj3 ’[u4].

Proposition 4.23. There exist constants vy > 0, w; > 0, b > 0 and by > 0 such
that if v > 11, v* > 1 and “Fw < wy, then there holds the estimate:

0 v+ 12
14 O] 4 b 42|00

+ v (IxoV'0pwil3 + €17 X00wwi[3) + Plxo(V - Opw) + i€0pw?)|3}
N
+3 2_:1{V(|va'3w1!§ + \€|2|Xm3w1\3) + U|xn (V" Qwy + i€0wy) |3}

(4.81)
fyi)‘a |0|2 ( l/+l/ + + (1/+1/ )‘¢1|2

+
+ (n+m+ + V+V)|€| |§Z§1|2+ <n+7_2)|ax’¢1|2
+ (& + % + Z+ 1) De[w] + (2 + 1) ¢ De[ws] + 735 |v/psOrwn |3 }

for any n > 0 with C independent of 1.

Using Proposition 4.20, Proposition 4.21 and Proposition 4.22, we obtain the
estimate of Proposition 4.23.

We next derive a dissipative estimate for [0%wi | and |0, ¢1]a.

Proposition 4.24. There exist constants vy > 0 and wy > 0 such that if v > vy,
#w < wy and * > 1, then there holds the estimate:

y+y|a2 ,|2 yi§|az/¢1|g
v+v v? ve+tv
= C{(u+y + )P0 + ez |01 + (55 + 05 6 a3 (4.82)
£ (24 1)1+ | Delur] + 5l vadrunl3 + £t | |-

Proof. We first derive the estimate for 92w/ and d,/¢,. We will employ the following
estimate for solutions of Stokes equation. If (p, ') is the solution of

v/ . h/ — FO
—A'H + lv/p — lG/
h/ |8D: 07
then there holds
23+ H10wpl < CLIF By + KGR}, (4.83)

(See, e.g., [7, IV.6], [26, II1.1.5].) By the first and second equations of (4.25), with
the boundary condition of wj, we see that (¢, w]) satisfies the following Stokes
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equation

V') = F?
—Awl + 1V (Ble)) = LGy,
w/1 ‘BD_ 07

where
FY = — {0 +i&vien + 72(V/Ps) ~wy + yPiEw]

+ 0308 + i psow®® — (QoBe(ou® + u))e "},
G = —p{ O] + L& — z(V’ cw) +iw?) + ivlw

Pl s ; N
+ V'(i)%(bl - Ez&V’(aw(O)’?’)}.
By Lemma 4.11 and the Poincaré inequality, we have

P22 < C{&IePIol + Llo1 3 + LDefwi] + L|én|2}
0w F 3 < C{L|ePlof? + L¢3 + u+mnmw1 L1df3 0,
1B < C{Zellof? + (w? + fﬂawm + (5 + %) Delwn]
+ (v + )|§|2D§ w] ’¢1‘H1+|\/E3tw1| |3

Since
O (P41 61) = 40,0, + T2t g,
P’(ps) 1
’y—g 2 2
and

|p1]2 < Cl0w ]2

by the Poincaré inequality, we see that
/ 2
00 (F5261) [ = CIOw 015 — w5}

> C(1 = w”)| 0wl
> ClOw i3

for w? < % We thus find the estimate
02w |3 + 25|03
V2402 V2
< Cp{IEPo) + Glonls + (WP + 5 :+ 2 )|€| P15

+ (v + 5+ ) Defun] + (v + 7)|§| Ds[le|\/Eatw1|3+%‘¢l‘iﬂ}‘
(4.84)

We next derive the estimate for 9%wj. The third equation of (4.25), with the
boundary condition of w?, is written as

{ —A'w? = G3,

w1 |6D— 0,
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where
G = —2{guw} + p—”SSwa — Eig(vf W)+ igwd)
+i€(P{(ZS) ) —va w} + A 3¢1 _|_w1 V'
+ %520 P+ ilago + i’ ow® <QoBg au( ) + u1)>w(0)’3},

We thus obtain
|w1‘H2 < C'|G3

It then follows that

v 52 1
2wils < CH{(1+ l + (:—4))‘5’2‘0’2 + TZWl‘g +(1+ %4)‘5’2@1’%

5 o1 | (4.85)
+ (V47 + ) Delwn] + Z5 1€ Delwi] + |v/psOunl3 }-

Multiplying #2; to (4.84) + (4.85), we have the desired estimate. This completes
the proof. O

We are now in a position to prove Theorem 4.4.

Proposition 4. 25 Let R > 0. There exist positive constants vy, vy, wi and d such
that if v > 11 R2, + > v?R? and ”+”w < wzy, then for any l =0,1,---, there exists
a constant C' = C(l) > 0 such that the estimate

1020, F ' (L gty () Tl 2

_1_ 1 _
< C{A+ )77 2 |luoll prmerzpy) + € (lluollz2 + [|0wuoll22) }

holds fort > 0.

Proof. Let bs and bg be constants satisfying bs, bg > 1. Define EZEO) [u] by
B[] = btz B3 ) + b B ).
If 42 > 1, then there exists a constant C' > 0 such that

W&o + Eolw] + 20w¢1[3 + De[wn]}
< CEY < 3{ Lo + Eolws] + %0013 + Defwn]}.

We compute bs ;2= x (4.52) + bg x (4.81) + bbg x (4.27) + (4.82). It holds that
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1 4B i+ il ol Ol

+ %V(wru) Delwn] + % 55| v/psOruns + bbs |61]70
+ 2 {v(IxoV' O[5 + € x0Dwrun[3) + V|X0(V/ - Opw + i€0w})|3}
+

N
% 2 v (Ixm V' Ownls + [€ xm0wi [3) + Plxm(V" - 0wl + ig0wy)[3}

bs 4

IA
£
—

(,,+';:” Z)IELRIo P + bs 525 i g o

+b5y+y( + o+ X )|¢1|2+b5y+wlﬁ| |61]5 + b6 (55 + £) [€P|o
+be(n+y+y+ + =) 6113 + b6 (0 + 25 + 2= + 2 €3

+ 06 (1 + 22)10s ¢1|g+b6( +5 42 Z 1) Defun] + bs(Z + )|5|21~7£[w1]

+ b | /5B 3 + bbg ¢ |a|2+bbﬁﬂ|5|2|¢1|§+bb6<1 £420,%) Defun]
+ (5 + 22) EPlo? + sl + (55 + ) [P

(24 1)1+ 6P Delwn] + 55 1vpadhn 3 + 255 b |-

Fix b5 > 1 and bg > 1 sufficiently large such that bs > % and bs > 8bgCy,
respectively. Let us take n > 0 so small satisfying n < min{1, m} We assume
that v > vy and v > 7, are so large that v > vy > 1 and v > 8bsCy(v + 7). Since
we have that

v+v —H/

ﬁg[wl] S 0(1 + R)|w1|2|0§,w1|2
< €0z wil; + CL(1+ R)* w3

2

for any € > 0, if we take € sufficiently small such that € < 3 2 T

then we get

LB )+ d([V' 613+ [V ) < Clufs.

Now we decompose Ei )[u] as

where

V'3 + [V'wi3) < CES)u] <
It then follows that

4 EO) () + di B [u] + (V' 12 + [V [21) < Clul2 — LES[] (1),

dt
We thus obtain

t
EQ0) + 4 [ e T+ V)i
0
t t
< e_dltEi?l) [ug] + C’/ ~di(t=7) lu|2dr —/ e_dl(t_T)%Efg [u](T)dT.
0 0
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Since
et LER)(7) = £ VER ) (7)} + die VB [u](7)

and
0
ESu] < Clul?,

we see that .
EQW(t) < e M EO[ug] + C / e~ (7).
0

From (4.51), we obtain
t
EQ (1) < e B ug)] + Clug|2 / i (t-7) —dolel?T
0

Let us estimate the second term on the right-hand side of this inequality. We have

t/2

t/2
/ exp{—di(t — 1) — do|¢|*7 }dr < / exp{—dy(t — 7)}dr
0 0
< groxp{ -9}

1 dy 1€)?
< gexp{—9 it}

t t
/ exp{—dl(t —7)— dg]f\zT}dT < exp{—%ﬂf\zt}/ exp{—d;(t — T)}dT

t/2 t/2

< grexp{—¢[¢Pt}.

We set dy = min{do, %}. It then follows that there exist positive constants vy, 71,
wi, di and dsy such that if v > v R?, #25 > ~v2R? and %ﬁw < wy, then

0) —D2e2e 0 it (0)
Epi[u](t) < C{e™ 2 g3 + e M By [ug) ) (4.86)

OJ
Combining Proposition 4.17 and Proposition 4.25 with R = 1 we obtain the
desired estimates in Theorem 4.4.

4.2 Decay estimate of the high frequency part

In this section we will give a proof of Theorem 4.5. To prove Theorem 4.5, we will
employ an energy method to obtain the estimate on solutions of

oyu + Egu =0, wloa=0, uli=o=1uo

similarly to Section 4.1. The following Propositions 4.26-4.31 can be proved in a
similar manner in Section 4.1. So we give the statements only and omit the proofs.
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Proposition 4.26. There exists a constant vy > 0 such that if v > vy, then there
hold the estimates: B
s qiBolul + 5 Delw] < C%ol:, (4.87)

21 6] < C(1 + “2w?) Deluw]. (4.88)

We proceed to estimate derivatives of u. We introduce some notations. We
define J\™[u] by
I ] = —2Re(u, BeQu).

In addition, we set -
ESu) = (14 B2) Ey[u] + Defwl,

Eylu) = Bl + 977,

where bg is a positive constant to be determmed later. We note that there exists a
constant b* > 0 such that if b3 > b* and 72 > 1, then

S By u] < By u] < $ B3 [ul.
Taking bs suitably large, we have the following estimate for Eéoo) [u].

Proposition 4.27. There exist constants 33 > g; and v; > 0 such that if v > 11
and v?* > 1, then there holds the estimate:

o 7 2 A
%%Eé )[u] T }ng%de] + %|\/E5’tw‘§

, (4.89)
<c{(&+ %)l + Hlellol )

Proposition 4.28. For 1 < m < N, there exist constants vy > 0 and b > 0 such
that if v > vy, v > 1 and w < 1, then there holds the estimate:

/ 2 D S12
L (o 52200 |+ /003 + 055 06
+ v (|xm V'Owl3 + [E] | xmOw]3) + 10| xm (V' - 0w’ +i0w®)|3
<c{(n+Z)oB+ (n+ 5 + LDl + (n+ 2)10w03
+(E+4+E+ 1)55[11)]}

(4.90)

for any n > 0 with C independent of 1.

Proposition 4.29. For 1 < m < N, there exist constants v1 > 0 and b > 0 such
that if v > vi, ¥ > 1 and w < 1, then there holds the estimate:

2
d (1 P'(ps) 11 P'(ps) 2 i -
%ﬁ(w X 7225 On@ 2) + §m|Xm W@ an¢|2 + b%‘xmangbb
w? v v+v i ~
< O (35 + sty 68 + S4IEP103 + (24 1) D] + 52506 Delw] (491
V+V(|Xma aw|2 + |Xm82w| ) V}r;\vpsﬁtw@}.
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Proposition 4.30. There exist constants v; > 0 and b > 0 such that if v > vy,
v > 1 and w < 1, then there holds the estimate:

b (o S2000], + hovmow]) + 022 oo
+ 50 (10 V' w3 + €17 X0Darw]3) + 571x0(V' - O’ + 60,3
< CL{BI6B + (& + 22 + 25) P10 + (n+ 51) ool
+ G+ 3o+ 2 1) D}

(4.92)

for any n > 0 with C independent of 1.

Before proceeding further we introduce an energy functional. We define Eéoo) [u]
by

ES [y

+ |X0\/p_sa /w‘z

\/ 2206]. + /0wl )+ 2

where by is a %)osmve constant. Taking by suitably large, we have the following
estimate for Ej [ ].

Proposition 4.31. There exist constants v; > 0, b > 0 and 34 > 0 such that if
v>uv,v2>1 and w < 1, then there holds the estimate:

LSO [u] + 022|004
+ %{V(b(ovlaz/w‘g + |£|2|X08:r’w‘g) + Z|XO<V/ Oy’ + igam/wg)@}

+b4 (

2
P’ (ps)
00,9 .

N
+ 25 {v(lxm V'Ol + |€|2|Xm8w|§) + U)X (V- 0w’ + i&0w®) |3}
m=l (4.93)
<C{(n+ 25+ 5+ stmm) Il + (1+ 25 + & + 22)¢llol3

+ (0 + 32) 10003 + (V—,7 + 54T+ 1) De[w]

+ 7512 Delu] + 5| vadw} |
for any n > 0 with C independent of 1.

We do not have the estimate for ¢ such as |¢p|y < C|0,¢|2 similar to that for ¢,
in Section 4.1. We thus use the estimate for a solution of the Fourier transformed
Stokes equation of the case |[£]? > 1.

Proposition 4.32. Assume that (p,h) € H'(D) x H*(D) is a solution of the fol-
lowing Stokes equation

VW +iEh? =

(1€* = A + J0wp = 3G,

(167 = AR + Ligp = 5GP,

h lop= 0.
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There exists a constant Ry = Ry(D) > 0 such that if |{| > Ry, then there holds the
following estimate:

2 pl3 + 5 1EP PR + 7z 100pl3
11+ [EPIAE + 10,h1 + Sol€f102hl
< ORG{|FCl + [EP|FO15 + |00 FO5 + 35|GI3 + 0w h13},
where C' is a positive constant independent of |&|.

Proposition 4.32 can be proved similarly to the proof of [12, Lemma6.6] and we
omit the proof. Applying Proposition 4.32, we have the following estimate.

Proposition 4.33. There exist constant v; > 0 such that if v > vy, ¥ > 1 and
w < 1, then there holds the estimate:

L (1613 + £1[6]3 + 10013

2 o
+;ﬂw%m%ﬁﬂ@M+zmm%m@

= (4.94)
< CRQ{( w?

1/+l/ y+y ) |¢|2 1/+l/

”ml%+mwﬁww IV,

De[uw]

for |€| > Ry, where Ry is the constant given in Proposition 4.32 and C' is a positive
constant independent of |£|.

Proof. We observe that (¢, w) satisfies the following Stokes equation
V' w + i§w3 — FO,
(52 . /)w/ + 1v/(P’(ps)¢) _ lG/
(€ - A + i = 168,
w |8D 07
where
FO = —i{atgb + vl + (Vps) - w'},
G = —p{op — ZV'(V'-w' +igw®) — {16V p, +icvdu'},
G* = —p{Ow® — %i&(V' w4 ifw?) + igvdw® + ﬁA'vgqﬁ +w' -V}

Therefore we get the desired estimate from Proposition 4.32. This completes the
proof. O

We finally prove Theorem 4.5.
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Proof of Theorem 4.5 Let b5, b6 and b7 be constants satisfying b5,b6,b7 > 1.
Define E4 [ | by

E) = bsES) [u) + L EYDu] + b7 (1 + 2) (1 + |€[2) Bo[u):
We compute (4.94) +bs x {(4.93) + b2 (1+]¢[2) [ 4], } + S5 (4.89) +br (1+2) (1+
€]?) x (4.87) then

LAl + 25wl + 6Pl + o + 3 610k ul?)

Jj=

5 (1o + [€1210]5 + 10w 013) + bb5V+V (9], + 1€12[ ], + 0w
3{”(|X0V,aﬂc’w|2 + |§| |X06m’w|2) + V|X0(V - Opw' + 10w >|2}

N
+ 5 3 {0 Voul + P hdul) + (V- 0u’ + g}

+ o2 Defw] + %%rﬁsawwz 2(1+2)(1+ |¢) Defw]

< OB (5 + )| ¢|2+Ro,,+,,Dg[ |+ RS (|03 + €2 0 + [0wd)])
ngiy|\/matw|2+b5( 1/+11+ >+ u+u)|¢|2+b5(77+u+a+ +V+V)|5| 18]35

+b5(n+ 510, ¢|2+b5( +—+—+1)D§[ ]+b5m\5| Dew]

+ B s | /502 + bbs (L + L) (1 + [€[?) Deu]

+ o (o + ety |13 + o [P 16 + 57 (1 + I )3}

Fix 55 > 1, 56 > 1 and 57 > 1 so large that 55 > 254R2 56 > 8C, maX{RO,Z5}
and b; > 20C; max{R2 b n(v+v
sufficiently small such that n <

b5, bb5} respectlvely We take n > 0 and w > 0
% C - — and w? < W min{ 2 7 35} respectively.
We assume that v > vy and v > 7 are large enough such that v > v; > 1 and

72 > 200, max{%(u +7), %—5#217, V(v +7)}. We then arrive at the estimate

ABEu) + 2 (0l + Pl + [owwl3 + Z|£|2J|8J/w| )

+ o5 (105 + €10l + |00 0l3) + 257 ( }¢\2+|5\ 16]2 + |]3.)
+ V(|X0vlax’w|2 + |£‘ |X0a'r’w|2) + V|XO(V/ Oy’ + Zfaz/w )|2

N
+ 3 {y(|xmv'awg I D0 ) + (V- O’ + iow”)[3 |

V+V|\/E3M\2 Y2 (1 + [€)°) Delw]
<0

for all ¢ € R with [¢| > Ro. We define E\™[u] by

EXu) = ]3 + [€716]3 + 100813 + [w]3 + [€17[w]3 + [2w]3.
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Since
${(1+ B5) Bolu] + Deful} < BY7u] < {1+ 25 Bolu] + Deful}
LL|0u0f2 < 65E§°0>[u] < 3 (5100005 + [0uw]3)
for a positive constant 6’5, we see that
387 u) <GB u] < §Eul

for a positive constant 06 We thus see that there exist positive constants vy, v1, wy
and d such that if v > 1y, 2= > 17 Rj and w < wi Ry?, then

ES)(t) < Cem M EP [ug]

for [{| > Ry. On the other hand, for 1 < |{] < Ry, we obtain the desired estimate
from (4.86) with R = Ry. This completes the proof. O

4.3 Spectrum of —Eg for |{| <« 1

In this section, we consider the spectrum of —/[:5 for €] < 1.
Let us consider the resolvent problem

A+ Le)u = f

with [¢] < 1, where u = 1(¢, w) € D(Eg) = D(Lg) and f="(f°,g) € L*(D).
We first establish the resolvent estimate for |£| < 1. To do so, let us consider
the resolvent problem for £ = 0

where u = 1(¢,w) € D(Lo) and f =*(f°,g) € L*(D). Decomposing u in (4.134) as
u=(o)u® +u

with
Uy = ([ — H(O))u,

we obtain

A(@)u'® +uy) + Lous = f.
Applying I and I — 11V to this equation, we have

{A<¢> = (/). (496)
Aup + Louy = f1,
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where f; = (I —T1) f. We see from the first equation of (4.135) that if A # 0, then

(@) = (7).

This implies that
) < E1 L. (4.97)

On the other hand, the u;-part has the following properties. The second equation
of (4.135) is written as

ApL+ 72V (pswy) = f7,

Nl — £ AW, — ZVIV ]+ V’(%qﬁ) =g\, (4.98)
Awy — plsA/w? + 721//)2 A'vigy +wi - Vv = g,

where uy = 1(61,w1) = gy, wl,wd) and fy = 12, 91) = 7(f0, g}, g3).
To state the estimates for the ui-part, we introduce a quantity Do[w;]| defined
by B
Dolwn] = [V'wn [5 4 [V - w) 3

for w; = T(w}, w?).
Proposition 4.34. There exist constants vy > 0, v > 0 and w; > 0 and an energy

functional Eo[uq] such that if v > vy, #2; > 72 and w < wy, then there holds the
estimate

(ReX) Eolua] + ¢(|1]3 + Dolwi]) < C|fil2lus 2,
where ¢ and C' are positive constants independent of uy and X\; and Epluq| is equiv-

alent to |uy 3.

Proposition 4.52 can be proved in a similar manner to the proof of [1, Proposition
4.7] by replacing % with Re\ and taking & = 0 there.

The Poincaré inequality yields Dolwy] > Clw;|? with a positive constant C.
Therefore, the resolvent estimates for —Ly now follow from (4.136) and Proposi-
tion 4.52.

Proposition 4.35. There exist constants vy > 0, v1 > 0 and w; > 0 such that if
2
v >, #; > 72 and w < wy, then there is a positive constant co > 0 such that

Yo={N#0: ReX > —¢} C p(—Ly).

Furthermore, the following estimates

_ 1 1
[(A+Lo) ™' fl2 < C{W|fo|2 + mﬁlb},
~ _ 1 1
0:AQ0+ Lo) ™ Y, < {117k + (rox oyl

hold uniformly for A € ¥Xy. The same assertions also hold for — L.
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Based on Proposition 4.53, we have the resolvent estimates for — L, with |£| < 1.

Theorem 4.36. There exist constants v; > 0, 74 > 0 and w; > 0 such that if
v > v, V1§ > 2 and w < wi, then the following assertions hold. For any n

satisfying 0 < n < 9 there is a number ro = ro(n) such that

Y1={A#0: Al >0, Red > =2} C p(—Lg)

for || < ro. Furthermore, the following estimates
[(A+ Le) ™ fla < Cfla,

[0:4Q+ L)™' £, < CIf1:
hold uniformly for X\ € ¥y and & with || < ro. The same assertions also hold for
—L}.
3

Proof. Let us decompose L¢ as

L= Lo+ &LW + 2L,

where
v 0 7 ps 0 0 0
LM —; 0 V31, —p—”SV’ . L@ =10 p—l’sfg 0
s gv 0
For u = 1(¢,w) € L*(D) x H}(D) we have
LWy < Clulexm, |LPuly < Cluls. (4.99)

Therefore, we see from Proposition 4.53 that for any 0 < n < 2 there exists 19 > 0
such that if || < rg, then

[(6LD + L) (A + Lo) ' f|, < 31l (4.100)
It then follows that
Li={A: Al >n, Red > =2} C p(—Le),

and that, if A € ¥, then (/\ + Lg)_l is given by the Neumann series expansion

(A+L) " = (kL) + 3 (“DV[(EL0 + 2LP) (A + L) ]

for |£] < 1y, and it holds that

(A + Le) ' fla < CIfl2 (4.101)

for A € ¥; and |£] < ry. We thus obtain the desired estimates. This completes the
proof. O

As for the spectrum of —L¢ near A = 0, we have the following result.
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Tgleorem 4.37. There exist positive constants vy, v1, wi and ro such that if v > vy,
#; > 2 and w < wy, then it holds that

o(—Le) N{A: A < 9= {Mo(§)}
for & with €] < 1o, where \o(§) is a simple eigenvalue of —L¢ that has the form
Xo(€) = —iroé — r1&* + O(|¢]?)
as &€ — 0. Here kg € R and k1 > 0 are the numbers given by

ko = (300 + 72 pw®?) = O(1),

=2 ool (-8 H s+ O(%) + (5 + &) x O(59)},

v v
where —A denotes the Laplace operator on L*(D) under the zero Dirichlet boundary

condition with domain
D(—A/) = H2(D) N HS(D).

Proof. For w € L?(D) x H}(D) we see from Theorem 4.54 and (4.138) that
|L(1)U|2 S C’(|L0u|2 + |U|2), |L(2)U|2 S C|U|2

Therefore, since 0 is a simple eigenvalue of — L, we see from the analytic perturba-
tion theory that there exists a positive constant ry such that

o(=Le) N{A: A< 9} = {Ao(§)}

for all £ with |£] < ro. Here A\o(€) is a simple eigenvalue of —L,. Furthermore, Ag(§)
and the eigenprojection I1(§) for \g(§) are expanded as

Mo(€) = AW+ A0 + €A 4 O(l¢]?),

I(¢) =T + 1™ + O(|¢)?) (4.102)
with
A0 =,
AD — _<L(1)u(0)7 u(O)*>7
A2 — —<L(2)u(0), u(O)*> + <L(1)SL(1)U(O), u(O)*>,
ny = —_mOr0g SL(I)H(O),
where

“1
§={(1 =) Lo(1 -1)} .
We first consider A(Y). Since

vio” + 77 psw @
L0y = [ T —zgw®s

Qo + v?w(o)’g’
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we obtain

A = <L(1 ©) 4 > — _<Q0 > - —i<v§¢(0) + ’72psw(0)’3> =10(1)
as y% — oo.
We next consider A®). Since QyL( =0, we have

(LOWO, 4®") = (QuL®u®) = 0
It then follows that
) = (LWSLOU® 40 = (QuLVSLMu®),
We define u by
= SLWyO,
which satisfies
Lot = (I — TO) L0y = L0y 0) 1 A1y ©)
@ |ap= 0, (4.103)
(¢) =0.
Note that @ = 7(¢, @) € iR* and A1) € iR. We rewrite A\ as
D = (QuLW) = (iv? + ir?p,0”),
where 7 = T(&, w) = (gb w', w>). To show the strict negativity of A?), we estimate

@. The problem (4.142) is ertten as

(

PV (ps') = &3¢0 4 in? paw(©3 + XV g0,
—ENG - ZOV @+ V' (ZG) = —iZ v,
Ps

—VA/ 3+VA2’1;¢_|_~/ v/v?;_zw(p)¢(0)_|_ivgw +)\ ,w(O

w ‘BD_ O?

(@) =0,

\

ie.,u="¢ 0) =" @, @) is a solution of

V' - = FO[@/],

VAT + V' = G'[6, T, (4100

ﬁ}i |8D: 07

(¢)=0

and ~

- 153 — (13 ~
Nl/A w® = G°[p, '], (4.105)
w* [ap= 0,
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where FO[@'], G'[¢, @] and G3[¢, @] are defined as
Fola'] = L{iv?’cb(o) + W"p w? £ ADgO Y — " (1= py)a),
G’[q;,w] —ivV'w 9 + oV F '] + V' ((1 — ps)g)
+ (v/ps)¢ + psvl{ (1 - 2—/)5) }¢7
& "(ps) vA'v3 /
Gg[¢7w]—/)s{ VZ ¢ + ivdw @ 4 AW }—,03{ 2¢+ VU?}

As for the problem (4.143), since AY = —i(v3¢©® + 42p,w@3) it holds that
(FOlw']) = 0. Furthermore, we have

[FO[a)la < C{H(IAV]16)s + (605 + 7 [w@?]5) + w|V'@'|5}
S Cw’v/wllg + O(%),

|G [0, @ )|+ < C{PIV'W O3 s + DIV F[ ] |51 + [V (1= p5)6) |-
+ Vbl + [ (1= Z252)0) |}
< Cw{|dls + D|V'@ |5} + 0(7—2)

Since (¢, @) € X = {(p,v') € L3(D) x HY(D) : (p) = 0} and it is a solution of the
Stokes system (4.143), we see from estimate for the Stokes system (see, e.g., [26])
that there holds the estimate

613 + V'@ |} < P {CW i3 + O(4) } + {Cw?(6l3 + PIV'E'3) + O(%) }
< G {|o + (v + PPV R} + o).
Therefore, if w is so small that w? < ﬁ min{l, (#)2}, then

93 + 2Vl = o (L272). (4.106)
As for the problem (4.144), since
G, @[> < C{AD|Jw Py + £ (6O + [w @), + %[6]s + |@']}
< C{&H I3+ 1T} + O(%),
we have G3[¢, @] € L(D). It then follows that
@ = (-G,
Since ¢(© = ay 1;*,(”5) (see Lemma 4.6 (ii)), we find that
<ps{53> = %<Ps(_ ) 1G3[¢ ~/]>
= %<Ps(_ ) 1(2a0p5)>
() i 1 p AP0 G )
= 19| (=A)" 2ps|2

I %<ps l{zp 0303 4 p AW (03 ”VAZ_:’E’(E— psW' - V’U§}>.
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Furthermore, since & = (¢, @') € iR* and A1) € iR, we see from (4.145) that

(ps(=A) " Hipariw P 4 p AV — Lo i - V')
=i0(35) +i(2 + 52) x O(4%).

1/2
It then follows that
(psi) = i) (—A) 3pify +12{O(2) + (% + ) x O(2F) }.

By (4.145) we also have

We conclude that

A® = (03¢ + ir?p. )
1

for sufficiently small = and ”*” We thus obtain the desired estimates. This com-

pletes the proof. O

We next establish some estimates related to I1(¢) in H*(D). We first consider
-1
f.

Proposition 4.38. For any f =1(f° g) € H*(D) x H*"Y(D). There exist positive
constants vy, v1, wy and ¢y such that if v > vy, #2; >~ w<w and X € Xy = {\ #
0: [A| <}, then (A+ Lo) ™' f € H¥(D) x (H*(D)NHg (D)) fork=0,1,--- , ko.
Furthermore, the following estimate holds:

estimates for higher order derivatives of (/\ + LO)

’()\ + L0>_1f|Hk><ch+1 S O(]. + ‘_§\|)|f|Hk><Hk*17

where C' is a positive constant independent of X € ¥o. The same assertions also

hold for —Lj.
Proof. For a given f =1(f° g) € H*(D) x H*"1(D), we consider the problem

A+ LU = 1, (4.107)
W lap=10
for U = 1(®, W). Here L, is differential operator given by
VIV (ps W)
»C()U: VA/W/ Vvvl W/+V/( )

—”AW3 S R v}
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for U = 7(®,W). To solve the problem (4.146), we decompose ® and f° as
=0 40, [fO=f+(),
where 0 = (®), ®; = ® — o and f) = f° — (f°). Note that
(®1) =0, <f?>20

Then (4.146) is equivalent to the problem

Mo = (f%), (4.108)

A0, + V- (p W) = f7, (4.109)

AW — LAW' — ZY'V' W/+v( o+ @) =4, (4.110)
AW?E — LAWE 4 2 v Lo+ @) =WV = g (4.111)

with W |gp= 0. If A # 0, then we ﬁnd from (4.147) that

= 3(f). (4.112)
Substituting o = +(f°) into (4.149) and (4.150), we obtain
ABy + 2V (p V) = £,
AW — LANW' — ZY - W4 V' (2]
AWS — LW 4 o O — W -V ;2 —

P’ (ps
), (4.113)

with W |gp= 0. Let us write the problem (4.152) as

VW = FO[, W fY],

—vA'W' +V'® = G'[@, W' [0, 4], (4.114)
W' |ap= 0
and
(gt
Here

FO, W' fi] = =528 + V' - (1= p)W') + 5 7,
Gy, W' 2,6 = =Ap W' + DV FO[@1, W2 0]+ V' (1= o)1) + V'pey
— 10V (Bd) 4+ p V' (1= ZE2)®y) + oy

¥2ps

Go @, W, WP 2 0, 6% = —Ap WP — S35 L(f0) — 50y — p W V'0F + pog®

72pE A

We now define a set X by
Xi = {(p,v") € HY(D) x (H*"'(D)n Hy(D)) : {p) = 0}
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with norm
[(p, V") 5, = [plae + V[0 [grs

For a given (51, W’ ) € X}, we consider the problem
VW = FO[B, W £,
—VA'W' +V'®, = [, W' : [0, 4], (4.116)
W' |ap= 0.

It holds that
<F0[€I/)17W/:f{)]>:07 FO[EI/)Ia/—WV/:f{)]EHk(D>7
G'[®, W' 0, ¢ € HY(D).
In fact, we see that
(FO[@y, W'« £} = =L M(®1) + (V' (1= p)W')) + L (f1) =0,

and

‘G/[(filawl : fovg/HHk—1

< CLW| s + PO @1, W )]+ 9] @1 | e + 1P 419 v}

< C{(ZIN +w) @] 0 + V(A + Z) W) s + (& + )l 0lr + 19 [}

for a positive constant C' independent of A. From [26], we see that there is a unique
solution (®1, W’) € X, of (4.155) and there holds the estimate
D g + VW[
< C{V|FO[§)1,W/ : ff”Hk + }G/[Eﬁl,wl : fo,g’”kal}
< C{(EZ A + w) [@1] ;e + VRN + Z2w) W]
(27 4 2 Ls + 19 o}

(4.117)

for a positive constant C' independent of A. Let us define a map I'y : Xj, — X}, such
that o
Iy (<I>1, W’) = (&, W),

—~

where (1, W') € X}, is a solution of (4.155). From (4.156), for (&, 1, WI’), (D15, W)) €
X}, the estimate

lrl(&;l,la /Wl,) - Fl(&;l,% /WQ,) |Hk « Hk+1
< C{(57 + D) + (22 4 1)o@y — B T~ 7))

[
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holds for a positive constant Cy independent of A. If w and [A[ are so small that

w < TFIQ and |A| < 20 , then I'; : X, — X, is a contraction map. This implies

that there is a unique (@1, W’) € X, such that [y(Py, W) = (9, W), i.e., there
is a unique solution (®1, W’) € X}, of (4.153). Furthermore, from (4.156), (®1, W’)

satisfies the estimate
@1 e+ (W[ < C{(1+ ﬁ)|f0|Hk +19'[ar1 (4.118)

where C'is a positive constant independent of .
As for (4.154), for a given W? € H**1(D) N H}(D), we consider the problem

—VAW? = GB[®y, W, W3 0, g
{ VAW = G3o, W/, W3- [0, ¢7], (4.119)

W? |ap= 0,
where (®,, W’) € X, is a solution of (4.153). It holds that
G0, W, W2 f°,¢°] € H*(D).
In fact, we have
(G0, W W 0,67 s
< CLIMW] s + 1@ | s + (W] s + 6% s + 1 (O} (4.120)
< Co{N|W2) s + (14 )1 s + L9l }

for a positive constant Cy independent of . If || is sufficiently small satisfying
Al < min{3}-, &}, then there is a unique solution W* € H**'(D) n H(D) of
(4.154). Furthermore, from (4.159), W? satisfies the estimate

(W ger < CL(L+ ) 1O + 19l } (4.121)
where C' is a positive constant independent of .
Now we set
So={A#£0: | < min{ﬁ, CLQ}}
Since ¢ = o + &1, we see that if w < % e and A\ € Y, then there is a unique

solution (®, W) € H*(D) x (H*"'(D)N Hg(D)) of (4.146). Moreover, from (4.151),
(4.157) and (4.160), ® and W satisfies the estimate
@] g+ [Wgeer < o] + @] + W [grsr + [P |
< CL+ ) + gl )}
for a positive constant C' independent of \ € ¥,.

Since D(Ly) D Hk(D) x (H**Y(D)NHg (D)), we can replace Lo with Lo; and we
find that if w < 52~ and A € ¥y, then (A\+Lo) "' f € H*(D)x (H*"'(D)NH{(D)).

20 1/+1/
Furthermore, (A + L)™' f satisfies the estimate

|(A + Lo)flf’HkakH < C{(l + ﬁ)|f0|Hk + ‘g‘Hk71}7
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where C' is a positive constant independent of A € 5. We thus obtain the desired
estimates. The assertions for L can be proved in a similar manner. This completes
the proof. O

We finally obtain the following estimates for the eigenfunctions ug and ug asso-

ciated with A\o(&) and (&), respectively, which yields the boundedness of I1(¢) on
H*(D).

Tgleorem 4.39. There exist positive constants vy, v1 and wy such that if v > vy,
2= > 2 gnd w < wy, then there exists a positive constant ro such that for any £ € R

v+v

with |§] < 1o the following assertions hold. There exist ue and ug eigenfunctions
associated with \o(&) and Xo(€), respectively, that satisfy

<u€7 UZ> =1,
and the eigenprojection IL(E) for Ao(§) is given by
II(&)u = <u,u2>u§.
Furthermore, ug and ug are written in the form
ug(z') = u (@) +iculV (') + [¢Pu® (', ),
ug(a') = uO(a') + i€V (a') + |EPur® (2, ),
and the following estimates hold
’u‘H’“” < Ckﬂ‘o

for u € {ug, uf, u™ ™ u® WY and k = 0,1,---  ko: and a positive constant
Ck.ro depending on k and ry.

We can prove Theorem 4.57 by using Proposition 4.56, similarly to the proof of
[12, Lemma 4.3]. We thus omit the proof.

4.4 Spectral properties of e '* P,

In this section we give a a factorization of e7** Py and prove Theorem 4.2 (i).

We denote the characteristic function of a set {£ € R : [£] < 7o} by 1gj¢<ro),
ie.,
17 |§| < To,

Lpi<roy (§) = { 0. I > .

We define the projection P, by

Py = F  1yjg<r} TI(E) F.

62



Py is a bounded projection on L?(2) satisfying
PyL C LP,, Pye 't =e 'LPp,.

As in [3, 5], to investigate e '* P, we introduce operators related to ug and wuj.
We define the operators T : L*(R) — L*(Q), P : L*(Q) — L*(R) and A : L*(R) —
L*(R) by

To=F'[Teol,  Teo = Lyjg<nouco;

Pu == f_l[Pgu], Pgu == l{mgm}(u, UZ>,
Ao = F 7 [Ljg<ropro(€)0]
for u € L*(Q) and ¢ € L*(R). It then follows that

Py=TP, e'pPy=Te"P.

We investigate boundedness properties of 7, P and e**.
As for T, we have the following

Proposition 4.40. The operator T has the following properties:
(i) OLT =T, forl=0,1,---.
(ii) [|0%0L, Tolla < Cllol|rzmy for k=0,1,---ky, L =0,1,-- and 0 € L*(R).

(iii) T is decomposed as

T=T9+0, 7Y +02T7?.
Here TWo = FHTWa] (j =0,1,2) with

T = Lyg<ryou,

T = ~1g<rou (- 9),

where u) (j = 0,1,2) are the functions given in Theorem 4.57. The assertions (i)

and (i) hold with T replaced by T (j =0,1,2).

Proof. It is clear that (i) is true. As for (ii), we can prove the estimates by using
the properties of ug in Theorem 4.57 and the Sobolev inequality. From the expan-
sion of ug given in Theorem 4.57, we can expand 7 as in (iii). O

As for P, we have the following properties.

Proposition 4.41. The operator P has the following properties:

(i) oL, P =Po., forl=0,1,---.

(i) [|0L, Pullr2my < Cllulls for k=0,1,---ko, I =0,1,--- and u € L*().
Furthermore, ||Pul| 2wy < Cllully for u e L'().

(iii) P is decomposed as

P =P +9,,PY + 02 P2
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Here POy = FPWy] (j =0,1,2) with

P(O)u - 1{|§|S7’0}<u7 U*(O)> - 1{|§|S7’0}<Q0u>7

P = 1<y (u, u™D),

Pu = —1ge1<p) (u, 0P (€)),
where u9* (5 =0,1,2) are the functions given in Theorem 4.57. The assertions (i)
and (i) hold with P replaced by PY) (j =0,1,2).

Proof. It is clear that (i) holds true. As for (ii), we can prove the estimates by
using the properties of ug in Theorem 4.57 and the Sobolev inequality. From the
expansion of ug given in Theorem 4.57, we can expand P as in (iil). O

As for A, we have the following decay estimates for e

Proposition 4.42. The operator e'* satisfies the following decay estimates.
1

(@) 104, e Pullpamy < C(L+8)71 2 July,

(i) [0, eMPDu 2@y < COL+1) 752 ully, §=0,1,2,
(iii) |04, (T — TO)e Pully < C(1+ )52 |Jul|,

forue LYQ) and 1 =0,1,2---.

Proof. Since \o(§) = —iko€ — k1£2 + O(|¢[?), we see from Theorem 4.57 that

j —t(ik K1E2 *(4
10;,e PVl 2y < C/ Ljei<rop €7 e oS mEN (0 (), u* D) [Pdg
R

—t(ik K1£2
gc/Rl{Mm}yf\z’e Hino&tmED |y (&) [7d (4.122)

2
<ol
2 .

This implies (i) and (ii). As for (iii), since 7 — T® = 9,, 7® + 92, T2, we obtain
the desired estimate from (i) and Proposition 4.40. O
The estimate (4.4) in Theorem 4.2 follows from Propositions 4.40 and 4.42.

We next investigate the asymptotic behavior of e7*£. Recall that H(t) is defined
by
H(t)o = fﬁl[e*(i“&”lﬁta]

for 0 € L*(R), where kg € R and k; > 0 are given in Theorem 4.55. We first
introduce the well-known decay estimate for H(t).

Proposition 4.43. There holds the estimate
11
10, (H(t)o) 2y < CE T2 lollpwy  (1=0,1,--)
for o € L'(R).

We next consider the asymptotic behavior of e*. The asymptotic leading part
of e"AP is given by H(t). In fact, we have the following
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Proposition 4.44. For u € L*(Q), we set 0 = (Qou). If u € L'(Q), then there
holds the estimate

0%, (¢ Pu —~ H(B)0) |2y < CEF 2 ul (1 =0,1,--+).
Proof. By Proposition 4.41 we have
P = PO 4 9, AP 4 32 PR
Set o = (Qou). Since e*POy = F 1<,y eM 0], we see that
Fle*POu—H(t)o] = (Lezry — Ve g 4 1 g0,y (2O — e (rostaeDl g,

By using the relation
Xo(€) + (iko€ + riE) = O(JE[)
we obtain
M© o= (iros+r€)t _ = (iro&+r1€)t (€(A0(5)+iﬁoﬁ+5152)t _ 1)

= e s gt

It then follows that

— (K K1E2 2 —2k1£2
/l |€’21|<€>\0(E)t — ¢ (iro&+rig )t)0| dé < C/ |€|2(l+3)t26 2K1€ tdSHJH%l(R)
&l<ro

1€1<r0

<c / (€[22 € 2HD emEge o2, g
€| <ro
—K 2
<C [P DemmE e o]|71 Ry
[€]<ro

<t ol m)-

On the other hand, we also have

/5|<r0 €| (400 — e~moemENn) 5 e < Cllo2
We thus obtain
L T e nyoiag < 01+ A ol
Similarly, we have
1L ggg<rey — 1ot Dig |2 < Crmale 8 |o|F. .
We thus see that
1A POu — H(t)o |l 2wy < CH 5% Juo|1.
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This estimate and Proposition 4.42 (ii) give the desired estimate. This completes
the proof. O

We are now in a position to prove estimate (4.5) in Theorem 4.2 (i). In fact, we
have

e " Pyu — [H(t)olul® = (T — T Pu + [e“Pu — H(t)o]u.

This, together with Proposition 4.42 (iii) and Proposition 4.44, yields the desired
estimate (4.5).
We finally state the estimates for the projection F .

Theorem 4.45. The projection Py has the following properties:

(1) 8;3P0:P08f£3 fOT’lZO,l,"'.

(ii) |10k 8L, Poulls < Cyllully for k=0,1,---ko, 1 =0,1,--- and u € L'(Q).
(i) Py is decomposed as

Py= P +0,,P" + & P,
where PVw = F P (5 =0,1,2) with

PO(O) — 7O)p0) — 1{|§|§7‘0}H(0)7 (4.123)
PO = 7OPpm L 7OPO = iy IO, (4.124)
P? = 7OPO L 7OIPO 45 POY 4 TOLPO 4o, PO 4 52 PAY. (4.125)

Furthermore, Po(j) (7 = 0,1,2) satisfy assertions (i) and (i) by replacing Py with
B,

Proof. It is clear that (i) is true. Estimates in (ii) are given by Propositions 4.40,
4.41. As for (iii), it is easy to see that 8;3130(” = Péj)ﬁi?). The estimates

1850, P ully < Cillullx

can also be obtained by Propositions 4.40, 4.41. The relations (4.124) and (4.125)
can be verified by equating the coefficients of each power of ¢ in the expansions of
I1(¢) in (4.141) and (u, uf)ue. This completes the proof. O

4.5 Decay estimate for e /(I — B)

In this section we prove Theorem 4.2 (ii). We set
Po=1-F,.

To prove Theorem 4.2 (ii), we first introduce the decay estimate of e =X P, uq for
up € HY(Q) x Hy(Q).
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Proposition 4.46. There exist constants vy, v, and wy such that if v > vy, % > 2
and w < wy, then e L' Pyug have the following properties. If ug € HY(Q) x H} (),

then there exists a constant d > 0 such that e~** Py ug satisfies
le™™ Poouo| g1 < Ce™||ug]| (4.126)
fort > 0.
Proof. P, is written as _
P =Py + P,

where
Poo,ou = Fﬁl[Poo,()U], Pooyo'u, = 1{|§|STO}<[ — Po)u,

Pt = F Y Put], Patt = (1 — L{jgj<p) ).

The estimate ||e~"F Pooug|| g < Ce%|uo|| sz was proved in [1, Theorem 3.3]. As for
P part, since p(—Le¢ |(1-my(e)r2) € {A € C: Red > =2} by Theorem 4.54, we
have

e Pog gigla < Ce™ 7 ug) . (4.127)

We now apply the argument of the proof of [1, Proposition 4.20] to u(t) = e~ Py, guy.
Due to (4.127), one can replace e_d72|5‘2t|u0]§ in the inequality (4.72) of [1] by
e~ 2| ug|2 to obtain Ei?l) [u](t) < C'e*2£[1’5|u0|§1,1 for a positive constant dy. Integrating
this over |£| < 1y and using the Plancherel Theorem, we have

||€_tLP0070u0||H1 S C’e_dt||u0||H1

for a positive constant d. Combining the estimates for e ¥ ]Soouo and e~ ' Py oup we
obtain the desired estimate. This completes the proof. O
We next consider the estimate for e *fu for 0 < ¢t < 1.

Proposition 4.47. Let T > 0. If uy € HYQ) x H'(Q), then e *Fuy satisfies
e tug € HY(Q) x HY(Q) fort >0 and

_ _1
le™Fuoll i < Cr{lluoll iz + 2 lwoll2 } (4.128)

forO<t <T.

Let uyp € HY(Q) x ﬁl(Q) Applying Proposition 4.47 with ¢ = 1, we have
up = e gl € HY(Q) x H(Q) and

lug || < CHUOHHlxﬁl‘

This, together with Proposition 4.46 and Proposition 4.47, implies Theorem 4.2 (ii).
It remains to prove Proposition 4.47.

67



Lemma 4.48. Let T' > 0. There hold the following estimates for 0 <t <T':
(i) for ¢ =0,1,

t
105, u(®)]13 + C/ IV Oy, w3 + lldiv &g wl3dr < Crl|0g,uoll3,
0

t
IxoBuru(®)[2 + ¢ / 10V Aw(r) 2 + |xodiv Ay 2dr
0

t
< Cr{lunll + 1000l + oD ol + [ 107 e}

(iii) for 1 <m < N,
¢
. 2
| XmOu(t)|)5 + c/ X VOw||3 + ||de1v (9wH2dT
0

t
< Cr{ uollg + 10y 013 + I xmu13 + / |0 6l3dr }.

Lemma 4.48 can be proved by the energy method as those in the proof of [1,
Propositions 4.7, 4.15, 4.17]. Note that here are no restrictions on v, v and 7 but
Cr depends on T

We next consider the L? estimate of the normal derivative for ¢.

Lemma 4.49. Let T > 0. For 1 < m < N, there holds the estimate for 0 <t <T':
Xm0 (t)113
t
< Cr{lull + 10ngu0l§ + enduol} + nducul + [ 0wslar ).
Proof. Let us transform a scalar field p(z’) on DN O,, as
p) =) (y =¥"(), 2’ € DNOy),

where U (2') is a function given in Section 2. Similarly we transform a vector field

h(a') = T(h}(a'), h3(a"), h3(a")) into h(y') = T(R'(y), B3 (y'), h*(y')) as

h(z') = E(y)h(y)

where E(y') = (e1(y), e2(y'), e3) with e1(y’), e2(y') and e5 given in Section 2. From
the proof of [1, Proposition 4.16], we have

~ - 2°2
0,0y, 6 + (a + 00y,) 0,6 = psl — Jf‘;&wl, (4.129)
where o
aty) = 22 -y gy,

v+v
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I:_;’% V(I‘Ot rot ’LU) +psay1<~ )¢+ 2ps( ’Us) (15—1-,037)335 w }
- { aylﬁ;?)aysq5 +9%3 ayl (divy (Pst)) — 7?0y, div, @}

Here (rotyﬁ?) denotes the e;(y’) component of rot,w, and so on. We note that

(rotylrotyzﬁ)1 does not contain ;. See the proof of [1, Proposition 4.16]. We also
note that there is a positive constant ay such that

a(y’) > ag >0

for any ¢y € U™(D).
We denote by e~#@*%s) the semigroup generated by —(a + bd,,), i.e,

e_t(‘”b%)a@ — F—l[e—(a( )+i€b(y )t¢0]

Then it is easy to see that

| Xme™ Hatbdy;) ¢0||2 <e a°t||Xm¢0||2

Dys)

In terms of e~ *(@+b%s) (9@,15 is written as

t
8y1¢(t) _ et(a+b3y3)ayl¢0+/ ef(tf-r)(a+b8y3)ﬁsl(7_)d7_
0

2°2 t

_Ps / e~ (=) @H80,) 5 g
v+

= J1 + JQ + Jg.

As for J; and J5, we have
IXmJ1ll2 < €[ XimOy, doll2,

t
HszabfsC{/‘aotfuxm (7) |adr.
0

As for Js, integrating by parts, we have

7252 t
Jy = ——= [e*“a*bays)wg — @' (t) + (a + bdy,) / Um0 gl (7 )dT]
vV+v 0

We thus obtain
t
[Tl < C{e IRl + T ()] + | €700 () adr .
0

Furthermore, we have

eI (M2 < CLURmS()l2 + [XenDya (1)l + | K@ (7) 2
+ X Vy@(7)ll2 + X Vy Oy ()2 + XV Oy 0(7) |2}
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It then follows that
1%n 0y 3@l < C e (1TndysGollo + K@i ll2) + K@ ()]
« DBl + [Rndipd) e + [T
IR V@)l + 1K Vo (7 + K Vo Dy (7 2 7]

Inverting to the original coordinates z’ and noting that 0,, = 0,, 9,, = 0, we see
that

[XmOnd(B)]2 < C{e—“ot(uxman%”g + xmwoll2) + [omw' ()12

t
+ [ IOl + Iondes (o) + o)
+ Ixm V() 2 + Ixm VOW) 2 + 1|m Vg (7)o }.

This, together with Lemma 4.48, yields the desired estimate. This completes the
proof. O

By Lemma 4.48 and Lemma 4.49, we have the following estimate.

Lemma 4.50. Let T' > 0. There exists a positive constant ¢ such that the estimate
t
: 2 : 2
w370 + 0/ V()3 + [Idive ()5 + |V Ow(r)[13 + [|divosw(r)]3
0

+xoVaw ()} + odivdoa (I + 3 {InT0u(r) B + [xndivdu(r) dr
< Orlluoll3r
holds for 0 <t <T.
We finally consider the L? estimate for d,.w.
Lemma 4.51. Let T' > 0. There holds the estimate
0w (®ll2 < Co{lluollnn +t 2 woll2}
forO<t<T.

Proof. We see that w satisfies the equation
Oyw + Aw + Bu =0,
where A is the 3 x 3 operator defined by

A =LA - 2ZVdiv,
Ps Ps
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B is the 3 x 4 operator defined by

. V/( 72 p ) Ugaxglg 0
B = / 1,,3
Ony (Z422) + 5% T(V'03) 130,

We write w(t) as
_ t .
w(t) = e +/ e~ ABu(T)dr.
0

Then
V'u(t) = V'e Py, +/ V'e 4 Buy(7)dr. (4.130)
0
Since A is strongly elliptic, we have
||V’e_tzng2 S Ct_%HwOHQ

for 0 <t <T. Furthermore, we see from Lemma 4.48 and Lemma 4.50 that

t TR —
H/ Ve DABu(1)dr
0 2

<c / (t — ) [Bu(r) |dr

t
<c / (t— 1) H|u(r) | o gl

(4.131)
t
< Clluolege | (¢ =) Har
0
< OT||uoll g1
for 0 <t < T. It then follows from (4.130) and (4.131) that
1
00w (t) 2 < Cr{lluoll g + 2 ol } (1132
for 0 <t < T. This completes the proof. 0

Proof of Proposition 4.47. Let u(t) = e *fug. It is not difficult to see that if
up € HY(Q) x H}(Q), then u(t) satisfies

we O([0,T]; H'(Q) x Hy(Q)), Qu e L*(0,T; H*(Q)). (4.133)
Using Lemma 4.50 and Lemma 4.51, we obtain the estimate
o)+ [ Dutul(ar < Collunliys, o + ¢ sl
for 0 < ¢t <T. Here
Di[w] =(|Vwl3 + divwl)3) + (IVOswl3 + [[divos,w(3)

N
+ (IxoVowwl3 + [ xodivowwll3) + > (Ixm VOw|3 + [ xmdivow]3).

m=1

71



We thus obtain estimate (4.128) if ug € H'() x Hy(Q). Since Hj(Q) is dense in
H'(Q), one can see from Lemma 4.50, (4.128) and (4.133) that if ug € H'(Q) x
H'(Q), then u(t) satisfies

we O([0,T); HH(Q) x H(Q)) N C((0,T); HY(Q) x HE ()
and estimate (4.128). This completes the proof. 0J
(A + Lo)u = f, (4.134)
where u = 1(¢, w) € D(Ly) and f = 1(f°, g) € L2(D). Decomposing u in (4.134) as
u = {¢p)ul® +u,

with

~

(A (I — H(O))u,

we obtain R
/\(<¢>U(O) + U1) + Louy = f.

Applying [1© and I — 11 to this equation, we have

N6) = (1), .
Auy + Louy = fi, .

where f; = (I —T1©)f. We see from the first equation of (4.135) that if A # 0, then

(¢) = x(°)-

This implies that
(o) < 512 (4.136)

On the other hand, the u;-part has the following properties. The second equation
of (4.135) is written as

ApL+ 92V (pswy) = f7,

Nuj = L8] = 2V )+ V' (242201) = g, (4.137)
Awf — ZA'wi + o Av3ey +w) - V'3 = g3,

where u; = f(¢1,w1) = ¢, wi,w?) and fi = *(f}, 1) = "(f{.91,97). We can
obtain the L? estimate for u; in a similar manner to the proof of Proposition 4.12
by replacing % with ReA and taking £ = 0, which is stated as follows. We introduce

a quantity Dg[w;] defined by
Dolun] = [V'wnl3 + |V - wh 3

for w; = T(w}, w?).
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Proposition 4.52. There exist constant32 vy >0, v >0 and w; > 0 and an energy
functional Eglu] such that if v > vy, #D > 42 and w < wy, then there hold the
estimate

(ReA)Eo[w1] + ¢(|¢1]3 + Dolwi]) < C|filz]uls,

where ¢ and C' are positive constants independent of uy and X\; and Epluy| is equiv-
alent to |uy 3.

The Poincaré inequality yields 50[101] > C|wy|3 with a positive constant C.

A~

Therefore, the resolvent estimates for —Lj now follow from (4.136) and Proposi-
tion 4.52.

Proposition 4.53. There exist constants vy > 0, v, > 0 and wy; > 0 such that if
v >, #; > 712 and w < wy, then there is a positive constant cg > 0 such that

S ={A#0: Red > —co} C p(—Ly).
Furthermore, the following estimates

1

1
) f02 + —|f1|2},

A+ Lo~ fla < Of T

~ ~ 1 1
QN+ L) F, < C{ 7% + g il
| {Q( + 0) f}|2 = |)\|’f ’2+ (Re>\+60>1/2’f1|2
hold uniformly for A € Xy. The same assertions also hold for —ZZ‘].
Based on Proposition 4.53, we have the resolvent estimates for —Eg with [£| < 1.

Theorem 24.54. There exist constants vy > 0, 74 > 0 and wy; > 0 such that if
v > v, zZW > 2 and w < wi, then the following assertions hold. For any n
satisfying 0 < n < 9 there is a number ro = ro(n) such that

S1={A#0: [\ 20, ReA = %} C p(~Le)
for || < rg. Furthermore, the following estimates
A+ L) flo < Cf |2,

|04QN + Le) ' £}, < CI £l

hold uniformly for A\ € ¥y and & with || < ro. The same assertions also hold for
—L;.
£

Proof. Let us decompose Zg as

Le = Lo+ €L + €220,
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where

70 ;1 0 V3l -V, I® =10 ol 0
Sl A oo
For u = 1(¢,w) € L*(D) x H}(D) we have
LW uly < Clulpzxp, Ll < Cluls. (4.138)

Therefore, we see from Proposition 4.53 that for any 0 < n < ¢ there exists ro > 0
such that if || < rg, then

(€LY + L) (A + L) ' f|, < 31l (4.139)
It then follows that
Si={\: Al >, Red > —@} < p(—Le),

and that, if A € ¥, then ()\ + Zg)fl is given by the Neumann series expansion

A+Le) " = A+ Lo) "+ X (“)N[(ELW + ELO) (A + Lo) ]
N=0
for |£] < 1y, and it holds that
(A +Le) ™ fl2 < CIflo (4.140)
for A € ¥; and |£] < ry. We thus obtain the desired estimates. This completes the
proof. O
As for the spectrum of —/L\g near A = 0, we have the following result.

Theorem 4.55. There exist positive constants vy, v1, wi and ro such that if v > vy,
2
2= > A2 and w < wy, then it holds that

v
(=L n{r: A < 9} = {h(6)}
for & with || < ro, where \o(§) is a simple eigenvalue of —/[:g that has the form
Mo(§) = —ik1€ — ko€ + O([¢])
as & — 0. Here k1 € R and kg > 0 are the numbers given by
r1 = (0300 + 72 pw@?) = O(1),

=2 {aal(-8) ol + O(%) + (3 + %) x 0(59) .

v

where —A denotes the Laplace operator on L*(D) under the zero Dirichlet boundary
condition with domain
D(-A") = H*(D) N Hy(D).
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Proof. For u € L*(D) x H}(D) we see from Theorem 4.54 and (4.138) that
ILMuly < C(|Loula + [ul2),  [L®uly < Cluls.

Therefore, since 0 is a simple eigenvalue of —ZO, we see from the analytic perturba-
tion theory that there exists a positive constant ry such that

a(—Le) N {A: A <2} = {n(6))

for all £ with [£| < rg. Here A\g(§) is a simple eigenvalue of —Zg. Furthermore, A\y(§)
and the eigenprojection I1(§) for A\g(&) are expanded as

o) = AV + XD + A + O(I¢]?),

I(¢) = IO + M + O([¢)?) (4.141)
with
A0 =,
AL = (ZDy® ),
A®) = (Z@y© %) _ (FOFLM 00 3,0,
v — _[IOLMF — STOHO.
where

- PR - —1
§={(1 =T Lo(1 - T10)} .
We first consider A(Y). Since

R w30 + 47 pw©
T, [ T 2y,

ap + v3w®3

we obtain
A — <Z(1)u(0), u(O)*> _ <QOE(1)U(0)> _ i<v§¢(0) + 72p5w(0)’3> =i0(1)

as v2 — 0. R
We next consider A, Since QoLPu® =0, we have

<Z(2)u(0>7u(0)*> _ <QOZ(2)U(0)> —0.
It then follows that
A2 — _<E(1)§E(1)u(0)’u(0)*> _ —<QOZ(1)§E(1)U(O)>.

We define u by
7= SO,
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which satisfies . PR
Loii = (I — TIO) D0,
@ |op=0, (4.142)
(¢) =0.

Note that @ = 7(¢, @) € iR* and A1) € iR. We rewrite A\ as

A® = —{(QuIWT) + (QuLM(Gu®))
= —{(ivl6 + iy’ p.@") + AV (9) },
where @ = 7(¢, @) = T(¢, @', @). To show the strict negativity of A, we estimate
u. The problem (4.142) is written as

(

PV - (ps) = AV — igw2p® — in?p (@3,
_pLSA/@/ _ p_ﬁsv/v/ S+ V’(%%) _ —Z'p%vlw(o)’s,

~ YA T~ . P'(ps )
_pLSA/w?, + WAngs b+ -V g — AW (,3 _ ZPWQ(ZS)QS(O) _ wfw(o)’?’,

ﬁ};laD: 07

<¢> = 07

\
ie., u="p,u) =" @, @? is a solution of

V@ = P[],
VN + V' = G'[6, T,

~ 4.143
wi lap=0, ( )
(¢) =0
and _
o Int ek =~/
~VAw G°lo, w'], (4.144)
w? |aD= 0,

where FO[w'], G’[a, w'] and G3 [5, w'] are defined as
FOla'] = H{A¢0 —ivl¢® —inpw®?} — V' ((1 = p,)a'),
G, @) = —ivV'w O3 + VO] + V' (1 — ps)o)
o (1- e
G3lo, W] = ps{k(”w(o)’?’ — 2l g0 ivfw(o)’g} — ps{ v NG+ - V’v‘z}-

¥2p?

As for the problem (4.143), since AWM = —i(v3¢® + 42pw®3) it holds that
(Flw']) = 0. Furthermore, we have

[E]]2 < C{E (A6 + 100 + 72w ®?]s) + 0| V')
< CwlV'i'|y + O(%),
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1G'[6, @)1 < C{PV' W O3 s+ BV FO[@)| s + [V (1= p6)8) |,y
+ IV ol + |ps (1= 2206 |, }
< Cwf|gls + D|V'@ |2} + O(ﬁ)

Since (¢, @) € X = {(p,v') € L3(D) x HY(D) : (p) = 0} and it is a solution of the
Stokes system (4.143), we see from estimate for the Stokes system (see, e.g., [26])
that there holds the estimate

613 + w2 V' 3 < A{CW 3+ O(4) } + {Cw? (163 + P2 V'a 3) + O(%) }
< O {03+ (v + D) |v'w'|2}+o(—”j4” )

Therefore, if w is so small that w? < 2— mln{l ( ) } then

93 + 2Vl = 0 (452). (4.145)
As for the problem (4.144), since
G, @2 < C{ADJw Py + £ (8Os + [w @), + %[6]s + |@]}
< {50l + ]2} + O(%),
we have G3[¢, @] € L(D). Tt then follows that

b = %(—A’)’1G3[$, @/]'

Since ¢ = ]J,(ps), we see that

(p.°) = L{pu(~2) 7 G, @)
= Hpu(~) N (~iagp,))

(pa( =) p A G 1 g3 i 9}

+ L{p(~ ) Hp AW O3 — B G p i VP — ipduw®P ).
Furthermore, since & = 7(¢, @') € iR* and A1) € iR, we see from (4.145) that
(pu(—A) T p AV — 505 p i - VP — ipwPw©@?Y)
=i0(5) +i(% +55) x O(%).
It then follows that
(") = —i% | (=) Fp|s +i2{O(F) + (% + %) x O(57) }.

By (4.145) we also have

(v30) + AV (@) = iO(5).
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We conclude that

=\ = (il + iy p @) + AV ()

—in?[—i22|(-A) Ep, [y + it {O(H) + (5 + ) x O(5) }| +i-i0(F)
= 2 ool (=203 + {0GR) + (G + 5) x 0(57) |
>0
for sufficiently small % and %f . We thus obtain the desired estimates. This com-
pletes the proof. O

We next establish some estimates related to ﬁ({) in H*(D). We first consider
-1
f

Proposition 4.56. For any f =1(f° g) € H*(D) x H*"Y(D). There exist positive
constants vy, 1, w1 and ¢y such that if v > vy, #2; >~ w<w and X € Xy = {\ £
0: [N < e}, then ()\—on)_lf € Hk(D) X (Hk‘H(D) ﬂH&(D)) fork=0,1,---  kq.

Furthermore, the following estimate holds:

estimates for higher order derivatives of ()\ + Eo)

(A + LZo) ™ flaespen < C(1+ \—i|)|f’Hkak*1a

where C' is_a positive constant independent of X € Xa. The same assertions also
hold for —Lj.

Proof. For a given f =7(f° g) € H*(D) x H* (D), we consider the problem

W |ap=10
for U = 1(®, W). Here L, is differential operator given by
V' (W)
LU = | —2AW - Z9'V - W + V(B L)
—lA/W?’ VAU (I)—i-W/ v/S
Ps
for U = T(®, W). To solve the problem (4.146), we decompose ® and f° as
= +o,  f=f+(f)
where o = (®), &, = & — o and f{ = f° — (f°). Note that
Then (4.146) is equivalent to the problem
o = (f%), (4.147)
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APy + V- (p W) = f7, (4.148)
AW — ZA'W — VWV ( (0 + ) =¢, (4.149)
AWV — ”A’W3 LK o+ D) =WV =g (4.150)
with W |gp= 0. If A # 0, then we ﬁnd from (4.147) that
= 1), (1151)
Substituting o = +(f°) into (4.149) and (4.150), we obtain
ADy + 2V (p W) = f7,
AW — LAW! = Zy - W v (B 1) =g = 3(OV(ZL),  (4152)
AP — 2 AT 4 Ry = b (o)A
with W |gp= 0. Let us write the problem (4.152) as
V' -W' = FO[(I)17 W' - f{)]
—vA'W' +V'®) = G'[®, W' : [0 ¢], (4.153)
W' lop=0
and
—u/\ 3 _ (3 P ! 3 . 0o ,3
vA'W G[ 17W7W f?g]7 (4154)
W3 |ap= 0.
Here
FO[@, W' f] = =520 + V- (1= p)W') + L 17,
G101, W .4 = =AW + DV FO[01, W2 f7] 4+ V' ((1 = ps)®1) + V' ps®y

§<fO>PSV,(P,2(pS)) +Psv ((1 _ p/(pé))qh) +Psg',

Y2 ps

GOy, W/, WP [0, %) = —Ap WP — e L(f%) — LB, — p W - V' + pug’.

702/\

We now define a set X by

Xy, = {(p.,v') € H*(D) x (H*"(D)n H}(D)) : (p) =

with norm

(0, V)%, = Iplae + vV e

For a given (51, w’ ) € X, we consider the problem

VW = FO[b, W fY],
—vAW' +V'd, = G,[(’fla w': foa g/]a
W |op= 0.
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It holds that
<F0[€I/)17/—W\//:f{)]>:07 FO[(/Iv)lvaVIZf{)]GHk(D%
G'[0, W' f°,¢') € H*(D).
In fact, we see that
(FO[Dy, W'« f]) = =L M(@1) + (V' (1= p)W')) + H(fD) =0,

and

‘G/[(/Iv)hfwv, : f07g,HHk71

< C{N || s + DI FB1, W 0]+ 0|1 + 1O+ 1L}

< C{(& A+ w)[@1] o + AN + Z0)| W] s + (Z + ) L + 19 e }

for a positive constant C' independent of A. From [26], we see that there is a unique
solution (®1, W’) € X of (4.155) and there holds the estimate

D e+ v[W| e

< C’{V!FO[EIV)l,fVI\?’ : fPHHk + }G'[%l,wl : fo,g’HH,@,l}

< C{(ZZ A + w) | @1 + V(2N + 22w) W
+ (S A+ ) oLk + 19 e

(4.156)

o

for a positive constant C' independent of \. Let us define a map I'; : X), — X} such
that o
Fl ((Ph W,) = (q)b W,)7

where (&, W') € X}, is a solution of (4.155). From (4.156), for ((AI;M, W{), (5172, WQ’) €
Xk, the estimate

‘Fl(&;l,la Wl/) - Fl((51727 WQI) |Hk « Hk+1

< OH{ (57 + D)+ (57 + D (Rry = Bra, W] = W)

holds for a positive constant C) independent of A. If w and |A| are so small that

w < ﬁﬁ”; and |A| < ﬁ, then I'y : X, — X} is a contraction map. This implies

that there is a unique (@1, W’) € X, such that I'y(®y, W) = (&1, W), i.e., there
is a unique solution (®;,W’) € X of (4.153). Furthermore, from (4.156), (®;, W’)
satisfies the estimate

where C' is a positive constant independent of .
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As for (4.154), for a given W € H*'(D) N HY(D), we consider the problem

—VAN'W3 = GO, W, W3 : [0, g3
{ VAW = G, W, W3 0, g%, (4.158)

W? |ap= 0,
where (&1, W) € X, is a solution of (4.153). It holds that
G3[@, W W3 : 10, ¢°] € H*'(D).
In fact, we have
}GS[Q)LW/’/M\;{% : fo’g:aHHk_1
< O s + [ ®1 ] s + V| s + 16 + (O (4.159)
< Cof MW s + (14 B e + lglan }

for a positive constant Cy independent of A. If |A| is sufficiently small satisfying
Al < min{34-, &}, then there is a unique solution W* € H*"'(D) N Hg(D) of
(4.154). Furthermore, from (4.159), W? satisfies the estimate

(W ger < CL(L+ ) [0 + 19l } (4.160)

where C' is a positive constant independent of .
Now we set
U= {A#0: A <min{5%, &}}-

Since ¢ = o + &1, we see that if w < ﬁ#ﬁ and A\ € Y, then there is a unique
solution (®, W) € H*(D) x (H*"(D)N Hg (D)) of (4.146). Moreover, from (4.151),

(4.157) and (4.160), ® and W satisfies the estimate

(@l + (W grer < o]+ [@1]gn + W gnss + W] g
< C{(1+ ) 1fOLar + gl }

for a positive constant C' independent of A € X. R R

Since D(Lg) D H*(D) x (H*(D)NHg (D)), we can replace Lo with Lo; and we
find that if w < 55 %5 and A € Xy, then (A+Lo)~Lf € H*(D)x (H*(D)NH(D)).
Furthermore, (A + EO)_l f satisfies the estimate

(A + Zo) ™ flarsmrn < C{(1+ ﬁ) 2L+ lglae ),

where C'is a positive constant independent of A € ¥. We thus obtain the desired
estimates. The assertions for L can be proved in a similar manner. This completes
the proof. |

We finally obtain the following estimates for the eigenfunctions ug and ug asso-

ciated with A\o(&) and \g(€), respectively, which yields the boundedness of ﬁ(f) on
H*(D).
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Theorem 4.57. There exist positive constants vy, v, and wy such that if v > vy,
V+V > 2 and w < wy, then there exists a positive constant ro such that for any £ € R
with €] < 1o the following assertions hold. There exist ug and ug eigenfunctions

associated with \o(€) and Xo(€), respectively, that satisfy
<u57u2> =1,

and the eigenprojection ﬁ(f) for Xo(§) is given by

A~

I(§)u = (u, ug)ue
Furthermore, ug and ug are written in the form
ug(a/) = u® ><as’> +igul (@) + [¢Pu® (', ),
up(a’) = O () +igu™™ (@) + ¢ Pu"® (@', €),
and the following estimates hold
u| gtz < Ch

for u € {ui,uz,u(l),u*(l) @ @Y and k = 0,1,--- ,ko: and a positive constant
Ch.r, depending on k and 1.

We can prove Theorem 4.57 by using Proposition 4.56, similarly to the proof of
[12, Lemma 4.3]. We thus omit the proof.

5 Nonlinear problem

In this section we treat the nonlinear problem (1.5)-(1.8). This problem is written

as
du
E+LU_F’ wlgn =0, uli=o = uo. (5.1)

Here u = T(¢,w); F = F(u) denotes the nonlinearity:

=", w), f(d,w)).

Our aim in this section is to establish the a priori estimates of u(t) for the proof
of Theorem 3.1.
In what follows we set

w = llps = 1lcs.
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5.1 Decomposition of Problem

In this section we formulate the problem.
The local solvability in Z(T') for (5.28) follows from [13].

Proposition 5.1. If ug = 1(¢o, wo) satisfies the following conditions;
(i) up € H? x (H* N HY),
(11) _§P1 S ¢07

then there ezists a number Ty > 0 depending on ||uo||g2 and py such that the following
assertions hold. Problem (5.28) has a unique solution u(t) € Z(T) satisfying

oz, t) > —7—22p1 for V(z,t) € Q x [0,To);
and the following estimate holds
lullZery < Cofl + Jluollz2}[luollZ
for some positive constants Cy and «.

Theorem 3.1 would follow if we would establish the a priori estimates of u(t) in
Z(T) uniformly for T.

To obtain the appropriate a priori estimates, we decompose the solution u into
its Py and P, parts. Let us decompose the solution u(t) of (5.28) as

u(t) = (o1u®) () + ug(t) + us(t),

where

a1(t) = Pu(t), wi(t) = (T —TO)YPu(t), u(t) = Puu(t).

Note that Pyu(t) = (o1u@)(t) 4+ ui(t).
Since uy(t) is written as

w(t) = (T = TNPut) = (9, TV + 02, TP)o (2),

we see from Proposition 4.40 and Proposition 4.41 the following estimates for oy (¢)
and uq(t).

Proposition 5.2. Let u(t) be a solution of (5.28) in Z(T). Then there hold the
estimates
105,01 ()12 < Cll0s,01(t)]l2

for1 <1< 3; and
19505, 07 ur ()]]a < C{[|0uy 01 (8) |2 + [|0ror1 (2) 12}
for1 <k+1+2m <3.

We derive the equations for oy (t) and ue(%).
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Proposition 5.3. Let T' > 0 and assume that u(t) is a solution of (5.28) in Z(T).
Then the following assertions hold.

o1 € ()CU([0,T]: H*(R)), ux € Z(T), ¢ € C((0.T); H').

=0

Furthermore, o1 and u, satisfy

T
o1 (t) = e™Pug +/ AP F (1) dr (5.2)
0

and
atuoo + Luoo = Fooa Weo |6Q: 07 Uoo |t:0: Uo,0, (53)

where Fy, = Poo F' and ueo o = Pooty.

Let u(t) be a solution of (5.28) in Z(T'). From Proposition 5.24, we obtain

sup (1+ 7)1 {[ur(1)]2 + [0rua(7)]2}

0<7<t

< C sup (1+7)1{[|0u,01(7)]|2 + 0,0 ()|},

0<7<t

and thus, the estimates for u;(¢) follows from the ones for o;(¢). Therefore, as in
[3], we introduce the quantity M;(t) defined by

My(t) = sup (1+ 7)oy (T)]la + sup (14 7)1 {]|8nso1(7)]l2 + 18201 (7)o}
0<r<t 0<r<t

and we define the quantity M (t) > 0 by

[MIe]

M(t)* = My(t)* + sup (1 +7)

0<r<t

Ex(r) (t€[0,T])
with
Eu(t) = [usc(t)]5.
We define a quantity Dy (t) for us = (oo, Weo) by
Doo(t) = [| Deoc(®)IF + | Dwas () 13-

If we could show M (t) < C uniformly for ¢ > 0, then Theorem 3.1 would follow.

The uniform estimate for M (t) is given by using the following estimates for M;(t)
and E(t).

Proposition 5.4. There exist positive constants vy, o and wy such that if v > vy,

% > 72 and w < wy, then the following assertions hold. There is a positive number

€1 such that if a solution u(t) of (5.28) in Z(T) satisfies sup [u(7)]e < €1 and
0<r<t
M(t) <1 fort e |[0,T], then the estimates

Mi(t) < C{lluollr + M(1)*} (5-4)
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and

E(t)+ /00 e =T D (1)dr
0 . (5.5)
< C{e B (0) + (1 4+ 1) 2 M(t)* + / e IR (1) dT)

hold uniformly for t € [0,T] with C > 0 independent of T. Here a = a(v,v,7) is a
positive constant; and R(t) is a function satisfying the estimate
R(t) < C{L+ 1) S M) + (1 + 1) 1M (1) Duo(t)} (5.6)

provided that sup [u(7)]2 < €2 and M(t) < 1.
0<r<t

Proposition 5.26 follows from Propositions 5.5, 5.8 and 5.14 below.
As in [3, 12], one can see from Propositions 5.23 and 5.26 that if ||uol| g2zt is
sufficiently small, then
M(t) < C||luo|| grznrr

uniformly for ¢ > 0, which proves Theorem 3.1.

5.2 [Estimates for Py-part of u(t)

In this section, we estimate the Py-part of wu(t)
Pou(t) = (a1u ) (t) + ui (¢),

where o1(t) = Pu(t) and uy(t) = (T — TO)Pu(t). We will prove the following
estimate for M;(t).

Proposition 5.5. Let T' > 0 and assume that v > v, #2; > ”yf and w < wy. Then
there exists a positive constant € independent of T such that if a solution u(t) of
(5.28) in Z(T) satisfies sup [u(7)]2 < € and M(t) < 1 for allt € [0,T)], then the

0<r<t
estimate

My(t) < C{luolly + M(t)*}
holds uniformly for t € [0,T], where C' is a positive constant independent of T
Let us prove Proposition 5.5. We decompose the nonlinearity F' into
F =0}F, + F,
where
2
Fi= Fi(@) = =" (0. 5tmm V{P () (69 ()}, 0),
F2 =F— O'%Fl.

Here o7 Fi(2') is the part of F' containing only o3 (¢) but not d,,01(t), u1(t), ux(t),

o3(t) and so on.
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Before going further, we introduce a notation. For a function g we define (g)q
by
(9)0 = F L{ni<roy (£)(@)]-

The nonlinearity F' has the following properties.
Lemma 5.6. There hold the following assertions.
() (QuF) = — 0y, (6?).
(ii) PF = —0,,(pw?)o + O, PYF + 02 PP

Proof. As for (i), we see from integration by parts that (V' - (¢w’)) = 0. It then
follows that

(QuF) = —(div(¢w)) = = (O, (¢*)) = —0u, (P°).
We next prove (ii). From the definition of P(® and (i), there holds that
POF = F ' 11510 (){QuF)] = (QoF)o = — 0z, ().

We thus obtain (ii). This completes the proof. O

1 1
Noting that ||o1||ec < Cllo1]|3||0zs01]|3, one can obtain the following estimates
by straightforward computations.

Lemma 5.7. There exists a positive constant € such that if a solution u(t) of (5.28)

in Z(T) satisfies sup [u(7)]s < € and M(t) <1 for allt € [0,T], then the following

0<7<t¢

estimates hold for t € [0, T] with a positive constant C' independent of T .
(i) [0z (aF ()L < C(L+ )" M (1)
(i) [10u (pw’) (@) < C(L+ 1) M (2)*.
(ii}) [[(¢w®)(#)] < C(1+1)"2 M (1)
(iv) [F@)l < C(L+)72M(1)%,
(v)
(vi)

Proof of Proposition 5.5 We see from Proposition 4.42 that

B0 < C(1+ 1) M(2)%.

IF(#)lls < C(1+ 1) 3 M(2)?.

18L, e Puglly < COL+ )52 uglly (1 =0,1).

We next consider f[f eDAPF(1)dr. We write it as

/0 etIAPF (7 (/ /) CDAPF(r)dr =: L(t) + ().
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We see from Lemma 5.6 (ii) that

TIAPE(7) = TN =0, (pw?)o + 0, PYF + 02 PP FY
= 0, M (o) g + PYF 4 0,,PPF}.

By Proposition 4.42 and Lemma 5.7 we then have

ot 1)l <€ [+t =) (ool + [P ) ) ar

CAJ

(1+7)"2drM(t)?

1\3\~

< C'/ (14+t—71)" 1"
< O(1+t) i 2 M(t)?
for [ = 0,1. Applying Lemma 5.7 (ii) and (v) we have

1

t
H@iSIQ(t)HQ < C/ (1+¢t— T)_Z_é(l +7) tdr M (t)?

< CO(1+t) i 2 M(t)?
for [ = 0,1. We thus obtain
108,04 ()]l < C(1+ )72 {Juo |y + M(£)*} (5.7)

for [ =0, 1.
Let us estimate the time derivative. Since \o(§) = —(irk1E+KoE2+O(E3)) = O(§),
we obtain

1Ay ()]l2 = 17 [Lgni<ro ()X (€)1 (]2 < C1|0z,01(2)]|2-
This, together with (5.29), (5.7) and Lemma 5.7, implies that

1801 ()]l2 < CLIO o1 (D)l + [ F(0)ll2} < COU+6) 7 {luolly + M1} (5.8)
By (5.7) and (5.8) we deduce the desired estimate. This completes the proof. [

5.3 Estimates for P.-part of u(t)

In this section we derive the estimates for the P,-part of u(t).
Throughout this section, we assume that u(t) is a solution of (5.28) in Z(7T') for
a given T' > 0. We show the following estimate.

Proposition 5.8. There exist positive constants vy (> v1), Yo (> 71) and wo (< wy)
such that if v > 1, 2> V2 and w < wy, then
Vv 0

t
Eo(t) + / e~ D (1)dT
0
t
< Cle ™ En(0) + (1 + )3 M) + / =R (1)dr ).
0
uniformly for t € [0,T] with C' > 0 independent of T
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Proposition 5.8 is proved by the estimate (4.6) for e "/ P, and the Matsumura-
Nishida energy method.

We introduce notations. In what follows C' and C; (j = 1,2, ---) denote various
constants independent of 7', v, 7 and v, whereas, C, .. denotes various constants
which depends on v, v, y,--- but not on 7T

We first establish the H'-estimate for u., which follows from the estimate (4.6)
for e ' P.

Proposition 5.9. There exist positive constants vy (> v1), 70 (= 71) and wy (< wy)
such that if
2

v > v, 1/117273’ w < wo; (5.9)

then, for any 0 < a < 2aq,
t
s+ | € (Dl dr
0
t
< Co{eusalls + sup [Fulr) + [ Pl r).
STS 0

Proof. We write u.(t) as

t
Uso(t) = e_tLuoqg + / e_(t_T)LFOO(T) dr.
0

Since uq 9 € H' x H}, we see from (4.6) that
t
ol < A Mol + [ o)
0

t
+/ et (= 7)73 || Foo (7)[|2 dr }
0

Cle™™ Juooolltn + sup [|Fuo(7)]
0<r<t

IN

t
+/ e_aO(t_T)HFoo(T)”HlXﬁl dT},
0

from which we have

¢
i@ < O fumalln + sup [Fu()E+ [ e B )y ar)

- (5.10)

for any 0 < a < 2ap. Set V(t) = f(f e || Fo(7)||%1 dr. Then V(t) satis-

fies dV/dt + aV = ||Fx|3: and V(0) = 0. It follows that f(f e IV () dr <

[y e || Fo(7)||%1 dr for any 0 < a < @ This, together with (5.10), yields the

desired inequality. This completes the proof. O
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We next derive the H? estimate for u.(t).
In what follows we set

fgo:QOFooa fmzéFoo

and _
Goe = Oroe + V3 0y P + W - Ve,
where B
foo = Joo —w Voo
Note that

1Psollr < Com (ool + 1fo 2

The following Propositions 5.10 — 5.13 can be proved in a similar manner in [1,
Section 4]. So we give the statements only and omit the proof.
We first state the L? energy estimates for Oyt and 02, te.

Proposition 5.10. Under the assumption (5.9) (with vy, Yo and wy ' replaced by
suitably larger ones), the following assertions hold.

(i) There ezists positive constant ¢ such that the following inequality holds:

Ps twooH }
+1 IIVé?twoollg + 1u||d1va,5woo||2 +0”+”||8t¢oo||2 (5.11)
<

V;Wl‘uOOHHlXHQ + |A1|

Here

Ay =3(106wef? dw( 2ew) ) + (18w - V)on, 220,60
(0% BL000) + (Dufoes pidivne ).

(i) There exists positive constant b such that the following inequality holds:

2
P’ (ps 2
%{% BA02 b |, VP02 0]}
+ L[| V02 w3 + 57 div? w3 + b 02, doc |3 (5.12)
< CV+V|| 2 Doolls + Comylltico|| iz + Ao 2.

N[

Here

Aoz =5 (102, 6ncl?, div(E422w) ) + (102, w0 V)6mo, THE202 0 )
+ ( f007 P ps ) ( 0 o ms(psa23woo)> —|—be;§§||8§3]?£0||§.
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We next state the interior estimate and the boundary estimates of the tangential
derivatives.

Proposition 5.11. Under the assumption (5.9) (with vy, Yo and w, ' replaced by
suitably larger ones), the following assertions hold.

(i) There ezists positive constant b such that the estimate

b oy ZB2 )+ vt )
V!IX0V32/wooH2+1VHXod1V<921wooH2 + 02 002 osl}  (513)
< (e + C22) 02 6oe 2 + Cavtnlltoe 1z + 1A
holds for any e > 0. Here

AO =L (102 0o, div (33 24 w) ) + ([02, 00 - Voo, \EEALL02 600 )

(aﬁ oo X522 0% ¢°°> (a foo, O (Xopsa2/woo))
+ CbE || x002 f2 13-

(i) Let 1 <m < N. There exists positive constant b such that the estimate
/ . 2 . 2
s L 22002, |+ (/20050 [}
+ %VHvaaka] w00||2 + 1V||delvak8j woong bifHXmakag]c‘gd)oong (5.14)
< (64 C5) 1026003 + Cavnllttocll e + AT
holds for (k,j) = (2,0), (1,1) and any € > 0. Here
A5, =3(10%08, 0 2, div (42, 242 0)

Xm’YP

+ (10"03,w- vw)oo, V22208 0), 0 )
+ (000,72 3, 20400, 600 ) + (07101, fos D2 e0 00 00))
+ OO @03, F |15
The normal derivatives of ¢, is estimated as follows.

Proposition 5.12. Let 1 < m < N. Under the assumption (5.9) (with vy, vo and
wy replaced by suitably larger ones), there exists positive constant b such that the
P'(ps) al+1 ok j
o On 0"

estimate
2 1
2) T
0 0L 00, o3

11(1
2dt \ 72
< {21026l + 75 | 0dhwcl} +

/ . 2
o ZL010°0) 61|

v+v

225 (om0 03 e (5.15)

+ 1D VO, O s 3+ o VLI 02, w0 3) |
+ Cumy oo || e + |Al+1 k]’
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holds for j,k,l > 0 satisfying 7+ k +1=1. Here

(1081001 00 |, div (i, 222w

Xm’YP

(m) 1
Al+1,k7j =3
J+k+l=1

el mealﬂakaga,w-vwoon

jktl=1
+C(0+ 1) (5 Xm0, 00 Fll + | focll)-
Using the estimate for the Stokes system we have the following estimates.

Proposition 5.13. Under the assumption (5.9) (with vy, Yo and w, ' replaced by
suitably larger ones), the following assertions hold.

(i) There holds the estimate
V+V|!53woo\|z ,,i;”ag(ﬁong
< O{5211820 3 + 7510 0swso 3 + SN 22 + sl foollin ) (5:16)

+ CVWH“OO”?—leH?'

%‘
v+v

(i) Let 1 <m < N. There holds the estimate

2
< {42 IXn00rs 003 + S X 000563 + FsllO0ewclls  (5.17)

+ 2| foulle + s I cllin } + Comnllusclip -

(iii) There holds the estimate
v y||a28$3woo||2 v 1/||a a$3¢oo||2
+ +
< O{42110:0r,90c I3 + 75 1000wecll + 521 e + izl focllFn ) (5:18)

+ Cv?v””oo”irlxm-

et

We are now in a position to prove Proposition 5.8.

Proof of Proposition 5.8 Let b; and by be constants satisfying by, b, > 1. Define

&s[use] by
/T80 [ o 000

/ 2(p5)ana¢ooH +HXm P’Z(ps)ana z}
e
th > (me/p—Sa?wooH2+ [Xny/P00z 0 )
oy + bl ol
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m=

#pen




for U = H(Poo, Woo). We compute

N
b2 [ Z_l{bl{(5-14) |i)=20) +(5-14) ley=1n) }
+ (5.15) | @k j)=(0,1,0) +(5.15) |<l,k,j>=<070,1)} + (5.13) + b1(5.12)
N
+ 3 (5.17) + (5.18).
m=1
Then
1dyp & 5 ] ]
SiaEaliec] 0022 (3 0,003 + 0.0, 6c13)
+ 25 (52 Ipen@B0uel3 + 10200 13)

+ 25 (32 In@h00l3 + 1002006 13)

803 (Don Vel + 1 VOO wcl) + X0 VD200l + b1 [ V2,0 3

N
+ %217{()1 > ([[XmdivE*weo |3 + || XmdivOds, weo|3) + [Ixodivd2 weol|3

m=1
unlf)
1~||ataxw00||% + RO}

v+v

N
. 22 s 2 P’ s
v wslB} + 545 & (|l + [ 22

< Couo{ (¢ + 55 + 2) 10700l + Comslltioo s> +

+ Cl{b2y+y Z (Hvaa2w00H2 + Hvaaamwm”z + HvaaggwooHS)

m=1

52 [rn0u00e 3+ 10:020c18) }

for any € > 0. Here

N N
= 5 (14§ [AGAD) + 1A+ Aogal + 3 (1ATT] + TG ).

m=1
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Fix b; > 8C4 and by > 8%. It then follows that

_ /N : -
Sgbaaluce] + 2 (3 100n0s0bcl3 + 100,01

W(z I D2000sc]3 + 1020210 3)

+ 25 (5 In0u00c3 + inees ) (5.19)
P'(ps 2 P’ 2
+ 21 wa] + 2 _1(||Xm (2 [ 820,000 3
< Cb1b2{(€ + L + M) ||82¢00||§ + OGVVwHUOOH%leH?
VJW —L_110,0, w0 |5 + Ro}
for any € > 0. Here I][wy] is given by
N
hlws] =v{ & (Pon V8wl 3+ 0 V00w )
+ Ixo Vo2 w3 + V02, wec 3}
N
7] 5 (IPemdivuweg I3 + [Pmdivod, we13)
m=1

+ lodivoZ waelIf + [1divé2, w3}

Let b3 and by be constants satisfying b, by > 1. Define & [us] by

Enlttoc] =bobsbaaluinc] + b me,/ P (o) a2¢ooH
+(% ’;\W@twm!b)

for e = H(Poo, Woo). We compute

Ps
Y2 ps

N
bi{bs(5.19) + 3 (5.15) k=00 } + (5:16) + ba(5.11).

m=1
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It follows that

thEQ[UOO]+bb4y+y||a2¢00||2 S llOtwal3 + 5 105005

i {25 (2 en®20ucl3 + 1020013

N
s (2 I 0:06s3 +110:0:,0[3) | + Sbabsba o]

N
Yo Z I 2820,V 6os 13 + 3{VIIVOrwoc I} + Pl divywac [} + 2 | 000 13}

< Cbl...m{(e + 25+ ZE) (102 booll +
9 N
+ R} + 02{641,1/?17 ZI(HXmanaigwoong + “vaanaxswooug

51005 wec |3 + Covmolltios 31 2

+ {1 VO Owoo |15 + (102000 13) }
for any € > 0. Here

N
R =Ro+ 3 [ALG,] + A,
m=1

Fix b3 and by so large that b3 > 8C5 and by > 2%. We assume that v, v and ~ also

satisfy % > 8C’b1 b and 7% > 8Ch, ..., (v + 7). We take € > 0 sufficiently small such
that € < g ——=. It then follows that

V—i—
%%5[U] D102 0ccll3 + 555 103 wse I3 + 375 1192 6cc I3

2v+v
W(z X D2000sc]3 + 1020210 3)

+ 2 ( In0u00c 3+ 10:01018) (5.20)

+ hwee] + 1% Z |\Xmi§5)8nv¢w!|§

2{V||V3twoo||2 + V|| divOywec |13 + 25| OcpocI3 }
< A{Canwlluccllip e + R}

We thus see that there are positive constants ¢q, ¢o and C3 such that

jtg [Uoo] + 6152 [Uoo]

+ c2([|0wso 13 + 1020013 + [Pl arz + 10wec I + 101 13)
< Oy (||too || g x iz + R).

Since
||3§woo||§ < 77”83%@”00”% + CnHwoo”g
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€2
c2+Cy, Uy

holds for any n > 0, taking 1 so small that n < %min{ , 1}, we obtain

%Eg[uoo] + Clgg[uoo]

(6)) .
+ 5 (102wscllz + 102000 15 + | @ollzns + 10rwecllzn + 10060 l) (5.21)
< 20,5 (J|usslz w2 + R).

We see from (5.21) and Proposition 5.9 that there exist positive constants ¢, ¢, and
C\iy such that

¢
82[u00(t)] + HUOO(t)H%Il +52/ 6_01(15_7)(”831”00”; + ||a§¢00||§ + HUOOHJQLP
0
+ [|foollFrn + 10rtioc | Frr o) dT (5.22)

t
< {7 (Ealica] + lluclly) + sup I Fun(r)IB + / PRy,
<7<t 0

It remains to estimate the term ||0?wq(t)|l2. We write the second equation of (5.28)
as
— VAW — VVdiVe = J,  Woo 0= 0,

where

J = _ps{atwoo + V(%%o) + %Qsooe?) + Ugamwoo + (wéo : V’U?)e:g - foo}
Since J € L?*(2), we obtain, by elliptic estimate,
10Zwsol5 < Cllwoollz + [I7113) < Cuoy (Ealttoe] + l[uce||Fr + [| foo13)-

From this, with (5.22), we see that

t
Ealuoe(t)] + [luce(t) [ + 105 we (B)][5 + 2 /0 e 1D (| 0wso 3 + 110200013
 lluselin + Nésollin + 100uso 71 12) dr (5.23)

t
< Cun{e ™! (Elusal + usallis) + sup |Fur)B+ [ e IRar}.
<<t 0

As we will see in section 8 below, it holds that

sup [[Fao(7)[3 < C(1+ )72 M(¢)". (5.24)
0<r<t
Proposition 5.8 follows from (5.23) and (5.24). This completes the proof. O

5.4 Estimates of nonlinear terms

In this section we prove the estimate (5.24) and (5.33).
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We first make an observation. By the Sobolev inequality we have

o)l < Clo0)]a2 < Crlu(®)]2

for a positive constant C';. It then follows that

p(x,t) = ps(z’) + 7 720(x,t) > p1 — v o) [0 > p1 — Cry 2 [ult)]s-

Fix a positive constant e, satisfying e, < + 221 If [u(t)], < €,, then it holds that
lot)llw < 37v°p1, plat) > p1 > 0.

This implies that QF(t) is smooth whenever [u(t)]> < e,.
We will show the following

Proposition 5.14. If [u(t)]2 < €5 and M(t) < 1, then

sup [|Fuo(r) 3 < C(1+ HEM(t), (5.25)
R(t) < C{1+ 1) 2 Mt + (14 t) T M(t) Do (t)} (5.26)

To prove Proposition 5.14, we prepare several lemmas.

Lemma 5.15. (i) For 2 < p < p < oo. Ifj and k are nonnegative integers
satisfying

0<j<k k>j+nld-1),

then there exists a positive constant C' such that
108 Loy < 1ALt 1y

Herea=¢(j+5—1%).

o=

(i) For2 <p <oo. Ifj and k are nonnegative integers satisfying
0<j<k, k>j+3(3-3)
then there exists a positive constant C' such that
102 f () < ClLA Nl
(iii) If f € HY(Q)) and f = f(x3) is independent of ¥’ € D, then it holds that

1 1
1@ < C1N s 19 1 22

for a positive constant C'.

The proof of Lemma 5.15 can be found, e.g., in [12, 17].
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Lemma 5.16. (i) For nonnegative integers m and my, (k= 1,---,1) and multi
index oy, (k=1,---,1), we assume that

m >[5, 0< o] <my <2+ (B=1,---,1)

and z l
oy > 2(1 = 1) + > fagl,
k=1

k=1
then the estimate holds

l l
ITT 02 fill, < € T Il fell s
k=1 k=1

for a positive constant C'.

(i) For 1 < k < m. We assume that F(xz,t,y) is a smooth function on Q X
[0, 00) x I with a compact interval I C R. For |a|+ 25 = k the estimates hold

020, Fx.t, )] o]

< { Co(t, f1(t))[follk—1 + Ca(t, fr(t)) {1 + |||Df1|||‘73_+1]:_1}|||Df1|||m—1[[f2ﬂk:,
| Colt, f1(@) [ fole—1 + Cr(E, f1(1)){1 + |HDf1‘”‘rz|—+1]71}H|DflH|m[[f2ﬂk—17

where
Col(t, f1(1)) = Z sup’ (020 F) (z,t, fl(x,t))|,
(BD< (), (BH£00) *
Ci(t, f1(t)) = > sup| (920l0P F) (z,t, fi(z,1))].

(B < (o), 1<p<j+lal *
(i) For m > 2 the estimates hold
If1 - follam < Cillfillam | follzm,  [f1 - folm < Colfilmlfolm

for a positive constants Cy and Cs.

See, e.g., [14, 17] for the proof of Lemma 5.16.
We begin with the following preliminary estimates for oy and u; ( j = 1, 00).

Lemma 5.17. We assume that u(t) = T(¢(t),w(t)) = (o1u)(#) + u1 (t) + us(t) be
a solution of (5.28) in Z(T'). The following estimates hold for all t € [0,T] with a
positive constant C' independent of T

(i) llos(®)lls < C(1+ 1)~ T M (),
(i) [u(®)]o < C(L+1)"1M(2),

(iil) Do (Dl < C(1+ 1)~ 5M (1),
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(iv) [us(t)]2 < C(L+8)75M(#), (j = 1,00).

(v) lor(®)lloo < C(L+1)"2M(2),

(i) [y ()lloo < CL+1)TM(1), (= 1,00).
i)

(vii) fJu(t)lloo < C(1+ )72 M (2).

Lemma 5.17 easily follows from Lemma 5.15 and the definition of M(t).

Let us estimate the nonlinearities. For QoF = —div(¢w), we have the following
estimates.

Proposition 5.18. We assume that u(t) = H(¢(t), w(t)) = (o1u ) (t) +ui (t) +uoo ()
be a solution of (5.28) in Z(T). If M(t) < 1 for allt € [0,T], then the estimates
hold with a positive constant C independent of T'.

Y Todival, < J CAFOTIME? (1=1),
) Igd M{c<1+t>3M<t>2+<1+t> LMDl (= 2).

() [Jw- Vool < C(1+1) 1M ()2

(ifi) [w- V(16 + ¢1)]2 < C(1+ )71 M(t)%.

(iv) | (102,007 div(#g;)w))) ‘(|a2 Ol div (G5 w) )|
+‘<|8tgboo|2 dlv( ))‘ + Z {HX]C:1‘(|8k+135;3¢00|2,div(xfnil‘fzz)w))‘
+ > (‘8fl+10k8§33¢00| ,dlv(xfn]:(gs)w))‘}

k=1

< C(1+1t)"2M(t)Da(t).

(v) ||[8x3,w V]¢oo‘|2+||X0[32/7w'v]¢oo|’2+H[atvw V]dool|2
=5 {5 o on e Vo] + 5 |nlot00s 0 Vo }
Jj+k=1 j+k+I=1 2
<C{A+t) M@t + (1 + ) 1M (t)/Doo (1) }.
(vi) [|0:(pw)lla < C(1+ )~ M(t)*.

Proof. The estimates (i)-(iii) and (vi) can be proved by applying Lemmas 5.15 and
5.16 similarly to the proof of [12, Proposition 8.5]. As for (iv), we have

)<|8§3¢m|2,div(%w)>’ + ‘(|8§,¢m|2,div(xgpv4(?)w)>) + ‘<|8t¢oo|2,div(%w)>‘
I %{ 3 ’<|8k+18§;3¢m|2,div( 2 P(ps)w)>‘

Xm
=1 k=1 e

b5 (oo en v 2|

GHk+I=1
< Cl[Dgoc(lwlloo + [Vew]|oo)
< C(1+t)"2M(t) Doo(t).
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We next consider (v). We observe that [0"787 ,w - V]ds and [81“8"38%3,

V]és are written as a linear combination of terms of the forms a[04, w]Vdu, and
(w - Va)0ips, with smooth function a = a(2’) and integer ¢ satlsfylng 1<qg<2
Therefore, applying Lemma 5.16, we obtain the desired estimate. This completes

the proof. O

Let us consider the nonlinearity QF = 7(0, f). We write QF = 7(0, f) in the
form _ o
QF = Fy + Fy + F> + F;,
where F, = (0, k) (1=0,1,2,3). Here

z’vs

ho == w- Y+ filpn, ) (0o + =72 (01 + o))

+ f2(p57 ¢>(_a£30'1w(0) — 83330'182;/71) ))
+ foa (@', @)dor + foo(a', §)0us01 + fo3(2', 9)P(d1 + Poo),

hy = —div(fl(ps, &)V (wy + woo))
ho = =V ( fa(ps, )div(wi + weo)) + (div(wr + wae)) V' (f2(ps, @),
= V(f3(2',9)0(d1 + ¢o0)) — (61 + ¢0)V (f3(2, 0)9).
Here fo; = foi(2',¢) (I =1,2,3) and f5(2', ¢) are smooth functions of 2’ and ¢.

Proposition 5.19. We assume that u(t) is a solution of (5.28) in Z(T). If sup [u(7)]s <
0<r<t

es and M(t) <1 for allt € [0,T], then the following estimates hold with a positive
constant C' independent of T.

(i) IQF(®)ll2 < C(1+ 1) M(1).

(ii) [ho()e < C{(L+8)75M()> + (1 + ) s M(#)|| Dwas(t) 2}

(ii) 7)< C{L+ )T ME? + (L +8) s MO)||Dwsc(®)lll2}, (1 =1,2,3).
(i) [19:u()]lo < C{A+8) "M@ + (1+ ) M @) Do)}, (1=1,2,3).

Proposition 5.19 can be proved in a similar manner to to the proof of [12, Propo-
sition 8.6] and [3, Proposition 8.6].

Proof of Proposition 5.14 We first prove (5.25). We see from Proposition 5.18
and Proposition 5.19 that

1QuF > < C(1+ 1)~ TM(1)?,
IQF |l < C(1+ 1)~ 1M (1)?,

and hence, B ,
IQF.|3 < C|IF|; < C(1+)"2M(t)".
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This shows (5.25).
We next prove (5.26). We write

where
By =| (102, 0 2 div (2220) ) | + | (102 0 . div (E2220))
+ ‘<|3t¢oo]2,div(1:§£§)w))’ - Z_:{ > <|ak+lag];3¢oo|27diV(XTQnP}pS)w))‘

k=1 Y Ps
+ ¥ * div(x2 Zedw) )|},
k=1 G

Iy = ([ny, 0 V)60, 2820, 000 )| + | (3102 10 - T, 242206, )|
| (190w - Viow, 2201020 |
N
PR P>

=1 “j+k=1

(‘aﬁ;ﬁ-lakaﬂjﬁg

‘ ( [8k+183

xr3)

W V]go, ZEL0410] 0.,

+ Y |xEoLHoror W - V| o i)

2
,7:57 4, 2}7
jaktl=1 Tps

el H ) (R o (02 )

£ 5 [(00n o oy %)\ IR
m=1 jtk=1 e
I4 :} (ax3f<x>7 a:vg, (p58§3woo )| + ‘(3 foou (X0p582,woo } + ‘(atftxnpsatwoo)l
N . .
+ 30 3 (880, foos O(Xips 0" 1 0] jwoo) ) | + [ foc 13-

m=1 j+k=1

From Proposition 5.18 (iv), (v) and Lemma 5.17 we see that
hod + )72 M (1) Dao(t)

(t
I, < C(1+ 1)~ M)/ Deoo(t)[ho0
<C(1+1) 1M(zf 2/ Do (t)
< CL{AU+ ) TM(t)° + (1 + ) T M(t) Do () }.
As for I3 and I, we have
I3 + I < C{IIF% N a2 foo a2 + || Foo 1 s | 22
+ 1102 l1210:oc |2 + 110: foo || Do 2}

Since [QuPxF]1 + ||QPxF|2 < C[F];, we find from Proposition 5.18 and Propo-
sition 5.19 that

1%l + [ foollir + 10efoclls < C{L(L 4 6)7AM(8)? + (1 + )72 M (@) Dwao (1) ]2}
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It then follows from Lemma 5.17 that

1Tl ge e + ol e e + 10 o o el

< C{(L+ 172 M) + (1 + )" M(1)*/Duc(t)}-
It remains to estimate ||, /2 ||2]|8;¢o0||2. Since

O1Poo = —QoL Pyt + Qo P F.
we see from Lemma 5.16 and Proposition 5.18 (i) — (iii) that
106scllin < CLInbncllin + rncllin + [ QoFucllin} < C(1+ 1)~ M ().
This, together with Lemma 5.16 and Proposition 5.18 (i) — (iii), then yields
0T a0l < C{(L+ DM + (1 + 07 M0V DoD)}.

and therefore, we have

L+ L < C{1+ )72 M(t)? + (1 + )2 M(t) Do () }.
We thus conclude that

R(t) < CL{1+ )72 M(t)? + (1 + )T M(t) Do ()}

This completes the proof. O

5.5 Asymptotic behavior

In this section we prove the asymptotic behavior (3.2).
Since M (t) < C||ug||grznrr for all ¢ > 0, we see that

lu(t) = (1) (#)]|2 < C(1+ )4 fuol 2z
Therefore, to prove (3.2), it suffices to show the following

Proposition 5.20. Let o = o(x3,t) be the solution of (3.3) with initial value o=y =
(o). Assume that v > 1y, #2; > 7(2) and w < wq. Then there exists € > 0 such that
if l[woll mr2arr <€, then

loa(t) = o)l < CL+ )5 flug| 2 (5> 0).

To prove Proposition (5.20). We prepare two lemmas.

In what follows we denote by o = o(x3,t) the solution of (3.3) with initial value
Ult:O = 0yp.

It is well-known that o(¢) has the following decay properties.
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Lemma 5.21. Assume that o(t) is a solution of (3.3) with ol = 09 € H' N L.
Then

l
“2lloollgrinzr (1=0,1),

HO—OHHlﬂLl-

105, 0 (®)ll2 < C(1+1)7
lo(@)]lee < CA+1)"

N =

We decompose H(t) into two parts. We define Ho(t) and Hoo(t) b
7'[0<t> = f_11{|77\§r0}(5)6_(inlg+50£2)tf7 Hoo<t> = H(t) - H0<t)'
Then H(t) = Ho(t) + Hoo(t) and Ho(t) and Hoo(t) have the following properties.

Lemma 5.22. There hold the following estimates.
10 Ho(t)oull: < C(L+ )72 oo,

18], Hoo (£)0 |2 < Ct 2™ 278,
105, (e a9 — Ho(t)oo)||l2 < C(L+1)~ i 2HUoHl

Lemma 5.22 can be proved in a similar manner to the proof of [2, Proposition
5.8]; and we omit the proof.

We now prove Proposition 5.20.
Proof of Proposition 5.20. Let oy = (¢9). We define N(¢) by

N(t) = sup (1 +7)1%)|o1(t) — o (t)| 1.
0<r<t

We write o as
t
o (t) = H(t)oo — ks / H(t = 7)0y, (02)(7)dr. (5.27)
0
As for o4(t), by Lemma 5.6 (ii), we have

FIPF] = ~i€1 <00} (€) (90) + Oy, FIPVF] + 02, F[POF]

z3

= — i€k (yi<r0) (6)(7) = i€1 (gir) (€) ((907) — (60w ?) (7))
+ 0y, FIPY (01 Fy + F)] + 02, F[PPF),

where kg, = (¢(Qw®3), Furthermore,

F[P(l)(U%Flﬂ = 1{\77|§ro}(£)<0-%F1’ U*(1)> - 1{\77|§7"o}(§) <F17 U*(1)><J%)
= _’%221{\7757’0}(5) (U%)’
where kgy = —(Fp,u*M). We thus obtain
e(t—T)APF — /{ge(t_T)A&E?, (O’ ) t T Aa { ¢w ¢(O) }
+ A, 4 el T)AJ5.
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Here we set ko = ko1 + Koo,

Ji =0, PYVF, + 0, PO F,,
Js = 02, PP (01 F)).

It then follows from (5.29) and (5.27) that o1(t) — o(t) is written as

ou(t) —o(t) = ;}Ij(t),
where
Io(t) = e™Pug — H(t)oo + /iz/ Heo Oy (0?) (1) dr,

= —Hg/ 7‘[0 )dT,

L) = — / (DN~ Hy(t — 7))0sy (02) () dr,
/arge” (B — (60w ®3)o?)dr.

I(1) = / N (r)dr, (= 4,5).
0
We see from Proposition 4.44 and Lemmas 5.21, 5.22 that

110 (t)[[ 2
t
< o+t Hulman + [ (=)t T o s, 0la(r) dr )
0

t
< cfa+ o Hluollman + / (t = 7)"5e F80 (14 7) 7 dr o i
0
< OO+ ol aror {1 + luol oz
As for I(t), we first observe
o3 = o) ®)llx < (o1 + o) B)ll2ll (01 = ) (D)l < C(1L + )T H N (#) |Juo 20111
Since 9% Ho(t) = Ho(t)0%, (k= 0,1), we see from Lemma 5.22 that

3_k
2

t
10 1(#)2 < © / (L4t—r)i
0

< C(1+ )7 ug| g2 N (2)

(1 + T)_I—HSdTHUQHHQQLlN(t)

for k=0,1.
As for I1(t), we see from Lemma 5.22 that

5

t
107, T2(t)|2 < 0/ (L+t—7)7 172 (1+7) 7 drM(6)* < C(1+ 1) luollFpnps
0
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for k=0,1.
As for I5(t), since

gw?®) (1) = (6@w (7)ot (7)]s
< C{lor()lallu(r) = o1 (r)u@(7)llz + Ju(r) = o1 (1)ul (1) 3}
< C(L+7) M),

we have

3

||8§3I3<t)||2 S CM(t)2A (1 +T)_Z_

< C(1+ 1) log(1 + t)||uo|2znps

N

(1+ T)_ldT

for K =0,1.
By Proposition 4.42 and Lemma 5.7, I,(t) is estimated as

18 (0 = | / N, (PO E(r) + 01, PO Fy(r))dr|lo M (1)

< C/ 1+t—7' %_§(1+T)_1d7‘|U0||12112mL1
<C(l1+1t)” 1 log(1 + t)||uol| 32
for k =0,1.
As for I5(t), since 0,, PP (1) = P?4J,,, we see from Lemma 5.7 that

t
ok 1) < | | e 80k P 0y, (03) ) (i
0

2

3

< c{/ (14t —7) 151+ 1) tdrM(t)?
0
< O +1) " log(1 + t)||uo|2enps

for k=0,1.
Therefore, we obtain

(o1 = o)D)l < O+ )75 fugll {1+ ol 2z + [[uol|Fnz + N(@)}-
It then follows that if ||ug||gznrr is sufficiently small, then
N(t) < Clluollz2ner-
We thus see that if ||ug||g2nzr < 1, then
loa(t) = o(t)llo < COU+ ) o 2

This completes the proof.
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In this section we formulate the problem. The problem (1.5)-(1.8) is written as

d
d—;‘ Y Lu=F, wlpn=0, ulio=uo. (5.28)

Here u = T(¢,w); F = F(u) denotes the nonlinearity:

F ="(f"(¢,w), f(¢,w)).
The local solvability in Z(7T') for (5.28) follows from [13].

Proposition 5.23. If uy = T{(¢g, wy) satisfies the following conditions;
(i) uo € H? x (H*N HY),

(11) _§p1 S ¢07
then there exists a number Ty > 0 depending on ||uo||g2 and py such that the following
assertions hold. Problem (5.28) has a unique solution u(t) € Z(T) satisfying

oz, t) > —V;pl for V(z,t) € Q x [0,To);
and the following estimate holds
lullZery < Cofl + Jluollz2}*[luollze
for some positive constants Cy and «.

Theorem 3.1 would follow if we would establish the a priori estimates of u(t) in
Z(T') uniformly for T.

To obtain the appropriate a priori estimates, we decompose the solution u into
its Py and P, parts. Let us decompose the solution u(t) of (5.28) as

u(t) = (o1u®) () + ug(t) + us(t),

where

a1(t) = Pu(t), wi(t) = (T — TO)YPu(t), us(t) = Pau(t).

Note that Pyu(t) = (o1u®)(t) 4+ uy(t).
Since wuy (t) is written as

wi (t) = (T = TO)YPu(t) = (9, TV + 82, T@)o (1),

we see from Proposition 4.40 and Proposition 4.41 the following estimates for oy (t)
and uq(t).

Proposition 5.24. Let u(t) be a solution of (5.28) in Z(T). Then there hold the
estimates

10L,01(t)]|2 < C|zy01 (8|2
for1 <1<3; and

105 02,0 ur (B)2 < CllOuyo1 ()]l + 011 (1) 2

for0<k+1+2m <3.
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We derive the equations for oy (t) and ue(t).

Proposition 5.25. Let T > 0 and assume that u(t) is a solution of (5.28) in Z(T).
Then the following assertions hold.

01 € [)CU[0,T]: H*(R)), uw € Z(T), ¢ € C([0,T]; H").

3=0
Furthermore, o1 and us, satisfy
T
o1 (t) = e™Pug + / AP F (1) dr (5.29)
0
and

atuoo + Luoo - Fooa Woo |OQ: 07 Uoo |t:0: Uo,0, (530>

where Fiyy = Poo F' and uoe g = Paouo.

Let u(t) be a solution of (5.28) in Z(7T'). From Proposition 5.24, we obtain

s (14 7) ()2 + [0aa (7))
< C sup (14 7) {1001 (7) 2 + 19-01(7) 2},

0<7<t

and thus, the estimates for u(t) follows from the ones for o1(¢). Therefore, as in
[3], we introduce the quantity M;(t) defined by

My(t) = sup (1+7)i]|lor(P)]l2 + sup (14 7)1{]|8nyo1(7)]l2 + |8-01 (7)12}:
0<r<t 0<7<t

and we define the quantity M (t) > 0 by

N

M(t)* = My(t)> + sup (1 +7)

0<r<t

Eo(T) (¢ €[0,T])

with
Eo(t) = [uae(t)]5-
We define a quantity Dy (t) for e = H(¢oo, Weo) by

Doo(t) = [IDoo (W)II17 + [ Dwoo (t) l3-

If we could show M (t) < C uniformly for ¢ > 0, then Theorem 3.1 would follow.
The uniform estimate for M (t) is given by using the following estimates for M; ()
and E(t).

Proposition 5.26. There ezist positive constants vy, o and wy such that if v > vy,

#2; > 2 and w < wy, then the following assertions hold. There is a positive number

106



€1 such that if a solution u(t) of (5.28) in Z(T) satisfies sup [u(T)]2 < € and
0<r<t

M(t) <1 fort e |[0,T], then the estimates
M, (t) < C{|luol|zr + M()*} (5.31)
and
Falt) + / =)D (7)dr
0 , (5.32)
< C{e™En(0) + (1 + 1) 2 M(t) +/ e IR(T)dT}
0

hold uniformly for t € [0,T] with C > 0 independent of T. Here a = a(v,v,7) is a
positive constant; and R(t) is a function satisfying the estimate

R(t) < C{(1+ )72 M(t)* + (1 + )T M(t) Do (1)} (5.33)
provided that sup [u(1)]2 < e and M(t) < 1.

Proposition 5.26 follows from Propositions 5.5, 5.8 and 5.14 below.
As in [3, 12], one can see from Propositions 5.23 and 5.26 that if ||uo|| g2zt is
sufficiently small, then
M(t) S CHUO“H?ﬁLl

uniformly for ¢ > 0, which proves Theorem 3.1.
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