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Abstract

This study examined whether accurately simulating vertical air temperature (AT)

distribution within forest canopies is essential for predicting vertical photosynthesis

and transpiration distribution using multilayer canopy models. Inspecting earlier

observational studies that reported vertical AT distribution within forest canopies,

we showed that the common vertical AT difference within forest canopies was lower

than 3.0 ℃. We showed, using a leaf-scale transpiration-photosynthesis model, that

a 3. 0 ℃ AT difference caused smaller differences in leaf-scale photosynthesis and

transpiration rates than a common vertical difference in photosynthetic active

radiation (PAR) intensity within forest canopies when AT was higher than ca. 15 ℃.

While, the AT difference caused larger differences in leaf-scale photosynthetic and

transpiration rates than the PAR difference when AT was lower than ca. 10 ℃ .

However, the ranges in the rates with changing AT by 3.0 ℃ were comparable with

predictability of a leaf-scale transpiration-photosynthesis model. Thus, we conclude

that accurately simulating AT distribution is not essential at this stage for

calculating vertical photosynthesis and transpiration distribution using multilayer

canopy models.
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1. Introduction

Examining forest photosynthesis and transpiration has been a major goal in forest

hydrology and ecology, since transpiration and photosynthesis are major

components of forest water and carbon cycles, respectively (e.g., Wilson et al., 2001;

Gower, 2003). Multilayer canopy models (e.g., Baldocchi and Meyers, 1998; Lai et al.,

2000a,b) are useful tools to examine photosynthesis and transpiration processes of

forest canopies, because they divide the canopy into many layers and calculate

photosynthesis and transpiration in detail at each layer. [Here, we are using the term

"canopy" to indicate the whole space between the forest floor and the topmost tree

layer, not the tree- crown layer. ] Multilayer canopy models calculate or assume

vertical distribution of meteorological factors, such as wind speed, radiation intensity,

air temperature (AT), and vapor and CO2 concentrations (e.g., Baldocchi and Meyers,

1998; Lai et al., 2000a,b).

These meteorological factors affect photosynthesis and transpiration at each layer.

Though most multilayer canopy models calculate vertical AT distribution based on

diffusion theory, they often fail to simulate AT distribution (e.g., Naot and Mahrer,

1989; Baldocchi, 1992; Styles et al. , 2002) . Furthermore, some multilayer canopy

models assume vertically constant AT instead of calculating vertical AT distribution

(e.g., Leuning et al., 1995, 2000; Sala and Tenhunen, 1996; Williams et al., 1996,

1998, 2001) . Such inaccuracy in simulating AT distribution causes errors in

predicting vertical photosynthesis and transpiration distribution.

This study examines whether such inaccuracy in simulating AT distribution is

serious for predicting vertical distribution of photosynthesis and transpiration within

forest canopies. This examination enables us to judge whether improving model

predictability for AT distribution is highly required or not.

This study was comprised of two steps. First, we clarified a common intensity of

the vertical maximum AT difference within forest canopies inspecting observational

studies that reported AT profiles within forest canopies. Second, we examined effects

of the common AT difference on vertical photosynthesis and transpiration

distribution using a leaf-scale transpiration-photosynthesis model, that was incorpo-

rated in most recent multilayer canopy models. We compared these effects with those

of radiation intensity differences within forest canopies which would be the primary

factor producing vertical photosynthesis and transpiration distribution.

2. AT difference data

AT difference data were obtained from earlier publications. The vertical maximum

AT difference Tmax - Tmin was determined for each observation data by defining a

typical AT profile in daytime for each observation data. Here, Tmax and Tmin are
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the vertical maximum and minimum ATs for the typical AT profile, respectively.

When time- series of AT profiles during one day were illustrated ( e.g. , Ni, 1997;

Ohtani, 2000), AT profiles between 10:00 and 14:00 were averaged to obtain a typical

AT profile in daytime. When time-series of AT profiles during several days (e.g. ,

Hosker et al., 1974; Aoki et al., 1975) were illustrated, AT profiles between 10:00 and

14:00 were averaged for each day. Then, the averaged AT profiles for each day were

again averaged to obtain a typical AT profile in daytime during the measurement

period.

3. Leaf-scale transpiration-photosynthesis model

The leaf-scale transpiration-photosynthesis model calculates Al and El with inputs

of meteorological factors and leaf physiological parameters, where Al and El are leaf-

scale photosynthetic and transpiration rates. The model is conceptually same as those

developed by Collatz et al. (1991) and Harley et al. (1992). The model comprises of

three components, i. e. , ( 1) the biochemical photosynthesis model developed by

Farquhar et al. ( 1980) , ( 2) the semi- empirical relationship between stomatal

conductance and Al originally developed by Ball et al. (1987), and (3) CO2 and H2O

diffusion equations from the intercellular space of the stomata to ambient air (e.g.,

Campbell and Norman, 1998) . The model assumes complete coupling of the leaf

surface to ambient air, as done by Harley et al. ( 1992) and Harley and Baldocchi

(1995).

3.1 Model equations
The biochemical photosynthesis model formulates Al as (Farquhar et al., 1980)

Al = min(Av, Aj) － Rd, (1)

where Av and Aj are the gross rate of photosynthesis limited by Rubisco activity and

the rate of RuP2 regeneration through electron transport, and Rd is the day

respiration rate. Av in Eq(1) is formulated as

ci－ Γ
*

Av = Vcmax , (2)
ci + Kc (1 + oi/Ko)

where Vcmax is the maximum catalytic activity of Rubisco in the presence of

saturating levels of RuP2 and CO2, ci is the intercellular CO2 concentration, Γ* is the

CO2 compensation point in the absence of day respiration, oi is the intercellular

oxygen concentration, and Kc and Ko are Michaelis coefficients for CO2 and O2,

respectively. Aj in Eq(1) is formulated as
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J ci－ Γ*
Aj = , (3)

4 ci + 2Γ*

where J is the electron transport rate. J is modeled as (Baldocchi and Meyers, 1998)

αI
J = , (4)

1 + (αI/Jmax)2

where α is the quantum yield, Jmax is the maximum rate of electron transport, and I

is the incident photosynthetic active radiation (PAR). Rd in Eq(1) is formulated by

Collatz et al. (1991) as

Rd = 0.015 ･Vcmax. (5)

Vcmax, Γ * , Kc, and Ko depend on temperature, of which dependency is formulated

following the manner described in Leuning et al. (1995).

The semi-empirical relationship between stomatal conductance and Al is written by

Harley et al. (1992) as

m Al rh
gsc = + g0, (6)

ca

where gsc is stomatal conductance for CO2, m is the dimensionless slope, rh is relative

humidity of ambient air, and ca is the CO2 concentration of ambient air.

The CO2 diffusion equation from the intercellular space of the stomata to ambient

air is written by

Al = gsc (ca － ci). (7)

The H2O diffusion equation from the intercellular space of the stomata to ambient air

is written by

El = gsw { esat (Ta)－ ea}, (8)

where E is the transpiration rate, gsw is stomatal conductance for H2O, esat is the

saturation vapor pressure, Ta is AT, and ea is air vapor pressure. gsw is obtained

from gsc using gsw = 1.56 ･ gsc (Leuning et al., 1995).
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3.2 Complete coupling assumption
Besides AT, other meteorological factors such as radiation intensity and wind

speed differ vertically (e.g. , Aoki et al. , 1975; Jarvis et al. , 1976) . These factors

modify leaf temperature through leaf energy balance and therefore affect Al and El

when the leaf surface is not completely coupled to ambient air (e.g. , Monteith and

Unsworth, 1990; Campbell and Norman, 1998). When assuming complete coupling of

the leaf surface to ambient air, leaf temperature equals to air temperature, resulting

in no effect of radiation intensity and wind speed on Al and El through leaf energy

balance. Thus, the assumption enables us to purely evaluate the AT effect on Al and

El.

Earlier studies have reported well- coupling at leaf- and canopy- scale on many

broad-leaved forests (e.g., Kostner et al., 1992; Herbst, 1995; Granier and Breda, 1996

; Granier et al. , 1996, 2000) and almost all coniferous forests ( e. g. , Jarvis and

McNaughton, 1986; Martin et al., 1999, 2001; Komatsu, 2003; Komatsu et al., 2006a).

However, several studies (Meinzer et al., 1993, 1995, 1997) have reported decoupling

of the leaf surface to ambient air on broad-leaved trees with large leaf size under low

wind speed conditions. The complete coupling assumption and therefore our

conclusions can be invalid under these conditions, although these conditions would

not be so common.

4. Results and discussion

4.1 AT difference intensity
Table 1 shows Tmax - Tmin data summarized from earlier papers. Total sample size

was thirty- eight. Eleven samples were from tropical broad- leaved forests. Six and

sixteen samples were from temperate broad- leaved and coniferous forests,

respectively. One sample and four samples were from a boreal broad-leaved forest and

boreal coniferous forests, respectively.

Figure 1 shows a relative frequency of the summarized data classified according to

Tmax - Tmin values. Tmax - Tmin ranged between 0.3 ℃ and 6 ℃. The mean and

median of Tmax - Tmin were 2. 0 ℃ and 1.8 ℃ , respectively. 89％ data samples

satisfied Tmax - Tmin  3.0℃, while 11％ data samples satisfied Tmax - Tmin ＞ 3.0

℃. Thus, Tmax - Tmin was commonly  3.0 ℃.

AT profiles are measured by thermometers that are vertically located at several

observation points (e.g., Cabral et al. , 1996; Kumagai et al. , 2001). Thus, smaller

number of observation point can underestimate Tmax - Tmin because of coarse

resolution of measurements. When using data with number of observation point 5,

Tmax - Tmin ranged between 0.6 ℃ and 5.2 ℃ (n ＝ 22). The mean and median of

Tmax - Tmin were 2.1 ℃ and 1.8 ℃, respectively. 86％ data samples satisfied Tmax -

Tmin  3.0℃ , which 14％ data samples satisfied Tmax - Tmin ＞ 3.0℃ . These
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Table 1. Tmax - Tmin values summarized from published reports. ZTmax/H and ZTmin/H values are
shown. where ZTmax and ZTmin are the heights at which Tmax and Tmin were recorded and H represents
canopy height. ZTmax/H and ZTmin/H values are defined only when Tmax - Tmin > 1.0 ℃. Defining these
values is not meaningful when Tmax - Tmin values are small.

H (m) projected LAI Tmax-Tmin(℃)
ZTmax/H ZTmin/H

number of
observation point References

Tropical broad-leaved
47 8 5.2 1.00 0.00 6 Aoki et al. (1975)
41 ? 1.1 0.80 0.05 5 Baynton et al. (1965)
30 6.0 3.2 1.00 0.07 7 Bouka Biona

textit et al. (2001)
35 5.7*1 2.3 0.71 0.14 4 Cabraltextit et al. (1996)
30*2 3.5～4.5*2 0.6 - - 3 Komatsu et al.

(unpublished data)
50 5.1 1.3 0.99 0.10 10 Kumagai et al. (2001)
25 ? 1.8 0.85 0.02 5 Loesheret al. (2005)
35 ? 2.6 0.87 0.04 4 Shuttleworth

et al. (1985)
25 ? 2.3 0.84 0.20 3 Szarzynski

and Anhuf (2001)
40 6.5*3 0.9 - - 3 Tani (1996)
35 ? 1.7 0.86 0.01 12 Thompson

and Pinker (1975)
Temperate broad-leaved
12 ? 2.2 0.83 0.01 6 Chroust (1968)

cited in Groβ (1993)
18 ? 0.9 - - 4 Droppo et al. (1973)
25 5～6 2.9 0.88 0.04 4 Elias et al. (1989)
20 3.4 2.6 0.05 1.00 4 Ni (1997)
15 5 0.8 - - 5 Ohtani (2000)
20 7.1 2.4 1.00 0.02 6 Yabuki et al. (1978)
Temperate coniferous
5 ? 6 1.00 0.00 ? Baumgartner (1956)

cited in Groβ (1993)
24 2.7 0.4 - - 4 Berbigier et al. (1996)
21 ? 1.8 1.00 0.14 5 Daigo (1977)
7.5 ? 0.5 - - 4 Denmead (1969)
20 ? 0.8 - - 7 Denmead

and Bradley (1987)
8.5 1.8 1 - - 9 Ewers and Oren (2000)
8.5 1.9 1 - - 9 Ewers and Oren (2000)
8.5 3.3 3 0.01 0.71 9 Ewers and Oren (2000)
8.5 3.6 3 0.01 0.71 9 Ewers and Oren (2000)
17 ? 1.2 0.18 0.94 6 Green et al. (1984)
12.5 ?*4 2.5 0.84 0.01 9 Hayashi et al. (1989)
17 3.3*5 5 0.84 0.07 7 Hosker et al. (1974)
10.5 ? 2.3 1.00 0.00 ? Jarvis et al. (1976)
18 3.0*6 0.3 - - 3 Monji et al. (1994)
10 ? 3 0.95 0.02 4 Suzuki

and Fukushima (1976)
8*7 3.7*7 0.6 - - 3 Yoshifuji et al.

(unpublished data)
Boreal broad-leaved
21.5 2.3*8 2.3 0.09 0.74 7 Gu et al. (1999)
Boreal coniferous
12 10 0.6 - - 5 Amiro (1990)
30 7.6 0.6 - - 3 Constantin

et al. (1998)
20 2.5 1.1 0.10 1.00 10 Halldin

and Lindroth (1986)
23 4.3 2.7 0.44 0.02 5 Styles et al. (2002)

*1 McWilliam et al. (1993); Roberts et al. (1996)
*2 Takizawa et al. (2001); Komatsu et al. (2003, 2005)
*3 Tani et al. (2003)
*4 Although an LAI value is present, no definition of the LAI is given.
*5 Estimated by the authors of this paper by dividing the total surface area index by 2.4, which is an int
ermediate value for conifers (Landsberg and Gower, 1997).

*6 Tanaka et al. (1996)
*7 Komatsu et al. (2006a,b)
*8 Blanken et al. (1997)
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results were qualitatively same as those based on all data samples.

Figure 2 shows the relationship between ZTmax/H and ZTmin/H, where ZTmax is

height of Tmax appearance, H is canopy height, and ZTmin is height of Tmin

appearance. ZTmax data satisfied ZTmax/H = 0.71 ～ 1.00 or ZTmax/H = 0.01 ～ 0.18

except for data from Styles et al. (2002). When ZTmax/H = 0.71 ～ 1.00, ZTmin/H = 0.

00 ～ 0.33. When ZTmax/H = 0.01 ～ 0.18, ZTmin/H = 0.71 ～ 1.00. Thus, Tmax

appeared in the upper canopy or in the lower canopy. When Tmax appeared in the

upper canopy, Tmin appeared in the lower canopy. When Tmax appeared in the lower

canopy, Tmin appeared in the upper canopy.

We found no clear relationships between Tmax - Tmin > 3.0℃ appearance (e.g.,

Hosker et al., 1974; Bouka Biona et al., 2001) and forest properties, such as leaf area

index (LAI), leaf type (broad-leaved/coniferous), and canopy height. Tmax - Tmin >

3.0℃ appeared both for high-LAI forests (Aoki et al., 1975; Bouka Biona et al., 2001)

and a not so high-LAI forest (Hosker et al., 1974). AT data from high-LAI forests

did not always show high Tmax - Tmin values (e.g., Tani, 1996; Constantin et al.,

1998). Tmax - Tmin ＞ 3.0℃ appeared both for broad-leaved (Aoki et al., 1975; Bouka

Biona et al., 2001) and coniferous forests (Baumgartner, 1956 cited in Groβ, 1993;

7

Fig. 1. Relative frequency distribution of
summarized data classified according
to Tmax - Tmin. Data at the boundary
of two succeeding classes were
categorized into the class with lower
AT. For example, the data from
Hosker et al. (1974) (Tmax - Tmin = 5
℃ ) were categorized into the class
between 4 ℃ and 5 ℃.

Fig. 2. The relationship between ZTmax/H and
ZTmin/ H, where ZTmax is height of
Tmax appearance, H is canopy height,
and ZTmin is height of Tmin appearance.
Note that two samples from Ewers
and Oren (2000) overlap each other.
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Hosker et al., 1974). Tmax - Tmin > 3.0℃ appeared both for tall forests (Aoki et al.,

1975; Bouka Biona et al., 2001) and a short forest (Baumgartner, 1956 cited in Groβ,

1993).

We found clear relationships between LAI and ZTmax/H and between LAI and ZTmin

/H. Figures 3a and 3b show the relationships between LAI and ZTmax/H and between

LAI and ZTmin/H. When projected LAI  4.0, ZTmax/H = 0.01 ～ 0.18 and ZTmin/H =

0.71 ～ 1.00 with only one exception. When projected LAI＞ 4.0, ZTmax/H = 0.71 ～ 1.

00 and ZTmin/H = 0.00 ～ 0.33. Thus, ZTmax/H tended to be low and ZTmin/H tended to

be high when LAI was low, whereas ZTmax/H tended to be high and ZTmin/H tended

to be low when LAI was high. According to the Lagrangian dispersion theory

( Raupach, 1987, 1989a, b) , an AT profile is maximized in the lower canopy and

minimized in the upper canopy when an intensive heat source in the upper canopy is

absent. The maximum AT in the lower canopy is produced by less active heat

diffusion there. While, an AT profile is maximized in the upper canopy and

minimized in the lower canopy when an intensive heat source in the upper canopy is

present. The maximum AT in the upper canopy is produced by the near- field heat

diffusion from the intensive heat source. Greater LAI values indicate more intensive

radiation absorption and heat source in the upper canopy, resulting in appearance of

the maximum AT there (Fig. 3a).

4.2 Effects on photosynthesis and transpiration
Incident PAR in clear midday of a growing season usually differs by ca. 1000 μ

mol ㎡ s- 1 between upper and lower canopies. Elias et al. (1989) observed incident

PAR above and within a forest with projected LAI = 5 ～ 6. Incident PAR in clear

midday of a growing season is ca. 1200 μmol ㎡ s-1 above the canopy, and ca. 50 μ

8

Fig. 3. Relationships between projected LAI and ZTmax/H and between projected LAI and
ZTmin/H, where ZTmax is height at which Tmax was recorded, H is the canopy height,
and ZTmin is the height at which Tmin was recorded.
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mol ㎡ s-1 near the forest floor. Chen et al. (1997) observed incident PAR above and

within a forest with projected LAI = 2.3. Incident PAR in clear midday of a growing

season is ca. 1500 μmol ㎡ s-1 above the canopy, and ca. 300 μmol ㎡ s-1 near the

ground above the understory vegetation.

Figures 4a and 4b show Al and El calculated by the model assuming two

contrastive PAR conditions ( I = 1200 μmol m- 2 s- 1 and I = 300 μmol m- 2 s- 1) .

Figures 4c and 4d show Al and El calculated by the model assuming two different AT

conditions. These calculations assumed physiological parameters that were typical

9

Fig. 4 (a) Al and (b) El calculated by the model assuming I = 1200 μmol m-2 s-1 (solid lines)
and I = 300 μmol m-2 s-1 (dotted lines) . ( c) Al and (d) El calculated by the model
assuming default AT (solid lines) and AT lower than the default AT by 3.0 ℃ (dotted
lines). Physiological parameters are given as Vcmax = 47 mol m-2 s-1 at Ta = 20 ℃

(Wullschleger, 1993), Jmax = 126 mol m-2 s-1 at Ta = 20 ℃ (Leuning, 1997), α = 0.055,
m = 9. 5, and g0 = 0. 01 mol m- 2 s- 1 (Baldocchi and Meyers, 1998) . Meteorological
factors are given as relative humidity = 60% and ca = 360 μmol mol-1. Results here
were not qualitatively altered assuming physiological parameters that are typical
for coniferous trees: Vcmax = 25 mol m-2 s-1 at Ta = 20 ℃ (Wullschleger, 1993), Jmax
= 67 mol m-2 s-1 at Ta = 20 ℃ (Leuning, 1997), α = 0.055, m = 7.5, and g0 = 0.01 mol
m- 2 s- 1 (Baldocchi and Meyers, 1998) . Similarly, the results were not qualitatively
altered assuming another relative humidity condition (relative humidity = 40%) and
other CO2 concentration conditions (ca = 300 μmol mol-1 and ca = 400 μmol mol-1).

Temperature distribution within forests
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for broad- leaved trees and meteorological conditions that were typical for clear

midday ( see caption of Fig. 4) . Note that our conclusions hold when assuming

physiological parameters that were typical for coniferous trees and other

meteorological conditions ( see caption of Fig. 4) . Decrease in PAR always causes

decrease in Al and El. Decrease in AT causes increase in relative humidity, which

causes increase in gsc and gsw, and therefore it does not always cause decrease in Al

and El.

Figure 5 shows differences in Al (Fig. 5a) and El (Fig. 5b) caused by the PAR

difference and by the AT difference. Both Al and El differences caused by the AT

difference were less significant than those caused by the PAR difference when AT 

ca. 15 ℃ . Both Al and El differences caused by the AT difference were more

significant than those caused by the PAR difference when AT ca. 10 ℃.

Our results suggest that vertical Al and El distribution is less sensitive to AT

distribution than PAR distribution when AT  ca. 15 ℃. This suggestion does not

contradict with earlier studies. Earlier studies have succeeded in simulating whole-

canopy photosynthesis and transpiration in growing seasons using multilayer

canopy models (e.g., Williams et al., 1996, 1998, 2001; Baldocchi and Meyers, 1998;

Ogee et al., 2003), though those models often fail to simulate AT distribution.

While, our results suggest that vertical Al and El distribution is more sensitive to

AT distribution than PAR distribution when AT  ca. 10 ℃. However, Al and El

differences caused by a 3. 0 ℃ AT difference (Figs. 5a and 5b) are comparable to

predictability for Al and El by a leaf-scale transpiration-photosynthesis model. The

10

Fig. 5 (a) Al and (b) El differences between the two different PAR conditions (closed circles)
and between the two different AT conditions (open circles).
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model often causes ＞ 2.0μ mol m-2 s-1 errors in Al estimates and＞ 0.001 mol m-2 s-1

errors in El estimates (e.g., Fig. 5 of Harley and Baldocchi, 1995; Fig. 4 of Dang et al.,

1997) . Thus, improvement in AT distribution predictability will not enable much

more precise prediction of Al and El distribution due to the predictability of a leaf-

scale transpiration-photosynthesis model.

5 Conclusions

Inspecting earlier observational studies that reported vertical AT distribution

within forest canopies, we showed that the common vertical AT difference within

forest canopies was smaller than 3.0 ℃. We showed, using a leaf-scale transpiration-

photosynthesis model, that a 3.0 ℃ AT difference caused smaller differences in leaf-

scale photosynthetic and transpiration rates than a common vertical difference in

PAR intensity within forest canopies when AT was higher than ca. 15 ℃. While, the

AT difference caused larger differences in leaf-scale photosynthetic and transpiration

rates than the PAR difference when AT was lower than ca. 10 ℃ . However, the

ranges in the rates with changing AT by 3.0 ℃ were comparable with predictability

for leaf-scale photosynthetic and transpiration rates by the model. Thus, we conclude

that accurately simulating AT distribution is not essential at this stage for

predicting vertical photosynthesis and transpiration distribution using multilayer

canopy models.
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林内の気温鉛直分布が蒸散・光合成に与える影響

小松 光・熊谷朝臣・堀田紀文
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要 旨

本研究では、林内気温鉛直分布を正確に再現することが、林内光合成・蒸散鉛直分布を

多層モデルで推定するのに不可欠かどうかを調べた。筆者らは既存文献を踏査して、林内

で計測される鉛直方向の気温差が通常3.0℃以下であることを示した。つづいて、単葉ス

ケールの蒸散・光合成モデルによる計算によってつぎのことを示した。気温が約15℃以上

のとき、3.0℃の気温の差が引き起こす光合成・蒸散量の違いは、林内で通常計測される

光合成有効放射量の鉛直方向の差が引き起こす光合成・蒸散量の違いよりも小さい。一方、

気温が約10℃以下のとき、3.0℃の気温の差が引き起こす光合成・蒸散量の違いは、林内

で通常計測される光合成有効放射量の鉛直方向の差が引き起こす光合成・蒸散量の違いよ

りも大きいが3.0℃の気温の差が引き起こす光合成・蒸散量の違いは、単葉スケールの蒸

散・光合成モデルの予測精度と同程度である。したがって、現時点において、林内気温鉛

直分布を正確に再現することは、林内光合成・蒸散鉛直分布を多層モデルで推定するのに

不可欠ではないと結論した。

キーワード：気温；樹冠；多層モデル；光合成；蒸散；鉛直分布
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