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Abstract

The thesis focuses on the ground states, dynamics and topological defects of the
spinor Bose-Einstein condensates (BECs) with two-dimensional (2D) Spin-Orbit
(SO) coupling. We studied two different cases for the external trapping condition:
the homogeneous case and optical lattices potential.

In solid-state physics, the SO coupling originated from the relativistic effects.
It couples the particle’s spin and its orbital degree of freedom. SO coupling plays
the central role for the quantum spin Hall effect and the topological insulators.
In recent years, as a great breakthrough, the synthetic SO coupled BEC has been
realized in experiment. It enables us to investigate the certain issues related to
the SO coupling in other fields, such as, solid-state physics and particle physics,
as quantum simulator by using the cold atomic systems.

In the first part of my thesis, we studied the SO coupled BECs in optical lat-
tices. Especially, we investigated the energy dispersion, spin textures, vortex-
antivortex pair structures, and presented the ground-state phase diagram. First,
the general method to solves the Gross-Pitevskii Equation (GPE) for the SO cou-
pled spinor BEC in optical lattices is presented in numerical simulation and an-
alytical calculation. We showed that: (1) The optical lattices will change dramat-
ically the energy dispersion of a SO coupled BEC; (2) The SO coupling generates
the spin textures in the ground states; (3) Vortex lattices appear in a certain pa-
rameter region. Second, a vortex–antivortex pair (VAP) appears spontaneously
in a SO coupled spinor BEC. The wave functions for the spin-up and spin-down
components are mirror symmetric with respect to the y-axis, because the GPE
is invariant under the combined operation of the spin inversion and the mirror
transformation. Third, the ground-state phase diagram for a SO coupled spinor
BEC in an optical lattice is presented. We found that, as a result of the spon-
taneous symmetry breaking, there are six types of ground-state phases. Among
them, the twofold vortex lattices and the lattices chain are predicted for the first
time, they reflected the symmetry and topological properties of the system.

In the second part, we researched the SO coupled BECs in 2D free space. Es-



x

pecially, we focus on the stable soliton and half-quantum vortices in the system.
We found that a new stable soliton emerge spontaneously in 2D free space in a SO
coupled BEC. The general systems cannot hold stable solitons in 2D free space,
because of the occurrence of the collapse. Our results showed that the SO cou-
pling prevents the collapse, and stabilizes the solitons in the ground state. Fur-
thermore, we confirmed that the stable solitons include the half-quantum vortices
and the mixed modes, in which the half-quantum vortices coexist with its time-
reversed partner.
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Chapter 1

Introduction

In the chapter, we review the basics of superfluid 4He, experiment and theoreti-
cal model of the ultracold gaseous Bose-Einstein condensate (BEC), and give the
thesis layout in end of the chapter.

The theory of the BEC is predicted by Satyendra Nath Bose and Albert Ein-
stein in 1924. In that time, Bose presented the quantum statistics of photons, and
sent his paper to Einstein. Then, Einstein extended the theory to other particle
with mass and integer spin, that is the Bose-Einstein statistics [9]. Meanwhile,
Einstein believes that one can produce the BEC by cooling bosons to very low
temperature, so that the bosons can condense to the lowest quantum state of the
system.

At temperature T , for identical particles, the Bose-Einstein distribution func-
tion can be written as

f(ϵν) =
1

e(ϵν−µ)/kT − 1
, (1.1)

where ϵν indicates the energy of the single-particle quantum state ν, k denotes the
Boltzmann constant, µ expresses the chemical potential for the system. The mean
occupation number Nν for the single-particle quantum state ν can be calculated
by using the Bose-Einstein distribution, and the definition is as following,

Nν = f(ϵν)gν =
gν

e(ϵν−µ)/kT − 1
, (1.2)

where gν denotes the degeneracy for the state ν. When the temperature is very
low, most of particles in the system will fall into a lowest quantum state, and form
the BEC.

There are two types of superfluid so far, the superfluid 4He and the gaseous
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BEC with ultracold atoms. However, it is difficult to explain the superfluidity of
4He, because of the strong interaction in the liquid. In 1938, F. London presented
the idea about the connection between the superfluid 4He and the BEC of particles
with weakly interaction [10, 11].

Around 70 years later from the born of the theory of BEC, the BEC of the dilute
atomic gas was produced in 1995 by using Rubidium 87Rb [12], Sodium 23Na [13],
followed by Lithium 7Li [14, 15] based on the methods of laser cooling. Here, the
laser cooling and trapping atoms are very informant for production of the BEC
in experiment. Due to the great achievements in the field, Steven Chu, Claude
Cohen-Tannoudji (theory) and William Phillips was warded the Nobel Prizes in
physics in 1997 for laser cooling and trapping [16–18], and Carl Wieman, Eric
Cornell and Wolfgang Ketterle was warded the Nobel Prizes in physics in 2001
for the achievement of BEC [19, 20].

1.1 Superfluid 4He

The superfluid 4He is the first superfluid with strong interaction between the
particles we found in nature. Based on the studying of the superfluid 4He, we
got so many insights on the properties of quantum fluids. The superfluidity is
discovered by measuring the flow of the viscosity of 4He by Kapitza [21], Allen
and Misener [22] in 1938, and the critical temperature for the appearance of su-
perfluid is 2.17K. The superfluid 4He has some special properties, such as it can
flow insistently around a loop because the viscosity is vanished. In 1941, Landau
presented the two-fluid model to explain the superfluidity [23], based on the the-
ory, the system includes two components, superfluid component without viscosity
and the normal one, which component dominates the system is depending on the
temperature of the system. When the temperature of the system approaches the
critical value, the normal component will be the main part, and the density of the
superfluid component will approach to zero.

However, it is difficult to get deep understanding on the BEC by researching
the superfluid 4He, because the interaction of particles in the system is strong, so
it is required to find other system with weak interaction of particles. We will find
that the atomic gaseous BEC is a good candidate in the rest part of the chapter.
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1.2 Bose-Einstein Condensates

There are two types of particle in nature, i.e., fermions and bosons, based on their
spin. The bosons have integer spin like photon, while the fermions have half-
integer spin like electron. These two types of particles follow different statistics,
Bose-Einstein statistics (Eq. (1.1)) and Fermi-Dirac statistics. The difference be-
tween the bosons and fermions can be seen from the Pauli-exclusion principle, for
fermions, each quantum state only can be occupied by no more than one fermion,
while for bosons, there is not limit for the number of particles to occupy a quan-
tum state. As a result, the wave function of bosons have symmetric and the wave
function of fermions have asymmetric. For instance, the two-particle wave func-
tions for bosons and fermions can be written as

Ψ =
1√
2
[ψ(x1, Ea)ψ(x2, Eb) + ψ(x2, Ea)ψ(x1, Eb)] (1.3)

Ψ =
1√
2
[ψ(x1, Ea)ψ(x2, Eb)− ψ(x2, Ea)ψ(x1, Eb)] (1.4)

where x1 and x2 are the positions of the particles, Ea and Eb are the energies of
the particles. From these wave functions, we can get some understanding on the
Pauli-exclusion principle. To do that, we can consider the a special case, Ea =

Eb = E, then for bosons, the wave function reduces to Ψ =
√
2ψ(x1, E)ψ(x2, E),

and for fermions the wave function is vanished. That indicates that bosons are
allowed to occupy a same quantum state while fermions are not.

The forming process of BEC can be seen from Figure 1.1. There are two param-
eters, the thermal de Broglie wavelength and the distance between the particles.
Among them, the thermal de Broglie wavelength can be written as

λdB =

√
2πℏ2
mkT

, (1.5)

where m is the mass of particle, T is the temperature. We can find the thermal
de Broglie wavelength is increasing with decreasing of the temperature. On the
other hand, the mean distance between the particles d is of the order of n−1/3,
where n = N/V is the density of the particle number N , and V is the volume.

At room temperature, the system follows the classical mechanics, and each
particle has its own velocity, the behavior of particles looks like ball, the thermal
de Broglie wavelength is very small than the mean distance between the parti-
cles. Based on the formula of the thermal de Broglie wavelength, decreasing the
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Fig. 1.1 Forming process of Bose-Einstein condensation. At high temperature,
the system is controlled by classical physics, and the parameter is the distance
between the paricles d, the particles can be seen as balls. When we decrease the
temperature, then the quantum physics will take a main role in the system, the
particles will have properties of wave, so the another parameter, wave length λdB
will begin to takes roles. If the temperature approach to critical temperature, so
that λdB is comparable with d, the BEC will take place. Finally, if the temperature
decrease to zero, the pure BEC is formed, all the particles in the system will
condense to a same quantum state to form a giant matter wave. The figure is
cited from Ref. [1].
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temperature will increases the value of the wavelength, and there is a critical
value for the temperature in where λdB is comparable with the distance between
the particles d, in the temperature, some particles condenses to the lowest quan-
tum state, and the BEC takes place. At zero temperature, all the particles will
contributes to form the giant matter wave, i.e., the pure BEC.

For BEC with non-interacting particles in three-dimensional (3D) uniform sys-
tem, the critical condition is satisfied as nλ3T ≪ ζ(3/2) [24], where the Riemann
zeta function ζ(3/2) ≈ 2.612. Meanwhile, the critical temperature can be written
as,

Tc =
2πℏ2

mk
(

n

ζ(3/2)
)2/3, (1.6)

Below the critical temperature, the BEC will takes place. In the momentum
space, all the particle occupy the zero momentum state when the pure BEC is
produced, but, for the temperature (non-zero and below the Tc), the particles con-
tributed to the BEC just a part of the total number of particles. The fraction of
the particles for forming the BEC can be written as

N0 = N

[
1− (

T

Tc
)3/2
]
, (1.7)

where N0 indicates the number of particles forming the BEC, and N expresses the
total number of the particles.

In general, to produce a BEC, the harmonic trap is needed to confine the par-
ticles, the typical 3D trapping potential has the following form,

V (r) = 1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (1.8)

where ωi (i = x, y, z) is the oscillator frequency in i direction. Due to the presence
of the trap, the critical temperature for the BEC transition in the condition of
non-interacting will be changed to

Tc =
ℏω̄
k
(
N

ζ(3)
)1/3 ≈ 0.94ℏω̄N1/3, (1.9)

where ω̄ = (ωxωyωz)
1/3 denotes the mean oscillator frequency.
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1.2.1 Realization of BEC in experiment

In general, at very low temperature, a gas will transits to solid state, but, for
extreme dilute gas, it can be avoided. The density satisfied for the condition is of
the order of 1013/cm3 − 1015/cm3, while the density for common experiment is of
the order 1019/cm3. By using the formula of the critical temperature Eq. (1.6), the
temperature according to the density is of the order of 10−6K. In the order of the
temperature, only the s-wave scattering takes place, and the s-wave scattering
length can be used to indicates the strength of the scattering. In 3D system, the
density of the particles n and scattering length as have following relations,

a3sn≪ 1. (1.10)

In the theoretical treatment of BEC, such as in the Gross–Pitaevskii equation, we
just consider the interactions induced by s-wave scattering length.

The first pure BEC was produced in experiment by Carl Wieman and Eric Cor-
nell in 1995 by using rubidium atoms (87Rb) [12]. Then the BEC with other series
atoms, like sodium 23Na is also realized by W. Ketterle’s group at MIT [13]. The
Nobel Prize in physics was awarded to Carl Wieman, Eric Cornell and Wolfgang
Ketterle in 2001 for the achievement of BEC in dilute gases and the studying on
the fundamental properties of the BEC. Fig. 1.2 shows the velocity distribution of
the expanding rubidium atoms of BEC.

Up to now, following the first realization of BEC in experiment, so many groups
reported their productions of BEC by using other atomic series including 4He [25],
174Yb [26], 133Cs [27], 52Cr [28], 84Sr [29, 30], and so on.

1.2.2 Theoretical Model

When the temperature approaches to absolute zero, the BEC system can be de-
scribed by the Gross-Pitaevskii equation (GPE). In the thesis, we will research
some stationary and dynamical properties of the BEC with Spin-Orbit coupling,
by using GPE, especially, focus on the solitons and vortices appeared in the sys-
tem. In fact, for finite temperature, the GPE also can be used by making some
changes.
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Fig. 1.2 Velocity-distribution of the rubidium atoms by expanding them in three
temperatures, from right to light, T > Tc, T ≈ Tc and T < Tc, to confirm the
production of BEC. The figure is cited from Ref. [2].
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1.3 Thesis layout

The thesis includes 6 chapters, and divided to two parts.
The first part has three chapters, the aim of the part is to introduce the re-

search basics of my work.
• The first chapter is a introduction of the superfluid 4He and the gaseous

BEC.
• Next, the second chapter will reviews the details of the theory of the Bose-

Einstein condensates, includes mean-field treatment and different solutions
for different conditions.

• In the third chapter, we focus on the Spin-Orbit Coupled Bose-Einstein con-
densates, give the introduction of the ground state phase diagram and the
experimental details.

The next part is my research work during my doctoral course, it includes
• Chapter 4, Spin-Orbit Coupled Bose-Einstein condensates in free space,
• Chapter 5, Spin-Orbit Coupled Bose-Einstein condensates in optical lattices,
• Chapter 6, a conclusion of my work.
Finally, I would like to notice that
The first part (Chapters 1 - 3) is not my original work, it is a review on the

research background of the thesis work.
The Chapters 4 - 5 are our research works, the results have been published

in [31–33]. These two chapters are re-writed based on these publications.



Chapter 2

Theory of Bose-Einstein
Condensates

In this chapter, we review the Mean-Field theory of Bose-Einstein Condensates
(BECs) based on the text book and other references. At first, we intraduce the
Mean-Field theory, and drive the Gross-Pitaevskii Equation (GPE) which can de-
scribes the BECs in two different methods. Then, we consider the physical mean-
ing of the order parameter. Finally, the solutions of GPE will be presented both
in free space and harmonic trap.

2.1 Mean-Field Theory and Gross-Pitaevskii Equa-
tion

At zero–temperature, all of atoms in dilute gas with weak interactions will oc-
cupy macroscopically the lowest energy level in momentum space and form the
BECs. Generally, GPE which also called nonlinear Schrödinger equation (NLSE)
as a common model, will be used to describes BECs. In order to describe multi-
component condensates, this model can be trivially generalized to multi-component
Gross–Pitaevskii equations (GPEs).

It has been proved that the GPE model is a good description for many static
and dynamical properties both for single- and multi-component condensate sys-
tems [24, 34], even though fluctuations including thermal contributions and quan-
tum one are not taken into account.

In this section, we give the details of driving GPE from two different ways,
then the physical meaning of Order Parameter (OP) will be discussed.
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2.1.1 Based on the First Quantization

We consider a system consist of particles with mass m and spin 0 in the following
except specifying particularly.

A system formed from N interacting bosons can be described by an N−body
wavefunction ψ(r1, r2, · · · , rN , t) where ri is the position of atom i. This wavefunc-
tion obeys the well known Schrödinger equation as follows,

iℏ
∂

∂t
ψ(r1, r2, · · · , rN , t) = Hψ(r1, r2, · · · , rN , t), (2.1)

H ≡ − ℏ2

2m

N∑
i=1

∇2
i +

N∑
i=1

U(ri, t) +
1

2

N∑
i ̸=j

V (ri − rj), (2.2)

where U(ri, t) is the external field dependent on the time, V (ri−rj) is the two-body
interaction, H is the system’s Hamiltonian in coordinate basis.

For bosons, the wave fuction have a symmetry as follows,

ψ(r1, · · · , ri, · · · , rj, · · · , rN , t) = ψ(r1, · · · , rj, · · · , ri, · · · , rN , t). (2.3)

In mean-field theory, we assume the N -body wave-function to be

ψ(r1, r2, · · · , rN , t) =
N∏
i=1

ϕ(ri, t), (2.4)

here, ϕ(ri, t) is single-particle wave-function, it satisfies the Normalization condi-
tion, ∫

dr|ϕ(ri, t)|2 = 1. (2.5)

Eq. (2.4) means all of the atoms occupy a same single-particle state, in the other
word, the system into BECs. In addition, the form of Eq. (2.4) is same with
Hartree approximation.

Next, we can use Eq. (2.4) to calculate the energy expectation of the systems,

E(t) =

∫
dr1 · · ·

∫
rNψ

∗(r1, · · · , rN , t)Hψ(r1, · · · , rN , t)

≃ N

∫
dr ℏ2

2m
|∇ϕ(r, t)|2 +N

∫
drU(r, t)|ϕ(r, t)|2

+
N2

2

∫
dr
∫
dr′V (r − r′)|ϕ(r, t)|2|ϕ(r′, t)|2

(2.6)
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where, we have used the normalization condition Eq. (2.5) and assumed N ≫ 1.
Meanwhile, we can define the condensate wave function as

Ψ(r, t) ≡
√
Nϕ(r, t), (2.7)

it is also called Order Parameter (OP) of BECs.

Now, we consider the equation of motion for the condensates wave function. To
do that, we define the Lagrangian

L ≡
∫
drL[Ψ,∇Ψ, ∂tΨ], (2.8)

where L indicate the Lagrangian density with a form as following,

L[Ψ,∇Ψ, ∂tΨ] ≡ iℏ
2
[Ψ∗(r, t) ∂

∂t
Ψ(r, t)−Ψ(r, t) ∂

∂t
Ψ∗(r, t)]−H[Ψ,∇Ψ, π,∇π], (2.9)

where π(r, t) is the canonical momentum which have a canonical commutation
relation with Ψ(r, t)

π(r, t) ≡ δL

δ∂tΨ(r, t) = iℏΨ∗(r, t), (2.10)

and H is the Hamiltonian density. From Eq. (2.6), we can get

H[Ψ,∇Ψ, π,∇π] ≡ ℏ2

2m
|∇Ψ(r, t)|2 + U(r, t)|Ψ(r, t)|2

+
1

2

∫
dr′V (r − r′)|Ψ(r′, t)|2|Ψ(r, t)|2.

(2.11)

Then we can take all of above results to Euler-Lagrange equation

∂

∂t

[
δL

δ∂tΨ∗(r, t)

]
+∇ ·

[
δL

δ∇Ψ∗(r, t)

]
− δL

δΨ∗(r, t) = 0, (2.12)

and we can get the time-dependent GPE,

iℏ
∂

∂t
Ψ(r, t) = − ℏ2

2m
∇2Ψ(r, t)+U(r, t)Ψ(r, t)+

∫
dr′V (r−r′)|Ψ(r′, t)|2Ψ(r, t). (2.13)

2.1.2 Based on the Second Quantization

In the section, we drive the GPE from the second quantization representation.
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The Hamiltonian in second quantization representation is

Ĥ(t) =

∫
drψ̂†(r)

[
− ℏ2

2m
∇2 + U(r, t)

]
ψ̂(r)

+
1

2

∫
dr
∫
dr′ψ̂†(r)ψ̂†(r′)V (r − r′)ψ̂†(r′)ψ̂†(r),

(2.14)

where ψ̂(r) and ψ̂†(r) are the annihilation and creation operators, which satisfying
the canonical communication as follows,

[ψ̂(r), ψ̂†(r′)] = δ(r − r′), (2.15)

[ψ̂(r), ψ̂(r′)] = [ψ̂†(r), ψ̂†(r′)] = 0. (2.16)

In Heisenberg representation, the field operators read as

ψ̂(r, t) ≡ Û †
T (t)ψ̂(r)ÛT (t), (2.17)

ÛT (t) ≡ T̂ exp

[
− i

ℏ

∫ t

0

dr′Ĥ(t′)

]
, (2.18)

where the ÛT (t) is the time translation operator, and T is related to time. In the
case the Hamiltonian is time-independent,

ψ̂(r, t) = eiĤt/ℏψ̂(r)e−iĤt/ℏ, (2.19)

Then, we can get the Heisenberg Equation of field operators as

iℏ
∂

∂t
ψ̂(r, t) = − ℏ2

2m
∇2ψ̂(r, t) + U(r, t)ψ̂(r, t) +

∫
dr′V (r − r′)|ψ̂(r′, t)|2ψ̂(r, t). (2.20)

To get the equation of motion of condensates wave function, we assume that the
expectation of field operator can be regarded as the condensates wave function,
i.e.,

Ψ(r, t) ≡ ⟨ψ̂(r, t)⟩. (2.21)

So that, we can write down the field operator as

ψ̂(r, t) = ⟨ψ̂(r, t)⟩+
[
ψ̂(r, t)− ⟨ψ̂(r, t)⟩

]
≡ Ψ(r, t) + ϕ̂(r, t), (2.22)

where ϕ̂(r, t) can be explained as the annihilation operator of particles that didn’t
fall into the condensates, and these operators have same commutation relations



2.1 Mean-Field Theory and Gross-Pitaevskii Equation 13

with ψ̂(r, t) because of Ψ(r, t) being a C-number,

[ϕ̂(r), ϕ̂†(r′)] = δ(r − r′), (2.23)

[ϕ̂(r), ϕ̂(r′)] = [ϕ̂†(r), ϕ̂†(r′)] = 0. (2.24)

At zero–temperature, we assume that the thermal depletion of the system is neg-
ligible. Furthermore, for weak interacting systems, the quantum fluctuations will
not play a important role, so that we can neglect the thermal contributions, i.e.,

⟨ϕ̂(r, t)⟩ = 0

.
Now, we substitute Eq. (2.22) to the Heisenberg Equation of motion Eq. (2.20),

and take the expectation values both two sides for the equation, meanwhile ignore
the terms with ϕ̂(r, t), then we get the time-dependent GPE as follows,

iℏ
∂

∂t
Ψ(r, t) = − ℏ2

2m
∇2Ψ(r, t)+U(r, t)Ψ(r, t)+

∫
dr′V (r−r′)|Ψ(r′, t)|2Ψ(r, t). (2.25)

2.1.3 Effective Interaction Potential

In the time-dependent GPE (Eq. (2.25)), the interaction potential V (r−r′) includes
two kinds of interactions, the first one is a short range repulsive interaction, and
the second one is a longer range attractive van der Waals interaction. These two
kinds potentials compete with each other and leads to rich physics, for example,
molecular bound states. It is unnecessary to solve the Schrödinger equation with
V (r−r′) term for ultracold atomic gases, because it have some disadvantages. Al-
ternatively, using an effective potential can make the problem simplified greatly.

The effective contact interaction potential can be written as

V (r − r′) = gδ(r − r′), (2.26)

where
g =

4πℏ2a
m

, (2.27)

is the strength of the interaction for three dimensional system, a is the scatering
length.

By substituting Eq. (2.26) to the time-dependent GPE, Eq. (2.25), we can get
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the final form of GPE as follows,

iℏ
∂

∂t
Ψ(r, t) = − ℏ2

2m
∇2Ψ(r, t) + U(r, t)Ψ(r, t) + g|Ψ(r, t)|2Ψ(r, t). (2.28)

The equation, Eq. (2.28), is basis for the thesis.

2.1.4 Time-independent GPE

In the section, we consider the case, GPE does not depend on the time. In the
case, we can treat the external field as U(r, t) = U(r). The wave function of the
condensates can be written as

Ψ(r, t) = Ψ(r)e−iµt/ℏ, (2.29)

because we consider the stationary states here, and µ is the chemical potential.
By substituting the Eq. (2.29) to time-dependent GPE (Eq. (2.28)), we can get the
time-independent GPE as follows,[

− ℏ2

2m
∇2 + U(r) + g|Ψ(r)|2

]
Ψ(r) = µΨ(r). (2.30)

From the equation, we can get the stationary states of the system according to
the energy µ, we will research the ground states and excited states of the BEC
with Spin-Orbit coupling in the later chapters based on the time-independent
equation.

2.2 Order Parameter

In this section, we are discussing the physical meaning of the order parameter
of the Bose-Einstein condensates by rewriting the GPE in form of the quantum
continuity equation.

From Eq. (2.5) and Eq. (2.7), we can find that the total number of particles of
the system is

N =

∫
dr|Ψ(r, t)|2, (2.31)

and, the local density of the Bose-Einstein condensates can be written as

n(r, t) ≡ |Ψ(r, t)|2. (2.32)
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In the general case, the wave function of the Bose-Einstein condensates have the
form of complex number, and can be written as following the separating form of
the amplitude and the phase,

ψ(r, t) =
√
n(r, t)eiφ(r,t), (2.33)

where φ is a real number, it indicates the phase of the Bose-Einstein condensates.
By substituting Eq. (2.33) to the time-dependent GPE (Eq. (2.28)), then we can
get two equations according to the real and imaginary parts, respectively.

∂

∂t
n(r, t) = −∇ ·

[
n(r, t) ℏ

m
∇φ(r, t)

]
, (2.34)

and

ℏ
∂

∂t
φ(r, t) = −U(r, t)− gn(r, t)

+
ℏ2

2m

1√
n(r, t)

∇2
√
n(r, t)− ℏ2

2m
[∇φ(r, t)]2 .

(2.35)

Where, Eq. (2.34) is the continuity equation that describes the particle conserva-
tion. In addition, the particle flux density J(r, t) can be written as,

J(r, t) ≡ − iℏ
2m

[Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)]

= n(r, t) ℏ
m
∇φ(r, t).

(2.36)

Then, the continuity equation Eq. (2.34) can be reduced to

∂

∂t
n(r, t) ≡ −∇ · J(r, t)

≡ −∇ · [n(r, t)υ(r, t)] ,
(2.37)

where υ(r, t) denotes the local velocity field of the Bose-Einstein condensates with
definition as follows,

υ(r, t) ≡ ℏ
m
∇φ(r, t). (2.38)

Based on the Eq. (2.32) and Eq. (2.38), we can get the physical meaning of
the wave function of the Bose-Einstein condensates. The square modulus of the
amplitude of the wave function of the Bose-Einstein condensates indicate the lo-
cal density of the condensates, and the phase gradient of the wave function of
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condensates express the velocity of the Bose-Einstein condensates.

2.3 Solutions in Free Space

In this section, we consider the solutions of ground states of GPE in free space,
i.e., the external potential U(r, t) = 0. Then the time-independent GPE can be
written as, [

− ℏ2

2m
∇2 − µ+ g|Ψ(r)|2

]
Ψ(r) = 0, (2.39)

by solving Eq. (2.39), we can get the solutions of the system.

2.3.1 Plane Wave

At first, we consider the simplest case. We take the average density of particle is
n0, then we can find that the plane wave solution satisfies Eq. (2.39).

Ψ(r) =
√
n0e

imυ·r/ℏ, (2.40)

µ = gn0 +
1

2
mυ2. (2.41)

where υ indicates the velocity vector. As a obvious case, we have found that the
plane wave is a solution for GPE. In the rest parts, we will try to find other non-
obvious solutions.

2.3.2 Topological Defect: Dark Soliton

The soliton and vortices are the important topological defects. In the part, we will
show that the dark soliton satisfies Eq. (2.39).

Let us just consider the time-independent GPE with repulsive interactions.
Under a boundary condition as below:

|Ψ(x)| →
√
n0,

φ(x) → mυx

ℏ
± const, (2.42)

if,
x→ ±∞,
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we can find a solution as follows,

Ψ(x) =
√
n0e

imυx/ℏ{√1− (
υ

υs
)2 tanh

[√
1− (

υ

υs
)2
x− x0
ξ

]
+ i

υ

υs

}
, (2.43)

and
µ = gn0 +

1

2
mυ2, (2.44)

where υ is the velocity of soliton in x direction, ξ denotes the system’s length scale
that is defined as

ξ ≡ ℏ
√
mgn0

, (2.45)

υs expresses the sound velocity of system,

υs ≡
√
gn0

m
, (2.46)

and x0 is a real number that describes the center position of soliton.
For the dark soliton, the center of soliton has rare density, and the part far

away from the center of the soliton has a density similar with plane wave. Es-
pecially, for a soliton with υ = 0, the density at center is exactly 0. In the case,
we cannot define a phase at origin, because there is not value for wave function.
From the view of the topological point, soliton is a kind of topological defect. In
addition, it is not necessary for the phase of the soliton to keep the continuity at
origin, because there is not definition. Actually, there is a jump for phase of the
soliton with υ = 0 at origin.

For solitons with υ = 0, we call them Dark Soliton, and for solitons with υ ̸= 0,
we call them Gray Soliton, in which the zero point for wave function does not exist.
So seriously, gray soliton can not be called topological defect, but, customarily, it
also called soliton. Furthermore, soliton solution will change to the plane wave
solution when υ = υs.

In the section, we have considered the one dimensional infinite system, and
found the soliton solution for GPE. Actually, for one-dimensional finite system,
we also can find the soliton solution [35].

2.3.3 Bright Soliton

In the above section, we have considered the repulsive interaction situation, and
find that the dark soliton exist in the system.
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For attractive interaction, the soliton is also exist, but the form of the solution
has a little different. In the center, the density is bigger than other part in BECs,
we call this kind of soliton Bright Soliton.

2.3.4 Stability

In ultracold atomic gases, the solitons have been realized in experiment [36–40].
However, due to the one-dimensional system can not be made in experiment,
therefore, researchers consider generally the one-dimentional soliton in the high-
dimensional space. The soliton is stable in one-dimensional space, but, in high-
dimensional space, the solutions of soliton has instability because the solutions
just depend on the one-direction. The instability called Snake instability [41, 42].
It have been observed in experiment [38, 39]. The snake instability is very impor-
tant for the research on the quantum vortices [41].

2.3.5 Quantum Vortices

Quantum vortices are the vortices in the superfluid, they are quite different from
classical vortices.

As showed in Eq. (2.38), the phase gradient of the wave function of the Bose-
Einstein condensates express the velocity of condensates,

υ(r, t) ≡ ℏ
m
∇φ(r, t). (2.47)

To find the difference between the quantum and classical vortices, we can cal-
culate the vorticity that features the property of vortices. The definition of the
vorticity is reading as

ω(r, t) ≡ ∇× υ(r, t). (2.48)

By substituting Eq. (2.47) to Eq. (2.48), we find that

ω(r, t) = ∇× ℏ
m
∇φ(r, t) = 0. (2.49)

It means that the vorticity for the Bose-Einstein condensates is zero.
Then, we consider another quantity that also describes the vortices, circulation

Γ,

Γ(r, t) ≡
∮
C

dr · υ(r, t), (2.50)
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where C indicates the arbitrary closed curve, the integration is a line integration
along the closed curve. It will be zero if the region surrounded by the closed curve
C is simply connected. On the other hand, it will be non-zero if the region is
multiply connected.

By substituting Eq. (2.47) to Eq. (2.50), we find that

Γ(r, t) = ℏ
m

∮
C

dr · ∇φ(r, t)

=
ℏ
m

∮
C

dφ(r, t)

=
ℏ
m
△φ,

(2.51)

where △φ indicate the change of the phase around a vortex. Since the wave
function of the Bose-Einstein condensates needs to be single-valued, the change
of phase must be integer multiple of 2π, so that the circulation must be

Γ(r, t) = 2πℏ
m

n ≡ kn, (2.52)

where n = 0,±1,±2, · · · , and k = 2πℏ/m is the quanta of circulation. When the
phase winds round in an anticlockwise direction, the vortex is negatively charged.
Furthermore, when it winds in a clockwise direction, it is positively charged.

The difference between the quantum vortices and the classical vortices is that
the circulation for the quantum vortices is quantized by integer n while the cir-
culation for the classical vortices are not. It is reduced by the properties of the
single-value of the wave function, so it does not exist in classical one.

Under the cylindrical coordinate system (r, θ, z), the wave function of the vor-
tices can be written as

Ψ(r) ≡
√
n0f(r)e

inθ. (2.53)

where f(r) is a real function.

2.4 Solution in a Harmonic Trap

Figure 2.1 shows the density profiles of the solutions for the Bose-Einstein con-
densates with different interacting cases in a 3D harmonic potential. For the
non-interacting case, the density profile of the ground state have the Gaussian
form. The wave function of the ground state of a Bose-Einstein condensate in an
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Fig. 2.1 Density profiles of the ground states of a Bose-Einstein condensate
in a harmonic potential (orange line). The black solid line indicates the non-
interacting case, the red dash-dot line expresses the attractive interacting case,
and the blue dash line is the repulsive interacting case. The wave functions ap-
peared here are normalized to the same particle numbers. The figure is cited from
Ref. [3].
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anisotropic trap can be written as [24]

ϕ0(r) =
√
N

π3/4(lxlylz)1/2
e−x2/2l2x−y2/2l2y−z2/2l2z , (2.54)

where li(i = x, y, z) denotes the width of the wave function in i direction, and

li =

√
ℏ
mωi

. (2.55)

For the case of the attractive or repulsive interaction, the density profile will has
some changes than non-interacting case in the height and width.

To identify the different interacting cases, a interaction parameter can be in-
troduced as

χ =
Nas
l
, (2.56)

where l = lx = ly = lz denotes the length of the harmonic oscillator in an isotropic
system, χ indicates the strength of the interactions in the system. In the weak
interaction case χ ≪ 1, especially, for ideal Bose gas, χ = 0. While in the strong
interaction case χ≫ 1, the Thomas-Fermi approximation is a good description for
the system.

2.4.1 Thomas-Fermi Approximation

The mail idea for the Thomas-Fermi approximation is that the kinetic energy
term can be ignored in the time-independent GPE because the repulsive interac-
tion term is very large in the equation [43]. In the Thomas-Fermi approximation,
the solution of the ground state, called Thomas-Fermi solution, can be written as

ϕ(r) =


√
µ− Vext(r)/g, if µ ⩾ Vext(r)

0, otherwise
(2.57)

if the Bose-Einstein condensates is in a harmonic trap,

Vext(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.58)

where ωi(i = x, y, z) is the trapping frequency. Furthermore, the Thomas-Fermi
radius that indicates the spatial extension of the Bose-Einstein condensates can
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Fig. 2.2 Comparison between the Thomas-Fermi approximation and the numeri-
cal result for the density profile of the ground states. The black solid line indicates
the Thomas-Fermi approximation, and the red dashed line denotes the numerical
result. The figure is cited from Ref. [3].

be written as

Ri =

√
2µ

mω2
i

, i = x, y, z (2.59)

Fig. 2.2 shows the difference between the Thomas-Fermi approximation and
the numerical result for the density profile of the ground states for a Bose-Einstein
condensate in a harmonic trap. We can find that in the centre, the Thomas-Fermi
result is agreement with numerical result very well, but in the edge area the
agreement is not good. The reason can be understood by considering the relative
relations between the harmonic trap and the interaction, in the centre than the
edge area, the harmonic trap is deeper so that the interaction is larger.

2.5 Chapter summary

In the chapter, we have reviewed the theory of the Bose-Einstein condensates. At
first, we have gave the mean-field theory and Gross-Pitaevskii equation. Next,
the physical meaning of the order parameter of the Bose-Einstein condensates
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have been considered. Then, we reviewed the solutions of the Bose-Einstein con-
densates in free space and in a harmonic trap, includes the plane wave solution,
bright and dark solitons, and vortices.





Chapter 3

Spin-Orbit Coupled Bose-Einstein
Condensates

In the chapter, we review the basic concepts and research progress on the Spin-
Orbit (SO) coupled Bose-Einstein Condensates (BECs).

We start with introducing the concept of SO coupling both in solid-state physics
and ultracold atomic system. Then, the theory and experiments of the gauge
field will be reviewed. Consequently, we focus on the single-particle and interac-
tion physics of the SO coupled BECs, and show the phase diagram of the ground
states. The chapter will be ended by a chapter summary.

3.1 Spin-Orbit Coupling

SO coupling describes the interaction of a particle’s orbit angular momentum and
its spin angular momentum in a way of quantum mechanics. It is essential in
a wide of range of condensed matter physics, such as, topological insulators and
spintronics.

The movement of electrons in a electric field in various of materials is the
origination of SO coupling in solid-state physics, in which, the parameters are
determined by materials. On the other hand, the parameters in ultracold atomic
gases are tunable by laser-atom interaction. So that, the SO coupling generated
in BECs are more easy for people to get deeper understanding of its physics in va-
riety of parameter regions, and research the unique features that are impossible
in other solid-state systems.
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Fig. 3.1 Qualitative illustration of the band structure of GaAs. Here, j indicates
the angular momentum. The figure is cited from Ref. [4].

3.1.1 In solid-state physics

In crystals, the behavior of electrons can be described by energy bands En(k), here
n is the band index, and k is the wave vector. For a system with SO coupling, the
structure of the energy bands will be modified significantly.

For instance, SO coupling can split the topmost valence band in GaAs, as
showed in Fig. 3.1 (The figure is cited from Ref. [4]). Actually, if we don’t con-
sider the spin, the electron states are degenerate at the edge of the valence band.
However, if we add the SO coupling into the consideration, we find that the elec-
tron states will split to different states with a energy gap △0, which is called SO
gap.

3.1.2 In ultracold atomic system

Most researches on the SO coupling are about the fermions, like electrons, in
solid-state physics as showed in the last section.

On the other hand, the advantage of ulracold quantum gases, i.e., in which all
parameters can be tuned, makes the research of SO coupling in BECs to be pos-
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Table 3.1 Experimental realizations of the SO coupled Quantum Gases

Group Element Phenomena Comments

NIST 87Rb Structure of BEC [7]; Harmonic trap
Partial wave scattering [44];
Spin hall effect [45];
Zitterbewegung [46]

USTC 87Rb Dipole oscillation [47]; Harmonic trap
Finite Temp. phase diagram [48];
Collective excitations [49]

Shanxi 6Li ARPES, Fermi surface transition [50]; Fermion;
SO coupled molecule [51] Harmonic trap

MIT 6Li Inverse ARPES, Zeeman Lattice [52] Fermion

Purdue 87Rb Landau-Zener transitions [53] Harmonic trap

WSU 87Rb Dynamical instability [54]; Moving OL
Collective excitations [55]

sible. In particular, the experiment realization of SO coupled BECs [7] and gen-
erate fermions [50] give us a whole new opportunity to study the novel states of
the ultracold quantum gases (Bose-Einstein condensates and degenerate Fermion
gases) that are difficult to research in solid-state systems. Up to now, a variety of
research groups in the world have realized the SO coupling in different trapping
potentials, such as in a harmonic trap or in a moving Optical Lattice (OL), as
showed in Table 3.1 (remade based on the Ref. [56]).

Meanwhile, the theoretical research on the SO coupled quantum gases [31–
33, 57–64] also make the field to be a research highlight.

3.2 Theory of Gauge Field

In quantum mechanics, the Schrödinger equation can be used to describe a phys-
ical system, it reads as

iℏ
∂Ψ

∂t
= HΨ, (3.1)

where Ψ indicates the wave functon of system, and H is the Hamiltonian of sys-
tems. It can be shown that the solution of the Schrödinger equation can be written
as

Ψ(r, t) = U(t)Ψ(r, 0), (3.2)
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where U(t) is the time evolution operator

U(t) = exp(−iHt
ℏ
). (3.3)

In the setting, if a charged particle with charge q and mass m undergoes a elec-
tromagnetic field, the Hamiltonian of the system will have a change, then it can
be written in terms of the scalar potential ϕ and the vector potential A as [65]

H =
1

2m
(P − qA

c
)2 + qϕ (3.4)

where c is the velocity of light in vacuum, then we can write the electric and
magnetic fields down like,

E = −∇ϕ− ∂A
∂t
, (3.5)

B = −∇A, (3.6)

One can find that the gauge potential A can give rise to the electric and magnetic
fields for a charged particle.

3.2.1 Abelian case

The gauge potential A is a vector, it has three components in three-dimensional
co-ordinates. Based on the difference of its commutation relationship, we have
two kind of the gauge potential. For a gauge potential A = (Ax, Ay, Az), if

[Ai, Aj] = 0, (3.7)

where, i, j = x, y, z, then, we call the potential is abelian one.

3.2.2 Non-Abelian case

In contrast with abelian case, for a gauge potential A, if

[Ai, Aj] ̸= 0, (3.8)

then, we call the potential is non-abelian.



3.3 Experimental Realization of Synthetic Gauge Field 29

3.3 Experimental Realization of Synthetic Gauge
Field

In general, researchers study the Abelian and Non-abelian gauge fields for fermions,
like electrons, in solid state physics. However, the ultracold atomic gases with the
advantage of all parameters of the system can be tuned, gives us an opportunity
to study these problems by using bosons in the system made in laboratory. Owing
to this, we call the system with gauge potential, Synthetic Gauge Field.

Actually, up to now, two kinds of gauge field, including abelian [6, 66, 67] and
non-abelian one [7] have been realized in boson system. Fig. 3.2 showed the set-
ups of experimental realization for different synthetic gauge fields with ultracold
atomic gases.

3.3.1 Abelian: Synthetic magnetic field

In the part, we take the synthetic magnetic field as an example to introduce the
experimental realization of synthetic abelian gauge field at NIST [6].

Fig. 3.3 shows the details of the experiment, (a) shows the geometry of the
system, (b) shows the energy level of atoms, (c) shows the dispersion relation, (d)
shows the synthetic vector potential induced by atom-light interaction in (a), (e)
and (f) give the spin projection for the dressed states in the case of δ = 0 and not.

Actually, the method described here for creating the synthetic magnetic fields
for neutral atoms comes from a fundamental concept in quantum mechanics, i.e.,
the Berry phase. The method is different with the method by rotating the ul-
tracold atomic gases. Before the experiment of the synthetic magnetic fields, the
method of rotating the system is a choice to research the physics of gauge field
in quantum gases, even though there are some limitation, such as, adding opti-
cal lattices is difficult for the rotating system, the heating issue reduced by the
rotation, the difficulty to adding large angular momentum, and it is not easy to
fall into the quantum hall region. However, the method of creating the synthetic
magnetic fields by Berry phase will taking these advantages. At first, adding
an optical lattice is easy for the system, so that the system can be used to re-
search the fractal energy levels of the Hofstadter butterfly. Second, if one adding
one-dimentilnal lattice to the system, then the BEC will into an array of two-
dimensional systems normal to the field. In addition, by tuning property param-
eters, the quantum hall regime ca be accessed by the approach.
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Fig. 3.2 Experimental setups for creating the synthetic gauge fields. The figure is
cited from Ref. [5].
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Fig. 3.3 Experiment summary for synthetic magnetic fields for neutral atoms. For
the details of the experiment, see the Ref. [6].
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Fig. 3.4 Different kinds of Spin-Orbit coupling in the momentum space of com-
posed of kx and ky. a. Rashba SO coupling. b. The linear Dresselhaus type SO
coupling. c. A equal sum of Rashba and Dresselhaus SO coupling. The figure is
cited from Ref. [5].

3.3.2 Non-Abelian: Synthetic Spin-Orbit Coupling

The experimental realization [7] of another kind of synthetic gauge field, non-
abelian one, will be introduced in the part.

The SO coupling expresses the interaction between the spin and the momen-
tum of a quantum particle. It is novel and ubiquitous for quantum systems. In
the experiment, researchers engineered a SO coupled BECs with equal Rashba
and Dresselhaus strengths by dressing two atomic internal states with a pair of
lasers. The realization of the SO coupling BEC is the first time to produces a SO
coupling by using bosons. In addition, the interaction of the two dressed states of
the system will be changed if the laser coupling takes place, and gives rise to a
quantum phase transition between the spin-mixed state and the phase separated
state. The realization of the synthetic SO coupling sets the stage for the research
of the topological insulators.

In the experiment, researchers use a pair of Raman lasers interacting with
BECs of 87Rb to created the synthetic SO coupling for neutral atoms [7]. The SO
coupling system we discussed in the part is a superposition of equal strength of
the Rashba and Dresselhaus types of the SO coupling.

The details of the experiment is shown in Fig. 3.5 and Fig. 3.6. To do this, two
internal states of F = 1 ground electronic manifold are selected as the pseudo-
spin states, i.e., set the mF = 0 as spin-up and mF = −1 as spin-down in the
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Fig. 3.5 Scheme for creating SO coupling. For the details of the experiment, see
the Ref. [7].
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Fig. 3.6 Phases of a SO-coupled BEC. For the details of the experiment, see the
Ref. [7].
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pseudo-spin basis.
Fig. 3.5 shows the energy level and dispersion relations for (a) and (b), and the

relationship between Raman coupling and minima locations in quasi momentum.
We found that the energy dispersion relation can be changed by tuning the sys-
tem’s parameters, so that, we can get a deeper understanding about the synthetic
quantum atomic system.

Fig. 3.6 indicates the mean-field phase diagram of ground states of the syn-
thetic SO coupling BECs at zero temperature. In the plane of composed of the
detuning and Raman coupling, the ground states including single dressed state,
the phase mixed state in space and phase separated state. The critical point for
the phase transition between the last two phases is 0.19 in the Raman coupling.

3.4 Bose-Einstein Condensates with Synthetic Spin-
Orbit Coupling

In the part, we review the theoretical treatment of the SO coupled BECs. At
first, we give the physics of single particle states, then the interaction physics of
the SO coupled BECs will be considered. In particular, the ground states of the
SO coupled BECs with repulsive interaction in free space and in a trap will be
addressed.

3.4.1 Single-Particle Physics with Rashba SO Coupling

The single-particle Hamiltonian can be written as [58]

Ĥ0 =

∫
d2rΨ† 1

2m
(k2 + 2κk · σ⃗)Ψ, (3.9)

where Ψ = (Ψ↑,Ψ↓) is the wave function for spin-up and spin-down components,
For a two-dimensional system, the momentum k = {kx, ky} and the Pauli matrix
σ⃗ = {σ⃗x, σ⃗y}.

The energy dispersion of the single-particle Hamiltonian can be obtained as

E±(k) ∝ (|k| ± κ)2. (3.10)

To confirm the ground states, we just consider the lowest branch of the energy
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dispersion E−. In the case,

E−(k) ∝ (|k| − κ)2, (3.11)

so that, the ground states will degenerate along the ring with radius κ in momen-
tum space, but occupying the origin.

3.4.2 Interaction Physics

The interaction Hamiltonian can be written as

Hint =

∫
dr(gn̂2

1 + gn̂2
2 + g12n̂1n̂2), (3.12)

where we treat the interaction of same series atoms to be g, and the interaction
of different series of atoms is g12, and n̂ indicates the density of atoms for both
components.

As mentioned in the above, the ground states is degenerated as a ring in mo-
mentum space for single-particle case, therefore, the interaction part will take a
role to select the special state from the ring and to form the ground states in the
interaction case. Ref. [58] confirmed that there are two kinds of the ground states:
plane wave for the case of g > g12 and stripe wave for the case of g < g12.

For the plane wave state, the system’s density is uniform, and the phase will
change periodically for 0 to 2π, the rotation symmetry will be broken. The wave
function for the plane wave state can be wrriten as,

Ψ(r) ∝ eiκx

(
1

1

)
. (3.13)

On the other hand, the stripe wave state can be seen as a superposition of two
plane wave with opposite momentum,

Ψ(r) ∝ eiκx

(
1

1

)
+ e−iκx

(
1

−1

)
∝

(
cosκx

i sinκx

)
, (3.14)

and the spin density ρs(r)can be written as,

ρs(r) = |Ψ1(r)|2 − |Ψ2(r)|2 ∝ cos(2κx), (3.15)
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it means the periodic change in space.

3.5 Spin-Orbit Coupled Bose-Einstein Condensates
in a Trap

In general, the ultracold atomic gases trapped in a harmonic potential, in the
case, the interplay between the confine potential and SO coupling will give rise to
rich phase diagram in ground states.

The Hamiltonian of the SO coupled BECs in a trap acquires the form

H(k) ∝ (ℏk − A)2 −∇2
k, (3.16)

in the case, some novel phases, such as, half-integer quantum vortices HV (1/2)

and HV (3/2) will appear, because of the form of the eigenenergies [8],

Enl =
(l + 1

2
)2

2κ2
+ n+

1

2
, (3.17)

where n indicates the radial excitations. The half-integer quantum vortices solu-
tion can be written as

Ψ0(r, θ) ∝

(
J0(κr)

eiθJ1(κr)

)
,Ψ−1(r, θ) ∝

(
e−iθJ1(κr)

J0(κr)

)
, (3.18)

Fig. 3.7 and Fig. 3.8 (both cited from Ref. [8]) shown the phases and phase
diagram of the ground states of SO coupled BEC in a trap.

As shown in Fig. 3.7, the half-integer quantum vortices HV (1/2) will appear
when the interaction is small or zero. As increasing the interaction or SO cou-
pling, the system can transit to the second half-integer quantum vortices state,
HV (1/2). Further increasing the interaction, the system favors a lattices state
with six momentum components, we can found that in Fig. 3.7 (d). Finally, for
bigger interactions, the system will fall into a stripe phase like in free space pre-
sented in the above part.
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Fig. 3.7 Phases in ground state of SO coupled BECs in a trap. The figure is cited
from Ref. [8].
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Fig. 3.8 Phases diagram of the ground state of SO coupled BECs in a trap. The
figure is cited from Ref. [8].
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3.6 Chapter summary

In the chapter, we have reviewed the basics of the SO coupled BECs in a trap,
including the experiments and the theory.

Among them, the novel topological defects, such as, the half-quantum vortices,
are the important topic. We will find that these topological defects also exist for a
SO coupled BECs with attractive interaction in free space.



Chapter 4

Spin-Orbit Coupled Bose-Einstein
Condensates in Free Space

In this chapter, we focus on the ground states and dynamics of two-dimensional
Spin-Orbit (SO) coupled Bose-Einstein condensates with attractive interaction in
free space. Up to now, most of the research on the SO coupled BECs focus on the
BECs with repulsive interaction. The research here will give us an opportunity
to compare the both side of interaction.

In general, the stable solutions for a two-dimensional (2D) Mean-Field (MF)
models with attractive interaction in the context of both of optical fiber and matter
waves are not exist, because the collapse of the system will take place. However,
we found that the SO coupling can make exception for ultracold quantum gases,
in which the stable solution servives. The SO coupled BECs is a good platform
to research the stable solution for 2D-BECs with attractive interaction in free
space. Furthermore, we found that there are two types of the stable solution in the
setting, the first one is half-quantum vortices, and the second stable solution is
the superposition of the half-quantum vortices and its partner with time-reversal
symmetry, we call it mixed model.

4.1 Introduction

Quantum simulation has been a research highlight, because the advantage of ul-
tracold atomic system in which all the parameters are controllable and tunable.
It can be used to address the issues that is difficult to study in condensed matter
physics [68]. The realization of synthetic SO coupling [7] with equal weight of the
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types of Dresselhaus [69] and Rashba [70] in ultracold boson system is a great
breakthrough for quantum simulation of the solid-state physics by using quan-
tum gases. Meanwhile, other type of synthetic gauge fields [6, 66, 67], including
uniform vector potential, synthetic magnetic field and synthetic electric field are
also realized in NIST. The details of the experiment and theory of these topic can
be got from great review papers [57, 62]

The SO coupling BECs holds a lot of important and interesting effects includ-
ing half-quantum vortices [60], monopoles [71], multi-domain patterns [58, 72],
tricritical points [73], solitons [74], and so on. Furthermore, other possibilities
can be added by optical lattices in the setting [75], such as, the creation of gap
solitons [76].

All the works mentioned above are in the context of BECs with repulsive in-
teraction in external trapping potentials, while the situation of SO coupled BECs
with attractive interaction in free space is not studied. In the chapter, we will
focus on the issues [31], and address the stable topological defects, especially, vor-
tices and solitons in the system.

4.2 Main Results

Our main results are summarized as follows,
• The ground states of the SO coupled BECs with attractive interaction in

free space will fall into the half-quantum vortices state or the mixed model.
based on the interplay between the same series and different series inter-
actions. Especially, for two different families of stable vortex solitons, i.e.,
half-quantum vortices with topological charges m = 0 and ±1 in the two
components respectively, and the mixed modes in which combine m = 0 and
±1 in each component in the 2D BECs with the Rashba type of the synthetic
SO coupling in the free space.

• Both of the stable solutions will degenerate to Townes soliton which unstable
if their norms reach to the critical values.

• In the absence of the Galilean invariance, the stable moving vortex solitons
for both of two families are exist under a certain critical velocity.

According to what I have learned, it is the first time to confirm the existence of
stable 2D solitons in any system with attractive interaction in free space, based
on the interplay between the local attractive interaction and the synthetic SO cou-
pling, although we have known that the 2D solitons can be stabilized by nonlocal
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self-attraction terms [77].

4.3 Model

We start with 2D Gross-Pitaevskii equations (GPEs) of the SO coupled BECs in
free space with attractive interactions in the dimensionless form,

i
∂ϕ+

∂t
= −1

2
∇2ϕ+ − (|ϕ+|2 + γ|ϕ−|2)ϕ+ + λ

(
∂ϕ−

∂x
− i

∂ϕ−

∂y

)
,

i
∂ϕ−

∂t
= −1

2
∇2ϕ− − (|ϕ−|2 + γ|ϕ+|2)ϕ− − λ

(
∂ϕ+

∂x
+ i

∂ϕ+

∂y

)
, (4.1)

where ϕ = (ϕ+, ϕ−) are the spinor wave function of the synthetic Rashba type SO
coupled BEC system, λ is the strength of SO coupling, γ is the strength of the
interaction of the different spin series.

In the rest part, the stationary solutions of Eq. (4.1) will be constructed by
methods of the variational approximation (VA) and numerical simulation of the
imaginary-time propagation method, and the dynamics of the system can be ob-
tained by numerical simulation of the real-time propagation method.

4.4 Ground states

In the system, the ground states of the SO coupled BEC will include two types of
half-quantum vortices and the mixed models.

4.4.1 Half-quantum vortices

It is easy to known that Eq. (4.1) allows a type of the stationary solutions in the
following form:

ϕ+ (x, y, t) = e−iµtf1(r
2), ϕ− (x, y, t) = e−iµt+iθrf2(r

2), (4.2)

where µ is the chemical potential of the system, (r, θ) are polar coordinates in the
plane of (x, y), and real functions f1,2 (r2) obey the following equations:

µf1 + 2
(
r2f ′′

1 + f ′
1

)
+
(
f 2
1 + γr2f 2

2

)
f1 − 2λ

(
r2f ′

2 + f2
)
= 0,

µf2 + 2
(
r2f ′′

2 + 2f ′
2

)
+
(
r2f 2

2 + γf 2
1

)
f2 + 2λf ′

1 = 0, (4.3)
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where f ′
1,2 ≡ df1,2/d (r

2). These solutions are built as bound states of a fundamen-
tal soliton in component ϕ+ (with zero topological charge, m+ = 0), and a solitary
vortex, with m− = 1, in ϕ− component. Accordingly, composite modes of this type
may be called half-quantum vortices. The invariance of Eq. (4.1) with respect to
the transformation,

ϕ± (r, θ) → ϕ∓ (r, π − θ) , (4.4)

gives rise to another half-quantum vortices which is a mirror image of (4.2), with
the pair of (m+ = 0,m− = 1) replaced by (m+ = −1,m− = 0):

ϕ+ (x, y, t) = −re−iµt−iθf2(r
2), ϕ− = e−iµtf1(r

2). (4.5)

The analysis of Eq. (4.3) at r → ∞ shows that the respective asymptotic form of
the solution written in terms of r, rather than r2 is

f1 ≈ Fr−1/2e−
√

−2µ−λ2r cos (λr + δ) , f2 ≈ −Fr−3/2e−
√

−2µ−λ2r sin (λr + δ) , (4.6)

where F and δ are arbitrary real constants, in terms of the asymptotic approxi-
mation. Thus, the localized modes exist at values of the chemical potential

µ < −λ2/2. (4.7)

In fact, Eq. (4.6) gives the asymptotic form of the solitons not only for the half-
quantum vortices, but in the general case too.

As shown below (see Fig. 4.3(c) where the half-quantum vortices branch is
labeled “0", which implies that ϕ+ contains solely the zero vorticity), the half-
quantum vortices represent the ground state of the system at γ ≤ 1. In fact, the
coexistence of the half-quantum vortices in the two mutually symmetric forms,
(4.2) and (4.5), implies the degeneracy of the ground state, which is possible in
nonlinear systems.

In the past, the composite solitons consists of vortical and fundamental com-
ponents were considered in a system of coupled nonlinear Schrödinger equations
[78, 79]. However, the usual system cannot produces stable solitons in the free
space.

The stable half-quantum vortices were generated, as solutions of Eq. (4.1)
with γ = 0, by method of the imaginary-time propagation [80, 81], starting from
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the following input

ϕ
(0)
+ = A1 exp

(
−α1r

2
)
, ϕ

(0)
− = A2r exp

(
iθ − α2r

2
)
, (4.8)

where A1,2 and α1,2(> 0) are real constants. Obviously, this input conforms to
the general ansatz (4.2) for the half-quantum vortices. Figure 4.1(a) displays
profiles |ϕ+(x, 0)| and |ϕ−(x, 0)| of a typical stable half-quantum vortices, in the
cross section of y = 0, produced by the numerical solution for value N = 5 of the
total norm,

N =

∫ ∫
(|ϕ+|2 + |ϕ−|2)dxdy ≡ N+ +N_. (4.9)

Further, Fig. 4.1(b) represents the entire family of half-quantum vortices by show-
ing their chemical potential µ as a function of N . Note that the µ(N) dependence
satisfies the Vakhitov-Kolokolov (VK) criterion [82–84], dµ/dN < 0, which is a
necessary condition for the stability of solitary modes supported by the attractive
interaction, although it does not secure stability of vortex solitons against split-
ting. We stress that, as clearly seen in Fig. 4.1(b), there is no finite threshold
value of N necessary for the existence of the half-quantum vortices.

The wave form (4.8) can be used not only as the input for the imaginary-time
simulations, but also as a variational ansatz. Its substitution in the expression
for the total energy corresponding to Eqs. (4.1),

E =

∫ ∫ {
1

2

(
|∇ϕ+|2 + |∇ϕ−|2

)
− 1

2

(
|ϕ+|4 + |ϕ−|4

)
− γ|ϕ+|2|ϕ−|2

+
λ

2

[
ϕ∗
+

(
∂ϕ−

∂x
− i

∂ϕ−

∂y

)
+ ϕ∗

−

(
−∂ϕ+

∂x
− i

∂ϕ+

∂y

)]
+ c.c.

}
dxdy, (4.10)

where c.c. stands for the complex conjugate, yields

Esemi = π

[
A2

1

2
− A4

1

8α1

+
A2

2

2α2

− A4
2

64α3
2

− γA2
1A

2
2

4(α1 + α2)2
+

4λA1A2α1

(α1 + α2)2

]
, (4.11)

while the total norm (4.9) of the ansatz is

N = π
[
A2

1/ (2α1) + A2
2/
(
4α2

2

)]
. (4.12)

Then, values of amplitudes A1, A2 and inverse squared widths α1,α2 of the ansatz
are predicted by the minimization of E with respect to the variational parame-
ters, ∂Esemi/∂ (A1,2, α1,2) = 0. These equations can be easily solved numerically.
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Fig. 4.1 Amplitudes of the SO coupled BEC. (a) Two components of a stable half-
quantum vortices initiated by input (4.8), |ϕ+ (x, 0) | (the solid curve) and |ϕ− (x, 0) |
(the dashed curve) at γ = 0, λ = 1 and N = 5. (b) The same for a mixed mode
with norm N = 2, initiated by input (4.13), with γ = 2, λ = 1. Both solutions
were generated by imaginary-time simulations. (c) and (d) Shapes into which the
modes from panels (a) and (b) relax, adiabatically following the decrease of the
trap’s strength from Ω = 0.5 to 0.
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Figure 4.1(c) displays the comparison of the so predicted amplitude A1 and the
maximum value of |ϕ+| obtained from the imaginary-time-generated solution at
γ = 0. The family of the half-quantum vortices exists at N < Nc ≈ 5.85, the latter
value being the well-known collapse threshold for fundamental (Townes) solitons
in the free 2D space [85, 86]. Indeed, Fig. 4.1(d) shows, by means of the depen-
dence of ratio N+/N on N , that the vortical component ϕ− vanishes at N → Nc,
hence in this limit the half-quantum vortices degenerates into the usual unstable
Townes soliton, which is subject to the collapse.

In the opposite limit of N → 0, the nonlinear terms in Eqs. (4.1) become
vanishingly small, and the ground-state solution degenerates into a quasi-plane-
wave with vanishing amplitudes, radial wavenumber λ and chemical potential
µ0 = −λ2/2, see Eqs. (4.6) and (4.7) [57]. In accordance with this expectation,
Fig. 4.1(d) shows that N+/N → 1/2 at N → 0. The comparison with the full nu-
merical solutions demonstrates that Gaussian ansatz (4.8) is inaccurate for small
N , therefore Fig. 4.1(c) shows a large relative discrepancy between the variational
and numerical results at very small N .

4.4.2 Mixed modes

Another type of 2D self-trapped vortical states supported by the SO coupling
model (4.1) can be initiated by the following input for the imaginary-time sim-
ulations, which may also serve as the variational ansatz:

ϕ
(0)
+ = A1 exp

(
−α1r

2
)
− A2r exp

(
−iθ − α2r

2
)
,

ϕ
(0)
− = A1 exp

(
−α1r

2
)
+ A2r exp

(
iθ − α2r

2
)
. (4.13)

Modes generated by this input may be called mixed ones, as they are built as
superpositions of states with topological charges (0,−1) and (0,+1) in the two
components. Unlike the half-quantum vortices, it is not possible to find an exact
representation for these modes similar to that given by Eqs. (4.2) and (4.3), but
the numerical and variational results clearly demonstrate that they exist. More-
over, they play the role of the ground state of the system at γ ≥ 1, see Fig. 4.3(c)
below, where the mixed-mode branch is labeled “01", as vorticities 0 and ±1 are
combined in these modes. In accordance with the form of ansatz (4.13), the mixed
mode is transformed into itself by symmetry reflection (4.4).

A typical example of cross sections of a stable mixed mode in shown in Fig.
4.2(a) for γ = 2 and N = 2. The µ(N) dependence for the family of these modes is
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displayed in Fig. 4.2(b), which shows that the VK criterion holds in this case too,
as well as in the case of half-quantum vortices, the mixed modes do not require
any finite threshold value of N necessary for their existence. The family exists in
the interval of

N < N ′
c = 2Nc/(1 + γ), (4.14)

where Nc is the above-mentioned critical norm corresponding to the Townes soli-
tons. Indeed, in the limit of N → N ′

c the vortical components in the mixed mode
vanish, and it degenerates into the two-component Townes soliton, similar to the
degeneration of the half-quantum vortices, see Figs. 4.1(b) and (c). In the opposite
limit of N → 0, the mixed mode degenerates into a quasi-plane-wave with chem-
ical potential −λ2/2, which is also similar to the behavior of the half-quantum
vortices, in the same limit.

The insertion of input (4.13), as the variational ansatz, into energy functional
(4.10) yields

Emixed = π

[
A2

1 +
A2

2

α2

− (1 + γ)

(
A4

1

4α1

+
A4

2

32α3
2

)
− A2

1A
2
2

(α1 + α2)2
+

8λA1A2α1

(α1 + α2)2

]
, (4.15)

the total norm of the ansatz being

N = π

[
A2

1

α1

+
A2

2

(2α2
2)

]
. (4.16)

Numerical solution of the respective energy-minimization equations,

∂Emixed

∂ (A1,2, α1,2)
= 0, (4.17)

produces values of the parameters of the variational ansatz. Figure 4.2(c) com-
pares the absolute value of the fields at the central point, |ϕ+(0, 0)| and its varia-
tional counterpart, |A1|, as a function of the total norm.

As seen in Fig. 4.2(a), peak positions of components |ϕ+ (x, y) | and |ϕ− (x, y) |
are separated along x, Fig. 4.2(d) showing the separation (DX) as a function of
the norm. For a small amplitude of the vortex component, A2, Eq. (4.13) yields

DX ≈ A2

α1A1

. (4.18)

The separation vanishes as N approaches the aforementioned critical value N ′
c, at

which the mixed mode degenerates into the two-component Townes solitons. This
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is explained by the fact that, as said above, the vortical components of the wave
functions, which cause the shift of the peaks from the center, vanish in this limit.

4.5 Excited states

In addition to two types of the ground states, half-quantum vortices and mixed
modes, numerical analysis reveals their excited versions. First, a set of exciting
states can be constructed following the pattern of the half-quantum vortices (4.2):

ϕ+ (x, y, t) = e−iµt+iSθrSf1(r
2),

ϕ− (x, y, t) = e−iµt+i(S+1)θrS+1f2(r
2), (4.19)

with integer S ≥ 1. The substitution of this ansatz into Eq. (4.1) leads to a system
of equations for f1,2(r2):

µf1 + 2r2f ′′
1 + 2 (1 + S) f ′

1 + r2S(f 2
1 + γr2f 2

2 )f1 − 2λ
[
r2f ′

2 + (1 + S) f2
]
= 0,

µf2 + 2r2f ′′
2 + 2 (2 + S) f ′

2 + r2S(r2f 2
2 + γf 2

1 )f2 + 2λf ′
1 = 0. (4.20)

In the case of S = 0, Eq. (4.20) is tantamount to Eq. (4.3) for the half-quantum
vortices. Of course, mirror-image counterparts of excited states (4.19), generated
by transformation (4.4), exist too.

In the numerical form, the excited state corresponding to S = 1 in Eq. (4.19)
was found by means of the imaginary-time integration starting with the following
input:

ϕ+ = A1re
iθe−α1r2−iµt,

ϕ− = A2r
2e2iθe−α2r2−iµt. (4.21)

Figure 4.3(a) shows cross-section profiles for an example of this excited state,
obtained with N = 5 and γ = 0. In Figs. 4.3(c,d), the branch of these excited-state
solutions is labeled “1", as it contains vorticity m+ = 1 in component ϕ+.

Another type of excited states was generated by the input with combined vor-
ticities, m+ = 1,−2 and m− = −1, 2, therefore it is labeled “12" in Figs. 4.3(c,d):

ϕ+ = A1re
iθe−α1r2−iµt − A2r

2e−2iθe−α2r2−iµt,

ϕ− = A1re
−iθe−α1r2−iµt + A2re

2iθe−α2r2−iµt. (4.22)
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Fig. 4.2 Half-quantum vortices in free space. (a) The same as in Fig. 4.1(a), but
for the stable half-quantum vortices without trapping potential. (b) Chemical po-
tential as a function of norm for the family of the localized half-quantum vortices.
(c) Comparison of the numerically found amplitude (the chain of rhombuses), and
A1, as predicted by the variational approximation (the dashed curve). (d) Ratio
N+/N as a function of N , for the family of the half-quantum vortices.
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Fig. 4.3 Mixed modes of the ground states of SO coupled BECs in free space. (a)
The amplitude of the stable mixed mode in free space, other parameters are same
with Fig. 4.1 b. (b) The chemical potential as a function of norm of condensates,
for γ = 2 and λ = 1. (c) The comparison of the central amplitude of the mixed
mode in free space by numerical simulation (the chain of the rhombuses) and
the variational analysis (the dashed curve) as a function of the norm N . (d) The
separation DX between peak positions of the amplitude of spin-up and spin-down
components as a function of the norm N .
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This input can be also cast into the form of

ϕ+ = reiθ(A1e
−α1r2−iµt − A2r

2e−3iθe−α2r2−iµt),

ϕ− = e−iθ(A1e
−α1r2−iµt + A2r

2e3iθe−α2r2−iµt), (4.23)

which implies that it includes a vortex with topological charge 1 set at (x, y) =

(0, 0), and three vortices with charges −1 surrounding the origin. Figure 4.3(b)
corroborates this interpretation by means of a contour plot of |ϕ+ (x, y) |, which
features three peaks and three holes around the origin. The holes are pivots of
the three above-mentioned vortices with charges −1. The pattern is symmetric
with respect to rotation by angle 2π/3. The respective contour map of |ϕ− (x, y) |
(not shown here) is a mirror image of |ϕ+ (x, y)|, generated by transformation (4.4).
This solution resembles a lattice state found in Ref. [87] for the SO-coupled BEC
with the self-repulsive interactions, trapped in a harmonic-oscillator potential.

4.6 Dynamics

4.6.1 The identification of the ground state, and dynamical
stability of the vortical modes

The four types of the vorticity-carrying self-trapped modes, generated by inputs
(4.2), (4.13), (4.21), and (4.22), respectively, can be produced by the imaginary-
time integration of Eq. (4.1) for any value of the interaction constant, γ, in addi-
tion to the two latter modes, excited states of still higher orders can be found too,
e.g., those given by Eq. (4.19) with S > 1, but they all are unstable. To identify
the system’s ground state, the total energies of the four species of the vortical
modes, calculated as per Eq. (4.10), and denoted as E0 (for the half-quantum
vortices), E01 (for the mixed mode), and E1, E12 for the excited states (4.21) and
(4.22), respectively, are displayed vs. γ in Figs. 4.3(c,d), for two fixed values of
the total norm, N = 3.7 and N = 3. It is found that the energies satisfy relations
E0 < E01 < E12 < E1 at γ < 1 and E01 < E0 < E1 < E12 at γ > 1. It is seen
that the half-quantum vortices and mixed state realize the ground state at γ < 1

and γ > 1, respectively, while the states labeled “1" and “12" are indeed excited
states, separated by a wide energy gap from the competing ground-state modes.
The fact that the switch of the ground states occurs at γ = 1 is not surprising, as
it corresponds to the Manakov’s nonlinearity, with equal interaction coefficients,
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which is known to feature various degeneracies in nonlinear systems, see, e.g.,
Ref. [88, 89]. It is relevant to mention that the value of γ, which is the ratio of the
strengths of the different types of interactions, may be readily altered by means of
the Feshbach resonance [90], hence the type of the ground state may be controlled
by means of this technique.

The stability of the four species of 2D self-trapped modes constructed above
was studied by means of systematic numerical simulations of their perturbed
evolution in the framework of Eq. (4.1). The results are reported here for the
generic case, represented by two values of the interaction coefficient, γ = 0 and
2, and a fixed norm, N = 3.7. The first result is that the half-quantum vortices,
which is the ground state at γ = 0, and the mixed mode, which plays the same
role at γ = 2, are stable against perturbations.

Next, it is obviously interesting to test the stability of the same two species
in the cases when they are not ground states, i.e., the half-quantum vortices at
γ = 2, and the mixed mode at γ = 0. In the former case, we observe in Fig. 4.4(a)
that the profile of the half-quantum vortices keeps the initial shape from t = 0

till t = 500, which exceeds 50 diffraction times for the present mode. However,
an instability manifests itself in spontaneous motion of the soliton with a nearly
constant velocity, as seen in Fig. 4.4(b), where coordinates of the peak position of
the ϕ+ component, (X, Y ), are shown as a function of time. On top of the mean
velocity, the peak features oscillatory motion (a cycloid) with a small amplitude,
see Fig. 4.4(c).

The evolution of the mixed mode at γ = 0, when it is not the ground state
either, is shown in Fig. 4.5. Panels (a) and (b), pertaining to t = 50 and t = 750

(the latter can be estimated to be ≃ 100 diffraction times of the present mode),
demonstrate that this state is unstable, starting spontaneous motion and losing
the original symmetry between |ϕ+| and |ϕ−| with respect to to transformation
(4.4). By t = 750, the mixed mode rearranges into a state close to a half-quantum
vortices. Further, Fig. 4.5(c) shows the time evolution of amplitudes of the ϕ+ and
ϕ− components (the solid and dashed curves, respectively). Breaking the original
symmetry, the amplitude of |ϕ+| increases toward the value of the amplitude of
the |ϕ+| component of the half-quantum vortices state for the same N = 3.7 (that
amplitude is ≈ 0.81), while the amplitude of |ϕ−| falls to become nearly equal to
the amplitude of the |ϕ−| component of the same half-quantum vortices (the latter
amplitude is ≈ 0.34). Figure 4.5(d) shows a trajectory of the peak position of the
|ϕ+| component. The localized state moves spontaneously, featuring oscillations
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Fig. 4.4 Excited state of the SO coupled BECs in free space. (a) The amplitude
of the spin-up (solid curve) and the spin-down (dashed curve) components for
N = 5, λ = 1 and γ = 0. (b) Contour plot of the spin-up component for N = 3,
λ = 1 and γ = 2. (c) Total energies for the four free-space stationary states, the
half-quantum vortices (labeled as 0), mixed state (labeled as 01), excited states
generated by inputs 4.21 and 4.22 (labeled as 1 and 12) for N = 3.7. (d) The same
with (c), and only difference is for N = 3.
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in the x direction, while the average velocity in the y - direction is vy = −0.0175.

The excited states generated by inputs (4.21) and (4.22) are unstable both at
γ = 0 and g = 2. In particular, the ring structure of the former vortical state splits
in the course of the evolution, as shown in Fig. 4.6 for γ = 0. Similar splitting is
observed much earlier (already at t = 100) for γ = 2.

Figure 4.7 illustrates the evolution of the excited state obtained from input
(4.22) at γ = 2. The original vortex complex gets broken by the instability,
evolving into an apparently chaotic pattern. This instability develops quickly, as
t = 250 (Fig. 4.7 (c)) corresponds to ≲ 5 diffraction times of the original structure.

4.6.2 Mobility and collisions of vortex modes

The numerical results displayed in Figs. 4.4 and 4.5 suggest that propagating
modes may exist in the present system. Localized states which move steadily at
velocity v = (vx, vy) can be looked for in the form of ϕ+ = ϕ+(x − vxt, y − vyt, t)

and ϕ− = ϕ−(x− vxt, y − vyt, t). The substitution of this into Eq. (4.1) leads to the
equations written in the moving reference frame,

i
∂ϕ+

∂t
− i (v · ∇)ϕ+ = −1

2
∇2ϕ+ − (|ϕ+|2 + γ|ϕ−|2)ϕ′

+ + λ

(
∂ϕ−

∂x
− i

∂ϕ−

∂y

)
,

i
∂ϕ′

−

∂t
− i (v · ∇)ϕ− = −1

2
∇2ϕ− − (|ϕ−|2 + γ|ϕ+|2)ϕ− + λ

(
−∂ϕ+

∂x
− i

∂ϕ+

∂y

)
, (4.24)

where x and y actually stand for x − vxt and y − vyt. Note that Eq. (4.1) has no
Galilean invariance, hence steadily propagating solutions cannot by generated by
a straightforward transformation, such as

ϕ± (r) ≡ ϕ̃±(r) exp

(
iv · r− i

2
v2t

)
. (4.25)

In particular, in the case of vx = 0, the quasi-Galilean transformation (4.25) casts
Eq. (4.24) into a form which differs from underlying equations (4.1) by the pres-
ence of terms causing for linear mixing of the two components:

i
∂ϕ+

∂t
= −1

2
∇2ϕ+ − (|ϕ+|2 + γ|ϕ−|2)ϕ′

+ + λ

(
∂ϕ−

∂x
− i

∂ϕ−

∂y

)
+ λvyϕ−,

i
∂ϕ′

−

∂t
= −1

2
∇2ϕ− − (|ϕ−|2 + γ|ϕ+|2)ϕ− + λ

(
−∂ϕ+

∂x
− i

∂ϕ+

∂y

)
+ λvyϕ+. (4.26)
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Fig. 4.5 Evolution of excited states with type of the half-quantum vortices (accord-
ing to Fig. 4.4 (c)) in free space. The parameters used in here includes, N = 3.7
and γ = 2. (a) The contour plots of |ϕ+ (x, y) | at t = 0 and t = 750. (b) The time de-
pendence of the coordinates of the peak position, (X, Y ), of |ϕ+ (x, y) |. (c) A zoom
of a segment of the trajectory (X(t), Y (t)), which demonstrates a small oscillatory
component of the motion.
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Fig. 4.6 Dynamics of the mixed mode in free space. (a) Contour plots of |ϕ+ (x, y) |
at t = 50 and t = 500 for the mixed mode with N = 3.7 at γ = 0, when this mode is
not a ground state. (b) The evolution of amplitudes of the ϕ+ and ϕ− components
(solid and dashed curves, respectively). (c) The trajectory of the peak position of
|ϕ+ (x, y) |.
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Fig. 4.7 Dynamics of the spin-up component of the excited vortical state in free
space. Here γ = 0 and N = 3.7. (a) t = 500, (b) t = 950, (c) t = 1200. For the case of
γ = 2, the instability of the excited state is stronger.
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The same linear mixing can be imposed, in diverse 1D [91–93] and 2D [94, 95] set-
tings, by a GHz wave coupling the two underlying atomic states, i.e., the mixing
by itself represents a physically relevant addition to the basic model. A straight-
forward impact of the addition of the mixing terms in Eq. (4.26) is a shift of the
edge of the semi-infinite gap (4.7) in which solitons may exist, from µ = −λ2/2 to
µ < − (λ2/2 + |λvy|).

Coming back to equations (4.24) written in the moving reference frame, sta-
tionary solutions to them can be obtained, as well as in the case of underlying
equations (4.1), by means of the imaginary-time evolution method for vy ̸= 0, but
the procedure produces results solely for vx = 0 (this situation is possible, as the
present 2D system is not isotropic). In particular, at γ = 2, when the quiescent
mixed mode is the ground state, its moving version, which is displayed in Figs.
4.8(a,b) for N = 3.1 and vy = 0.5, exists and is stable too. As well as its quies-
cent counterpart, this mode features the mirror symmetry between the profiles of
|ϕ+ (x, y) | and |ϕ− (x, y) |. Figure 4.8(c) shows the amplitude of the moving mixed
mode,

A =
√
|ϕ+(x = 0, y = 0)|2 + |ϕ−(x = 0, y = 0)|2, (4.27)

as a function of vy. The amplitude monotonously decreases with the growth of the
velocity, and the mode vanishes at

vy = (vy)
(mixed)
max ≈ 1.8. (4.28)

The availability of the stably moving mixed modes suggests to consider colli-
sions between them. In particular, we have performed simulations of Eq. (4.1)
for the head-on collision between two solitons displayed in Figs. 4.8(a,b), moving
at velocities vy = ±0.5. Figures 4.9(a), (b), and (c) display snapshot patterns of√

|ϕ+(x, y)|2 + |ϕ−(x, y)|2 at t = 4, t = 24, and t = 64, respectively. The collision re-
sults in fusion of the two solitons into a single one, of the same mixed-mode type,
which is spontaneously shifted along direction x. The shift may be understood
as manifestation of spontaneous symmetry breaking caused by the collision. The
fusion is accompanied by emission of small-amplitude radiation waves.

At γ = 0, the half-quantum vortices, which, as shown above, is the ground
state in the class of quiescent modes, can also move stably, but only in a small
interval of velocities,

|vy| < (vy)
(semi)
max ≈ 0.03 (4.29)

Figures 4.10(a) and (b) show the profiles of |ϕ+ (x, y) | and |ϕ− (x, y) | for the half-
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Fig. 4.8 Dynamics of spin-up component of the excited state genreated by in-
put 4.22, here N = 3.7 and γ = 2. (a) t = 50, (b) t = 150, (c) t = 250. For the
case of γ = 0, this mode is also unstable.
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Fig. 4.9 Contour plot of the moving stable mixed mode. (a) Spin-up component, (b)
spin-down component, (c) the amplitude of the moving mixed mode as a function
of vy. Here, N = 3.1, vx = 0, vy = 0.5, γ = 2, λ = 1.
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quantum vortices with norm N = 3.7 moving at velocity vy = −0.02. In addition,
Fig. 4.10(c) displays the evolution of

√
|ϕ+|2 + |ϕ−|2 in the cross section of x = 0,

produced by direct simulations of Eq. (4.1), starting from the initial conditions
corresponding to Figs. 4.10(a,b). The localized solution is stably moving at velocity
vy = −0.02. In fact, this moving state is similar to the one generated by the
spontaneous onset of motion of the unstable quiescent mixed mode at γ = 0 and
the same norm, which rearranges into a state close to the half-quantum vortices,
as shown above in Fig. 4.5.

At |vy| > 0.03 (see Eq. (4.29)), the solution to Eq. (4.24) produced by means of
the imaginary time propagation method converges not to a half-quantum vortices,
but rather to a mixed-mode state, which turns to be stable in real-time simula-
tions. Thus, the moving half-quantum vortices are rather fragile objects, while
the mixed modes are, on the contrary, very robust ones in the state of motion.

4.7 Chapter Summary

In conclusion,
• We have confirmed the existence of two types of vortex-solitons in a 2D SO

coupled BECs with attractive interactions in free space. These stable solu-
tions, including half-quantum vortex state and a mixed model state, holds
the ground states based on the interaction relationship of same and differ-
ent spin series components, respectively. The half-quantum vortices state
is important for modern physics, especially, in condensed matter physics.
The experimental realization of synthetic gauge field enables us to research
the half-quantum vortices in ultracold atomic gases. The mixed state can
be seen as a superposition of the half-quantum vortices and its time rever-
sal symmetry partner. The half-quantum vortices and mixed models will
turn into unstable Townes solitons if the state’s norm reaches to the critical
values.

• Meanwhile, we also addressed the excited state in the BECs with synthetic
SO couping by numerical simulation and analytical approximation. These
solitons have similar structures with ground states.

• Finally, we also found that the stable moving solitons exist for the non-
Galilean invariant system. The dynamics of two moving mixed models is
also studied.
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Fig. 4.10 Dynamics of the collision of two mixed-mode solitons. (a) t = 4, (b) t = 24,
(c) t = 64. Here, N = 3.1, vy = ±0.5.
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Fig. 4.11 Moving stable half-quantum vortices state. (a) Contour plot of the pin-
up component, (b) contour plot of the spin-down component, (c) the time evolution
of
√

|ϕ+ (0, y) |2 + |ϕ− (0, y) |2 for x = 0. Here, N = 3.7 and vy = −0.02.



Chapter 5

Spin-Orbit Coupled Bose-Einstein
Condensates in Optical Lattices

In the chapter, we focus on the theoretical research of the ground states of Bose-
Einstein condensates with Rashba type of the Spin-Orbit (SO) coupling in optical
lattices reduced by laser beam based on the mean-field theory.

We address the Bloch states of the wave function and energy spectrum for the
single particle Hamiltonian of the SO coupled Bose-Einstein condensates in op-
tical lattices by numerical simulation method at first. On the other hand, the
Bloch states of the wave function and the energy spectrum for the non-interacting
Hamiltonian is also searched in series expansion by the analytical method.
Then, we consider the effect of a weak interaction on a spin-orbit coupled Bose-
Einstein condensate. In particular, we show the existence of the vortex struc-
tures, such as, vortex-antivortex-pair lattices state on the ground states of the
SO coupled Bose-Einstein condensates in optical lattices by simulating the Gross-
Pitaevskii equation. In addition, we also studied the spin structures of the ground
states in the SO coupled Bose-Einstein condensates.

5.1 Introduction

Spin-orbit coupling describes the interaction of spin and momentum degrees of
freedom of quantum particles, such as, the election and atoms [6]. It takes a
key role for understanding the mechanism of the spin-Hall effec [96] and topo-
logical insulators [97] in condensed matter physics. As a great breakthrough, in
most recently, Bose-Einstein condensates and fermionic degenerated gases with
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synthetic SO coupling were realized experimently in ultracold atom systems by
engineering atom-light interaction [7, 50]. It opens up a new research area for
ultracold atoms gases under the synthetic gauge fields in both of theory and ex-
periment. Specially, because the bosonic systems with half-integer spin degrees
of freedom are absent in nature, the research about Bose-Einstein condensates
with SO coupling attracts more interests and attention from scientists.

Up to now, some works concerning SO coupled Bose-Einstein condensates in
free space and trap potential by using Gross-Pitaevskii equation have been done
theoretically [57]. Among them, Wang et al. found that the mean-field ground
state has two different phases, i.e., plane-wave and stripe phases, depending on
the intra- and inter-series interactions [58]. Half-quantum vortex states were
found in a spin-orbit-coupled Bose-Einstein condensates in free space or confined
in a harmonic potential [59–61]. On the other hand, some researches on the SO
coupled Bose-Einstein condensates in optical lattices by using the Bose-Hubbard
model have also been done, such as, Exotic spin textures were predicted in Bose-
Hubbard models corresponding to SO coupled Bose-Einstein condensates in the
Mott-insulator phase [62–64].

In this work, however, we will focus on the SO coupled Bose-Einstein conden-
sates in optical lattices potential by using Gross-Pitaevskii equation, because of
the presence of the space period, the ground states will have different pattens
with one in free space or trap. In the present system, a vortex-antivortex-pair
lattices state will be found by numerical simulation directly.

5.2 Model and method

The SO coupled Bose-Einstein condensates in optical lattice can be described by
Gross-Pitaevskii equation in mean-field approximation. The dimensionless model
equation can be expressed as

i
∂ψ+

∂t
=− 1

2
∇2ψ+ + λ

(
∂ψ−

∂x
− i

∂ψ−

∂y

)
− V0{cos(2πx) + cos(2πy)}ψ+

+
(
g|ψ+|2 + γ|ψ−|2

)
ψ+

(5.1)
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and

i
∂ψ−

∂t
=− 1

2
∇2ψ− + λ

(
−∂ψ+

∂x
− i

∂ψ+

∂y

)
− V0{cos(2πx) + cos(2πy)}ψ−

+
(
g|ψ−|2 + γ|ψ+|2

)
ψ−

(5.2)

where ψ± denote the wave function for the spin-up and spin-down components
of the spinor Bose-Einstein condensates, V0 is the strength of the optical lattice,
g and γ express the intra- and inter-series interactions respectively, λ denotes
the strength of the Rashba spin-orbit coupling, and the wavelength of the optical
lattice is 1 in this dimensionless model.

5.3 Single particle energy spectrum

5.3.1 Numerical solution

We consider the single particle situation at first. In the case, both of g and γ

are zero in the above dimensionless Gross-Pitaevskii equation, then the equation
become linear one with a spatially periodic potential. On the other hand, the
Bloch states are stationary solutions to the linear equations. Therefore, we can
express the solutions for the linear case as

ψ+(x, y, t) = ϕ+(x, y) exp(ikxx+ ikyy − iµt), (5.3)

ψ−(x, y, t) = ϕ−(x, y) exp(ikxx+ ikyy − iµt), (5.4)

where ϕ± are the wave functions with period of the optical lattice potential for
spin-up and spin-down components, kx and ky are the wave numbers in x and y

directions, and µ is the chemical potential. Substituting the solutions to Eq. (5.1)
and Eq. (5.2) in linear case, then we can find that ϕ± satisfy

µϕ± =− 1

2
∇2ϕ± +

1

2
(k2x + k2y)ϕ± − ikx

∂ϕ±

∂x
− iky

∂ϕ±

∂y

+ λ

(
±∂ϕ∓

∂x
− i

∂ϕ∓

∂y
± ikxϕ∓ + kyϕ∓

)
− V0{cos(2πx) + cos(2πy)}ϕ±

(5.5)
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Fig. 5.1 Single particle energy spectrum of SO coupled Bose-Einstein condensates
in an optical lattice. (a) λ = π/4, ky = 0. (b) λ = π/2, ky = 0. (c) λ = π, kx = ky.
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The eigenvalue µ and the eigenfunctions ϕ± can be numerically obtained from the
stationary solution of the linear equation [98]:

∂ϕ+

∂t
=
1

2
∇2ϕ+ − 1

2
(k2x + k2y)ϕ+ + ikx

∂ϕ+

∂x
+ iky

∂ϕ+

∂y

+ V0{cos(2πx) + cos(2πy)}ϕ+

− λ

(
∂ϕ−

∂x
− i

∂ϕ−

∂y
+ ikxϕ− + kyϕ−

)
+ µ′ϕ+,

(5.6)

∂ϕ−

∂t
=
1

2
∇2ϕ− − 1

2
(k2x + k2y)ϕ− + ikx

∂ϕ−

∂x
+ iky

∂ϕ−

∂y

+ V0{cos(2πx) + cos(2πy)}ϕ−

− λ

(
−∂ϕ+

∂x
− i

∂ϕ+

∂y
− ikxϕ+ + kyϕ+

)
+ µ′ϕ−,

(5.7)

dµ′

dt
= α(N0 −N), (5.8)

where α > 0 is a parameter in our numerical simulation,

N =

∫ ∫
(|ϕ+(x, y)|2 + |ϕ−(x, y)|2)dxdy (5.9)

is the total norm, and N0 is fixed by the normalization condition. The time evolu-
tion of the dissipative equation leads to a stationary state and the total norm N

approaches N0, and µ′ will to be eigenvalue for the stationary state.

In our numerical method, the stationary state of the Bloch wave function is
obtained by simulating the Gross-Pitaevski Equation with kx and ky terms as the
time evolution by proper selection of initial wave function. That is based on a
fact that the system’s energy will decrease during the process of imaginary-time
evolution.

Figure 5.1 shows the energy spectrum µ(kx) of SO coupled Bose-Einstein con-
densates in an optical lattice as a function of kx for ky = 0 or ky = kx, V0 = 5,
for different strengths of spin-orbit coupling. As a result of present of the optical
lattices, µ(kx) is a periodic function of kx with same period with external periodic
potential. We can find that the energy spectrum shape will be determined by the
strength of SO coupling. There are three situations shown in this figure, for (a)
the strength of SO coupling is λ = π/4, and ky = 0, for (b) λ = π/2 and ky = 0,
for (c) λ = π and kx = ky. We find that the momentum value according to the



70 Spin-Orbit Coupled Bose-Einstein Condensates in Optical Lattices

minimum in the energy spectrum increase with the increase of the strength of
SO coupling, and the energy minimum will reduce with the increase of the SO
coupling.

In addition, we found an interesting result. For the single particle situation of
Spin-Orbit coupled Bose-Einstein Condensates in free space or trap,

λ =
√
k2x + k2y, (5.10)

it is well know, for one-dimensional Spin-Orbit coupling, the minimum of the en-
ergy spectrum in momentum space are kx = ±λ. And, for two-dimensional Spin-
Orbit coupling, the minimum of the energy spectrum in momentum space forms a
ring with λ =

√
k2x + k2y. However, for the situation of adding optical lattices to the

Spin-Orbit coupled Bose-Einstein Condensates, the energy spectrum is changed
extremely by optical lattices strength. We can find the values of kx according to
the minimum of energy is shifted with λ. If the strength of Spin-Orbit coupling
is small, such as, for λ = π/4, the value of λ is almost same with the value of
momentum according to the minimum energy. However, if the strength of Spin-
Orbit coupling is strong, the difference of λ and the value of momentum according
to the minimum energy is also larger.

5.3.2 Analytical solution

On the other side, the analytical solution of the linear equations can be obtained.
Because ϕ±(x, y) are the functions with period of optical lattices, we can expand
ϕ±(x, y) in the simplest approximation as:

ϕ±(x, y) = C0± + C1±e
2πix + C2±e

−2πix + C3±e
2πiy + C4±e

−2πiy. (5.11)

Substituting the ansatz into eigen-equations with kx and ky terms, for ky = 0 and
ϕ− = iϕ+, we find

µ =
k2x
2

− λkx +
V 2
0 /4

µ− (kx + 2π)2/2 + λ(kx + 2π)
+

V 2
0 /4

µ− (kx − 2π)2/2 + λ(kx − 2π)

+
V 2
0

4

2µ− (k2x + 4π2)− 2λkx
{µ− (k2x + 4π2)/2}2 − λ2(k2x + 4π2)

.

(5.12)
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Furthermore, for a uniform system in where V0 = 0, we can see

µ =
1

2
(kx − λ)2 − λ2

2
. (5.13)

The system will be in the ground states when k = λ [57, 58], here k =
√
k2x + k2y.

Obviously, the present of optical lattices modifies the energy spectrum of SO cou-
pled Bose-Einstein condensates, this result is consistent with results based on the
Bose-Hubbard Model for weak coupling superfluid [64].

The analytical results are also consistent with numerical simulation by using
Gross-Pitaevskii equation for small SO coupling, but for the large SO coupling,
there is a little inconsistent [32]. The problem can be solved by adding more
higher harmonic terms in the procedure of expanding the wave functions.

5.3.3 Vortex-antivortex-pair state

In this section, we address the ground states of the Spin-Orbit coupled Bose-
Einstein condensates in a optical lattice by numerical simulation. We found that
the ground state is not a simple plane wave phase, but have a complex structure.
In the main part of the Spin-Orbit coupled Bose-Einstein condensates, there is a
plane wave, but in their edge, a vortex-antivortex-pair will appear. The density
of the Bose-Einstein condensates surrounded the vortex-antivortex-pair is very
small, so that it is difficult to find the vortex-antivortex-pair from the density
distribution. However, we can find them from the phase distribution.

Figure 5.2 shows (a) the density and (b) the phase distribution for the spin-up
component of the Spin-Orbit coupled Bose-Einstein condensates in a optical lat-
tice for λ = 3π/2, kx = 3π/2, ky = 0 and V0 = 5. To find the vortex-antivortex-pair,
we make a counter plot in the fig (a).The results for the spin-down component of
the Spin-Orbit coupled Bose-Einstein condensates is similar to the spin-up com-
ponent, the only different is that the ground state of the spin-up and spin-down
components have a symmetry about y axes, the symmetry can be understood by
substituting x to −x in Gross-Pitaevskii equation.

5.4 Interaction system

In the section, we consider the non-linear Gross-Pitaevskii equation. At fist, we
consider the case of g > γ.
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Fig. 5.2 Density (top) and phase (bottom) of spin-up component of the spin-orbit
coupled Bose-Einstein condensates in an optical lattice for λ = 3π/2, kx = 3π/2,
and ky = 0.
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5.4.1 Vortex-antivortex-pair lattices

In case of g > γ, for an uniform system, the Spin-Orbit coupled Bose-Einstein
condensates will be in the plane wave phase. In the present system, however, a
vortex-antivortex-pair lattice is expected, because a vortex-antivortex-pair have
appeared in an optical lattice. The numerical simulation from Gross-Pitaevskii
equation verified my expect. Concerning the details of the numerical simulation,
the system size is L × L. In addition, we take the periodic boundary conditions
and the optical lattices is shifted as

V = V0[cos{2π(x− 1/2)}+ cos{2π(y − 1/2)}], (5.14)

by (1/2, 1/2) to confine the Spin-Orbit coupled Bose-Einstein condensates in the
space of [0, L]× [0, L].

Figure 5.3 (a) and (b) show the contour plot of the spin-up and spin-down com-
ponents of Spin-Orbit coupled Bose-Einstein condensates in optical lattices for
λ = π, g = 1, γ = 0.5, L = 8, and V0 = 5. It is easy to find that vortex-antivortex
pair exist in every lattice, and for the whole lattices, the ground states carrying
a vortex-antivortex-pair lattice. Actually, vortex lattices can be created by ro-
tating trap potential for ultracold atomic gases. However, in the present work,
the vortex-antivortex-pair lattice has spontaneously appeared in the present of
Spin-Orbit coupling.

The wave vector (kx, ky) can be evaluated from the results of the linear equa-
tion. Fig. 5.3(c) shows the vortex-antivortex-pair lattices structure of spin-up com-
ponent from linear equation for λ = π and kx = ky = 3π/4. The eigenvalue of the
Spin-Orbit coupled Bose-Einstein condensates in optical lattices µ has a mini-
mum at kx = ky = 3π/4 in the finite-size system, here L = 8. The results is almost
same with Fig. 5.3(a), it suggest that the Black wave can be a good approximation
for the solution of the Gross-Pitaevskii euation. Fig. 5.3(d) shows the minimum
values of spin-up component of Spin-Orbit coupled Bose-Einstein condensates in
optical lattices for the linear equation as a function of λ for kx = ky = λ/

√
2 at

V0 = 5. We can find that the minimum will take zero if λ > 2.9, it means that
there is a vortex.

Similarly, we find that two components of the Spin-Orbit coupled Bose-Einstein
condensates in optical lattices have also a symmetry about y = x axes, but have a
little different with the case of the Spin-Orbit coupled Bose-Einstein condensates
in an optical lattice, where the symmetry axes is y. Actually, the reason is that,
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Fig. 5.3 Vortex-antivortex-pair lattices structure of spin-up component (a) and
spin-down component (b) the Spin-Orbit coupled Bose-Einstein condensates in
optical lattices for λ = π, g = 1 and γ = 0.5. (c) Vortex-antivortex-pair lattices
structure of spin-up component from linear equation for λ = π and kx = ky = 3π/4.
(d) Minimum value of |ϕ|+ as a function of λ for kx = ky = π/2.
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for the linear case, we have taken the ky = 0, but for the Gross-Pitaevskii equation
(Eq. (5.1) and Eq. (5.2)), we can not control the kx and ky.

5.4.2 Vortices lattice

In the present part, we discuss the situation of g < γ. Actually, for a uniform
system, the Spin-Orbit coupled Bose-Einstein condensates will be in the stripe
phase in this situation. Therefore, the result of g < γ is more complex than g > γ

in optical lattices.
As a simple approximation for γ > g, we consider the superposition of Bloch

waves of (kx, ky) and (−kx,−ky). Figures 5.4 (a) and (b) show contour plots of |Ψ+|
and |Ψ−| at g = 1, γ = 2, L = 8, and λ = π. The wave vector is evaluated as
(kx, ky) = (3π/4, 3π/4) in this case, too. The contour lines are drawn for |Ψ| =
0.025, 0.05, 0.075, 0.1, 1, and 1.5. Vortex cores exist in the regions with dark
points. The vortex lattice structure is rather complicated. The circular contour
lines correspond to peak regions of |Ψ|. The peak regions stand in a line in the
direction of angle −π/4 and the peak lines for ψ+ and ψ− alternate in the diagonal
direction of angle π/4. Figure 5.4 (c) shows a contour plot of a linear combination
|(ϕ++ + ϕ+−)/

√
2| of two Bloch waves ϕ++ and ϕ+− with (kx, ky) = (3π/4, 3π/4) and

(−3π/4,−3π/4) for the spin-up component at λ = π. The superposition of the Bloch
waves is a good approximation for the stationary solution to the GP equation. The
superposition of two Bloch waves with opposite wave vectors generates a standing
wave. For plane waves, the amplitude becomes zero at the nodal lines. The nodal
lines are perturbed by the optical lattice and vortices are generated. A vortex
lattice structure therefore appears even for small Spin-Orbit coupling in the case
of γ > g. Figure 5.4 (d) shows a vortex lattice pattern with kx = ky = π/4 at λ = 1

and V0 = 5. For large Spin-Orbit coupling, a vortex pair is created in a single
Bloch wave and the superposition of the two Bloch waves makes the vortex lattice
structure more complicated as shown in Fig. 5.4 (c).

5.5 Spin texture

The complicated patterns might be simplified, if a spin representation is used, as
in the Bose-Hubbard model [99, 100]. The spin vector are defined as

s⃗ =
ψ†σ⃗ψ

2|ψ|2
(5.15)
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Fig. 5.4 Countour plot of the SO coupled BEC in optical lattices. (a) spin-up com-
ponent for λ = π, g = 1, γ = 2, and L = 8. Here kx = ky are evaluated as 3π/4,
(b) spin-down component, (c) the superposition of |(ϕ++ + ϕ+−)/

√
2| on the linear

equation for λ = π and kx = ky = ±3π/4, (d) the superposition of |(ϕ++ + ϕ+−)/
√
2|

on the linear equation for λ = 1 and kx = ky = ±π/4.
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where σ⃗ is Pauli matrix. Figure 5.5 (a) shows (sx, sy) corresponding to the pat-
tern in Figures 5.5 (a) and (b) for g = 1, γ = 0.5, λ = π, and V0 = 5. The vector
(sx, sy) is expressed as an arrow on each lattice point. The pattern is interpreted
as a ferromagnetic state in the (x, y) plane in this spin representation. The spin
sz is zero for this pattern. Figures 5.5 (b) and (c) show spin configurations respec-
tively for (sx, sy) and sz for the pattern at g = 1 and γ = 2 shown in Figures 5.4 (a)
and (b). The spin configuration is also rather complicated. An antiferromagnetic
order is seen in the diagonal direction of angle π/4 and a ferromagnetic order ap-
pears in its orthogonal direction of angle −π/4 for both the (sx, sy) and sz patterns.
The (sx, sy) component appears at the sites where the sz component vanishes, and
the sz component appears at the sites where the (sx, sy) component vanishes.

5.6 Chapter Summary

We have investigated the Spin-Orbit coupled Bose-Einstein condensates in op-
tical lattices by using the Gross-Pitaevskii equation, and found that a vortex-
antivortex-pair lattice structure appears for large Spin-Orbit coupling in the case
of γ < g. Meanwhile, a vortex lattice structure appears even for small Spin-Orbit
coupling in the case of γ > g, because the nodal lines in the stripe wave pattern
are perturbed by the optical lattice. The complicated patterns can be qualitatively
understood using the corresponding Bloch waves. The Bloch waves are further
approximated by a Fourier series expansion with five modes to understand the
formation of the vortices. Furthermore, we found that these two components of
the Spin-Orbit coupled Bose-Einstein condensates have a symmetry, it can be un-
derstood from the Gross-Pitaevskii equation directly. Finally, we have also found
a complicated spin configuration in the case of γ > g, and we have obtained vari-
ous spin configurations by changing the parameter Spin-Orbit coupling.
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Fig. 5.5 Spin textures of Spin-Orbit coupled Bose-Einstein condensates in optical
lattices. (a) (sx, sy), λ = π, g = 1, γ = 0.5. (b) (sx, sy), λ = π, g = 1, γ = 2. (c) sz,
λ = π, g = 1, γ = 2.



Chapter 6

Conclusions

6.1 Spin-Orbit Coupled Bose-Einstein Condensates

In the thesis, we have payed our attention to the Spin-Orbit (SO) Coupling Bose-
Einstein Condensates (BECs), the different aspects of the system have been stud-
ied, especially

• Spin-Orbit Coupled Bose-Einstein Condensates in Optical Lattices.
The energy dispersion, the numerical methods, the ground states [32] and
vortex-antivortex pair lattices [33] of SO coupled BECs with repulsive inter-
action in optical lattices, and

• Spin-Orbit Coupled Bose-Einstein Condensates in free space. The
ground states and dynamical properties of the SO coupled BECs with at-
tractive interaction in free space [31] have been studied by analytical and
numerical methods during my PhD course.

6.2 Spin-Orbit Coupled Bose-Einstein Condensates
in Free Space

We predicted a new phenomenon that a stable soliton can be created in free space
in two-dimensional SO coupled BECs with cubic self-attraction, which was im-
possible in general fiber or matter wave systems because of the occurrence of
collapse. Furthermore, by numerical simulating and variational calculating, we
shown that the solitons include two types, the Semi-Vortices in which the ground
states will to be a vortex and soliton in different components and the Mixed Modes
of two Semi-Vortices with different topological charges. These stable solitons can
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be realized in a trap, and keep stable in free space if we remove the trap gradu-
ally. In addition, these solitons will possess the ground states of the SO coupled
BECs system based on the ratio between the intra- and inter-series interactions.
On the other hand, the Semi-Vortices and Mixed Modes in exited state will have
drift instability, and they degenerate into unstable Townes solitons when their
norms reach the critical values in free space. Meanwhile, moving stable solitons
also can be realized in the present non-Galilean-invariant system in free space
under a critical velocity, and collisions between two moving solitons will result
their mixture and finally to be a single one.

6.3 Spin-Orbit Coupled Bose-Einstein Condensates
in Optical Lattices

We researched the SO coupled BECs with repulsive interaction in optical lattices
by numerical simulating the Gross-Pitaevskii equation and analytical expansion
of Bloch functions, and showed some important results that is quite different with
one in a trap as following. (1) The optical lattices will change the energy disper-
sion. For a two-dimensional SO coupled BECs in a trap, the ground states will
form a ring in momentum space, and the radius will be the SO coupling strength.
However, for a SO coupled BECs in optical lattices, there is a separation between
the SO coupling strength and the momentum values in where the system fall into
the ground states. (2) Higher harmonic terms are necessary for analytical cal-
culations. By comparing the analytical results with limited harmonic terms in
Bloch function with numerical one, we showed that the higher harmonic terms
involved in the expansion function will affect dramatically the precision of ana-
lytical calculations. (3) Vortex-antivortex pair lattices appear in the plane wave
phase of ground states. We found the interesting Vortex-antivortex pair lattices
by watching the contour plots of the density and phase distribution, and the pairs
will correspond to the optical lattices strictly.
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Christodoulides. Interactions between two-dimensional composite vector
solitons carrying topological charges. Phys. Rev. E, 63:066608, May 2001.



References 87

[80] M. L. Chiofalo, S. Succi, and M. P. Tosi. Ground state of trapped interacting
bose-einstein condensates by an explicit imaginary-time algorithm. Phys.
Rev. E, 62:7438–7444, Nov 2000.

[81] D. L. Feder, M. S. Pindzola, L. A. Collins, B. I. Schneider, and C. W. Clark.
Dark-soliton states of bose-einstein condensates in anisotropic traps. Phys.
Rev. A, 62:053606, Oct 2000.

[82] N.G. Vakhitov and A.A. Kolokolov. Stationary solutions of the wave equa-
tion in a medium with nonlinearity saturation. Radiophysics and Quantum
Electronics, 16(7):783–789, 1973.

[83] Luc Bergé. Wave collapse in physics: principles and applications to light
and plasma waves. Physics Reports, 303(5–6):259 – 370, 1998.

[84] E.A. Kuznetsov and F. Dias. Bifurcations of solitons and their stability.
Physics Reports, 507(2–3):43 – 105, 2011.

[85] Luc Bergé. Wave collapse in physics: principles and applications to light
and plasma waves. Physics Reports, 303(5–6):259 – 370, 1998.

[86] E.A. Kuznetsov and F. Dias. Bifurcations of solitons and their stability.
Physics Reports, 507(2–3):43 – 105, 2011.

[87] Hui Hu, B. Ramachandhran, Han Pu, and Xia-Ji Liu. Spin-orbit coupled
weakly interacting bose-einstein condensates in harmonic traps. Phys. Rev.
Lett., 108:010402, Jan 2012.

[88] T Kanna, M Vijayajayanthi, and M Lakshmanan. Coherently coupled
bright optical solitons and their collisions. Journal of Physics A: Mathe-
matical and Theoretical, 43(43):434018, 2010.

[89] Antonio Mecozzi, Cristian Antonelli, and Mark Shtaif. Nonlinear propa-
gation in multi-mode fibers in the strong coupling regime. Opt. Express,
20(11):11673–11678, May 2012.

[90] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach
resonances in ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.

[91] R. Ballagh, K. Burnett, and T. Scott. Theory of an output coupler for bose-
einstein condensed atoms. Phys. Rev. Lett., 78:1607–1611, Mar 1997.

[92] J. Williams, R. Walser, J. Cooper, E. Cornell, and M. Holland. Nonlinear
josephson-type oscillations of a driven, two-component bose-einstein con-
densate. Phys. Rev. A, 59:R31–R34, Jan 1999.

[93] Sadhan Adhikari and Boris Malomed. Two-component gap solitons with
linear interconversion. Phys. Rev. A, 79:015602, Jan 2009.

[94] Hiroki Saito, Randall G. Hulet, and Masahito Ueda. Stabilization of a bose-
einstein droplet by hyperfine rabi oscillations. Phys. Rev. A, 76:053619, Nov
2007.



88 References

[95] H Susanto, PG Kevrekidis, BA Malomed, and F Kh Abdullaev. Effects of
time-periodic linear coupling on two-component bose-einstein condensates
in two dimensions. Physics Letters A, 372(10):1631–1638, 2008.

[96] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom. Observation of
the spin hall effect in semiconductors. Science, 306(5703):1910–1913, 2004.

[97] David Hsieh, Dong Qian, Lewis Wray, YuQi Xia, Yew San Hor, RJ Cava,
and M Zahid Hasan. A topological dirac insulator in a quantum spin hall
phase. Nature, 452(7190):970–974, 2008.

[98] Hidetsugu Sakaguchi and Hironobu Takeshita. Symmetry breaking of vor-
tex patterns in a rotating harmonic potential. Journal of the Physical Soci-
ety of Japan, 77(5):054003, 2008.
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