
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

GPU Parallelization of Cryptographic Primitives
using Multivariate Quadratic Polynomials and
its Security Evaluation

田中, 哲士

https://doi.org/10.15017/1500750

出版情報：九州大学, 2014, 博士（工学）, 課程博士
バージョン：
権利関係：全文ファイル公表済



GPU Parallelization of Cryptographic

Primitives using Multivariate Quadratic

Polynomials and its Security Evaluation

Satoshi Tanaka

January 2015

Department of Informatics,

Graduate School of Information Science and

Electrical Engineering, Kyushu University



i

Contents

List of Figures iii

List of Tables iv

List of Algorithms vi

List of Abbreviations vii

Abstract viii

Abstract(Japanese) xi

Acknowledgment xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Challenging Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminary 9

2.1 Multivariate Quadratic Polynomial . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Evaluating Multivariate Quadratic System . . . . . . . . . . . . . 10

2.1.3 Berbain-Billet-Gilbert’s Evaluation for Multivariate Quadratic Poly-
nomial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Petzoldt’s Evaluating Method with Linear Recurring Sequences . 11

2.2 QUAD Stream Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Multivariate Public-Key Cryptography . . . . . . . . . . . . . . . 13

2.2.2 Constructions of QUAD . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Key and Initialization of Current State . . . . . . . . . . . . . . . 15



ii

2.2.4 Computational Cost of QUAD . . . . . . . . . . . . . . . . . . . . 15

2.2.5 Security parameters of QUAD . . . . . . . . . . . . . . . . . . . . 16

2.3 Finite fields of MPKC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Selected Fields for QUAD . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Operations over Extension Field . . . . . . . . . . . . . . . . . . . 22

2.4 TheMQ Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Parallel Computing on Graphics Processing Unit . . . . . . . . . . . . . . 25

2.5.1 General Purpose computing on GPUs . . . . . . . . . . . . . . . . 25

2.5.2 CUDA Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.3 GPU architectures and CUDA Capability . . . . . . . . . . . . . 28

2.5.4 GPGPU for Cryptography . . . . . . . . . . . . . . . . . . . . . . 28

3 Parallelisation of Evaluating Multivariate Quadratic Polynomial 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 QUAD Stream Cipher over GF(2) . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Multivariate Quadratic Polynomials . . . . . . . . . . . . . . . . . 31

3.2.2 Recommended Parameters of QUAD over GF(2) . . . . . . . . . . 32

3.3 Parallelization Strategies of Evaluating Quadratic Polynomials . . . . . . 35

3.3.1 Parallelizing on the GPU . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Optimization on GPU Architectures . . . . . . . . . . . . . . . . 37

3.3.3 Analysis of Potential Speedup . . . . . . . . . . . . . . . . . . . . 39

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Effective Method for Multiplications over Extension Fields 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Challenging issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Binary Extension Field GF(232) . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Multiplications over GF(232) . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 QUAD Stream Cipher over Extension Field . . . . . . . . . . . . 53

4.3 Evaluating Multivariate Quadratic Polynomials on GPU . . . . . . . . . 58

4.3.1 Evaluating Polynomials by SIMD . . . . . . . . . . . . . . . . . . 58

4.3.2 Reducing Terms in Polynomials . . . . . . . . . . . . . . . . . . . 59

4.4 Analysis of Multiplication Algorithms over Extension Fields . . . . . . . 62

4.4.1 Polynomial basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Zech’s logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Multiplication Tables . . . . . . . . . . . . . . . . . . . . . . . . . 65



iii

4.4.4 Using intermediate Fields . . . . . . . . . . . . . . . . . . . . . . 66

4.4.5 Bitslicing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.6 Costs of Multiplications over GF(232) . . . . . . . . . . . . . . . . 67

4.4.7 Experimentation of Multiplications . . . . . . . . . . . . . . . . . 67

4.5 Experiments of Parallel QUAD stream Cipher on GPU . . . . . . . . . . 69

4.5.1 Target constructions of QUAD . . . . . . . . . . . . . . . . . . . . 69

4.5.2 Optimizing Evaluation of Polynomials on CUDA API . . . . . . . 70

4.5.3 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Parallelizations of MPKC using Linear Recurrence Sequence 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 The QUAD Stream Cipher using the Linear Recurring Sequence . . . . . 77

5.2.1 Quadratic Polynomials Generated with LRS . . . . . . . . . . . . 77

5.3 Parallelization of the LRS QUAD . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 Näıve Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 Parallel Evaluation of Quadratic Polynomials . . . . . . . . . . . 80

5.3.3 Multi-Stream Strategy . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.4 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Comparing with Related Works . . . . . . . . . . . . . . . . . . . 83

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Accelerating Extended Linearization Algorithm 86

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 The XL-Wiedemann Algorithm forMQ Problem . . . . . . . . . . . . . 88

6.2.1 The Wiedemann Algorithm in the XL . . . . . . . . . . . . . . . . 89

6.3 Linear Algebra on GPU with CUDA . . . . . . . . . . . . . . . . . . . . 91

6.4 Implementing XL-Wiedemann on GPU . . . . . . . . . . . . . . . . . . . 93

6.4.1 Degrees of Regularity over Small Fields . . . . . . . . . . . . . . . 93

6.4.2 The Wiedemann Algorithm . . . . . . . . . . . . . . . . . . . . . 94

6.4.3 Generating Sequence {(u, Aib)}2Ni=0 . . . . . . . . . . . . . . . . . 94

6.4.4 Computing f−(A)b . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.5 cuSPARSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.1 Comparison with CPU Implementations . . . . . . . . . . . . . . 99

6.5.2 Comparison with Related Works . . . . . . . . . . . . . . . . . . . 99

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



iv

7 Concluding Remarks and Future Work 101

7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Further Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A Source Code 105

A.1 Evaluating Polynomial over GF(2) . . . . . . . . . . . . . . . . . . . . . 105

A.1.1 Main Function of Evaluation . . . . . . . . . . . . . . . . . . . . . 105

A.1.2 Parallelization for a Summation of Polynomial . . . . . . . . . . . 110

A.2 Evaluating Polynomials for GF(232) . . . . . . . . . . . . . . . . . . . . . 112

A.2.1 Header File of Program Files . . . . . . . . . . . . . . . . . . . . 112

A.2.2 Main Frame of QUAD . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2.3 Encrypting Functions of QUAD . . . . . . . . . . . . . . . . . . . 117

A.2.4 GPU Kernels of QUAD over GF(232) . . . . . . . . . . . . . . . . 122

References 134

Publications 141

Index 145



List of Figures iii

List of Figures

1.1 Relationship chart of contributions . . . . . . . . . . . . . . . . . . . . . 8

2.1 Generating keystream of QUAD . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Security evaluation against distinguish attack over GF(2). . . . . . . . . 34

3.2 Left: Evaluating quadratics on a triangular matrix. Right: Evaluating

quadratics on a padded rectangle matrix. . . . . . . . . . . . . . . . . . . 36

3.3 Reshaping triangular to rectangular matrix . . . . . . . . . . . . . . . . . 36

3.4 Parallelization strategies. Left: Strategy 1; right: Strategy 2 . . . . . . . 37

3.5 Handling as a 16× 31 matrix . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Image of QUAD key generating algorithm . . . . . . . . . . . . . . . . . 56

4.2 Removing variables xi from quadratic polynomial fj, where k = 1. . . . . 60

4.3 Security looseness by reducing variables from polynomials . . . . . . . . . 61

4.4 Security ratio between original polynomials and reduced polynomials. . . 62

4.5 Placements of polynomials for each QUAD construction. . . . . . . . . . 71

5.1 Data structures used to realize LRS QUAD on GPU. . . . . . . . . . . . 81

6.1 Sparse matrix formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 The degrees of regularity for m = 2n cases for n ≤ 64. . . . . . . . . . . . 94

Graduate School of Information Science and Electrical Engineering, Kyushu University



List of Tables iv

List of Tables

2.1 Existing recommended parameters of QUAD. . . . . . . . . . . . . . . . 18

2.2 Recommended parameters of ISO/IEC 18031 standard [7]. . . . . . . . . 19

3.1 Security parameter of QUAD(2,n,r). . . . . . . . . . . . . . . . . . . . . . 34

3.2 Time complexity of evaluation QUAD(2, n, r) (m = n+ r). . . . . . . . . 41

3.3 Evaluation time for multivariate quadratic polynomial systems. . . . . . 42

3.4 Encryption throughput of QUAD . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Kernel profile of evaluating multivariate quadratic polynomials over the

binary field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Cost of multiplication over GF(232). . . . . . . . . . . . . . . . . . . . . 67

4.2 Computing time of 67,108,864 multiplications over GF(232). . . . . . . . 69

4.3 Throughputs of multiplications over GF(232). . . . . . . . . . . . . . . . 69

4.4 Parameters of QUAD instances . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Encrypting time of QUAD over GF (232) . . . . . . . . . . . . . . . . . . 71

4.6 Comparison with other QUAD implementations . . . . . . . . . . . . . . 72

4.7 Comparison with previous GPU implementations of QUAD. . . . . . . . 72

5.1 Constructions of QUAD instances. . . . . . . . . . . . . . . . . . . . . . 82

5.2 Evaluating time of 10 MB by Petzoldt’s LRS QUAD. . . . . . . . . . . . 83

5.3 Evaluation time of 10 MB using the multi-streams strategy. . . . . . . . . 84

5.4 Comparison of various QUAD implementations . . . . . . . . . . . . . . 84

Graduate School of Information Science and Electrical Engineering, Kyushu University



List of Tables v

6.1 MQ instances in our experiments.. . . . . . . . . . . . . . . . . . . . . . 96

6.2 Running time of XL-Wiedemann on GPU. . . . . . . . . . . . . . . . . . 97

6.3 Profiling results for the Wiedemann algorithm. . . . . . . . . . . . . . . . 97

6.4 Solving theMQ of 24 unknowns and 48 equations over GF(7) . . . . . . 98

6.5 Kernel profile of the XL-Wiedemann algorithm. . . . . . . . . . . . . . . 98

6.6 Comparing with CPU and GPU implementations . . . . . . . . . . . . . 99

6.7 Comparison with the related work. . . . . . . . . . . . . . . . . . . . . . 100

Graduate School of Information Science and Electrical Engineering, Kyushu University



vi

List of Algorithms

1 QUAD stream cipher [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Petzoldt’s LRS QUAD [42] . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The XL algorithm [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 The Wiedemann algorithm [52] . . . . . . . . . . . . . . . . . . . . . . . . 91

Graduate School of Information Science and Electrical Engineering, Kyushu University



List of Tables vii

List of Symbols

MP The Multivariate Polynomial Problem

MQ The Multivariate Quadratic Problem

Gal(GF(q)/GF(p)) A Galois group from GF(p) to GF(q)

GF(q) The Galois Field of the q

n The Number of Unknowns in Multivariate Polynomials

p The Prime Number

q The k-th power of p: q = pk

Q(x) The Multivariate Quadratic Polynomial

S(x) The System of Multivariate Quadratic Polynomials

x, y, z Unknowns in Multivariate Polynomials

Graduate School of Information Science and Electrical Engineering, Kyushu University



Abstract viii

Abstract

Stream ciphers encrypt messages by xoring with random keystreams. Usually, stream

ciphers use linear feedback shift registers or permutation mixing algorithms such as

PRNGs (pseudo-random number generators). They can efficiently mix data within a

few computations. On the other side, there are some PRNGs, which have the provable

security in the theory of public-key cryptosystems. QUAD is such a stream cipher, which

is based on evaluation of multivariate quadratic polynomials over finite fields as a crypto-

graphic primitive. The security of QUAD is based on theMQ (multivariate quadratic)

problem: finding the evaluation points given the values of multivariate quadratic sys-

tems over finite fields. Because MQ problem is known to be NP-complete, QUAD is

secure on sufficient large quadratic polynomials. However, evaluating large multivari-

ate quadratic polynomials requires to perform many multiplications and additions, in a

number which is proportional to the square of the number of variables and to the number

of polynomials. Other stream ciphers require at most hundreds computations, QUAD

takes ten thousands computations. Therefore, making efficient the evaluation operation

for multivariate quadratic polynomials is important.

Parallel computing is a method for accelerating processing. Generally, each polyno-

mials can be evaluated in parallel, and each term in a polynomial can also be computed.

Therefore, evaluating multivariate quadratic polynomials is suited to parallel computing

method. Using GPUs (graphics processing units) for general processing is a way of par-

allel computing. Latest GPUs have high computational performance with over thousand

cores. However, GPU programming has different limitations from CPU implementa-

tions about executing threads, memory loading, etc. Therefore, GPU implementations

require optimized models. In this work, we choose CUDA (Compute Unified Device

Architecture) as a programming environment with GPUs. This is designed for NVIDIA

GPUs.

Specifically, this dissertation is organized as follows:

Chapter 1 presents the background and motivation of this research. Moreover, we

show some challenging issues and our contributions.

Chapter 2 explains multivariate polynomials of MPKC (multivariate public-key cryp-

Graduate School of Information Science and Electrical Engineering, Kyushu University



Abstract ix

tography) and existing MPKC systems. QUAD is based on MPKC’s principles. More-

over, we describe parallel implementation of cryptosystems and existing results using

GPUs.

Chapter 3 presents parallelization techniques for evaluating multivariate quadratic

polynomials over the binary field. We focused on the fact that evaluating polynomials

over the binary field is equivalent to summations of coefficients of non-zero terms. We

separated the algorithm for evaluation of multivariate quadratic polynomials into the

following three steps, (i)counting non-zero terms in polynomials, (ii)loading coefficients of

non-zero terms in polynomials and (iii)summation of such coefficients in each polynomial.

Because step (i) is sequential, we implement it on a CPU, and step (ii) and (iii) are

implemented on GPU. Moreover, we implement summations in step (iii) by the parallel

reduction method. Finally, we reduced the computational cost of evaluating multivairate

quadratic polynomials with bitslicing strategy. Because each term in a polynomial is

independent, we can parallelize computations of multiplications of monomials. This

chapter presents some methods of efficient parallelization and optimization for GPUs.

As a result, our implementation shows a throughput of about 12 Mbps by QUAD with

a system of 320 polynomials in 160 variables over the binary field. This GPU result is

about 18 times faster than CPU.

Chapter 4 discusses parallelization techniques of evaluation of multivariate quadratic

polynomials over extension fields. Using extension fields, the parameters (e.g. the num-

ber of variables) of QUAD can be chosen smaller than those over the binary field. In this

chapter, we seperated the algorithm for evaluation of multivariate quadratic polynomials

into the following three steps, (i)multiplying common quadratic terms xixj between ev-

ery polynomial, (ii)multiplying terms and coefficients in polynomials and (iii)summation

of terms in each polynomial. We implemented each step on GPU, because they can be

computed in parallel. We also used the same parallel reduction method used in chapter

3 in step (iii). Moreover, we compared the efficiency of the multiplication methods over

extension fields for step (i) and (ii). Among the six multiplication methods presented

over GF(232), the fastest method is using the bitslicing strategy, the next is using in-

termediate field GF(28). Finally, we proposed a data construction, suited to memory

loading on CUDA GPU programming. As a result, our implementation method showed

a throughput of about 25 Mbps by QUAD with a system of 48 polynomials in 96 variables

over GF(232). This GPU timing is about 90 times faster than CPU.

Chapter 5 presents parallelization of Petzoldt’s method, is evaluating method of

multivariate quadratic polynomials using LRS (linear recurring sequence). Petzoldts’s

method creates some relations between coefficients in each polynomial, and reduces multi-

plications in evaluating multivariate quadratic polynomials through such relations. How-

ever, parallelizing his method is difficult, because it has many sequential steps. Then,

we introduced the multi-stream method, which executes several instances of a cryp-

Graduate School of Information Science and Electrical Engineering, Kyushu University



Abstract x

tosystem. Moreover, we constructed extensive data from chapter 4, suited to Petzoldt’s

method with the multi-stream method. As a result, our implementation method showed

a throughput of about 190 Mbps by 256 streams of QUAD with a system of 32 polyno-

mials in 64 variables over GF(232).

In chapter 6, we parallelize the XL-Wiedemann algorithm, which is amethod for

solving multivariate quadratic systems over finite fields. The Wiedemann algorithm, the

core process of the XL-Wiedemann algorithm, is separated into the following three steps:

(i)generating the sequence of {uAib}2Ni=0 (A: N ×N matrix, b := Ax, u: random vector),

(ii)computing the minimal polynomial of the sequence {uAib}2Ni=0, and (iii)calculating the

unknown vector x of Ax = b. We implemented step (i) and (iii) on GPU and (ii) on

CPU, because step (i) and (iii) are mainly products of sparse matrices and dense vectors

and (ii) is very sequential (the Berlekamp-Massey algorithm). Moreover, we expanded

the cuSPARSE library, for linear algebra of floating point with sparse matrix, to finite

prime fields. Finally, we solved aMQ problem with a system with 48 polynomials in 24

unknowns.

Chapter 7 shows our conclusion and further research issues.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Abstract(Japanese) xi

Abstract(Japanese)

ストリーム暗号は，平文と乱数生成された鍵ストリームとの排他的論理和を取る事
で，暗号化を行う手法である．多くのストリーム暗号では，擬似乱数生成器（Pseudo-

Random Number Generator, PRNG）に線形フィードバックシフトレジスタや攪拌アル
ゴリズムを利用しており，計算量の少ないままデータの攪拌が可能である．一方で，使
用するPRNGの安全性を数学問題の解決困難性に帰着させ，公開鍵暗号と同等の安全性
証明を持たせる種類のストリーム暗号の研究が行われている．多変数二次多項式の付値
を暗号プリミティブとするQUADは，その種のストリーム暗号の一つであり，安全性の
根拠として有限体上の連立二次方程式の求解問題 (Multivariate Quadratics, MQ)を利用
しているため信頼性が高いが，反面，QUADは鍵ストリームの生成に数万回以上の計算
を必要とし計算コストが高い．この為，QUADを実用化するためには計算の効率化が研
究課題となる．
計算を効率化する手法の一つとして並列処理がある．一般に，多項式は各々独立に付値

の計算が可能であり，多項式内の項も各々独立である．従って，多項式の付値は独立に計算
可能な部分が多く，並列計算に適している．並列計算の実現手法として，GPU(Graphics

Processing Units)を利用した手法が注目されている．現在のGPUは 1,000個を超えるコ
アを有しており，並列計算に基づいた高い処理能力を有している．反面，GPU実装はス
レッドの実行タイミング，メモリローディング等，動作上においてCPU実装とは異なる
制約があり，GPUに適した実装を行う事が課題となる．
本学位論文は以下のように構成される．
第 1章では，本研究の背景と目的を述べる．また，本研究の主要な挑戦課題と貢献に

ついても示す．
第 2章では，QUADの基礎となっている有限体上の多項式，及び，既存の多変数公

開鍵暗号の手法について説明を行う．また，GPU上で用いる実装環境について説明し，
本論文のGPU実装で用いるCUDA(Compute Unified Device Architecture) APIの説明
を行い，暗号における並列実装手法及びGPUを用いた既存の実装成果についても説明
する．
第 3章では，QUADで用いるGF(2)上の多変数二次多項式の付値に対する並列化を

行った．具体的には，GF(2)上の多項式の付値は，非零な項の係数の加算のみで計算可
能なことに着目し，付値の手順を (i)多項式内の非零な変数の判定，(ii)非零な変数と対

Graduate School of Information Science and Electrical Engineering, Kyushu University



Abstract(Japanese) xii

応する多項式の係数の読み取り，(iii)係数の総和の 3ステップに分割した．このとき，(i)

は判定が逐次的であるため，逐次処理に強い CPUで，並列処理可能な (ii),(iii)はGPU

上で実装した．また，(iii)では並列リダクションと呼ばれる手法を利用した．更に，ビッ
トスライス戦略により，一度に 32の多項式を取り扱う事で計算の回数を削減した．最終
的に，本章の実装手法を用いる事で，GF(2)上の 160変数 320多項式のQUADにおいて
約 12Mbpsの速度を達成した．これは，CPU実装と比較して約 18倍高速であった．
第 4章では，拡大体上における多変数二次多項式の付値に対する並列化を行った．拡

大体を利用する事で，多変数多項式のパラメータである変数の数を小さくとる事が可能
である．本章では，拡大体上の多項式に対する付値を (i)多項式間で共通する項の乗算，
(ii)多項式内の項と係数の乗算，(iii)多項式内の項の総和の計算，という 3ステップに分
割した．各ステップは並列処理可能でありGPU上で実装した．(iii)は第３章と同様に，
並列リダクションを利用した．また，(i),(ii)では拡大体上の乗算が必要となるため，効率
的な乗算手法について比較を行った．GF(232)の乗算手法について 6つの手法を比較した
結果，ビットスライス戦略を用いたものが最速であった．更に，GPUのメモリローディ
ングに適したデータ構造を提案した．最終的に，本章の実装手法を用いる事で，GF(232)

上で 48変数 96多項式のQUADにおいて約 25Mbpsの速度を達成した．これは，CPU実
装と比較して約 90倍高速であった．
第 5章では，多変数二次多項式の付値に線形回帰数列を用いた Petzoldtの手法に対

する並列化を行った．Petzoldtは多項式の係数に関係性を持たせ，複数の乗算を同時に
処理する事で効率化を行っている．しかし，彼の手法は逐次的なステップが多く，単純
な並列化では効率化ができない．そこで，複数の暗号を同時に実行する事により，１回
の処理で生成される鍵ストリームの数を増やすマルチストリーム手法を導入した．更に，
第４章のデータ構造を拡張し，マルチストリームを用いたPetzoldtの手法に適したデー
タ構造を提案した．最終的に，GF(232)上の 32変数 64多項式のQUADを 256個のスト
リームで同時に実行する事により，約 190Mbpsの実装速度を達成した．
第 6章では，QUADの安全性の根拠となるMQ問題を解決する拡張線形化アルゴリ

ズム（eXtended Linearization, XL）の並列化を行った．XLは解決可能な線型方程式を
構成とその線型方程式の解決の，2つのステップで構成される．線型方程式の解決には，
方程式の係数行列の逆行列を求める手法が知られているが，XLが構成する行列は疎であ
るため，疎行列に適したアルゴリズムを用いることによる効率化が期待できる．疎行列に
適したアルゴリズムの中でも，Wiedemannアルゴリズムは並列性が高く，8PCクラスタ
を用いた並列実装によるMQ問題の解決結果が知られている．本研究では，Wiedemann

アルゴリズムの主要な 3ステップ (i)数列の生成, (ii)数列に対する最小多項式の導出, (iii)

解ベクトルの導出について，並列性の高い (i),(iii)をGPU，逐次性の強い (ii)をCPUで
実装した．最終的に，GF(7)上 24変数の 48連立二次方程式を約 10時間で解決した．こ
れは，CPU実装と比較して約 38倍の高速化に相当する．
第 7章では，本研究の結論と今後の研究課題について述べる．

Graduate School of Information Science and Electrical Engineering, Kyushu University



Acknowledgment xiii

Acknowledgment

I would like to thank all the researchers and colleagues who helped me in this thesis.

Especially I would like to thank my supervisor, Professor Kouich Sakurai, who has

supervised me for years, introduced me to this field of research, and provided me valuable

discussions, critics, and advices at any time. I want to express my gratitude to Professor

Yoshiaki Hori from Saga University, Associate Professor Takashi Nishide from Tsukuba

University, Special Associate Professor Xavier Dahan from Ochanomizu University and

Assistant Professor Junpei Kawamoto, for giving me helpful comments daily over these

years.

Moreover, I would like to thank Doctor Takanori Yasuda who has given me profitable

comments for the multivariate cryptography, and Doctor Hirofumi Muratani, who is my

external advisory. Furthermore, I am extremely grateful to people who helped me for

studying GPU implementations in Taiwan University, especially, Professor Chen-Mou

Cheng, who gave me a chance to study in Taiwan, Docter Bo-Yin Yang, who gave me

valuable advice about the computational cost and the time complexity of multivariate

cryptography, and Mister Tung Chou, who advised me about GPU implementations and

helped in getting settled in Taiwan.

At last, I would like to thank my parents, who have given me daily support during

these years of work.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 1 Introduction 1

Chapter 1

Introduction

1.1 Background

Stream cipher belongs to symmetric cryptography, which generates random keystreams

through a pseudo-random number generator (PRNG). Generally, stream ciphers are

known to encrypt faster and to require lower computational resources than block ciphers.

Another aspect of the design of efficient and secure stream cipher is to set standards for

the parameters involved. Discussions of such a stream cipher is based on the security

of the PRNG. A stream cipher can be shown to be provably secure with the theory of

public key cryptography. For example, Blum-Blum-Shub provably secure stream cipher

uses the theory of the integer factorization.

QUAD is a kind of multivariate cryptography[14]. It is a stream cipher, which uses a

multivariate polynomial system as a PRNG. The security of QUAD also depends on the

hardness of solving a multivariate quadratic system over a finite field, which is called the

multivariate quadratic problem (MQ). Therefore, QUAD holds provable security like

public key cryptography though it is a symmetric cipher. QUAD has high security, but

it is very slow compared with other symmetric ciphers.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 1 Introduction 2

1.2 Related Works

The security discussions of QUAD is based on the PRNG. Yang et al. [55] shows

some weaknesses in QUAD with a small number of variables. Thus practical QUAD

requires the construction of multivariate quadratic systems with many variables, along

with achieving a high speed of encryption.

Petzoldt proposed an efficient method for evaluating QUAD, which reduces the com-

putational cost from O(mn2) to O(mn) [42]. His idea is to use linear recurring sequences

(LRS). Coefficients of LRS QUAD are powers of generators of finite fields. Then, LRS

QUAD computes several multiplications at a time sequentially.

1.3 Challenging Issue

Parallel Evaluating Method of Multivariate Quadratic Polynomial

Our main contributions are two effective computing methods of evaluating multivari-

ate quadratics system. One computes a summation of multivariate polynomials as a

rectangle matrix. The other handles a summation of multivariate polynomials as a long

vector. Moreover, we evaluate efficiency of contributions with numbers of additions and

multiplications. Fast evaluation of multivariate quadratic polynomials is necessary to

construct practical QUAD. Our challenge is to make it efficient through two approaches:

parallelizations and using extension fields.

The number of monomials in a quadratic polynomial in n variables is given by
(
n+2
2

)
.

A parallel algorithm for summations named parallel reduction is executed in ⌈log T ⌉

steps, where T is the number of terms to be summed (exactly T =
(
n+2
2

)
). However, it

executes a surplus step for some n. For example, when n = 64, T = 2, 145 > 2, 048 and

it takes 12 steps. Therefore, it is desirable to reduce the number of monomials in each

quadratic polynomial under 2,048 for n = 64. Although the number of reducing terms for

each polynomial should be the same for parallelizations, choosing different combinations

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 1 Introduction 3

is difficult. Hence, reducing monomials of quadratic polynomials is an issue.

Moreover, we use Compute Unified Device Architecture(CUDA) API [3], provided by

NVIDIA [6], for GPU implementations. In CUDA implementations, we have two sub-

issues regarding the tuning of the parallelizations on GPU. One is avoiding the surplus

steps of GPU kernels (functions). Indeed, in CUDA, parallelization of kernels is achieved

with blocks and threads. However, actually threads are divided by warp, the maximal

number of parallel threads in a block executed at a time. Therefore, we should tune the

number of threads in order that it is a multiple of the warp size to avoid surplus steps.

We should optimize this number for every construction.

Efficient Multiplications over Extension Fields

Using large finite fields can make small polynomial systems (i.e. the number of un-

knowns, polynomials). However, operations over large finite fields are heavier than those

over small fields. Operations over large prime fields spend time for modular operations

required by addition and multiplication. On the other hand, although, over large ex-

tension fields we can compute additions easily, but multiplications are more complicated

than over prime fields.

There is a challenging issue concerning extension fields: generally, multiplication over

extension fields is more complicated. Although in small cases (e.g. GF(28)), we can make

it efficient with lookup tables, in large cases (like GF(232)) we cannot, because of the

size of the table takes up to 32EB!. There exists some related works, which discuss fast

hardware implementations of binary extension fields [44] and GPU implementations over

extension fields [37], however they do not discuss GPU implementations of extensions

of the binary field. Hence, fast implementations of the multiplication over binary field’s

extensions on GPU is an important issue.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 1 Introduction 4

Parallelization of MPKC using Linear Recurrence Sequence

In Petzoldt’s implementation, he used GF(28). The period of generators over GF(28)

is at most 255. However, his quadratic polynomial has 378 terms. Hence, there are some

relations between some terms in it. Therefore, there is a risk that the security might be

reduced.

Petzoldt claimed that his method can be parallelized easily as follows. Each quadratic

polynomial in QUAD is independent, so it is easy to parallelize at the polynomial level.

However, the degree of parallelization is proportional to the number of polynomials in

QUAD, which may not be enough for effectively exploiting the full computational power

available on modern GPUs. In this paper, we shall consider further parallelization in

evaluating LRS quadratic polynomials for GPU implementation.

Security Evaluation of QUAD Stream Cipher

So far, we have not seen any implementation of the XL-Wiedemann algorithm on

GPU, which is a candidate for further speed-up because several steps of the XL-Wiedemann

algorithm can be parallelized. Therefore, we consider accelerating XL-Wiedemann on

GPU. However, GPU implementation poses a set of very different limitations from its

CPU counterpart. Hence, in this thesis we shall detail these challenges and how we have

dealt with them.

1.4 Contribution

Parallelization of Evaluation of Multivariate Quadratic Polynomial

We provide two techniques to implement QUAD stream cipher. One is a parallel

implementation for computing multivariate polynomials. The other is an optimization

technique for implementing QUAD on GPUs.

Moreover, we discuss the computational time for generating keystreams of QUAD in

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 1 Introduction 5

more detail than in [47]. Also, we report results of implementation of QUAD stream

cipher over GF (2), GF (22), GF (24), and GF (28) on GPU.

Effective Method for the Multiplication over Finite Fields

We reduce the number of terms of multivariate quadratic polynomials from
(
n+2
2

)
to(

n−k+2
2

)
by removing variables. Our method removes different variables for each polyno-

mial.

We implement multiplications through the polynomial basis, the normal basis, Zech’s

logarithm, using intermediate fields and bitslicing and discover the most suited method

for GPU. For GF(232), we find out that the best way is bitslicing the polynomial basis

over GF(232). It shows a throughput of 800 Gbps.

We tune our QUAD implementations for CUDA. We choose k, an integer multiple of

divisible by 32. Also, we choose the best multiplications in our experimentations, then

implement QUAD over GF(232) on GPU. Moreover, we construct a data structure for

QUAD on GF(232).

We then achieve throughputs of QUAD(232, 48, 48) and QUAD(232, 64, 64) of 24.827

Mbps and 19.4196 Mbps respectively. These are over 90 times faster than CPU ones.

This is the first implementation of QUAD stream cipher over GF(232).

Parallelization of MPKC using Linear Recurrence Sequence

We choose GF(232) for the finite field of LRS QUAD stream cipher. The period of

generators over GF(232) is 232−1. This is enough for coefficients of quadratic polynomials,

as the number of terms in a quadratic polynomial of n variables is only
(
n+2
2

)
.

Then, we implement two versions of parallelized Pezoldts’s LRS QUAD stream ci-

pher [42] on GPU. The first version is the näıve parallelization with parallelization only

at the polynomial level. The second version parallelizes computations in quadratic poly-

nomials, e.g., calculating αi,jxixj. The result shows that the latter is 2.5 times faster

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 1 Introduction 6

than the former, making it more suitable for GPU implementation of LRS QUAD.

To further exploit the available computational power on modern GPUs, we adopt

the multi-stream strategy used by Chen et al [20], in which multiple QUAD instances

are executed in parallel. We have implemented multi-stream QUAD over GF(232) and

achieved a throughput of 193.40 Mbps for 256 streams of QUAD with 64 polynomials

in 32 variables. To the best of our knowledge, this is the best throughput performance

result for software implementation of QUAD. To achieve this performance for Petzoldt’s

LRS QUAD, we have introduced three data structures specifically for efficient handling

of memory loading with CUDA API, the most popular programming environment for

NVIDIA GPUs.

Security Evaluation of QUAD Stream Cipher

We present several GPU implementations of the XL-Wiedemann algorithm, in which

multiplication of a sparse matrix with a dense vector is parallelized on GPU. Additionally,

we computed benchmarks of an implementation based on the cuSPARSE library using

floating-point arithmetic. Finally, we show the experimental results of solving MQ

instances over GF(2), GF(3), GF(5), and GF(7). Our implementation can solve MQ

instances of a system 74 equations in 37 unknowns over GF(2) in 36,972 seconds, of a

system of 48 equations in 24 unknowns over GF(3) in 933 seconds, as well as of a system

of 42 equations in 21 unknowns over GF(5) in 347 seconds. The largest instance of a

matrix that we have solved is occurring in aMQ problem consisting of a system of 80

equations in 40 unknowns over GF(2) in 295,776 seconds. This matrix has 3.78 billion

non-zero elements. On the other hand, the most difficult instance in term of solving time

is a system of 48 equations in 24 unknowns over GF(7) solved in 34,883 seconds, whose

complexity is around O(267) if we use a brute-force approach.

The cuSPARSE library only supports floating-point arithmetic, not integer arith-

metic, let alone finite field arithmetics. Therefore, we need to use cuSPARSE functions

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 1 Introduction 7

to implement finite field arithmetics via additional operations such as modular opera-

tions.

Figure 1.1 shows that the relationship between contributions proposed in this dis-

sertation. This dissertation presents two aspects of the speed-up and in the security

evaluation of the cryptographic primitives. One is the implementation side. Here, we

assume the characteristics of normal and honest users. Under this assumption, they use

only several devices (in particular, they have one desktop and/or one laptop PC and/or

one mobile phone or smartphone). Moreover, they don’t use any distributed algorithms

between devices. Therefore, they can use only the full power of one device. In other

words, they can only use several CPU-cores and several GPUs inside PC under this

limitation. Our parallel method of evaluation for multivariate quadratic polynomials is

under this limitations

Another one is on the attacker side. This side shows that the stance of attackers

or malicious users. They want to know information of communications between honest

users. In this situation, attackers know that honest users use QUADs to encrypt messages

in prior of communications. Hence, attackers try to break QUAD. Generally, we assume

that they can use as much devices as possible to break it in a reasonnable amount of

time (e.g. in a year). In other words, they can use over 1,000,000 PC-cluster to break

MQ. These attacks permit to set upper bounds of solving time MQ. Therefore, we should

select parameters of QUAD to exceed this security evaluation.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 1 Introduction 8

Figure 1.1: Relationship chart of contributions

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 9

Chapter 2

Preliminary

2.1 Multivariate Quadratic Polynomial

2.1.1 Polynomial

Let x = {x1, . . . , xn}. We call primitives, which are denoted multiplications of single

constant and multi variables, that term. Polynomials are constructed by summations of

multi terms. When terms are constructed by different variables (e.g. ’x’ and ’y’), polyno-

mials are called multivariate polynomials. Generally, a k-degree n-unknowns multivariate

polynomial P (x) denotes Formula (2.1). xij is an unknown (1 ≤ i ≤ n, 1 ≤ j ≤ k), and

α
(j)
i1,...,ij

is a coefficient.

P (x) = α(0) +
∑

1≤i1≤n

α
(1)
i1
xi1 + . . .+

∑
1≤i1≤...≤ik≤n

α
(k)
i1,...,ik

xi1 . . . xik (2.1)

Especially when k = 2, polynomials are called multivariate quadratic polynomials.

Formula (2.2) presents a multivariate quadratic polynomial Q(x) in n variables.

Q(x) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤k≤n

βkxk + γ (2.2)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 10

2.1.2 Evaluating Multivariate Quadratic System

A multivariate quadratic polynomial system S(x) is constructed by several multi-

variate quadratic polynomials over GF(q). It is denoted Formula (5.2) by multivariate

polynomials

S(x) = {Q1(x), Q2(x), . . . , Qm(x)} (2.3)

Equation (5.2) can be interpreted as a function of GF(pk)
n 7→ GF(pk)

m
. Evalu-

ation of multivariate quadratic polynomials consists in computing the value S(x) =

{f1(x), . . . , fm(x)}. The number of monomials in a quadratic polynomial with n vari-

ables is
(
n+1
2

)
+ n + 1 =

(
n+2
2

)
. Therefore, evaluating a quadratic polynomial require(

n+2
2

)
− 1 = n(n + 3)/2 additions. Moreover, each quadratic monomial and each linear

term require 2 and 1 multiplications over finite fields. Hence, the number of multiplica-

tions in evaluating a quadratic polynomial is 2
(
n+1
2

)
+ n = n(n+ 2). Finally, evaluating

a system of m quadratic polynomials in n variables requires mn(n+ 3)/2 additions and

mn(n+ 2) multiplications over finite fields.

2.1.3 Berbain-Billet-Gilbert’s Evaluation for Multivariate Quadratic Poly-

nomial Systems

Berbain, Billet and Gilbert provide several efficient implementation techniques of

evaluating multivariate quadratic polynomial system [13]. In this paper, we use the

following strategies from their work.

• Variables are treated as vectors. For example, C language defines int as a 32-bit

integer variable. Therefore, we can use int as a 32-vector of boolean variables.

This technique is often referred to as “bitslicing” in the literature.

• We precompute each quadratic term. Because in multivariate quadratic systems,

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 11

we must compute the same xixj for every polynomial, so precomputing helps to

save some computations.

• We compute only non-zero terms in GF(2). The probability of xi = 0 is 1/2, and

the probability of xixj = 0 is 3/4. Therefore, we can reduce computational cost to

about 1/4.

2.1.4 Petzoldt’s Evaluating Method with Linear Recurring Sequences

Petzoldt provides another evaluating method for multivariate quadratic polynomi-

als citepetzoldt2013speeding.. His idea is including several multiplications in a polyno-

mial into one multiplications by making relations between coefficients of polynomials

using linear recurring sequences (LRS). Let γ1, γ2, . . . , γL be elements of GF(q). Then,

a LRS of length L: {s1, s2, . . . |si ∈ GF(q)} is given as follows:

sj = γ1 · sj−1 + γ2 · sj−1 + · · ·+ γL · sj−L ∀j > L. (2.4)

The values s1, . . . , sL are the initial values of the LRS.

Alternatively, a multivariate quadratic polynomial Q(X) given by Equation (5.1) can

also be written as follows:

f(X̂) = X̂



a1,1 a1,2 · · · a1,n b1

0 a2,2 · · · a2,n b2
...

...
. . .

...
...

0 0 · · · an,n bn

0 0 · · · 0 c


X̂T

X̂ =
(
x1 x2 · · · xn xn+1(= 1)

)
. (2.5)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 12

Now, we assume that γ ∈ GF(q) is a generator of GF(q). Then, there is an LRS:

Ti = γ · Ti−1 +Mi,i · xi(i ≥ 2), (2.6)

where Mi,i = γ
∑i−1

j=1 n−j+2, and the initial value T1 = x1. Then, every term xiTi can be

denoted as follows:

xiTi =
i∑

j=1

γi−j ·Mj,j · xixj. (2.7)

Equation (5.6) shows that xiTi includes every xixj, where i ≤ j. Hence, quadratic

polynomials can be computed via the following summation:

f(X̂) =
n+1∑
i=1

xiTi. (2.8)

That is, Equation (5.7) essentially computes the following matrix:

f(X̂) = X̂



1 γ · · · γn−1 γn

0 γn+1 · · · γ2n−1 γ2n

...
...

. . .
...

...

0 0 · · · γ(
n+2
2 )−3 γ(

n+2
2 )−2

0 0 · · · 0 γ(
n+2
2 )−1


X̂T (2.9)

2.2 QUAD Stream Cipher

QUAD is a stream cipher proposed by Berbain, Gilbert and Patarin [14]. QUAD

uses systems of multivariate quadratic polynomials to obtain the random keystream.

Therefore, it is a family of the multivariate public-key cryptography (MPKC). In other

words, MPKC is a cryptographic primitive of QUAD. One of advantages of QUAD

against other stream ciphers is that it has a provable security. The security of QUAD is

based on the MQ assumption just like other MPKC instances, and is proved by Berbain,

Gilbert and Patarin [14].

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 13

2.2.1 Multivariate Public-Key Cryptography

Cryptography is a technique to prevent data from being leaked by adversaries. Mainly,

we use it on network communication. Cryptography is categorized into two types, one

is symmetric key cryptography and the other is asymmetric key cryptography.

Symmetric Key Cryptography

Symmetric key cryptography uses the same keys or functions in encryption and de-

cryption. It has two types, block cipher and stream cipher. Block cipher encrypts

message block by block size. Stream cipher uses pseudorandom number generators as

keystream generators. A message is encrypted with keystream in sequence.

Asymmetric Key Cryptography

Asymmetric key cryptography has two types of keys. One is a public key, which is

used for encryption. The other is a private key for decryption.

Multivariate public-key cryptography (MPKC) is a cryptography, which uses a mul-

tivariate polynomials over a finite field to encryption. The security of multivariate cryp-

tography depends on complexity of solving a non-linear multivariate polynomial system

over a finite field (called the problem ofMQ orMP). In other words, their security is

is based on the MQ or MP assumptions, i.e. if MQ or MP is hard, MPKCs are also

secure.

2.2.2 Constructions of QUAD

Let p be a prime, and q = pk, where k ≥ 1. We assume that GF(q) is a degree-k

extension field over GF(p). Then a multivariate quadratic polynomial in n variables over

GF(q) is given by Formula eqrefQuadratics, and a system of m multivariate quadratic

polynomials in n variables is defined by Formula eqrefMultiPoly.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 14

The QUAD stream cipher uses the Equation (5.2) as a pseudo-random number gen-

erator (PRNG) to generate keystreams [14]. Generally, the notation of QUAD(q, n, r)

means a construction based on a system of the n-tuple internal state value x = {x1, . . . , xn}T

and keystream length r over GF(q) in a cycle of QUAD. In other words, QUAD(q, n, r)

has three key constructions. One is the n-tuple key x = {x1, . . . , xn}T over GF(q). An-

other is the L-bit (in particular, L = 80) initialization vector IV ∈ {0, 1}L. The last ones

are 4 randomly chosen systems Sit, Sout, S0 and S1. Systems Sit, S0 and S1 follow from

the same construction, are n quadratic equations and in n variables over GF(q). Only

Sout is different construction, it has r quadratic equations and n variables over GF(q).

System Sout is used to update the i-th internal state xi to next xi+1, and Q is used to

generate the i-th keystream yi = {y1, . . . , yr}T from xi, where i is an iteration counter.

Sometimes, Sit and Sout are combined to form the system S of m = n + r equations in

n variables over GF(q). Both S0 and S1 are used in the initialization step. They replace

the initial state x0 just like updating xi+1with Sit.

Algorithm of Keystream Generation

The algorithm of QUAD is separated in three parts, key generation, encryption/decryption

of the message and initialization step. The algorithm is denoted in algorithm 1

Require: n variables x = {x1, . . . , xn}T .
Ensure: m− n keystreams y = {Qn+1(x̂), . . . , fm(X̂)}.
1: Set T

(k)
1 ← x1 for 1 ≤ k ≤ m.

2: Compute T
(k)
i = γ(k) · T (k)

i−1 +M
(k)
i,i · xi for 2 ≤ i ≤ n+ 1, 1 ≤ k ≤ m.

3: Compute fk(X̂) =
∑n+1

i=1 xiT
(k)
i for 1 ≤ k ≤ m.

4: Output Y = {fn+1(X̂), . . . , fm(X̂)} as keystreams.
5: Set xk ← fk(X̂) for (1 ≤ k ≤ n).
6: Back to step 1.

Algorithm 1: QUAD stream cipher [14]

The generated keystreams are considered to be a pseudorandom bit string and used

to encrypt a plaintext with the bitwise XOR operation.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 15

Figure 2.1: Generating keystream of QUAD

2.2.3 Key and Initialization of Current State

Berbain et al. [14] also provides a technique for initialization of the internal state

X = (x1, . . . , xn). For QUAD(q, n, r), we use the key K ∈ GF (q)n, the initialization

vector IV = {0, 1}|IV | and two carefully randomly chosen multivariate quadratic systems

S0(X) and S1(X), mapping GF (q)n 7→ GF (q)n to initialize X.

The initialization of the internal state X follows two steps, such that,

Initially Set Step

We set the internal state value X to the key K.

Initially Update Step

We update X for |IV | times. Let i be a number of iterating initially update and

IVi = {0, 1} be a value of i-th element of IV , and we change the value of X to

• S0(X), where IVi = 0, and

• S1(X), where IVi = 1.

2.2.4 Computational Cost of QUAD

The computational cost of multivariate quadratic polynomials depends on computing

quadratic terms. The summation of quadratic terms requires n(n+1)/2 multiplications

and additions. Therefore the computational costs of one multivariate quadratic polyno-

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 16

mial is O(n2). QUAD(q, n, r) requires to compute m multivariate quadratic polynomials.

Since m = kn, the computational cost of generating key stream is O(n3).

Petzoldt’s LRS QUAD

Algorithm 2 shows the keystream generation algorithm in Petzoldt’s LRS QUAD

stream cipher. This algorithm has two iteration steps for evaluating a quadratic poly-

nomial. The first one is computing LRS values Ti by Equation (5.5), and the other,

evaluating quadratic polynomials fk(X̂) by Equation (5.7). The first iteration takes n

steps, each of which requires 2 multiplications and 1 addition. In addition, the second

iteration takes n+1 steps and requires n+1 multiplications and n additions. Therefore,

evaluating a multivariate quadratic polynomial requires 3n + 1 multiplications and 2n

additions. Hence, keystream generation in QUAD with m polynomials in n variables

takes 3m · n+m multiplications and 2m · n additions.

Require: (n+ 1) variables X̂ = {x1, . . . , xn+1}, where xn+1 = 1.
Ensure: m− n keystreams Y = {fn+1(X̂), . . . , fm(X̂)}.
1: Set T

(k)
1 ← x1 for 1 ≤ k ≤ m.

2: Compute T
(k)
i = γ(k) · T (k)

i−1 +M
(k)
i,i · xi for 2 ≤ i ≤ n+ 1, 1 ≤ k ≤ m.

3: Compute fk(X̂) =
∑n+1

i=1 xiT
(k)
i for 1 ≤ k ≤ m.

4: Output Y = {fn+1(X̂), . . . , fm(X̂)} as keystreams.
5: Set xk ← fk(X̂) for (1 ≤ k ≤ n).
6: Back to step 1.

Algorithm 2: Petzoldt’s LRS QUAD [42]

2.2.5 Security parameters of QUAD

The security level of QUAD is based on the MQ assumption, since Berbain, Gilbert

and Patarin prove that solving QUAD needs solving MQ problem [14]. The eXtended

Linearization(XL) algorithm [22] is a solving method of theMQ. The XL constructs a

polynomial system of the degree D by products of quadratic equations and monomials of

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 17

the degree d, where 1 ≤ d ≤ D, and solves the system as linear algebra. Then, the run-

ning time of XL depends on D. The minimal D is called the degree of regularity. Yang,

Chen, Bernstein et. al. [55] show that the degree of regularity ofMQ in QUAD(q, n, n)

is given by the degree of the lowest term with a non-positive coefficient in the following

polynomial,

G(t) = ((1− t)(−n−1)(1− t2)n(1− t4)
n
). (2.10)

Moreover, they give the expected running time of the XL-Wiedemann CXL as the fol-

lowing formula.

CXL ∼ 3τTm. (2.11)

A multivariate polynomial f(X) can be considered as a multivariate function, which

computes results with some given variables. A multivariate polynomial system is a group

of such functions. The multivariate polynomial systemMP (X) which is constructed with

m d-dimensional polynomials in n unknowns is given in Formula (3.2).

MP (X) = {f (d)
1 (X), . . . , f (d)

m (X)} (2.12)

A multivariate quadratic system is a special case of the multivariate polynomial sys-

tem, which uses quadratic functions Q(X). The multivariate quadratic systemMQ(X)

which is constructed with n unknowns and m quadratics is also given in Formula (3.3).

MQ(X) = {Q1(X), . . . , Qm(X)} (2.13)

We assume that MP (X) is constructed with m d-dimensional polynomials. MP

problem is to find X = (x1, . . . , xn) where f
(d)
i (X) = 0 for all 1 ≤ j ≤ m. MP problem

on a finite field is known as an NP-hard problem [40]. We can also define theMQ for

multivariate quadratic systemsMQ(X). It is also known as an NP-hard problem.

Solving the multivariate quadratic system means the following. Assume that we have

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 18

Table 2.1: Existing recommended parameters of QUAD.
Recommended by Field Unknowns Polynomials Parameter

160 160 Broken by Yang et al. [55]
GF(2) 256 256 80-bit security for L = 222.

Berbain et al. [14] 350 350 80-bit security for L = 240.
GF(24) 40 40 Broken by Yang et al. [55]
GF(216) 20 20 Broken by Yang et al. [55]

known the system A of m quadratic polynomials in n variables over a finite field GF(q),

given by Equation (5.2). Let y = {y1, . . . , ym}T be a m-degree column vector, generated

by multiplying the system A and the n-degree unknown column vector x = {x1, . . . , xn}T .

The system (5.2) is equivalent to:

Ax = y. (2.14)

Then, the problem of finding the unknown column vector x with given A and y is called

MQ. (MQ means ”multivariate quadratic”). More generally, solving systems of cubic

or higher degree polynomials is sometimes called MP . BothMQ andMP are known

to be NP-complete over GF(q) for any q [11].

The security of QUAD is based on the security of PRNG. Berbain et al. give the

recommended parameters over GF(2), GF(24) and GF(216) [14]. Table 2.1 shows that

existing security parameters and their status.

Standard Security Parameters in ISO/IEC 18031

ISO/IEC discusses the PRNG (called deterministic random bit generator (DRBG))

for cryptography in 18031 [7] It shows the standard security parameters of the MPKC

based PRNG (i.e. QUAD). Table 2.2 shows that their recommended parameters. Λ =

λr is the maximal blocks of QUAD. Therefore, L = Λk bits over GF(2k). In these

parameters, there exists two additional limitations and two additional parameters. First,

it limits the number of variables n. Let’s S be security strength bits of QUAD(q, n, r).

Then, QUAD should have parameters as nk ≥ S. Moreover, the standard requires n ≥ r.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 19

Table 2.2: Recommended parameters of ISO/IEC 18031 standard [7].
requested requested block length (bit)
strength (bit) 1-112 113-128 129-192 193-256

n = r = 112 n = r = 32 n = r = 32 n = r = 32
Λ = 223 Λ = 212 Λ = 212 Λ = 212

1-80 GF(2) GF(24) GF(26) GF(28)
ρmin = 106 ρmin = 30 ρmin = 30 ρmin = 30

lmax = 4 lmax = 5 lmax = 5 lmax = 5
n = 120,r = 112 n = r = 128 n = r = 48 n = r = 64

Λ = 226 Λ = 232 Λ = 212 Λ = 221

81-112 GF(2) GF(2) GF(24) GF(24)
ρmin = 114 ρmin = 122 ρmin = 44 ρmin = 60

lmax = 4 lmax = 5 lmax = 5 lmax = 5
n = r = 128 n = r = 64 n = r = 64

Λ = 228 Λ = 216 Λ = 217

113-128 - GF(2) GF(23) GF(24)
ρmin = 122 ρmin = 60 ρmin = 60

lmax = 4 lmax = 5 lmax = 5
n = 200,r = 192 n = r = 128

Λ = 232 Λ = 230

129-192 - - GF(2) GF(22)
ρmin = 192 ρmin = 124

lmax = 4 lmax = 4
n = 272,r = 256

Λ = 232

193-256 - - - GF(2)
ρmin = 264

lmax = 4

Also, ISO/IEC 18031 standards added two parameters for the rank of matrix. One

is the minimum rank of matrix ρmin. This parameter requires that the system matrix of

a multivariate quadratic equation system in QUAD should have the rank at least ρmin.

The other is the maximum weight lmax. It requires that all sums of at most lmax of

quadratic equations in QUAD should have at least ρmin.

Drelikhov, Marshalko, and Pokrovskiy gives further evaluation of these standards by

the meet-in-the-middle technique [23]. They suggest that these standard parameters

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 20

have less security level (e.g. for n = 200 and r = 192 (192-bit security) downs to 129-bit

security).

2.3 Finite fields of MPKC

MPKC is assumed that it works over finite fields. 2, power of 2, and odd primes

are expected to q of GF(q) in MPKC. Each field has different characteristic, hence, we

should carefully select it.

Binary field

The binary field (i.e. GF(2)) is the simplest in the finite fields. In the binary field,

there exists only 2 values 0 and 1. Therefore, sometimes, the binary field can be handled

as the boolean algebra. Then, the exclusive-or (xor, XOR) and the logical conjunction

(AND) correspond to addition and multiplication over GF(2). Hence, MPKC using

GF(2) is the most efficient for speed.

On the other stand, the security of the binary field is the weakest against algebraic

attack. Since field equation x2 = x, the size of a linearized system from mathcalMQ is

the smallest than other fields for same number of unknowns and equations. Therefore,

it is need to choose large numbers of unknowns and equations.

Binary extension field

Binary extension fields are extended from the binary field with a primitive polynomial.

In these fields, additions and multiplications are implemented by vector additions and

polynomial modular multiplications over the binary field. Hence, additions over these

field are efficient, however, multiplications over them are not. Some small extension fields

(e.g. GF(24) or GF(28)) are implemented multiplications as looking up tables. Such a

method can be reduced the computational cost of field operations.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 21

On the other stand, the security of these field is more strong than the binary field.

Because, the order of them q can be denoted as q = 2k (k is the extension degree

from GF(2). Hence, the field equation xq − x = 0 appears only high degree cases (like

q = 24 = 16). Usually, we choose GF(28) for MPKC because of the tradeoff between the

efficiency and the security.

Odd Prime Field

Operations of odd prime fields are implemented by modular operations. For example,

multiplications a × b over GF(3) (a, b ∈ GF(3)) are defined as a × b := a ∗ bmod3.

Therefore, the efficiency of field operations depends on the number of characteristic.

Chen et al. show that multiplications over GF(31) is faster than GF(24) and GF(216) [19].

For each odd prime field, the security level is same with other prime fields. The

security is only decreases by the degree of regularity of systems Dreg. It depends on the

field equations xq−x = 0. Usually, we choose GF(31) for MPKC because of the tradeoff

between the efficiency and the security.

2.3.1 Selected Fields for QUAD

We select GF(2) and GF(232) for implementations of QUAD and GF(2), GF(3),

GF(5), and GF(7) for security evaluation of QUAD. GF(232) has an advantage than

other fields. There exists many researches, because many machine word size is 32-bit.

Therefore, GF(232) may accelerates by the efficient operations (like optimal extension

fields (OEF)). This is reason of our selecting.

GF (3), GF (5) and GF (7) may become alternative fields of the binary field. Because,

it is known that the binary field requires large constructions of systems for the security.

Therefore, they are candidates of alternative lightweight fields after breaking systems

over GF(2). Hence, we discuss the security of MQ with systems over them.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 22

2.3.2 Operations over Extension Field

Let p be a prime and q = pk. Then, there exists degree k extension fields GF(pk) =

GF(q) of GF(p). Generally, GF(q) can be defined by a degree k primitive polynomial

f(X). Then X is a primitive element of GF(q), if f(X) = 0. Since finite extensions of

finite fields are Galois extensions, there is a Galois group Gal(GF(q)/GF(p)) given by

following formula,

Gal(GF(q)/GF(p)) = {σ : GF(q) 7→ GF(q)|automorphism : σ(α) = α (∀α ∈ GF(p))}.

If τ defines the Frobenius mapping of GF(q)/GF(p), the Gal(GF(q)/GF(p))} is cyclic

group, generating by τ .

We can denote an element a ∈ GF(q) by a vector over GF(p) as follows:

a = {c1, . . . , ck}, (c1, . . . , ck ∈ GF(p)), (2.15)

where we have fixed the basis {X1, . . . , Xk} of the extension GF(q)/GF(p):

a = c1X1 + · · ·+ ckXk =
k∑

i=1

ciXi, (2.16)

In this paper, we discuss the following 2 bases,

Polynomial basis: constructed by a primitive element X ∈ GF(q) such that {1(=

X0), X, . . . , Xk−1}.

Normal basis [45]: we assume given an element α ∈ GF(q) for a finite Galois extension

GF(q)/GF(p) such that {σ(α)|σ ∈ Gal(GF(q)/GF(p))}. Then, basis is given by

{α, αq, αq2 , . . . , αqk−1}

GF(q) can be handled as a residue class ring of the polynomial ring GF(p)[X] modulo

f(X). Given a, b ∈ GF(q), we denote by a(X), b(X) their representative polynomials

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 23

in GF(p)[X]/⟨f⟩. Therefore, additions and multiplications of GF(q) can be denoted as

following formulas,

a+ b := a(X) + b(X) modf(X),

a ∗ b := a(X) ∗ b(X) modf(X).

Since a can be handled as a vector of GF(p) like in Equation (4.1), additions of GF(q)

are computed by:

a+ b := {a1 + b1 mod p, . . . , ak + bk mod p}, (2.17)

Zech’s Logarithm

Originally, Zech’s logarithm (also called Jacobi’s logarithm [45]) is proposed to figure

additions for elements represented as powers of a generator of a cyclic group GF(q)∗ =

GF(q) \ {0}. Zech’s logarithm is considered to be a method of efficient exponentiation

over cyclic groups for cryptosystems [26, 27]. Let γ be a generator of GF(q)∗. Then,

GF(q)∗ = ⟨γ⟩. Therefore, we can represent any element in GF(q)∗ as γℓ, where ℓ is

an integer. In particular, γℓ ̸= γℓ′ , 0 ≤ ℓ ̸= ℓ′ ≤ pr − 2. In this way, GF(q)∗ can be

represented by [0, pr−2]. Hence, multiplications over GF(q)∗ can be computed by integer

additions modulo pr − 1.

Intermediate Field [45]

Let k be a composite integer for q = pk. Then, there exists l, where l | k and

1 < l < k. GF(ql) is an extension field of GF(q) and a subfield of GF(pk). We call

GF(pl) an intermediate field. Because, any extension of GF(q)/GF(p) are isomorphism,

we can compute operations of GF(pk) as extension from GF(pl).

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 24

2.4 The MQ Problem

The security of MPKC is largely based on the complexity of solving a system of

multivariate non-linear equations over finite fields. TheMQ is a quadratic case of this

problem. GenericMQ is known to be NP-complete [11].

Let q = pk, where p is a prime, and x = {x1, . . . , xn} (∀i, xi ∈ GF(q)). Generally,

multivariate quadratic polynomial equations in n unknowns over GF(q) can be described

as follows:

f(x) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤k≤n

βkxk + γ = 0, (2.18)

where ∀i, j, αi,j, βi, γ ∈ GF(q). TheMQ consists solving quadratic polynomial equations

given by y = {f1(x), . . . , fm(x)}

The original XL algorithm was proposed by Courtois et al. in 2000 [22]. The idea of

XL is based on a linearization technique, in which new unknowns representing non-linear

terms, e.g., y1,2 = x1x2, are generated and treated as an independent variable. If the

number of equations is greater than the number of variables in the resulted linearized

system, then we can solve it by, e.g., Gaussian elimination. If not, we can generate

new equations from the original ones by raising to a higher degree. For the sake of

completeness, the XL algorithm is described in Algorithm 3. Simply put, the degree of

regularity D is the minimal degree at which the number of linearly independent equations

exceeds the number of unknowns in the linearized system.

The XL algorithm generates sparse equations in Step 1 of Algorithm 3. The number

of non-zero terms of an equation is only
(
n+2
2

)
out of all possible

(
n+D
D

)
terms, since

the generated equations are just a product of the original equations and some mono-

mials. However, the Gaussian elimination is not suited for solving such sparse linear

systems, as it cannot take advantage of the sparsity. The XL-Wiedemann algorithm [36]

addresses this problem of the original XL by replacing the Gaussian elimination with the

Wiedemann algorithm [52], which is more efficient for solving systems of sparse linear

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 25

equations.

The Wiedemann algorithm [52] is a solving method for a system of linear sparse

equations over finite fields. Let A be an N × N non-singular matrix over GF(q). The

Wiedemann algorithm finds a non-zero vector x, where y = Ax. The original Wiede-

mann algorithm is described in Algorithm 4.

2.5 Parallel Computing on Graphics Processing Unit

In the early period, computers has some special chips for graphics processing. Their

chips supports rendering for the 2D graphics (e.g. filling rectangles). After middle of

1980s, several workstations are provided to the 3 dimensional computer graphics (3DCG).

Such a workstation makes innovations for 3DCG. In the 1990s, some personal computers

have special graphic chips on their boards. In 1999, NVIDIA provides a graphics cards

named NVIDIA GeForce 256 for supporting 3DCG acceleration. Also, NVIDIA names

such graphics accelerators to the Graphics Processing Unit .

2.5.1 General Purpose computing on GPUs

Graphics Processing Unit (GPU) is processor for handling 3 dimensional computer

graphics. In a 3DCG world, every elements (e.g. arrangement of objects, an environment

of light sources, and appearance in a camera) are constructed by computation. There-

fore, 3DCG requires large amount of computation to display graphics. Because 3DCG

computation is a heavy process, it is desirable that CPUs do not handle 3DCG compu-

tation. In order to avoid to use CPUs for 3DCG computation, GPUs was developed.

In this chapter, we explain about graphics processing units (GPUs) and application of

them to general purpose work called general purpose computing on graphics processing

units (GPGPU).

In early period, GPUs did not have a huge computational power. It was just an

alternative processor to CPUs. However, recently, the computational power of GPUs

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 26

have been making rapid progress. Because drawing the high quality 3DCG in real time

(e.g. in online network games) is enormous heavy. In order to realize real time drawing,

GPUs have been developed by increasing cores. Nowadays, GPUs have hundreds level

cores, it is called many cores constructions. Such cores are specialized floating-point

computation.

Floating-point operations per second (FLOPS) is a measure of computational power.

Although recent GPUs reaches TFLOPS level computational power, recent CPUs have

at most 200 GFLOPS.

General Purpose computing on GPU (GPGPU) is a technique for any general process

by using GPUs. In cryptography, it is used for some implementations. For example,

Manavski proposed an implementation of AES on GPU, which is 15 times faster than

an implementation on CPU, in 2007 [33]. Moreover, Osvik et al. presented a result of

an over 30 Gbps GPU implementations of AES, in 2010 [38]. On the other hand, the

GPGPU technique is also used for cryptanalysis. Bonenberger et al. used a GPU to

generating polynomials of the General Number Field Sieve [16].

Because GPUs are designed based on SIMD, it is better to handle several simple

tasks simultaneously. On the other hand, the performance of a GPU core is not higher

than CPU. Therefore, if we use GPU for sequential processing, it is not effective. In the

GPGPU techniques, how to parallelize algorithms is an important issue.

GPGPU Programming Environment

In early period, GPGPU technique was achieved with graphics libraries as OpenGL

and DirectX However, such tools need to output computer graphics while processing

work. Therefore, these tools are not efficient.

Then, GPU developers provides programming environments for GPU computing.

NVIDIA gives Compute Unified Device Architecture (CUDA) for its products. Also,

Advanced Micro Devices (AMD) provided AMD stream to GPGPU for AMD GPUs.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 27

Another movement is development for heterogeneous environments. Khronos Group

formulates an open standard for such environments as Open Computing Language (OpenCL).

2.5.2 CUDA Computing

In this dissertation, we focus on programming NVIDIA GPUs on CUDA API. CUDA

API is specialized for NVIDIA GPU architectures, hence, it gives an optimized imple-

mentation environment for them.

Each GPU is equipped with several Simultaneous Multiprocessors (SMs). The num-

ber of SMs is depends on architectures of graphics chips on GPUs. For example, there are

from 9 SMs to 16 SMs on the Fermi architecture with the high-end class of the GeForce

400 series and GeForce 500 series. On the other hand, in the Kepler architecture, which

is the successor of the Fermi, there are from 2 SMs to 15 SMs.

In CUDA, hosts correspond to computers, and devices correspond to graphic cards.

CUDA works by making the host control the device. Kernel is a function the host uses

to control the device. Because only one kernel can work at a time, a program requires

parallelizing processes in a kernel. A kernel handles some blocks in parallel. A block

also handles some threads in parallel. Therefore a kernel can handle many threads

simultaneously.

CUDA is a development environment for NVIDIA’s GPUs [3]. In CUDA, hosts

correspond to computers, whereas devices correspond to GPUs. In CUDA, a host controls

one or more devices attached to it. A kernel is a function that the host uses to control

the device(s). A kernel handles several number of blocks in parallel. A block also handles

multiple threads in parallel. Therefore, a kernel can handle many threads simultaneously.

CUDA API is a development environment for GPU, based on C language and pro-

vided by NVIDIA [3]. Pregnancy tools for using GPU have existed before CUDA is

proposed. However, such tools as OpenGL and DirectX need to output computer graph-

ics while processing work. Therefore, these tools are not efficient. CUDA is efficient,

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Preliminary 28

because CUDA uses computational core of GPU directly.

2.5.3 GPU architectures and CUDA Capability

Since early days of CUDA, NVIDIA has developed GPU architectures with improve-

ments. Sometimes, these architectures are significant changed from previous one.

Before the Fermi architecture

Until the Fermi architecture (actually up to GeForce GTX 200 series and 300 series),

NVIDIA had designed GPU chips for each generation.

Memory loading for CUDA

Also, considerations about memory loading are important. Originally, memory load-

ings in a warp are executed serially. However, when memory requests of threads in a

warp are consecutively, these requests are coalesced to 1 large memory request [1]. In

other words, such memory loadings are executed at a time. Therefore, data structures

should be consecutively for memory requests in a warp.

2.5.4 GPGPU for Cryptography

In cryptography, GPGPU is used for some implementations and cryptanalysis re-

searches. The oldest cryptographic GPGPU work is Kadem et al. [29] in 1999. They

tried to brute force attack on a graphics processor they called PixelFlow . It was not

been a graphics processor are commercially available.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial29

Chapter 3

Parallelisation of Evaluating Multivariate

Quadratic Polynomial

3.1 Introduction

Background

Nowadays cryptography is a necessary technology for network communication. Multi-

variate cryptography uses multivariate polynomials system as a public key. The security

of multivariate cryptography is based on the hardness of solving non-linear multivariate

polynomial systems over a finite field [11]. Multivariate cryptography is considered to be

a promising tool for fast digital signature, because it requires just computing multivariate

polynomial system.

QUAD is a stream cipher, which uses a multivariate quadratic system [14]. Symmetric

ciphers are used to authentication schemes [35] and signatures [39]. The security of

QUAD depends on the multivariate quadratic (MQ) problem. Therefore QUAD has

provable security like public key cryptography though it is a symmetric cipher. QUAD

has high security, but it is very slow compared with other symmetric ciphers. When

QUAD stream cipher is accelerated, we can realize high security communication with

QUAD.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial30

Related Works

Berbain et al. [13] provided efficient implementation techniques for multivariate cryp-

tography including QUAD stream cipher on CPUs. They implemented 3 cases of QUAD

instances, over GF (2), GF (24), and GF (28). Arditti et al. [8] showed FPGA implemen-

tations of QUAD for 128, 160, 256 bits blocks over GF (2). Chen et al. [20] presented

throughputs of a GPU implementation of QUAD for 320 bits blocks overGF (2). However

the results show that GPU implementations are slower than ideal CPU implementations.

Most of these related works just implemented several QUAD instances. They did

not evaluate computational costs of QUAD stream ciphers. Only Berbain et al. [13]

showed the computational costs of QUAD with n unknowns and m multivariate quadrat-

ics, which are O(mn2). We extended several implementation strategies for multivariate

quadratic of Berbain et al. to GPU implementations and evaluated the computational

cost of QUAD [47].

This is an extension work of our previous result [47]. We present extended GPU

implementation results from GF (2) case to GF (2p) cases, and comparisons with other

works. Moreover, we refine the evaluations of computational costs of QUAD for general

cases and optimized GF (2) cases.

Motivation

Our goal is to implement efficient QUAD stream cipher. Since QUAD has a rigorous

security proof as public key cryptography, we can use a fast and secure cipher when

QUAD becomes fast like other stream ciphers.

Our Contribution

We provide two techniques to implement QUAD stream cipher. One is a parallel

implementation for computing multivariate polynomials. The other is an optimization

technique for implementing QUAD on GPUs.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial31

In this paper, we discuss the computational time for generating keystreams of QUAD

in more detail than [47]. Moreover, we report results of implementation of QUAD stream

cipher over GF (2), GF (22), GF (24), and GF (28) on GPU.

3.2 QUAD Stream Cipher over GF(2)

3.2.1 Multivariate Quadratic Polynomials

We use a finite field GF (q). Let X = (x1, . . . , xn) be a n-tuple variable of GF (q), we

describe monomials as α
(k)
s1,...,sk

∏k
i=1 xsi , where k ≥ 0, 1 ≤ s1 ≤ · · · ≤ sk ≤ n. α

(k)
s1,...,sk is

a coefficient of a k-dimensional monomial. Therefore, they consist of a coefficient and k

variables. If a dimension of a monomial is 0, it is called a constant.

Especially when k = 2, polynomials are called quadratics. Let Q(X) be a multivariate

quadratics, and Formula (3.1) presents Q(X) with n unknowns,

Q(X) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤k≤n

βkxk + γ, (3.1)

where αi,j = α
(2)
i,j , βk = α

(1)
k and γ = α(0).

Evaluating Multivariate Quadratic System

A multivariate polynomial f(X) can be considered as a multivariate function, which

computes results with some given variables. A multivariate polynomial system is a group

of such functions. The multivariate polynomial system MP(X) which is constructed

with n unknowns and m d-dimensional polynomials is given in Formula (3.2).

MP(X) = {f (d)
1 (X), . . . , f (d)

m (X)} (3.2)

A multivariate quadratic system is a special case of the multivariate polynomial sys-

tem, which uses quadratic functions Q(X). The multivariate quadratic systemMQ(X)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial32

which is constructed with n unknowns and m quadratics is also given in Formula (3.3).

MQ(X) = {Q1(X), . . . , Qm(X)} (3.3)

We assume that MP (X) is constructed with m d-dimensional polynomials. MP

problem is to find X = (x1, . . . , xn) where f
(d)
i (X) = 0 for all 1 ≤ j ≤ m. MP problem

on a finite field is known as an NP-hard problem [40]. We can also defineMQ problem

for multivariate quadratic systems MQ(X). It is also known as an NP-hard problem.

The security of QUAD stream cipher depends on the MQ assumption.

3.2.2 Recommended Parameters of QUAD over GF(2)

QUAD is a stream cipher which is proposed by Berbain et al. [14]. However, it is a

stream cipher, and the security of it is based on the MQ assumption.

Constructions and notation

Generally, the notation of QUAD(q, n, r) means a construction based on a system of

the n-tuple internal state value x = {x1, . . . , xn}T and keystream length r over GF(q)

in a cycle of QUAD. On the other hand, it shows that a system of QUAD as m = n+ r

quadratic equations in n variables over GF(q), and a system in QUAD are given in

Equation (5.2). Usually, m is set to kn, where k ≥ 2, and therefore r = (k − 1)n.

QUAD(q, n, r) has three key constructions. One is the n-tuple key x = {x1, . . . , xn}T

over GF(q). Another is the L-bit (in particular, L = 80) initialization vector IV ∈

{0, 1}L. The last ones are 4 randomly chosen systems P , Q, S0 and S1. Systems P , S0

and S1 follow from the same construction, are n quadratic equations and in n variables

over GF(q). Only Q is different construction, it has n quadratic equations and n variables

over GF(q). System P is used to update the i-th internal state xi to next xi+1, and Q

is used to generate the i-th keystream yi = {y1, . . . , yr}T from xi, where i is an iteration

counter. Sometimes, P and Q are combined to form the system S of m = n+r equations

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial33

in n variables over GF(q). Both S0 and S1 are used in the initialization step. They replace

the initial state x0 just like updating xi+1with P .

According to the cryptanalysis of QUAD by Yang et al. [55], QUAD(2, 160, 160) has

2140 security against direct attack (i.e. solving theMQ problem with 320 polynomials

in 160 unknowns over GF(2)).

Security against Distinguish Attack

Now, we extend the security discussion against the distinguish attack based on

the evaluation by Bard [11]. The security proof by Berbain, Gilbert, Patarin citeber-

bain2006quad shows that if there exists the algorithm A which distinguishes a L-bit

(L = λr = λ(k−1)n)keystream generated by QUAD PRNG from a L-bit uniformly ran-

dom keystream in time TA and with the advantage ϵ, then, there exists the algorithm C

which preimages the polynomial functions of QUAD in the time TC with the probability

at least ϵ
8λ
. The time TC is given as the following:

TC ≤
27n2λ2

ϵ2
(TA + (λ+ 2)TS + log (

27nλ2

ϵ2
)) +

27nλ2

ϵ2
TS, (3.4)

where TS is the running time of QUAD. Therefore, TC shows that On the other stand, if

there exists the algorithm C which preimages polynomials of QUAD in time TC , then, we

can distinguish a L-bit keystream from a L-bit uniformly random stream in time TA by

backward of Equ. (3.4). In other words, if C is the best attack algorithm for QUAD, TA

is the lower bound of the distinguish attack. We assume that the best attack for QUAD

over GF(2) is solvingMQ by the Gröbner basis attack. Bardet provides an analysis of

the complexity of F5, which is one of the fastest Gröbner implementation, in her Ph.D.

thesis [12]. In her approximately evaluation, solving MQ with a system of m(= kn)

polynomials in n unknowns by F5 takes TF5 , which is given as the following:

TF5 =

(
n+ 1

D

)2.37

. (3.5)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial34

Over GF(2), the degree of regularity D is close to:

(−k +
1

2
+

1

2

√
2k2 − 10k − 1 + 2(k + 2)

√
k(k + 2))n. (3.6)

Moreover, we assume that each inspection is achieved in 1 CPU-cycle, and we don’t

consider memory loading. Figure 3.1 shows that the security evaluation of QUAD over

GF(2) for L = 2k-bit (k = 10, 20, 30, 40) stream. According this figure, we can show the

security parameters against distinguish attack. Table 3.1 shows the security parameters

over GF(2).

Figure 3.1: Security evaluation against distinguish attack over GF(2).

Table 3.1: Security parameter of QUAD(2,n,r).
L logL 80-bit 100-bit 120-bit 128-bit

1 Kbit 10 n = r = 195 n = r = 214 n = r = 253 n = r = 255
1 Mbit 20 n = r = 214 n = r = 253 n = r = 273 n = r = 292
1 Gbit 30 n = r = 253 n = r = 273 n = r = 312 n = r = 313
1 Tbit 40 n = r = 273 n = r = 312 n = r = 331 n = r = 351

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial35

3.3 Parallelization Strategies of Evaluating Quadratic Polyno-

mials

3.3.1 Parallelizing on the GPU

In GPGPU, the most important point is the parallelization of algorithms. Because

the performance of a single GPU core is worse than that of CPU, serial implementations

with GPU are expected to be slower than CPU implementations.

Since the polynomials of a multivariate quadratic system are independent of each

other, parallelization of a system is straightforward. Moreover, we parallelize the evalua-

tion of each polynomial in a multivariate quadratic system. We propose two paralleliza-

tion techniques, as shown in Figure 3.4.

The Basic Strategy of Parallelization

Let ti,j = αi,jxixj. Summation of quadratic terms can be considered as summation of

every element of a triangular matrix, as shown on the left side of Figure 3.2. We assume

that other elements from the matrix are zero. Therefore, we can compute summation of

quadratic terms as summation of a rectangular matrix, as shown on the right side of Fig-

ure 3.2. Then, we can compute the summation as
∑n

i=1

∑n
j=1 αi,jxixj =

∑n
i=1

∑n
j=1 ti,j

as follows.

（1）We compute Sk(x) =
∑n

i=1 tk,i for all k in parallel.

（2）We compute
∑n

k=1 Sk(x).

However, such a strategy introduces some overhead caused by the extra unnecessary

computations.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial36

Figure 3.2: Left: Evaluating quadratics on a triangular matrix. Right: Evaluating
quadratics on a padded rectangle matrix.

Parallelization Method 1

Next we introduce the first strategy to reduce unnecessary computations. We reshape

a triangular matrix to a rectangular matrix as shown in Figure 3.3, in which method of

matrix reshaping is depicted. By this reshaping, we can efficiently reduce about 25% of

the cost for evaluating a multivariate quadratic polynomial system.

Figure 3.3: Reshaping triangular to rectangular matrix

Parallelization Method 2

In the second strategy, we treat a polynomial as a vector as opposed to a matrix.

Assuming that nc is the number of GPU cores, we separate a vector into nc-sub-vectors.

Moreover, we use the parallel reduction technique citeparallel reduction to compute

all sub-vectors in parallel. The parallel reduction technique works as follows.

（1）We substitute the length of sub-vectors for nc.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial37

Figure 3.4: Parallelization strategies. Left: Strategy 1; right: Strategy 2

（2）We add nc/2 + i-th elements to i-th elements.

（3）We compute nc = nc/2.

（4）While nc is larger than 1, we iterate step 2 and 3.

The entire parallel reduction technique consists of log nc iterations of the above steps.

Therefore, we can evaluate polynomials efficiently.

3.3.2 Optimization on GPU Architectures

On GPU implementations, we must consider its characteristics. Together, the cores

on a GPU provide a tremendous amount of computing power, but each single GPU core

is much slower than a CPU core. Therefore, we need to minimize the number of inactive

GPU cores.

Optimization of Matrix Calculation

An NVIDIA GeForce GTX 580 GPU has 16 SMs, each of which has 32 CUDA cores.

Since each SM handles 32 threads at a time, the number of threads should be an integral

multiple of 32. In the same way, we should make sure that the algorithm can be handled

by 16 SMs in parallel. Together, the total number of threads should be an integral

multiple of 32× 16 = 512.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial38

In parallelization method 1, we can compute an summation in a polynomial as mul-

tiple co-summations of rows of a matrix. An n-unknown quadratic polynomial has

n(n + 1)/2 monomials. Then the long side of a rectangular matrix that is reshaped

from an n-dimensional triangular matrix has n or n+1 elements. Although a number of

a long side’s elements can be counted in a process, counting incurs extra cost in the com-

putation. Therefore, we assume that n = 31k, where k is a natural number. By handling

a summation in a polynomial as a triangular matrix which elements are k-dimensional

square submatrices, we can handle a summation as a 16× 31 rectangle matrix, as shown

in Figure 3.5. Thus we can parallelize the calculation of a matrix for 16 SMs with 32

CUDA cores per SM.

Figure 3.5: Handling as a 16× 31 matrix

In parallelization method 2, we can parallelize a summation by the number of cores

that can efficiently share data. In CUDA, we can share data in a block. Then we can

parallelize a summation by 32 monomials on NVIDIA GeForce GTX 580. Therefore,

we assume that n = 32k, where k is a natural number. Iterating time of parallelize

reduction in a summation is k(32k + 1)/2.

Further Optimizations

In order to improve the efficiency, we need to break down the computation into small

chunks of similar computations for parallel processing. Moreover, GPUs can’t handle

conditional branches efficiently, so we need to handle conditional branches differently

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial39

than we do on CPU. In this case, we use a different kernel for each different number

of non-zero terms. However, using a kernel for each possible number of non-zero terms

would incur an extremely large amount of overhead. Therefore, we make kernels just

every number of k. For example, for QUAD(2, 512, 512), the maximum k is 17, so we

need only 17 kernels.

3.3.3 Analysis of Potential Speedup

Parallelization Speedup

Originally, each polynomial in QUAD(q, n, n) requires (n+ 1)× (n+ 2)/2 additions

and multiplications. Moreover, QUAD(q, n, n) requires evaluation of 2n polynomials.

Using the strategies proposed by Berbain et al. [14], we can compute each polynomial

in QUAD(q, n, n) with (n+ 1)× (n+ 2)/8 additions and multiplications. Therefore, we

can compute QUAD(q, n, n) with n/16 times the cost of evaluating a single polynomial

using 32-bit vectors.

Such techniques can be used by CPU implementation as well as GPU implementation.

By parallelization on GPU, we can compute QUAD(q, n, n) in parallel. We can compute

multiplications of a polynomial before additions. We can compute αi,jxixj in n multipli-

cations time by we parallelize multiplications in each i and compute by every j. When

we use a multivariate polynomial system over GF(2), we can compute multiplications by

reducing monomials with a strategy of Berbain et al.

Parallelization method 1 with optimizations computes a summation in a polynomial

by as a rectangle matrix, which elements are k-dimensional square submatrices. Since

NVIDIA GeForce GTX 580 has 16 × 32 cores, each submatrices can be computed on

each CUDA cores in parallel. Then, computational time of summations k-dimensional

matrices is k2 additions. Moreover, we should compute submatrices of every polynomials,

then it takes mk2; m is the number of polynomials divided by 32. After that, we compute

row co-summations in matrices. So we can compute row co-summations at one time,

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial40

computational cost of row co-summations is 31 additions. When m ≤ 32 (the number

of polynomials ≤ 1024), we can compute row co-summations of all polynomials in once

time. Finally, we compute a summation of row co-summations’ result in 15 additions.

Then, the computational costs of summations of a multivariate quadratic polynomial

system can be denoted by mk2 + 46 additions.

In parallelization method 2, we compute summations by parallel reductions. Parallel

reductions can be computed co-summations of 32 elements on NVIDIA GeForce GTX

580 at once. Then, co-summations can be computed in 5 additions. Assuming n =

32k, we can compute co-summations of a polynomial by k(32k + 1)/2 times. Since

we can compute 16 co-summations at once, actually, we can compute co-summations by

⌈k(32k+1)/32⌉ times. When n ≤ 512 = 32×16, we can compute co-summations at most

n/2 times. Finally, we compute summations of co-summations’ result of a polynomial as

parallelization method 1. Then, the computational costs of summations of a multivariate

quadratic polynomial system can be denoted by (5m+ 1)n/2 additions.

Another Strategy for Multiplications

For evaluating quadratic polynomials, we can achieve an alternative method for mul-

tiplications over GF(2). Because, if and only if xi = 1 and xj = 1, then xixj = 1,

we don’t have to compute multiplications over GF(2). Moreover, non-zero variables are

common in each polynomial fk(x). Therefore, we should only check xi = 1. Since this

checking is sequential, this step is executed on CPU. In this alternative method, GPU

only computes summations of coefficients, which terms xixj are non-zero.

Table 3.2 shows the time complexity of our parallelization methods on GPU with

exiting evaluation method [13]. Each addition over GF(2) can computed by xors. Also,

multiplications are computed by logical conjunctions. In the table, XOR and AND shows

numbers of xors and logical conjunctions. C shows that the number of cores on a GPU.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial41

Table 3.2: Time complexity of evaluation QUAD(2, n, r) (m = n+ r).
Evaluating method Processor XOR AND IF

Näıve method CPU mn(n+1)
2

m(n2 + 1) -

BBG 2006 [13] CPU ⌈m
32
⌉n(n−1)

8
n(n−1)

8
+ ⌈m

32
⌉n(n−1)

8
n

Our method 1 CPU - - n

GPU ⌈m
32
⌉k2 + 46 ⌈ ⌈

m
32

⌉n(n−1)
8

C
⌉ -

Our method 2 CPU - - n

GPU ⌈m
32
⌉⌈log n(n−1)

8
⌉ ⌈ ⌈

m
32

⌉n(n−1)
8

C
⌉ -

Alternative method CPU - - n

(with method 2) GPU ⌈m
32
⌉⌈log n(n−1)

8
⌉ - -

3.4 Experiments

In this section, we present and discuss experiment results. We used NVIDIA GeForce

GTX 580 GPU, as well as Intel Core i7 875K CPU with 8 GB of memory.

3.4.1 Experiment Setup

We implement the evaluation of systems of 2n-polynomials in n-unknowns for n =

32, 64, 96, . . . , 512 on CPU and GPU. Finally, we compare the results of GPU and CPU

implementations.

CPU Implementation

We implement evaluation of multivariate quadratic polynomial systems on the CPU

by C language. We apply strategies of Berbain et al. [13] to CPU implementations.

GPU Implementation

We also apply them to GPU implementations. Moreover, we implement evaluation

of multivariate quadratic polynomial systems with the parallelization strategies 1 and 2

as mentioned previously.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial42

3.4.2 Experiment Results

We present the results of evaluation time of multivariate quadratic systems in Ta-

ble 3.3. Evaluation time with the parallelization strategy 1 increase in the number of

unknowns n rapidly. On the other hand, the parallelization strategy 2 increase in n

slowly. Therefore, the strategy 2 is more efficient than the strategy 1.

Table 3.3: Evaluation time for multivariate quadratic polynomial systems.
Unknowns Polynomials Evaluation time (µsec)

n 2n CPU Strategy 1 Strategy 2

32 64 2.7 21.758 15.927
64 128 16.9 23.483 15.849
96 192 52.7 24.110 16.071
128 256 118.8 24.325 16.537
160 320 236.2 25.058 17.166
192 384 417.8 29.845 17.184
224 448 656.5 34.549 18.125
256 512 992.5 41.864 18.651
288 576 1505.4 52.442 19.408
320 640 2322.2 71.663 19.841
352 704 3409.2 90.264 20.236
384 768 4906.2 111.951 20.710
416 832 6666.4 146.331 21.420
448 896 8453.5 193.567 21.892
480 960 10545.1 256.538 22.259
512 1024 12902.0 336.299 22.785

Furthermore, we compare result of QUAD implementations with Berbain et al. [13]

and Chen et al. [20] on QUAD(2, 160, 160) and QUAD(2, 320, 320) in Table3.4. Unfor-

tunately, QUAD(2, 160, 160) with the parallelization strategy 2 is not so fast, compared

with the results of Berbain et al. [13]. However, QUAD(2, 320, 320) with the paralleliza-

tion strategy 2 is 2.3 times faster than Chen et al. [20]. Moreover, it is faster than

QUAD(2, 160, 160). Therefore, we think that strategy 2 is suited to QUAD(2, n, n),

which n is a large number.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial43

Table 3.4: Encryption throughput of QUAD
Throughput(Mbps)

QUAD(2, 160, 160) QUAD(2, 320, 320)

CPU 0.646 0.131
GPU Strategy 1 5.086 3.768

Strategy 2 11.693 14.567

BBG2006[13] 8.45 —
CCCHNY2010 [20] CPU — 6.1

GPU — 2.6

Profile of Kernels

Table refKernelGF2 shows that profiles of utilization of kernels. There exists 10 GPU

kernels. 1 kernel is used in both method 1 and method 2. 7 kernels are used in method

1. last 2 kernels are used in method 2.

In the parallelized method 1, co-summation of column in sub-matrix shows 38 % in the

worst case. However, the occupancy of the kernel depends on the number of polynomials.

In fact, the worst case is only for QUAD(2, 32, 32). Over QUAD(2, 64, 64), we can achieve

at least 75 % occupancy. Also, 4 summation kernels of show that 19 % occupancy.

However, there exists only ⌈m/32⌉ threads. Since, m ≥ 512 in this experimentations,

there no exists more occupancy with parallelizations.

In contrast, both summation kernels of the parallelized method 2 shows 100% occu-

pancy. Hence, the parallelized method 2 is efficient than method 1 for occupancy.

3.5 Conclusion

We presented two parallelization strategies for accelerating the evaluation of mul-

tivariate quadratic polynomial systems. A GPU implementation with parallelization

strategy 2 is the fastest implementation compared with previous works. Moreover, it

might be suited to large finite fields. The security of QUAD depends on the scale of

multivariate quadratic polynomial systems. We expect QUADs with the strategy 2 will

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Parallelisation of Evaluating Multivariate Quadratic Polynomial44

Table 3.5: Kernel profile of evaluating multivariate quadratic polynomials over the binary
field.
Type Kernel Registers Shared Memory Occupancy

per thread per blocks(bytes) Utilization (%)

Both Multiplication 10 (k ≤ 5), 128 k 69-100
Methods (k: number of non-zero) 12 (k ≥ 6)

Method 1 Co-summation of Row 10-26 0 69-100
Co-summation of Column 10 0 38-100
4 summation kernels 10 0 19

Method 2 Summation 1 10 2048 100
Summation 2 12 0 100

become efficient and secure stream ciphers. Our approaches can be applied not only to

the QUAD stream cipher but potentially also to other multivariate cryptosystems.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 45

Chapter 4

Effective Method for Multiplications over

Extension Fields

4.1 Introduction

Background

Stream ciphers are symmetric cryptosystems, whose encryption is performed by

xoring with messages and with keystreams. Basically, the security of stream ciphers

is discussed based on parameters of random numbers(i.e. periodicity, unbiassedness,

etc.) [18, 54, 53]. In these discussions, security parameters are evaluated by experimen-

tations of known attacks. Several stream ciphers take other approaches for security like

provable security, with reductions to known difficult mathematical problems. For ex-

ample, Blum, Blum and Shub introduced pseudo-random number generator (PRNG),

whose security is provably based on the integer factorization [15]. The QUAD, proposed

by Berbain, Gilbert and Patarin, is also such a stream cipher endowed of provable se-

curity [14]. It uses the theory of multivariate public-key cryptography (MPKC) and

generates random numbers by evaluations of multivariate quadratic polynomials over fi-

nite fields. Generally, we denote the constructions of QUAD with a system over GF(q) of

n unknowns and r bit output stream as QUAD(q, n, r). The security of QUAD depends

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 46

on the complexity of solving multivariate quadratic equation systems over finite fields,

problem called MQ. Since MQ is known to be NP-complete [11], QUAD is expected

to be a practical secure stream cipher.

However, QUAD has problems of computational cost. QUAD requires evaluating

multivariate quadratic polynomials over finite fields. Typically, QUAD(q, n, r) takes

mn(n+ 2) additions and m(n+ 1)2 multiplications over GF(q) for evaluation, where m

is the number of polynomials, that is m = n+ r. Therefore, effective evaluation method

of the system is necessary for practical QUAD.

Parallel computing is a possible way to accelerate algorithms. Especially, because of

the inherent parallelism between each monomial and each polynomial, evaluation of mul-

tivariate quadratic polynomials is suitable for parallelization. Bitslicing is a technique of

parallelization. Although it was originally introduced for hardware implementations [24],

it is used to apply the Single Input Multiple Data(SIMD) construction virtually. It is

already applied to many cryptosystems (e.g. Data Encryption Standard(DES) [31] and

Advanced Encryptions Standard(AES) [43]). GPU are hardwares designed for parallel

computing. They are appealing for their economic cost (price) against other paral-

lelization methods(Field-Programmable Gate Array(FPGA), PC-clusters, etc.). Nowa-

days, GPU venders provide GPU programming libraries and some open libraries (e.g.

OpenCL [4]) also allow GPU computations.

Related works

One way of making efficient evaluation of multivariate quadratic polynomials over

finite fields is reducing the arithmetic operations of polynomials. Berbain, Billet and

Gilbert provide such reductions by precomputing monomials, parallelising, bitslicing and

dedicated methods for the binary field [13]. They showed throughputs of QUAD(2, 160, 160),

QUAD(24, 40, 40) and QUAD(28, 20, 20) as 8.45 Mbps, 23.59 Mbps and 42.15 Mbps re-

spectively. Petzoldt applied linear recurring sequences (LRS) to QUAD and reduces the

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 47

computational cost of QUAD(q, n, r) (and m = n + r) to 2n additions and 3mn + m

multiplications over GF(q). He showed a throughput of QUAD(28, 26, 26) as 872.7kbps

and 5.8 faster than QUAD with random constructed polynomials.

In another way, there exists some parallel implementations by FPGA. Arditti, Berbain,

Billet et al. show throughputs on XCLV25 FPGA of QUAD(2, 160, 160) and QUAD(2,

256, 256) as 3.3 Mbps and 2.0 Mbps respectively [8]. Hamlet and Brocato provide im-

plementations of QUAD(2, 128, 128) on a Vertex-4 FPGA and the fastest one gives a 374

Mbps throughput [25]. However, while their work is efficient, it is still not secure, since

their construction is smaller than original recommended parameters by Berbain, Gilbert

and Patarin [14].

4.1.1 Challenging issues

Fast evaluation of multivariate quadratic polynomials is necessary to construct practi-

cal QUAD. Our challenge is to make it efficient through two approaches: parallelizations

and using extension fields. There are three main challenging issues.

Reducing monomials in polynomials

The number of monomials in a quadratic polynomial in n variables is given by
(
n+2
2

)
.

A parallel algorithm for summations named parallel reduction [5] is executed in ⌈log T ⌉

steps, where T is the number of terms to be summed (exactly T =
(
n+2
2

)
). However, it

executes a surplus step for some n. For example, when n = 64, T = 2, 145 > 2, 048 and

it takes 12 steps. Therefore, it is desirable to reduce the number of monomials in each

quadratic polynomial under 2,048 for n = 64. Although the number of reducing terms for

each polynomial should be the same for parallelizations, choosing different combinations

is difficult. Hence, reducing monomials of quadratic polynomials is an issue.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 48

Finding fast multiplication methods on GPU

Using large fields is another way of reducing terms of multivariate quadratic polyno-

mials. Since polynomials defined over larger field can yield larger bit streams, smaller

polynomials can be used. However, we can reduce the number of variables. There are 2

types of large fields, large prime fields and large field extensions of small prime fields. In

the case of MPKC, we often choose extension fields, because additions of extension fields

over small prime fields are more efficient than large prime fields. Especially, additions

over extension fields can be implemented by vector xoring, we select extensions of the

binary field.

There is a challenging issue concerning extension fields: generally, multiplication over

extension fields is more complicated. Although in small cases (e.g. GF(28)), we can make

it efficient with lookup tables, in large cases (like GF(232)) we cannot, because of the

size of the table takes up to 32EB!. There are some related works, which discuss fast

hardware implementations of binary extension fields [44] and GPU implementations over

extension fields [37], however they do not discuss GPU implementations of extensions

of the binary field. Hence, fast implementations of multiplications over binary field’s

extensions on GPU is an important issue.

Optimizations of CUDA GPU implementation

In this paper, we use Compute Unified Device Architecture(CUDA) API [3], provided

by NVIDIA [6], for GPU implementations. In CUDA implementations, we have two sub-

issues regarding the tuning of the parallelizations on GPU. One is avoiding the surplus

steps of GPU kernels (functions). Indeed, in CUDA, kernels parallelization is achieved

with blocks and threads in each block. However, actually threads are divided by warp,

the maximal number of parallel threads in a block executed at a time. Therefore, we

should tune the number of threads in order that it is a multiple of the warp size to avoid

surplus steps. We should optimize this number for every construction.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 49

The other is adjusting placement of data. In CUDA, memory loading is suitable for

serial data. Hence, we should consider data constructions for suited memory loading on

CUDA implementations.

Our contributions

In this paper, we achieve the followings:

Reduction of the computational cost of multivariate quadratic polynomials: we reduce

the number of terms of multivariate quadratic polynomials from
(
n+2
2

)
to

(
n−k+2

2

)
by

removing variables. Our method removes different variables for each polynomial.

Comparison of several multiplication methods over GF(232): We implement multipli-

cations through the polynomial basis, the normal basis, Zech’s logarithm, using

intermediate fields and bitslicing and discover the most suited method for GPU.

For GF(232), we get the best way by bitslicing the polynomial basis over GF(232).

It show a throughput of 800 Gbps.

Optimization of QUAD on GPU: We tune our QUAD implementations for CUDA. We

choose k, which is divisible by 32. Also, we choose the best multiplications in our

experimentations, then implement QUAD over GF(232) on GPU. Moreover, we

construct a data structure for QUAD on GF(232).

We then show the throughputs of QUAD(232, 48, 48) and QUAD(232, 64, 64) as 24.827

Mbps and 19.4196 Mbps respectively. There are over 90 times faster than CPU ones.

This is the first implementations of QUAD stream cipher over GF(232).

Comparison with related works

GPU implementations are a way of parallelizing. Manavski has implemented AES

on NVIDIA GeForce GTX 295, GPU resulting in an acceleration by a factor 20 when

compared to the CPU implementation, by precomputing T-boxes and using lookup

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 50

tables [33]. Li, Zhong, Zhao, et al. achieve 50 times faster AES on NVIDIA Tesla

C2050, GPU citeli2012implementation. They use several techniques, precomputing key-

scheduling and T-boxes, using shared memory for T-boxes and CUDA vector datas.

Khalid, Bagchi, Paul, et al. has implemented HC stream ciphers citekhalid2012optimized.

Although the single-data case is slower than CPU implementations, it is 2.8 times faster

in the multiple-data case. They conclude GPU is suitable as co-processors of CPU in HC

stream ciphers. Jang, Han, Han, et al. implement RSA public-key cryptography [28].

They have implemented 1024, 2048 and 4096 bit RSA, and in 1024 bit RSA, they showed

9.2 times faster timings than CPU. Bos and Stefan have implemented the hash functions

SHA-3 round-2 candidates [17]. They have evaluated computational time of each algo-

rithm, then they have parallelized them. Our fastest GPU implementation of QUAD

over GF(232) is 90 times faster than CPU. Hence, we can conclude that evaluations of

multivariate quadratic polynomials are suitable to be implemented on GPUs.

Besides, we have tried to speed up QUAD stream cipher with 2 approaches, reducing

the computational cost of evaluating multivariate quadratic polynomials [46, 47, 48]

and studying fast multiplications over finite fields [51, 50]. This paper presents the

progresses realized upon those previous works. For evaluating polynomials, we replace

and extend our parallelizing method to binary extension fields from the binary prime

field. Moreover, in this paper, we reduce monomials of polynomials by a new algorithm.

For multiplications over extension fields, we introduce bitslicing techniques. As a result,

we have found a more suited multiplication method than in previous results [50].

Parallelization for CUDA

In CUDA, we should consider how to parallelize algorithms on GPUs. Especially,

the number of threads in each block is important. This number is defined by GPUs.

For example, NVIDIA GTX TITIAN can use 1,024 threads in each block register. On

the other hand, this number is also confined by the number of registers in blocks (e.g.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 51

65,536 registers per block for GTX TITIAN). Every thread use different registers for

variables in kernels. When the total number of registers in every thread is greater than

the number of registers in blocks, GPUs shows unexpected behavior (e.g. GPUs are

halted). Therefore, we should parallelize algorithms so that the number of registers in

blocks is less than these GPU limitations.

Another point of the number of thread is the size of warp. In CUDA, actually, blocks

execute a warp, which is a unit of threads at a time. In other words, the number of

executing threads of a block is limited by the size of the warp. Therefore, if the number

of threads is not divisible by the warp size, it has a surplus iteration. Hence, we should

tune the number of threads in order that it is a multiple of the warp size. The size of

warp has been 32 since the first version of CUDA.

4.2 Binary Extension Field GF(232)

Let p be a prime and q = pk. Then, there exists degree k extension fields GF(pk) =

GF(q) of GF(p). Generally, GF(q) can be defined by a degree k primitive polynomial

f(X). Then X is a primitive element of GF(q), if f(X) = 0. Since finite extensions of

finite fields are Galois extensions, there is a Galois group Gal(GF(q)/GF(p)) given by

following formula,

Gal(GF(q)/GF(p)) = {σ : GF(q) 7→ GF(q)|automorphism : σ(α) = α (∀α ∈ GF(p))}.

If τ defines the Frobenius mapping of GF(q)/GF(p), the Gal(GF(q)/GF(p))} is cyclic

group, generating by τ .

We can denote an element a ∈ GF(q) by a vector over GF(p) as follows:

a = {c1, . . . , ck}, (c1, . . . , ck ∈ GF(p)), (4.1)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 52

where we have fixed the basis {X1, . . . , Xk} of the extension GF(q)/GF(p):

a = c1X1 + · · ·+ ckXk =
k∑

i=1

ciXi, (4.2)

In this paper, we discuss the following 2 bases,

Polynomial basis: constructed by a primitive element X ∈ GF(q) such that {1(=

X0), X, . . . , Xk−1}.

Normal basis [45]: we assume given an element α ∈ GF(q) for a finite Galois extension

GF(q)/GF(p) such that {σ(α)|σ ∈ Gal(GF(q)/GF(p))}. Then, basis is given by

{α, αq, αq2 , . . . , αqk−1}

4.2.1 Multiplications over GF(232)

GF(q) can be handled as a residue class ring of the polynomial ring GF(p)[X] modulo

f(X). Given a, b ∈ GF(q), we denote by a(X), b(X) their representative polynomials

in GF(p)[X]/⟨f⟩. Therefore, additions and multiplications of GF(q) can be denoted as

following formulas,

a+ b := a(X) + b(X) modf(X),

a ∗ b := a(X) ∗ b(X) modf(X).

Since a can be handled as a vector of GF(p) like in Equation (4.1), additions of GF(q)

are computed by:

a+ b := {a1 + b1 mod p, . . . , ak + bk mod p}, (4.3)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 53

Zech’s logarithm

Originally, Zech’s logarithm (also called Jacobi’s logarithm [45]) is proposed to figure

additions for elements represented as powers of a generator of a cyclic group GF(q)∗ =

GF(q) \ {0}. Zech’s logarithm is considered to be a method of efficient exponentiation

over cyclic groups for cryptosystems [26, 27]. Let γ be a generator of GF(q)∗. Then,

GF(q)∗ = ⟨γ⟩. Therefore, we can represent any element in GF(q)∗ as γℓ, where ℓ is

an integer. In particular, γℓ ̸= γℓ′ , 0 ≤ ℓ ̸= ℓ′ ≤ pr − 2. In this way, GF(q)∗ can be

represented by [0, pr−2]. Hence, multiplications over GF(q)∗ can be computed by integer

additions modulo pr − 1.

Intermediate field [45]

Let k be a composite integer for q = pk. Then, there exists l, where l | k and

1 < l < k. GF(ql) is an extension field of GF(q) and a subfield of GF(pk). We call

GF(pl) an intermediate field. Because, any extension of GF(q)/GF(p) are isomorphism,

we can compute operations of GF(pk) as extension from GF(pl).

4.2.2 QUAD Stream Cipher over Extension Field

Multivariate Quadratic Polynomials

Let p be a prime and q = pk. Then, GF(q) is a degree k extension of the field with

p elements. The system A of m quadratic polynomials in n variables over a finite field

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 54

GF(q) can be written in the following form

Q1(x1, . . . , xn) =
∑

1≤i≤j≤n

α
(1)
i,j xixj +

∑
1≤k≤n

β
(1)
k xk + γ(1)

Q2(x1, . . . , xn) =
∑

1≤i≤j≤n

α
(2)
i,j xixj +

∑
1≤k≤n

β
(2)
k xk + γ(2)

...

Qm(x1, . . . , xn) =
∑

1≤i≤j≤n

α
(m)
i,j xixj +

∑
1≤k≤n

β
(m)
k xk + γ(m). (4.4)

Given the value of every unknowns, we can evaluate multivariate polynomials. Eval-

uating multivariate polynomials need compute multiplications and summations of terms

over a finite field. Therefore, evaluation a multivariate polynomial system is equivalent

to evaluate all polynomials.

Construction and Algorithm

QUAD is a stream cipher proposed by Berbain, Gilbert and Patarin [14]. QUAD

uses systems of multivariate quadratic polynomials to obtain the random keystream.

Therefore, it is a kind of MPKC. One of advantages of QUAD against other stream

ciphers is that it has a provable security. The security of QUAD is based on the MQ

assumption just like other MPKC instances, and is proved by Berbain, Gilbert and

Patarin [14].

Constructions and notation

Generally, the notation of QUAD(q, n, r) means a construction based on a system of

the n-tuple internal state value x = {x1, . . . , xn}T and keystream length r over GF(q)

in a cycle of QUAD. On the other hand, it shows that a system of QUAD as m = n+ r

quadratic equations in n variables over GF(q), and a system in QUAD are given in

Equation (5.2). Usually, m is set to kn, where k ≥ 2, and therefore r = (k − 1)n.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 55

QUAD(q, n, r) has three key constructions. One is the n-tuple key x = {x1, . . . , xn}T

over GF(q). Another is the L-bit (in particular, L = 80) initialization vector IV ∈

{0, 1}L. The last ones are 4 randomly chosen systems P , Q, S0 and S1. Systems P , S0

and S1 follow from the same construction, are n quadratic equations and in n variables

over GF(q). Only Q is different construction, it has n quadratic equations and n variables

over GF(q). System P is used to update the i-th internal state xi to next xi+1, and Q

is used to generate the i-th keystream yi = {y1, . . . , yr}T from xi, where i is an iteration

counter. Sometimes, P and Q are combined to form the system S of m = n+r equations

in n variables over GF(q). Both S0 and S1 are used in the initialization step. They replace

the initial state x0 just like updating xi+1with P .

Algorithm

The algorithm of QUAD is separated in three parts, key generation, encryption/decryption

of the message and initialization step.

Let S be a combined system of P and Q. Then, the keystream generator of QUAD

follows three steps:

Computation Step: the generator computes values of system S with the current in-

ternal value xi = {x(i)
1 , . . . , x

(i)
n }

T
.

Output Step: the generator outputs r keystreams yi from the system Q with xi.

Update Step: the current internal value xi = {x(i)
1 , . . . , x

(i)
n }

T
is updated to a next

internal value with a n-tuple value xi+1 = {x(i+1)
1 , . . . , x

(i+1)
n }

T
from system P .

The sketch illustrating the keystream generation algorithm is shown in Figure 4.1. It

indicates that the generator outputs keystreams by repeating the above three steps.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 56

Figure 4.1: Image of QUAD key generating algorithm

Encryption/decryption messages

The generated keystreams are considered to be a pseudorandom bit string and used

to encrypt a plaintext with the bitwise XOR operation.

Key and initialization of current state

Berbain, Gilbert and Patarin also provides a technique for initialization of the internal

state X = (x1, . . . , xn) [14]. For QUAD(q, n, r), we use the key K ∈ GF (q)n, the

initialization vector IV = {0, 1}|IV | and two carefully randomly chosen multivariate

quadratic systems S0(X) and S1(X), mapping GF(q)n 7→ GF(q)n to initialize X. The

initialization of the internal state X follows two steps:

Initially set step: we set the internal state value X to the key K.

Initially update step: we update X for |IV | times. Let i be an iteration counter of

initially update and IVi = {0, 1} be a value of i-th element of IV . We change the

value of X to S0(X), when IVi = 0, or to S1(X), when IVi = 1.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 57

Computational cost of QUAD

The computational cost of multivariate quadratic polynomials depends on computing

quadratic terms. The summation of quadratic terms requires n(n+1)/2 multiplications

and additions. Therefore the computational costs of one multivariate quadratic polyno-

mial is O(n2). QUAD(q, n, r) requires to compute m multivariate quadratic polynomials.

Since m = kn, the computational cost of generating key stream is O(n3).

Security level of QUAD

The security level of QUAD is based on the MQ assumption, since Berbain, Gilbert

and Patarin prove that solving QUAD needs solvingMQ problem [14]. The eXtended

Linearization(XL) algorithm [22] is a solving method of theMQ. The XL constructs a

polynomial system of the degree D by products of quadratic equations and monomials

of the degree d, where 1 ≤ d ≤ D, and solves the system as linear algebra. Then, the

running time of XL depends on D. The minimal D is called the degree of regularity.

Yang, Chen, Bernstein et al. [55] show that the degree of regularity of the MQ in

QUAD(q, n, n) is given by the degree of the lowest term with a non-positive coefficient

in the following polynomial,

G(t) = ((1− t)(−n−1)(1− t2)n(1− t4)
n
). (4.5)

Moreover, they give the expected running time of the XL-Wiedemann CXL as the fol-

lowing formula.

CXL ∼ 3τTm. (4.6)

T is the number of monomials in equations (for large q, T =
(
n+D
D

)
), τ = λT is the

total number of monomials in all equations (λ is the average terms in original quadratic

equations), and m is the cycle of field multiplications. According to their QUAD anal-

ysis, QUAD(28, 20, 20) has 45-bit security, QUAD(24, 40, 40) has 71-bit security, and

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 58

QUAD(2, 160, 160) has less than 140-bit security. Actually, secure QUAD requires larger

constructions such as QUAD(2,256,256) or QUAD(2,320,320).

4.3 Evaluating Multivariate Quadratic Polynomials on GPU

4.3.1 Evaluating Polynomials by SIMD

GPU is suitable for implementations of SIMD constructions. SIMD is a parallelization

method, which computes multiple data by single function call. In CUDA API, GPU

kernels achieve SIMD on GPU by single function call and execute multi threads. In this

paper, we evaluate multivariate quadratic polynomials through the following 3 steps.

1) precompute quadratic monomials xixj, 2) compute all monomials α
(k)
i,j xixj, β

(k)
i xi, 3)

calculate summations
∑

1≤i≤j≤n α
(k)
i,j xixj +

∑
1≤i≤n β

(k)
i xi.

Precomputing xixj

This step is based on the precomputing method of Berbain, Billet and Gilbert [13].

There are
(
n+1
2

)
= n(n + 1)/2 quadratic monomials in a quadratic polynomial with n

unknowns. Therefore, we compute each xixj by each thread. Then, thread t can be

computed from (i, j) by the following formula.

t =
j(j − 1)

2
+ i, (4.7)

However, computing (i, j) from t is inefficient. Hence, we construct a lookup table of

(i, j) from t.

Compute all monomials

Before computing monomials, we store xixj into xn+t, where t is given by Equa-

tion (4.7). Also, we assume that β
(k)
n+t = α

(k)
i,j , then we compute β

(k)
i xi (1 ≤ i ≤

(n+ 1)(n+ 2)/2) in parallel.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 59

calculate summations
∑

1≤i≤j≤n α
(k)
i,j xixj +

∑
1≤i≤n β

(k)
i xi

In this paper, we use parallel reduction technique like the method of Tanaka, Nishide,

Sakurai [48]. It takes ⌈log T ⌉ steps for a summation, where T is the number of terms of

the summation. Actually, T is the number of monomials in a polynomial.

4.3.2 Reducing Terms in Polynomials

The parallel reduction takes ⌈log T ⌉ steps for a summation of a polynomial. When

n = 64, T = 2, 145. Therefore, it takes ⌈log 2, 145⌉ = 12 steps for a summation. Since if

T ≤ 2, 048, it takes only 11 steps, reducing monomials of polynomials is desirable. Now,

we provide removing method of monomials in quadratic polynomials by variable-base

reduction. We remove variables xi for each polynomial fj, where i are given by the

following formula.  i ≡ n− j − 1 (mod n
k
) (k | n)

k(i− 1) + j > n− k − 1 (mod n) (k ∤ n)
(4.8)

After that, we construct new n − k-tuple variables x′
j for each polynomial fj, where

1 ≤ j ≤ m. Then, the number of terms in each polynomial is reduced from
(
n+2
2

)
to(

n−k+2
2

)
. Figure 4.2 shows that the image of this variable-base reduction of k = 1. Since

each tuple is different, systems of quadratic polynomial equations with k+1 polynomials

constructs also n unknown system. Hence, we expect this method does not reduce the

security parameters for small k.

Security Looseness with Reducing Terms

Our reducing technique removes k variables from polynomials. Looking through the

whole of polynomials, polynomials still have a system of m polynomials in n unknowns.

However, the number of terms in polynomial is decreased to
(
n+2−k

2

)
from

(
n+2
2

)
. Ac-

cording to analysis of QUAD with the XL-Wiedemann by Yang et al. [55], the expected

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 60

Figure 4.2: Removing variables xi from quadratic polynomial fj, where k = 1.

running time is given by Formula (4.6) as following:

CXL ∼ 3τTm = 3λT 2m.

Because the number of unknowns in reduced systems equals to in full systems, the degree

of regularity D of reduced systems is same to of full systems. Hence T is not decreased.

On the other hand, the average number of term in polynomials λ is decreased to
(
n+2−k

2

)
from

(
n+2
2

)
. Therefore, the expected time of solving MQ with a k-reduced system of

m polynomials in n unknowns is (n + 2 − k)(n + 1 − k)/(n + 2)(n + 1) times smaller

than a full system. For example, MQ with a 2-reduced system of 64 polynomials in

32 unknowns is solved in 88.4 % of solving time with a full system. Figure 4.3 shows

that such security looseness by removing 1, 2, 5, and 10 variables from original quadratic

polynomials by our method. Also, Figure 4.4 shows the security ratio between original

quadratic polynomials and reduced ones.

In detail, Yang et al. give the analysis [55], the XL-Wiedemann algorithm can solve

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 61

Figure 4.3: Security looseness by reducing variables from polynomials

in time CXL as the following:

CXL = 3τTm = 3wBT
2m,

where, T is the number of variables in the linearized system by XL, τ = wBT is the total

number of monomials in that system, and m is a computational cost of multiplications.

Let m = 1, i.t. each multiplication is calculated in a cycle. Then, CXL for aMQ with a

system of 64 equations in 32 variables (the case of QUAD(232, 32, 32)) in roughly 3.98×

1011 instructions. According to evaluation of security equivalent between symmetric

ciphers and asymmetric cryptosystems by Lenstra and Verheul [32], it corresponds to

76-bit security of symmetric cipehrs. When we reduce 2 variables from each equation

by our method, CXL is down to 3.52 × 1011 instructions. However, it keeps the 76-bit

security.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 62

Figure 4.4: Security ratio between original polynomials and reduced polynomials.

4.4 Analysis of Multiplication Algorithms over Extension Fields

The computational costs of multiplications differs regarding the choice of the basis

and of the approaches. We discuss 6 multiplication methods. 1) polynomial basis, 2)

normal basis, 3)Zech’s logarithm, 4) lookup table, 5) using intermediate fields and 6)

bitslicing method. Now, we assume that GF(q) = GF(pk) is an extension field and f(X)

is a primitive polynomial of GF(q)/GF(p). Also, let c := a ∗ b ∈ GF (q).

4.4.1 Polynomial basis

Let GF(q) be a set of polynomials over GF(p). Then, we can compute the multipli-

cation e1 ∗ e2, where e1, e2 ∈ GF(q), by:

e1 ∗ e2 := e1(X) ∗ e2(X) mod f(X), (4.9)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 63

Let e1, e2 ∈ GF(q) be ck−1x
k−1+ · · ·+c1x+c0 and c′k−1x

k−1+ · · ·+c′1x+c′0, respectively.

The product e1 ∗ e2 can be computed by:

e1 ∗ e2 = ck−1c
′
k−1x

2k−2 + · · ·+ c0c
′
0 mod f(X).

In this method, we need to compute the multiplications cic
′
j for 0 ≤ i, j < k and

the summations
∑

i+j=t,i,j≥0 cic
′
j for 0 ≤ t ≤ 2(k − 1) over GF(p). The summation∑

i+j=t,i,j≥0 cic
′
j requires t additions for 0 ≤ t < k and 2k − t− 2 additions for k ≤ t ≤

2(k − 1). Therefore, it requires (k − 1)2 additions and k2 multiplications over GF(p) if

schoolbook multiplication is used. Moreover, e1 ∗ e2 takes k⌈log2 pm⌉ ≃ n⌈log2 p⌉ bits of

memory.

Normal basis

Given a finite Galois extension GF(q)/GF(p), there exists an α ∈ GF(q) such that

{σ(α)|σ ∈ Gal(GF(q)/GF(p))} is an GF(p)-basis of GF(q), which is called a normal

basis of GF(q)/GF(p). A normal basis of GF(q)/GF(p) can thus be denoted by:

{α, αq, αq2 , . . . , αqk−1}. (4.10)

Then, an element a ∈ GF(q) can uniquely be written as:

a = c0α + c1α
pm + · · ·+ ck−1α

p(k−1)m

, c0, . . . , ck−1 ∈ GF(p). (4.11)

Let a = [c0, c1, . . . , ck−1]n ∈ GF(q) be defined in Equation (4.11). Then Frobenius

map σ0 applied to α gives:

σ0(a) = aq = [ck−1, c0, c1, . . . , ck−2]n. (4.12)

In other words, σ0(a) is simply a right circular shift [34].

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 64

Furthermore, let a = [c0, c1, . . . , ck−1]n, b = [c′0, c
′
1, . . . , c

′
k−1]n ∈ GF(q), and the re-

sult of the multiplication a∗b be [d0, d1, . . . , dk−1]n. Then, every di, where 0 ≤ i < k, can

be computed by evaluating the quadratic polynomials of c0, c1, . . . , ck−1, c
′
0, c

′
1, . . . , c

′
k−1

over GF(p). Let di = pi(c0, . . . , ck−1, c
′
0, . . . , c

′
k−1), ∀0 ≤ i < k. According to Equa-

tion (4.12), we can compute σ0(a ∗ b) by:

σ0(a ∗ b) = [dk−1, d0, d1, . . . , dk−2]n (4.13)

= σ0(a) ∗ σ0(b)

= [ck−1, c0, . . . , ck−2]n ∗ [c
′
k−1, c

′
0, . . . , c

′
k−2]n

= [p0(ck−1, c0, . . . , ck−2, c
′
k−1, c

′
0, . . . , c

′
k−2), . . . ,

pk−1(ck−1, c0, . . . , ck−2, c
′
k−1, c

′
0, . . . , c

′
k−2)]n.

By comparing coefficients, dk−2 can be computed by:

dk−2 = pk−1(ck−1, c0, c1, . . . , ck−2, c
′
k−1, c

′
0, c

′
1, . . . , c

′
k−2),

with Equation (4.13). In the same way, we can compute σ2
0(a ∗ b), . . ., for all i by

performing right circular shifts and computing all the dr’s by evaluating pk−1.

Let a, b ∈ GF(q) be [c0, . . . , ck−1]n and [c′0, . . . , c
′
k−1]n, respectively. An addition

over GF(q) takes k additions over GF(p), similar to the polynomial basis method. On

the other hand, the multiplication a ∗ b takes 2(k − 1) right circular shift operations

and k evaluations of a fixed (quadratic) polynomial pk−1(c0, . . . , ck−1, c
′
0, . . . , c

′
k−1). An

evaluation of a quadratic polynomial takes k2 − 1 additions and 2k2 multiplications

over GF(p). We can further speed up such an evaluation by precomputing common

multiplications cicj over GF(p), where 0 ≤ i, j ≤ k − 1. Moreover, we can modify

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 65

formula for ci, cj, c
′
i, c

′
j to :

pk−1(c0, . . . , ck−1, c
′
0, . . . , c

′
k−1)

= c0c
′
0 +

∑
0≤i<j<k si,j(ci + cj)(c

′
i + c′j) ∀(i, j), si,j ∈ GF(p),

where i ̸= j. Therefore, a multiplication over GF(q) requires k(k− 1)(k+2)/2 additions

and k(k2 + 1)/2 multiplications over GF(p) plus 2(k − 1) right circular shift operations.

Moreover, the normal basis method needs (k2 − k + 2)⌈log2 pm⌉/2 bits of memory.

4.4.2 Zech’s logarithm

In this method, a multiplication over GF(q) needs one integer addition modulo k−1.

On the other hand, addition is not simple. Therefore, we convert it to the polynomial ba-

sis for additions and convert it back to the cyclic group representation for multiplications.

Therefore, a multiplication needs three such conversions. One is for converting from

polynomial to cyclic group representation, while the other is the opposite. Therefore, an

addition takes k additions over GF(p), similar to the polynomial basis representation,

and a multiplication needs one integer addition modulo k− 1 plus three conversions be-

tween polynomial and cyclic group representations. Moreover, since the tables represent

maps from GF(q) to itself, Zech’s method needs 2pn⌈log2 pn⌉ bits of memory.

4.4.3 Multiplication Tables

We create a multiplication table by offline precomputing all combinations of multi-

plications over GF(q). Then, we can compute multiplications by looking up the multi-

plication table.

An addition over GF(q) can be computed using k additions over GF(p). On the

other hand, a multiplication over GF(q) needs only one table look-up. Since the entire

multiplication table needs to store every possible combination of multiplications over

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 66

GF(q), this method requires p2n⌈log2 pn⌉ bits of memory.

4.4.4 Using intermediate Fields

Although the multiplication table method is impractical for GF(232), for GF(28)

the table requires only 256 KB. Also, Zech’s logarithm over GF(232) needs just 256

KB. Here, we consider a method using an intermediate field GF(2l) for GF(232)/GF (2),

where l = 2, 4, 8, 16. In this method, we can compute multiplications over GF(232)

by considering it as an extension field over GF(2l) and by using the polynomial basis

method or the normal basis method. For example, since the extension degree k = 4

for GF(232)/GF(28), we can compute multiplication over GF(232) by 9 additions over

GF(28)(72 XORs), 16 table look-ups, and one modulo over GF(28) with the polynomial

basis method, or 288 XORs and 34 table look-ups with the normal basis method.

4.4.5 Bitslicing Method

Bitslicing method is a method of parallelization. Usually, one data is stored in one

variable (e.g. 32-bit integer). This method slices datas and stores bit-datas of some

variables in one variable. For example, 32 datas of 32-bit integers x1, . . . , x32. We

translate to bitsliced datas y1, . . . , y32. Then, yk has the datas of k-bit of every xi. The

ith bit of of yk is stored the k-th bit of xi

Bitslicing method achieves simple SIMD constructions and compressing data. In

other words, since it can handle several variables at a time, it becomes more efficient.

Also, when every data length is shorter than the size of variables, we can reduce the

memory size by removing unused bits. On the other side, functions in programming

languages are built for normal data. Therefore, we must build special functions for

bitsliced data.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 67

Table 4.1: Cost of multiplication over GF(232).
Intermediate Method Computational cost Memory

field GF(2l) GF(2l)/GF(2) GF(2k)/GF(2l) XOR AND LOOKUP MOD ADD space

Direct - Polynomial basis 1,096 1,024 0 0 0 4B
(Bitslicing) 34.25 32 0 0 0 128B
Normal basis 16,864 16,400 0 0 0 125B
(Bitslicing) 527 512.5 0 0 0 128B

Zech’s logarithm 0 0 3 1 1 32GB
Multiplication 0 0 1 0 0 64EB

table

GF(22) Polynomial basis 450 0 512 1 0 6B
Normal basis 4,320 0 4,112 0 0 35B

GF(24) Multiplication Polynomial basis 196 0 256 1 0 132B
table Normal basis 1,120 0 1,040 0 0 143B

GF(28) Polynomial basis 72 0 128 1 0 64KB
Normal basis 288 0 272 0 0 64KB

GF(216) Zech’s Polynomial basis 16 0 12 4 5 256KB
logarithm Normal Basis 64 0 15 5 5 256KB

4.4.6 Costs of Multiplications over GF(232)

Table 4.1 shows the costs of multiplications over GF(232). The polynomial basis

method and the normal basis method shows a much higher computational cost. On the

other hand, Zech’s logarithm and using multiplication table are impractical, as it needs 32

GB and 64 EB of memory space, respectively. Similarly, we estimate the computational

costs of multiplications over GF(232) using GF(22), GF(24) or GF(216). We show the

computational costs of multiplications over GF(232) using these intermediate fields in

Table 4.1. Moreover, we assume that the bitslicing method reduces the computational

cost of multiplications to 1/32 by 32-bit integers. Then, the estimation of bitslicing

method in Table 4.1 shows an average computational cost of 1 multiplications of 32

bitsliced multiplications.

4.4.7 Experimentation of Multiplications

We implement the three basic multiplication methods, namely, polynomial basis,

Zech’s logarithm, and normal basis, over GF(232) on CPU and GPU. We evaluate

and compare the running time of 67,108,864 multiplications with random elements over

GF(232) for each method. Similarly, we also implement and perform the same experiment

using intermediate fields and bitslicing methods as follows:

（1）Multiplication table + polynomial basis method: GF(232)/GF(2k)/GF(2) (k =

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 68

1, 2, 4, 8)

（2）Multiplication table + normal basis method: GF(232)/GF(2k)/GF(2) (k = 1, 2, 4, 8)

（3）Zech’s logarithm + polynomial basis method: GF(232)/GF(216)/GF(2)

（4）Zech’s logarithm + normal basis method: GF(232)/GF(216)/GF(2)

（5）Bitslicing + polynomial basis method: GF(232)/GF(2)

（6）Bitslicing + normal basis method: GF(232)/GF(2)

Hereunder, are the primitive polynomials used for each field extension.

（1）GF(232)/GF(2): Y 32 + Y 22 + Y 2 + Y + 1 = 0

（2）GF(232)/GF(22)/GF(2): Y 16 + Y 3 + Y +X = 0

（3）GF(232)/GF(24)/GF(2): Y 8 + Y 3 + Y +X = 0

（4）GF(232)/GF(28)/GF(2): X4 + Y 2 + (X + 1)Y + (X3 + 1) = 0

（5）GF(232)/GF(216)/GF(2): Y 2 + Y +X13 = 0

All the experiments are performed on Ubuntu 10.04 LTS 64bit, Intel Core i7 875K

and NVIDIA GTX TITIAN with 8 GB of DDR3 memory.

Experimental result

Table 4.2 shows the result of implementations computational time for 67,108,864

multiplications. Table 4.3 shows throughputs of the result with our previous work [50].

In CPU implementations, the normal basis method using GF(216) is the fastest, possibly

because it needs the fewest computations among all methods. On the other hand, in

GPU implementations, bitslicing method of the polynomial basis method is the fastest.

Compared with our previous result on NVIDIA GTX GeForce 580 [50], the polynomial

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 69

Table 4.2: Computing time of 67,108,864 multiplications over GF(232).
Computational time (sec)

NVIDIA GTX NVIDIA GeForce
Intermediate Multiplication Intel Core i7 875K TITAN GTX 580 [50]

field method Polynomial Normal Polynomial Normal Polynomial Normal

GF(2l) GF(2l)/GF(2) basis basis basis basis basis basis

Direct - 338.077 575.096 0.0764 8.657 1.552 25.064
(bitslicing) 18.484 15.425 0.00246 0.94s N.A. N.A.

GF(22) Multiplication 121.997 159.989 1.548 5.099 1.242 3.813

GF(24) table 31.651 38.281 0.368 0.485 0.583 0.776

GF(28) 8.627 9.121 0.0479 0.129 0.0555 0.0621

GF(216) Zech’s 3.510 3.015 0.153 0.0764 0.195 0.153
logarithm

Table 4.3: Throughputs of multiplications over GF(232).
Intel Core i7 875K NVIDIA GTX NVIDIA GeForce

Intermediate Multiplication (Mbps) TITAN (Gbps) GTX 580(Gbps) [50]
field method Polynomial Normal Polynomial Normal Polynomial Normal

GF (2l) GF (2l)/GF (2) basis basis basis basis basis basis

Direct - 6.058 3.561 26.180 0.231 1.289 0.0798
(bitslicing) 110.802 132.773 812.018 2.108 N.A. N.A.

GF (22) Multiplication 16.787 12.801 0.392 4.122 1.610 0.525

GF (24) table 64.706 53.499 5.434 4.122 3.431 2.577

GF (28) 237.394 224.537 41.796 15.472 36.036 32.206

GF (216) Zech’s 583.476 679.270 13.096 26.170 10.256 13.072
logarithm

basis of GF(232)/GF(2) is 20 times faster. In this experimentation, we optimize the

placement of data for memory loading reduced for multiplications, because loading data

in a warp is required as a straight chunk in CUDA. We believe that this optimization

makes efficient multiplications. We believe that the GPU cannot efficiently access the

global memory the tables in Zech’s logarithm over GF(28), as these tables are too large

to fit into the fast memory on GPU.

4.5 Experiments of Parallel QUAD stream Cipher on GPU

4.5.1 Target constructions of QUAD

In this paper, we discuss three instances of QUAD constructions, QUAD(232, 32, 32),

QUAD(232, 48, 48) and QUAD(232, 64, 64). They output respectively 1,024, 1,536 and

2,048 bit keystreams at a time. Table 4.4 shows other parameters of these constructions.

Security parameters in Table 4.4 are roughly evaluated with formula (4.5) and (4.6) by

analysis es of Yang, Chen, Bernstein, et al. [55]. For example, D = 20 for QUAD(232, 64,

64). Then the number of monomials T =
(
64+20
20

)
≃ 1.0736×1019. Similarly, the average of

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 70

Table 4.4: Parameters of QUAD instances
Constructions QUAD(232, 32, 32) QUAD(232, 48, 48) QUAD(232, 64, 64)

Variables 32 48 64

Polynomials 64 96 128

Monomials 561 1,225 2,145

Output (bit) 1,024 1,536 2,048

Memory System (KB) 140.25 459.375 1,072.5
size Key(Byte) 128 192 256

Security (bit) ≤ 78 ≤ 104 ≤ 134

Security looseness (%) 88.4 80.8 94.0

monomials in quadratic terms λ ≃
(
64+2
2

)
= 2145, and τ = λT ≃ 2.3029×1022. Therefore,

the running time of XL-Wiedemann CXL = 3τTm ≃ 3×2.3029×1022×1.0736×1019m ≃

λT = 7.4171 × 1041m multiplications over GF(232). From our GPU implementations of

multiplications over GF(232), we assume that m = 0.03 from our multiplication result on

GPU. Hence, CXL ≃ 27.4171× 1041 × 0.03 ≃ 2.2251× 1040 ≤ 2134.

4.5.2 Optimizing Evaluation of Polynomials on CUDA API

We should consider the size of warp, which is the maximal number of parallel threads

of each block at a time. Let W be a number of warps, T be the number of threads in

a kernel. The kernel is executed with ⌈T/W ⌉ iterations. Therefore, when W ∤ T , the

kernel is running redundant steps. Hence, we should tune the number of threads in order

that it is a multiple of W . In CUDA, W = 32. Then, we consider the case of n = 64.

The number of terms with n = 64 is
(
64+2
2

)
= 33 × 65 | 32. We reduce the terms by

remove in variables. Now, we remove 2 variables for each polynomial (k = 2). Then, the

number of terms is reduced to
(
64−2+2

2

)
= 32 × 63. Similarly, we chose k = 2 and 5 for

n = 32 and 48, respectively.

From our experimentation result in Table 4.2, we choose bitslicing method of the

polynomial basis as the multiplication over GF(232) for QUAD on GPU. Then, we can

handle 32 polynomials at a time with a 32-bit integer variable. Figure 4.5 shows place-

ments of polynomials for each QUAD construction. Each bit of variables have bit data

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 71

of terms in different polynomials and each term is constructed by 32 bits over GF(232).

Therefore, they require 32 memory loading in a kernel. Since loading data in a ker-

nel should be as a straight chunk in CUDA, our data constructions are separated into

bit-data chunks.

Figure 4.5: Placements of polynomials for each QUAD construction.

4.5.3 Experimental Result

We implement QUAD stream ciphers over GF(232) on CPU and GPU. In this work,

we implement three constructions about QUAD(232, 32, 32), QUAD(232, 48, 48) and

QUAD(232, 64, 64). Moreover, we measured encryption time of each construction with

10MB data. We show the result in Table 4.5.

Table 4.5: Encrypting time of QUAD over GF (232)
Variables 32 48 64

Polynomials 64 96 128

CPU (Intel Core i7 875K)
Encrypting time (sec) 205.105 298.842 392.277
Throughputs (Kbps) 399.408 274.126 208.832
GPU (NVIDIA GTX TITAN)
Encrypting time (sec) 4.032 3.222 4.120
Throughputs (Mbps) 19.841 24.827 19.419

Speed up factor 50.869 92.743 95.220

Also, we show the comparison with related works in Table 4.6 and 4.7. Table 4.6 shows

comparisons with other QUAD implementations. Our result is not the fastest. However,

the faster constructions, QUAD(2, 128, 128), QUAD(24, 40, 40) and QUAD(28, 20, 20) are

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 72

Table 4.6: Comparison with other QUAD implementations
Implementation Constructions Output Key Throughputs Security
environment (bit) (KB) (Mbps) (bit)

q n m

BGP06 [14] Pentium 4 2 160 320 160 503.164 5.7 ≤ 140
BBG067 [13] Opetron 2 160 320 160 503.164 8.45 ≤ 140

64 bit 24 40 80 160 33.633 23.59 ≤ 71

28 20 40 160 9.023 42.15 ≤ 45
ABBG07 [8] FPGA 2 256 512 256 2056.063 2.0 ≤ 140
HB13 [25] Virtex-4, FPGA 2 128 256 128 262.031 374.7 ≤ 118
TNS [48] NVIDIA GeForce 2 160 160 160 503.164 4.872 ≤ 140

GTX 480, GPU 2 256 512 256 2056.063 4.115 ≤ 160
2 320 640 320 4012.578 3.656 ≤ 320

Our work NVIDIA GTX 232 32 64 1,024 140.250 19.841 ≤ 76

TITAN, GPU 232 48 96 1,536 459.375 24.827 ≤ 103

232 64 128 2,048 1,008.000 19.419 ≤ 132

less secure than QUAD(232, 64, 64). Hence, our implementations seems to be a trade-

off point between speed and security. Table 4.7 shows comparisons with other GPU

implementations. Our GPU implementations are 50-95 times faster than CPU. Hence,

our implementations make more efficient than our previous work [48]. Moreover, these

factors show that QUAD stream cipher is suitable for parallel implementations.

Table 4.7: Comparison with previous GPU implementations of QUAD.
GPU Algorithm Throughputs Speed up factor

TNS13 [48] NVIDIA GeForce QUAD(2, 160, 160) 4.872Mbps 10.00
GTX 480 QUAD(2, 256, 256) 4.115Mbps 21.32

QUAD(2, 320, 320) 3.656Mbps 29.72

Our work NVIDIA QUAD(232, 32, 32) 19.841 Mbps 50.869
GTX TITIAN QUAD(232, 48, 48) 24.827 Mbps 92.743

QUAD(232, 64, 64) 19.419 Mbps 95.220

Profile of Kernels

Our multiplications over GF(232) has 132 registers. Each block has only 65,536

registers. Then, we can only run 496 threads (15.5 warps) in a block. Also, each SM can

have 2,048 threads over blocks, if the sum of registers is at most 65,536. The occupancy

of utilization shows 100 % when each SM has 64 warps(2,048 threads). If a kernel has 135

registers per threads, each SM can have only 12 warps. Therefore, we can only achieved

19 % occupancy for multiplications.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4 Effective Method for Multiplications over Extension Fields 73

On the other side, summations of terms in polynomials have only 11 registers. If the

number of registers in a kernel is less than 32, each SM can have 2,048 threads. Moreover,

each QUAD instance have 256, 512, 1,024 threads in a block. Then, we achieve 100 %

occupancy.

4.6 Conclusion

In this work, we discuss fast implementations of QUAD over GF(232). We discuss

3 approaches of accelerating QUAD, parallelization of evaluating multivariate quadratic

polynomials, finding the most suited multiplication method on GPU and optimizing

on CUDA. In the parallelization approach, we also provide the variable-base reduction

method of terms in polynomials.

By the experimentation of multiplication over GF(232). We find a more suited method

than in our previous work [50]. The multiplication using bitslicing show a throughput of

over 800 Gbps.

Finally, we show implementations of QUAD steam cipher over GF(232) on GPU with

several optimizations. QUAD(232, 48, 48) and QUAD(232, 64, 64) show speed up factors

of over 90 times compared to CPU. We consider that our implementation result is a

tradeoff point between speed and security.

At a future work, we would like to discuss the security of our QUAD implementations.

For example, evaluating how decrease the security in our variable-base reduction method.

Also, we are interested to generalizations to other extensions of the binary field (e.g.

GF(216) or GF(264)).

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 74

Chapter 5

Parallelizations of MPKC using Linear

Recurrence Sequence

5.1 Introduction

Background

Stream ciphers are a type of efficient symmetric cryptosystems, whose encryption is

performed by xoring messages with keystreams. The security of a stream cipher is largely

determined based on its pseudo-randomness, e.g., periodicity, unbiasedness, etc [18, 54].

In these discussions, security parameters are evaluated by experimentation with known

attacks. In contrast, there are stream ciphers that provide provable security, with reduc-

tions to well-known mathematically difficult problems. For example, Blum, Blum, and

Shub introduced a construction based on PRNG, whose security can be reduced to the

difficulty of the integer factorization problem [15]. Proposed by Berbain, Gilbert, and

Patarin, QUAD is also such a stream cipher endowed with provable security [14]. It uses

the theory of multivariate public-key cryptography (MPKC) and generates keystreams

by evaluating multivariate quadratic polynomials over finite fields. Generally, we denote

the construction of QUAD with a system over GF(q) of n unknowns and r-bit output

streams as QUAD(q, n, r). The security of QUAD depends on the complexity of solving

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 75

multivariate quadratic equation systems over finite fields, i.e., theMQ problem. Since

theMQ problem is known to be NP-complete [11], QUAD is a provably secure stream

cipher.

However, QUAD has a problem when it comes to computational cost. QUAD requires

evaluating multivariate quadratic polynomials over finite fields. Typically, QUAD(q, n, r)

needsmn(n+2) additions andm(n+ 1)2 multiplications over GF(q) for evaluation, where

m is the number of polynomials, that is, m = n + r. Therefore, efficient evaluation is

necessary for making QUAD faster.

Related work

Petzoldt proposed an efficient method of evaluating QUAD, which reduces the com-

putational cost from O(mn2) to O(mn) [42]. His idea is to use LRS. Coefficients of LRS

QUAD are powers of generators of finite fields. Then, LRS QUAD computes several

multiplications at a time sequentially.

Parallelization technique is an effective method for accelerating QUAD. Hamlet and

Brocato provided implementations of parallelized QUAD on field-programmable gate ar-

ray (FPGA) [25]. They showed a throughput of 374 Mbps for QUAD with 256 quadratic

polynomials in 128 variables over GF(2). Tanaka, Yasuda, and Sakurai proposed paral-

lelized QUAD on graphics processing units (GPU) [49]. They showed a throughput of

24.8 Mbps for QUAD with 96 quadratic polynomials in 48 variables over GF(232).

The challenges

In his implementation, Petzoldt used GF(28). The period of generators over GF(28)

is at most 255. However, his quadratic polynomial has 378 terms. Hence, there are some

relations between some terms in his quadratic polynomials. Therefore, there is a risk

that the security might be reduced.

Petzoldt claimed that his method can be parallelized easily as follows. Each quadratic

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 76

polynomial in QUAD is independent, so it is easy to parallelize at the polynomial level.

However, the degree of parallelization is proportional to the number of polynomials in

QUAD, which may not be enough for effectively exploiting the full computational power

available on modern GPUs. In this paper, we shall consider further parallelization in

evaluating LRS quadratic polynomials for GPU implementation.

Our contributions

We choose GF(232) for the finite field of LRS QUAD stream cipher. The period of

generators over GF(232) is 232−1. This is enough for coefficients of quadratic polynomials,

as the number of terms in a quadratic polynomial of n variables is only
(
n+2
2

)
.

In this work, we implement two versions of parallelized Pezoldts’s LRS QUAD stream

cipher [42] on GPU. The first version is the näıve parallelization with parallelization

only at the polynomial level. The second version parallelizes computations in quadratic

polynomials, e.g., calculating αi,jxixj. The result shows that the latter is 2.5 times faster

than the former, making it more suitable for GPU implementation of LRS QUAD.

To further exploit the available computational power on modern GPUs, we adopt

the multi-stream strategy used by Chen et al [20], in which multiple QUAD instances

are executed in parallel. We have implemented multi-stream QUAD over GF(232) and

achieved a throughput of 193.40 Mbps for 256 streams of QUAD with 64 polynomials

in 32 variables. To the best of our knowledge, this is the best throughput performance

result for software implementation of QUAD. To achieve this performance for Petzoldt’s

LRS QUAD, we have introduced three data structures specifically for efficient handling

of memory loading with CUDA API, the most popular programming environment for

NVIDIA GPUs.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 77

5.2 The QUAD Stream Cipher using the Linear Recurring Se-

quence

Let p be a prime, and q = pk, where k ≥ 1. We assume that GF(q) is a degree-k

extension field over GF(p). Then a multivariate quadratic polynomial in n variables over

GF(q) is given as follows:

f(X) =
∑

1≤i≤j≤n

ai,jxixj +
∑

1≤k≤n

bkxk + c

(ai,j, bk, c ∈ GF(q), (1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ n)). (5.1)

Moreover, a system of m multivariate quadratic polynomials in n variables is denoted as

follows:

S(X) = {f1(X), . . . , fm(X)}. (5.2)

The QUAD stream cipher uses the Equation (5.2) as a PRNG to generate keystreams [14].

When m = tn (where t ≥ 2), the PRNG of QUAD divides the system of m multivariate

quadratic polynomials S(X) into two subsystems Sit(X) of n polynomials and Sout(X) of

(t−1)n polynomials. Then, QUAD uses Sit(X) to update internal states X and Sout(X)

to output keystreams. Finally, it encrypts messages by xoring with keystreams.

5.2.1 Quadratic Polynomials Generated with LRS

Let γ1, γ2, . . . , γL be elements of GF(q). Then, a linear recurring sequence (LRS) of

length L: {s1, s2, . . . |si ∈ GF(q)} is given as follows:

sj = α1 · sj−1 + α2 · sj−1 + · · ·+ αL · sj−L ∀j > L. (5.3)

The values s1, . . . , sL are the initial values of the LRS.

Alternatively, a quadratic polynomial f(X) given by Equation (5.1) can also be

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 78

written as follows:

f(X̂) = X̂



a1,1 a1,2 · · · a1,n b1

0 a2,2 · · · a2,n b2
...

...
. . .

...
...

0 0 · · · an,n bn

0 0 · · · 0 c


X̂T

X̂ =
(
x1 x2 · · · xn xn+1(= 1)

)
. (5.4)

Now, we assume that γ ∈ GF(q) is a generator of GF(q). Then, there is an LRS:

Ti = γ · Ti−1 +Mi,i · xi(i ≥ 2), (5.5)

where Mi,i = γ
∑i−1

j=1 n−j+2, and the initial value T1 = x1. Then, every term xiTi can be

denoted as follows:

xiTi =
i∑

j=1

γi−j ·Mj,j · xixj. (5.6)

Equation (5.6) shows that xiTi includes every xixj, where i ≤ j. Hence, quadratic

polynomials can be computed via the following summation:

f(X̂) =
n+1∑
i=1

xiTi. (5.7)

That is, Equation (5.7) essentially computes the following matrix:

f(X̂) = X̂



1 γ · · · γn−1 γn

0 γn+1 · · · γ2n−1 γ2n

...
...

. . .
...

...

0 0 · · · γ(
n+2
2 )−3 γ(

n+2
2 )−2

0 0 · · · 0 γ(
n+2
2 )−1


X̂T (5.8)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 79

Petzoldt’s LRS QUAD

Algorithm 2 shows the keystream generation algorithm in Petzoldt’s LRS QUAD

stream cipher. This algorithm has two iteration steps for evaluating a quadratic poly-

nomial. The first one is computing LRS values Ti by Equation (5.5), and the other,

evaluating quadratic polynomials fk(X̂) by Equation (5.7). The first iteration takes n

steps, each of which requires 2 multiplications and 1 addition. In addition, the second

iteration takes n+1 steps and requires n+1 multiplications and n additions. Therefore,

evaluating a multivariate quadratic polynomial requires 3n + 1 multiplications and 2n

additions. Hence, keystream generation in QUAD with m polynomials in n variables

takes 3m · n+m multiplications and 2m · n additions.

5.3 Parallelization of the LRS QUAD

5.3.1 Näıve Method

A näıve parallelization method for Petzoldt’s LRS QUAD is suggested in his own

work [42]. This method parallelizes between each evaluation of quadratic polynomials

fk(X̂) in QUAD of m polynomials in n variables.

In addition, we can use the bitslicing method of Berbain, Billet, and Gilbert [13] for

parallel evaluation of quadratic polynomials. Usually, one data is stored in one variable,

e.g., 32-bit integer register. The bitslicing method slices datas and stores bit-datas of

multiple variables in one register. Take 32 datas of 32-bit integers x1, . . . , x32 as an

example. We translate to bitsliced datas y1, . . . , y32. Then, yk has the datas of k-bit of

every xi. The i-th bit of yk is stored the k-th bit of xi. In QUAD stream cipher, we can

handle 32 quadratic polynomials at a time by bitslicing.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 80

5.3.2 Parallel Evaluation of Quadratic Polynomials

In Algorithm 2, there are three places that can be effectively parallelized. The first

is in computing Mi,i · xi (for i ≥ 2) in step 2. Although the computation of γ · Ti−1

is sequential for i, the computation of Mi,i · xi is independent of each other. Then,

calculating xi can be parallelized as precomputing of Ti = γ · Ti−1 +Mi,i · xi. Similarly,

computing xjTi in step 3 can be handled in parallel before evaluating f(X̂) =
∑n+1

i=1 xiTi.

This is the second place for parallelization.

The third one is the summation
∑n+1

i=1 xiTi in step 3. In this place, we can use the

parallel reduction technique [5] as used by Tanaka, Yasuda, and Sakurai in their parallel

QUAD implementation [49]. This technique computes the summations of N terms in

⌈logN⌉ steps.

5.3.3 Multi-Stream Strategy

Nowadays, the latest GPU has more than 1,000 cores in a chip. However, the inherent

parallelism in Petzoldt’s LRS QUAD stream cipher is not enough for filling modern

GPUs. Especially, computing Ti = γ · Ti−1 +Mi,i · xi (Mi,i · xi is precomputed) takes n

sequential steps for QUAD of m quadratic polynomials in n variables. Therefore, in this

step, we can parallelize only ⌈m/32⌉ for the QUAD with the bitslicing method. Hence,

these steps are bottleneck of this version of QUAD. For example, NVIDIA GeForce GTX

TITAN is 2,688-core GPU. However, even QUAD with 1,024 quadratic polynomials is

parallelized to only 32 threads. Therefore, the QUAD uses only 1.2 % of cores on NVIDIA

GeForce GTX TITAN.

Then, we use the multi-stream strategy by Chen et al [20]. This strategy runs

several QUAD instances in parallel. When running k streams of QUAD of m quadratic

polynomials, we can compute k⌈m/32⌉ in a step of Ti = γ · Ti−1 + Mi,i · xi. This way,

the GPU utilization rate can be increased significantly.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 81

Figure 5.1: Data structures used to realize LRS QUAD on GPU.

5.3.4 Data Structures

We use three data structures for realizing Petzoldt’s LRS QUAD on GPU. The first

data structure stores the unknowns X̂ = {x1, . . . , xn+1}, the second, temporary values

T
(k)
i , while the third, the results fk(X̂). Each data structure is constructed by 3- or 4-

dimensional arrays, bit, unknowns, polynomial, and stream. The dimension of bit shows

the index of the bit data of a variable, as each bit in a variable is separated into different

variables for the bitslicing method. The unknown data structure doesn’t has the poly-

nomial dimension, because the unknowns in a stream of QUAD are common for each

polynomial in the stream. The stream is used only in the version using the multi-stream

strategy.

We need to decide an order of these dimensions in the data structures. This order

is important in optimizing memory loading in CUDA. Generally, CUDA kernels (GPU

functions) execute several blocks of threads in parallel. Each block divides its own threads

into some small units called warps, and the number of threads in a warp is at most 32.

This means that each block executes maximally 32 threads at a time. Originally, memory

loadings in a warp are executed serially. However, when there are multiple consecutive

memory requests from threads in a same warp, these requests are coalesced to one single

large memory request [1]. In other words, such memory loadings are executed at a time

and hence more efficient. See Figure 5.1 for a pictorial depiction of the data structures

we have used.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 82

Table 5.1: Constructions of QUAD instances.
Unknowns Polynomials Key size (KB)

32 64 8.25
64 128 32.5
128 256 129
256 512 514
512 1,024 2,052

5.4 Experimental Results

We measure the running time of encrypting 10 MB of data. We have implemented

both versions of parallelized Petzoldt’s LRS QUAD stream cipher on GPU. Table 6.1

shows the constructions of the implemented instances. We select GF(232) as the base

finite field of our constructions. The reason of this choice is due to the period of generators

in finite fields. The Petzoldt’s LRS QUAD uses generators for coefficients of quadratic

polynomials. The period of generators over GF(q) is q − 1. If the number of coefficients

in a quadratic polynomial exceeds the period, some pairs of unknowns would have some

relationship, and there is a risk of reducing the security. QUAD with 512 variables has

131,841 terms in a quadratic polynomial. Therefore, we choose GF(232).

Moreover, we use the multi-stream strategy for the second version. We run 1, 8, 16,

32, 64, 128, and 256 streams for each construction. We use Intel core i7 875K for CPU,

NVIDIA GeForce TITAN GTX for GPU in all our experiments.

Table 5.2 shows the evaluation time of both versions. Also, it shows the result of

CPU implementations for comparison. CPU implementations use only the bitslicing

method for parallelization. Overall, the second version is about 2.5 times faster than the

first näıve version for each construction. However, both implementations are slower than

CPU implementation for 32 and 64 unknowns. We suspect that this is because there is

only a limited amount of parallelism for LRS QUAD.

Generally, a core of GPU is slower than that of CPU. For example, a core of NVIDIA

GeForce GTX titan is about 3.5 times slower than of Intel core i7 875K. Also, GPU’s

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 83

Table 5.2: Evaluating time of 10 MB by Petzoldt’s LRS QUAD.
Encrypting time (sec)

Unknowns CPU GPU
version 1 version 2

32 29.811 190.531 74.922
64 59.225 190.053 74.426
128 120.082 189.540 73.745
256 249.737 190.677 72.182
512 602.434 200.517 84.757

memory performance is not as good as that of CPU. Therefore, GPU implementations

require larger parallelism for higher efficiency. However, QUAD with 64 unknowns only

has 128 quadratic polynomials. They are stored in only 4 variables. In other words, GPU

can parallelize at most 4 threads in sequential steps. Hence, this limited parallelism is a

bottleneck of GPU implementations, making them slower than their CPU counterparts.

Table 5.3 shows the evaluation time of the second version using the multi-stream

strategy. Roughly, evaluation time seems inversely proportional to the number of multi-

streams. The fastest result, running 256 streams of QUAD with 64 quadratic polynomials

in 32 unknowns, achieves a throughput of 193.396 Mbps.

5.4.1 Comparing with Related Works

Table 5.4 shows the comparison with other QUAD implementations [8, 13, 14, 25,

48, 49]. The constructions q, n, and m mean using finite fields GF(q), the number

of unknowns, and the number of quadratic polynomials. Our parallelized Petzoldt’s

LRS QUAD is the fastest software implementation. Although our implementation seems

slower than the FPGA implementation by Hamlet and Brocato [25], our 256 streams of

QUAD with 128 quadratic polynomials in 64 unknowns has a higher level of security

than their QUAD. Hence, our implementation can be viewed as providing a trade-off

between speed and security.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 84

Table 5.3: Evaluation time of 10 MB using the multi-streams strategy.
Encrypting time (sec)

Streams Unknowns
32 64 128 256 512

1 74.922 74.426 73.745 72.182 84.757
2 37.501 37.165 37.141 38.654 43.219
3 25.116 24.926 24.885 26.337 29.342
4 18.736 18.622 18.679 20.136 22.151
5 15.134 15.058 15.262 16.396 18.053
6 12.619 12.564 12.840 13.752 15.296
7 10.880 10.841 11.369 11.920 13.185
8 9.396 9.353 10.378 10.503 11.529
16 4.735 4.755 5.297 5.371 6.017
32 2.415 2.562 2.748 2.831 3.367
64 1.188 1.355 1.448 1.641 2.162
128 0.696 0.740 0.844 1.076 1.629
256 0.414 0.469 0.600 1.154 2.083

Table 5.4: Comparison of various QUAD implementations
Implementation Constructions Key Throughputs Security
environment q n m (KB) (Mbps) (bit)

BGP06 [14] Pentium 4 2 160 320 503.164 5.7 ≤ 140
BBG06 [13] Opetron 2 160 320 503.164 8.45 ≤ 140

64 bit 24 40 80 33.633 23.59 ≤ 71
28 20 40 9.023 42.15 ≤ 45

ABBG07 [8] FPGA 2 256 512 2056.063 2.0 ≤ 140
HB13 [25] Virtex-4, FPGA 2 128 256 262.031 374.7 ≤ 118
TNS13 [48] NVIDIA GeForce 2 160 160 503.164 4.872 ≤ 140

GTX 480, GPU 2 256 512 2056.063 4.115 ≤ 160
2 320 640 4012.578 3.656 ≤ 320

TYS14 [49] NVIDIA GTX 232 32 64 140.250 19.841 ≤ 76
TITAN, GPU 232 48 96 459.375 24.827 ≤ 103

232 64 128 1,008.000 19.419 ≤ 132

Our work NVIDIA GTX 232 32 64 2,112 193.396 ≤ 76
(256 streams) TITAN, GPU 232 64 128 8,320 170.476 ≤ 132

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 Parallelizations of MPKC using Linear Recurrence Sequence 85

5.5 Conclusion

In this paper, we discuss how to parallelize on GPU Petzoldt’s LRS QUAD [42]. We

show two designs and their corresponding implementations. The first version is a näıve

parallelization, while the second exploits parallelism in evaluating quadratic polynomials.

The latter is about 2.5 times faster than the former on modern GPU.

Moreover, we use the multi-stream strategy of Chen et al [20]. Running 256 streams

of QUAD with 64 polynomials in 32 unknown over GF(232) achieves a throughput of

193.396 Mbps, while 128 polynomials in 64 unknowns, 170.476 Mbps. We can see that

running 256 streams of QUAD with 128 polynomials in 64 unknowns is a new trade-off

between throughput and security.

One next step is a more careful security analysis of Petzoldt’s LRS QUAD. Espe-

cially, we would like to analyze the potential security loss when there are some special

relationships between some pairs of unknowns in the system.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 86

Chapter 6

Accelerating Extended Linearization

Algorithm

6.1 Introduction

The problem of finding roots of non-linear multivariate polynomial equations over

finite fields lies at the core of the security for multivariate public-key cryptography

(MPKC). Many MPKCs, e.g., Unbalanced Oil and Vinegar (UOV) [30], Hidden Field

Equations (HFE) [41], and the QUAD stream cipher [14], base their security on the

quadratic case of such problems, which we will refer to as theMQ problem. Therefore,

estimating the complexity of theMQ problem is of crucial importance for determining

the security of these MPKCs.

To this date, there are two kinds of efficient algorithms for solving theMQ problem.

One is the Gröbner basis method, and the other is the eXtended Linearization (XL)

algorithm. Both algorithms generate new equations from the original systems. Although

XL is shown to be a redundant variant of a Gröbner basis algorithm F4 [9], it does have

the advantage of having a smaller memory footprint in practice [55].

The bottleneck computation in XL is the solving step of linearized systems. For

sparse systems generated by XL, the Wiedemann algorithm can be used to efficient solve

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 87

an N × N non-singular matrix system with row sparsity k in O(kN2) complexity in

terms of multiplications and additions. Here N is determined by the degree of regularity

for theMQ problem, which we will give more detail later in this paper.

There are several implementations of the XL-Wiedemann algorithm. Yang et al. es-

timate the solving time forMQ instances in 6–15 unknowns by their C++ implemen-

tation [55]. Moreover, they show that the expected time for solving anMQ instance of

40 equations in 20 unknowns over GF(28) is around 245 CPU cycles. Cheng et al. imple-

ment the XL-Wiedemann algorithm on a cluster of 8 PCs in NUMA architecture [21].

As a result, they can solveMQ instances of 36 equations in 36 unknowns over GF(2) in

46,944 seconds, 64 equations in 32 unknowns over GF(16) in 244,338 seconds, as well as

58 equations in 29 unknowns over GF(31) in 12,713 seconds.

So far, we have not seen any implementation of the XL-Wiedemann algorithm on

GPU, which is a candidate for further speed-up because several steps of the XL-Wiedemann

algorithm can be parallelized. Therefore, we consider accelerating XL-Wiedemann on

GPU. However, GPU implementation poses a set of very different limitations from its

CPU counterpart. Hence, in this paper we shall detail these challenges and how we have

dealt with them.

Our contributions include the following. We present several GPU implementations of

the XL-Wiedemann algorithm, in which multiplication of a sparse matrix with a dense

vector is parallelized on GPU. Moreover, we benchmark an implementation based on the

cuSPARSE library using floating-point arithmetic. Finally, we show the experimental

results of solvingMQ instances over GF(2), GF(3), GF(5), and GF(7). Our implemen-

tation can solve MQ instances of 74 equations in 37 unknowns over GF(2) in 36,972

seconds, 48 equations in 24 unknowns over GF(3) in 933 seconds, as well as 42 equations

in 21 unknowns over GF(5) in 347 seconds. The largest instance for matrix we have

solved is 80 equations in 40 unknowns over GF(2) in 295,776 seconds, it has 3.78 billions

terms in a matrix. On the other hand, the largest instance for solving time, we have

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 88

solved is 48 equations in 24 unknowns over GF(7) in 34,883 seconds, whose complexity

is around O(267) if we use a brute-force kind of approach.

The cuSPARSE library only supports floating-point arithmetic, not integer arith-

metic, let alone finite field arithmetics. Therefore, we need to use cuSPARSE functions

to implement finite field arithmetics via additional operations such as the modular op-

erations.

6.2 The XL-Wiedemann Algorithm for MQ Problem

The security of MPKC is largely based on the complexity of solving a system of

multivariate non-linear equations over finite fields. TheMQ problem is a quadratic case

of this problem. GenericMQ is known to be NP-complete [11].

Let q = pk, where p is a prime, and x = {x1, . . . , xn} (∀i, xi ∈ GF(q)). Generally,

multivariate quadratic polynomial equations in n unknowns over GF(q) can be described

as follows:

f(x) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤k≤n

βkxk + γ = 0, (6.1)

where ∀i, j, k, αi,j, βk, γ ∈ GF(q). TheMQ problem consists solving quadratic polyno-

mial equations given by y = {f1(x), . . . , fm(x)}

The original XL algorithm was proposed by Courtois et al. in 2000 [22]. The idea of

XL is based on a linearization technique, in which new unknowns representing non-linear

terms, e.g., y1,2 = x1x2, are generated and treated as an independent variable. If the

number of linearly independent equations is greater than the number of variables in the

resulted linearized system, then we can solve it by, e.g., Gaussian elimination. If not,

we can generate new equations from the original ones by raising to a higher degree. For

the sake of completeness, the XL algorithm is described in Algorithm 3. Simply put, the

degree of regularity D is the minimal degree at which the number of linearly independent

equations exceeds the number of unknowns in the linearized system.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 89

Require: m quadratic polynomial equations F = {f1, . . . , fm}, m-th vector y = F (x),
and the degree of regularity D.

Ensure: The n-th unknown vector x = {x1, . . . , xn}.
1: Multiply: Generate products between all polynomial equations and all unknowns of

the form
∏D−2

j=1 xij .
2: Linearize: Treat each monomial in xi of degree ≤ D as a new, independent

unknown and perform an elimination algorithm on the linearized equations
obtained in Step 1 to derive a univariate equation.

3: Solve: Solve the univariate equations obtained in Step 2 over GF(q).
4: Back-substitute: Find the values of the other unknowns by back-substitution into

the linearized system.
Algorithm 3: The XL algorithm [22]

The XL algorithm generates sparse equations in Step 1 of Algorithm 3. The number

of non-zero terms of an equation is only
(
n+2
2

)
out of all possible

(
n+D
D

)
terms, since

the generated equations are just a product of the original equations and some mono-

mials. However, the Gaussian elimination is not suited for solving such sparse linear

systems, as it cannot take advantage of the sparsity. The XL-Wiedemann algorithm [36]

addresses this problem of the original XL by replacing the Gaussian elimination with the

Wiedemann algorithm [52], which is more efficient for solving systems of sparse linear

equations.

6.2.1 The Wiedemann Algorithm in the XL

The algorithm of XL can be separated to 2 major steps, (i) generating a large lin-

earized system, and (ii) solving the system constructed in (i). A system of linear equation

can be denoted as finding unknown vector x with a given vector x from Ax = b, where

A is a matrix of the system. In other words, solving a system is finding the inverse

matrix A−1 of A, because A−1b = A−1Ax = Ix = x, where I is the unit vector. There

exits several methods for solving the linear algebra.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 90

Gaussian Elimination

The Gaussian elimination is a most basic method for the linear algebra. This method

is separated to 2 steps, (i)forward elimination, and (ii)back substitution. The forward

elimination step generates a upper triangular matrix from A by substitution i-th column

element of j-th row equation from i-th row equation, where i < j. After this step, we

will get a univariate equation. The back substitution step computes the root of the

univariate equation, and then, substitutes the value of the root into other equations. In

the step, we iterate up to find all values of unknowns.

LU decomposition

The LU decomposition is a generalized version of the Gaussian elimination. Generally,

a square matrix A can be decomposed to a product a lower triangular matrix L and an

upper triangular matrix U as A = LU . Let y = Ux. Therefore, Ax = LUx = Ly = b.

Then, we find a vector y from Ly = b. After that, we finally get a vector x from Ux = y.

The Wiedemann Algorithm

The Wiedemann algorithm [52] is a solving method for a system of linear sparse

equations over finite fields. Let A be an N × N non-singular matrix over GF(q). The

Wiedemann algorithm finds a non-zero vector x, where y = Ax. The original Wiede-

mann algorithm is described in Algorithm 4.

TheWiedemann algorithm computes mainly products Aib and the Berlekamp-Massey

algorithm. Since Aib can be computed by A(Ai−1b), we can keep the sparsity of A.

Therefore, sparse matrices are suited to the Wiedemann. Also, the XL algorithm gener-

ates a sparse matrix from a system of quadratic equations. Hence, sometimes, XL uses

the Wiedemann algorithm for the linear algebra. Yang et al. uses XL with the Wiede-

mann and analyses MQ of the QUAD citeyang2007analysis. Cheng et al. parallelizes

XL with the block version of the Wiedemann (called the block Wiedemann) on the 8 PC

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 91

Require: N ×N non-singular matrix A and vector b, where Ax = b.
Ensure: The unknown solution vector x.
1: Set b0 = b, k = 0, y0 = 0, and d0 = 0.
2: Compute the matrix sequence si = uk+1A

ibk for 0 ≤ i ≤ 2(N − d), with a random
vector uk+1.

3: Set f(λ) to the minimum polynomial of the sequence of si using the
Berlekamp-Massey algorithm.

4: Set yk+1 = yk + f−(A)bk, where f−(λ) := f(λ)−f(0)
λ

, bk+1 = b0 + Ayk+1, and
dk+1 = dk + deg f(λ).

5: If bk+1 = 0, then the solution is x = yk

6: Set k = k + 1 and go to Step 2.
Algorithm 4: The Wiedemann algorithm [52]

cluster [21].

6.3 Linear Algebra on GPU with CUDA

Provided by NVIDIA, CUDA is a development environment for GPU based on C

language. Proprietary tools for using GPU have existed before CUDA; such tools often

need to tweak OpenGL and/or DirectX and disguise computation as graphics rendering

commands. Therefore, these tools are not easy to use, whereas CUDA is efficient because

it can use GPU’s computational cores directly.

In CUDA, hosts correspond to PC, and devices correspond to GPU. CUDA works by

making the host control the device via kernels. Because only one kernel can be executed

at a time, we need to parallelize processing inside a kernel. A kernel handles some blocks

in parallel. A block also handles some threads in parallel. Therefore, a kernel can handle

many threads simultaneously.

NVIDIA provides several libraries for linear algebra. For example, the cuBLAS li-

brary provides functions of the Basic Linear Algebra Subprograms (BLAS) library. BLAS

is classified into three levels of functionalities. Level 1 functions provide operations on

vectors, level 2 operations on vectors and matrices, while level 3 allows matrix-matrix

operations. The cuSPARSE library is actually the sparse version of the cuBLAS library.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 92

Therefore, cuSPARSE also provides these three levels of functions.

We assume that D is the degree of regularity for the XL algorithm. Then, XL

constructs an
(
n+D
D

)
×
(
n+D
D

)
linearized matrix from theMQ instances of m equations in

n unknowns over GF(q). However, quadratic polynomial equations in n unknowns have

only
(
n+2
2

)
terms. Therefore, we can reduce computations of matrix-vector product as

well as the memory footprint if we store the matrix in sparse form.

Let N be the degree of row and column in a matrix, and numNZ be the number of

non-zero elements in the matrix. Sparse matrix forms have value, row-index and column-

index data of non-zero elements in a matrix. There are some sparse matrix formats such

as the following [2]

• The COO (coordinate) format is the most basic one. It simply holds value, row-

index and column-index data of non-zero elements in the matrix. Therefore, it

requires 3numNZ for the memory space.

• The CSR (compressed storage row) assumes that the data vector is ordered by

the row-index. It differs only row-index from the COO formats, in which it holds

the head number of non-zero terms in each row-vector of the matrix instead of

row-index data. Then, it requires 2numNZ +N memory.

• The ELL (Ellpack-Itpack) format uses two dense N × maxNZ matrices, where

maxNZ is the maximal number of non-zero terms in a row-vector. One matrix

shows the value of non-zero matrix, and the other shows the column-index.

Figure 6.1 shows examples of each of the three formats.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 93

Figure 6.1: Sparse matrix formats.

6.4 Implementing XL-Wiedemann on GPU

6.4.1 Degrees of Regularity over Small Fields

The bottleneck of the XL-Wiedemann algorithm is the linear algebra part that solves

an N × N matrix system. Here N is determined by the degree of regularity D as

N =
(
N+D
D

)
. The degree of regularity is the minimal degree where the number of linearly

independent equations exceeds the number of linearized unknowns. We can figure out

the number of linearized unknowns N for the degree d as N =
(
N+d
d

)
easily. Rønjon and

Raddum citeronjom2008number gave that an upper bound for the number of linearly

independent equations I is decided using the following formula:

I =

Dm
De∑
i=0

(−1)i
(
m+ i

i+ 1

)Dm−i·De∑
j=0

(
n

j

)
. (6.2)

Here, Dm is the maximal degree of the monomials, and De is the degree of the original

equations. For theMQ problem, Dm = D − 2 and De = 2. Therefore, we can find the

minimal degree D, where I ≥ N(=
(
N+D
D

)
) by Formula (6.2). Figure 6.2 shows degrees of

regularity forMQ instances of 2n equations in n unknowns over GF(2), GF(3), GF(5),

and other prime fields for n ≤ 64. The cases of GF(5) and other larger prime fields are

actually quite similar. Only GF(2) and GF(3) differ from the other cases because we

need to take into consideration field equations αq = α.

From the definition of the degree of regularity, it is obvious that I ≥ N . However, for

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 94

Figure 6.2: The degrees of regularity for m = 2n cases for n ≤ 64.

the Wiedemann algorithm to work, we need to reduce to N from I. The simplest way is

to randomly remove certain equations, which is our strategy in our implementation.

6.4.2 The Wiedemann Algorithm

The Wiedemann algorithm has three separate steps. The first step is to generate the

sequence {(u, Aib)}2Ni=0 for an N ×N matrix A and a vector b, where Ax = b, as well as

a random vector u. The second step is to find the minimal polynomial of the generated

sequence f(λ) using the Berlekamp-Massey algorithm. The final step is to compute

f−(A)b, where f−(λ) = f(λ)−f(0)
λ

. In this work, we only implement the first step and

the final step on GPU. This is because the Berlekamp-Massey algorithm is sequential

in nature and hence might not benefit from parallelization. For example, it has many

conditional branches, which are not suitable for GPU implementation. Therefore, we

implement the second step on CPU.

6.4.3 Generating Sequence {(u, Aib)}2Ni=0

This step requires multiplying the sparse matrix A and the dense vector Ai−1b, as

well as taking dot product (u, Aib). However, we can choose the random vector u

as u = {1, 0, . . . , 0}. Therefore, taking dot product amounts to looking up the first

coordinate in the vector Aib. Hence, we should consider only multiplication of the

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 95

sparse matrix A and the dense vector Ai−1b.

Multiplying the sparse matrix A and the dense vector Ai−1b takes two steps. The

first one is multiplying non-zero elements in the matrix with the elements in the vector.

The other is summing the results of the partial multiplications for each row.

We choose the ELL format for representing sparse matrices. One advantage is that

every column width is the same in a matrix, and the multiplication result also has such

width. In CUDA kernels, the column width corresponds to the number of threads, while

the row height corresponds to the number of blocks. To achieve maximal efficiency, each

block should have the same number of threads. Therefore, the ELL format is best suited

for GPU implementation.

In summing the partial multiplication results, we use the parallel reduction tech-

nique [5]. Such a technique allows computing summation of n items in O(log n) steps.

6.4.4 Computing f−(A)b

Since f−(A)b =
∑d

i=1 ciA
i−1b, where d is the degree of f(λ), this step amounts to

summing ciA
i−1b, using the same partial sums from the previous step. Hence, there are

two strategies for computing Aib. The first one is to store the result of Aib on GPU.

This strategy can avoid recomputing Aib. However, it needs about O(N2) memory for

storing Aib, where 0 ≤ i ≤ N (since d ≤ N). Therefore, this strategy can only work for

smaller matrices.

The other strategy is to recompute Aib on the fly. Although it repeats the compu-

tation of d products of Aib, it only requires O(Ai−1b) memory to hold the last vector of

Aib. Therefore, this strategy is more suitable for large matrices.

6.4.5 cuSPARSE

The cuSPARSE library [2] provides functions that multiply a sparse matrix with a

dense vector. Therefore, we consider using cuSPARSE as an alternative implementation

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 96

Table 6.1: MQ instances in our experiments..
Field GF(q) GF(2) GF(3) GF(5) GF(7)
Degree of regularity D 4 5 4 5 4 5 4 5
Unknowns n 24 37 15 24 13 21 13 21
Equations m 48 74 30 48 26 42 26 42
Matrix
Linearized terms 12,950 510,415 3,635 110,954 2,379 65,758 2,379 65,779
Nonzero terms 301 704 136 325 105 253 105 253

for computing A and Ai−1b. There are two important issues with implementations. First,

the interface is fixed and opaque. The cuSPARSE library only provides this function for

CSR format: y ← αAx+βy, where A is a matrix, x, y are vectors, and α, β are scalars.

Therefore, we set β = 0 for the first step. Moreover, we are stuck with CSR format for

representing sparse matrices when we use cuSPARSE library.

The second issue is the restriction of the unknown type. The cuSPARSE library only

supports floating-point arithmetic, not integer arithmetic, let alone finite field arith-

metics. Therefore, we need to use cuSPARSE functions to implement finite field arith-

metics via additional operations such as the modular operations.

6.5 Experimental Results

We implement the XL-Wiedemann algorithm on GPU using two strategies, integer

version and cuSPARSE (floating-point) version. We experiment with solving the largest

cases for D = 4, 5 over GF(2), GF(3), GF(5), and GF(7) by both implementation strate-

gies and summarize these instances in Table 6.1.

Table 6.2 shows the overall experimental results, and Table 6.3 shows the profiling

results of the Wiedemann algorithm. Despite the overhead brought by the two issues

mentioned previously, the cuSPARSE version seems to outperform integer version for

larger cases. In our experiments, the Berlekamp-Massey algorithm can occupy a signif-

icant portion of the total running time and hence may be worth further optimization.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 97

Table 6.2: Running time of XL-Wiedemann on GPU.
Field GF(q) GF(2) GF(3) GF(5) GF(7)
Degree of regularity D 4 5 4 5 4 5 4 5
Unknowns n 24 37 15 24 13 21 13 21
Equations m 48 74 30 48 26 42 26 42

Solving time (sec) 14.7358 83,782.11 0.5847 2,089.30 0.4415 601.124 0.4856 670.963
Integer Extension (sec) 0.1248 130.98 0.0116 7.29 0.0059 3.347 0.0053 2.913

Wiedemann (sec) 14.6101 83,651.08 0.5729 2,082.01 0.4355 597.777 0.4802 668.049

Solving time (sec) 8.8982 36,971.85 0.8684 932.95 0.4852 346.571 0.5063 387.121
cuSPARSE Extension (sec) 0.0885 128.28 0.0098 8.00 0.0050 3.366 0.0050 3.354

Wiedemann (sec) 8.8077 36,843.49 0.8583 924.95 0.4800 343.204 0.5012 383.764

Table 6.3: Profiling results for the Wiedemann algorithm.
Field GF(q) GF(2) GF(3) GF(5) GF(7)
Degree of regularity D 4 5 4 5 4 5 4 5
Unknowns n 24 37 15 24 13 21 13 21
Equations m 48 74 30 48 26 42 26 42

Running time (sec)
Wiedemann 14.6101 83,651.08 0.5729 2,082.01 0.4355 597.777 0.4802 668.049
Generating Sequence 9.5806 49,719.75 0.3030 1,104.82 0.2131 302.236 0.2304 336.292
Berlekamp-Massey 4.9253 9,035.16 0.2379 439.1057 0.19 148.328 0.2195 167.483

Integer Computing f−(A)b 0.0937 24,895.43 0.0305 537.99 0.0273 147.188 0.0295 164.249
Memory Usage (MB)
Matrix 29.74 2741.49 5.66 412.67 2.86 190.39 2.86 190.46
Stream 1279.47 0 100.81 0 43.22 0 43.22 0

Running time (sec)
Wiedemann 8.8077 36,843.49 0.8583 924.94 0.4800 343.204 0.5012 387.764
Generating Sequence 3.8079 22,215.69 0.4284 325.75 0.2418 108.0073 0.2393 114.814
Berlekamp-Massey 4.8855 9,059.83 0.4284 325.75 0.1999 183.685 0.2223 214.049

cuSPARSE Computing f−(A)b 0.1045 5,567.20 0.0403 160.77 0.0372 51.473 0.0386 54.863
Memory Usage (MB)
Matrix 44.66 4114.18 5.67 413.10 2.87 190.64 2.87 190.71
Stream 1279.47 0 100.81 0 43.22 0 43.22 0

We can also use high-quality, state-of-the-art implementations from commercial com-

puter algebra systems like MAGMA.

Finally, we solve the largest case of D = 6 over GF(7), which has a system of 24

unknowns and 48 polynomials.. We choose the version of using the cuSPARSE library

as a solver of theMQ instance, because of the result of D = 5 cases. Table refD6GF7

shows the construction and experimental result of solving theMQ instance.

Profile of Kernels

Table refKernelXL shows that profiles of utilization of kernels. Both of integer and

cuSPARSE versions use kernels of inner products and additions vector and vector. Also,

the integer version implements multiplications matrix and vector. On the other stands,

the cuSPARSE version uses the library function of multiplications. Moreover, it uses

modular kernels.

The inner product kernel shows 19 % occupancy. However, this kernel has only 1

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 98

Table 6.4: Solving theMQ of 24 unknowns and 48 equations over GF(7)
Constructions Unknowns n 24

Equations m 48
Matrix Linearized terms 593,774

Non-zero terms 325

Memory (MB) Matrix 2,208.44
Running XL-Wiedemann 34,881.637
time (sec) Linearization 580.406

Wiedemann 34,301.231
Wiedemann Generating Sequence 11,046.464
algorithm Berlekamp-Massy 17,698.748
(sec) Compute f−(A)b 5,555.593

kernel. Hence, it is sufficient. The occupancy of additions between 2 vectors depends on

the size of system matrix. This occupancy is from 19 to 100 %. There may exists some

improvements by modifying threads.

The number of threads in multiplications kernel of the integer version depends on the

maximal number of non-zero term nmax in the system. The occupancy of this kernel is

less than 56 % is only nmax ≤ 96. The expected number of nmax is
(
n+2
2

)
q−1
q

for GF(q),

where k > 2 ((
(
n+1
2

)
+ 1)/2 for GF(2)). Then, probability , we don’t have to consider

the occupancy in the kernel for n > 15 for GF(q) (and n > 18 for GF(2)).

In the cuSPARSE version, threads of multiplications between matrix and vector are

aromatically modified by CUDA. Hence, we should consider only the kernel of modular

operations. The number of threads in this kernel depends on the size of system matrix.

Then, tuning of the kernel is similar to additions between 2 vectors.

Table 6.5: Kernel profile of the XL-Wiedemann algorithm.
Type Kernel Registers Shared Memory Occupancy

per thread per blocks(bytes) Utilization (%)

Both Inner product 10 0 19
Addition 6-8 0 19-100

Integer Multiplication 12 4 nmax 19-100

cuSPARSE Modular 9 0 19-100

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 99

Table 6.6: Comparing with CPU and GPU implementations
CPU GPU

Wiedemann algorithm 34,301.231 1,412,393.162
Wiedemann Step1: Generating Sequence 11,046.464 927,983.902
algorithm Step2: Berlekamp-Massey 17,698.748 17,698.748
(sec) Step3: Compute f−(A)b 5,555.593 466,710.512
Product Matrix and Vector (msec) 9.828 825.624

6.5.1 Comparison with CPU Implementations

Table 6.6 shows that the comparison with the CPU implementations of solving a

system with 48 equations in 24 unknowns over GF(7). Our CPU evaluations is based on

the running time of products sparse matrices and dense vectors. It can compute products

of 500, 000×500, 000 sparse (row sparsity is 128) and 500,000-degree vector is in 331.244

msec. Then, we assume that running time of matrices and vectors is proportion to the

number of rows in matrix and the row sparsity. Therefore, times of step 1 and 3 in

Table 6.6 are calculated with a ratio between CPU and GPU. Also, since the Berlekamp-

Massey algorithm in step 2 is executed on CPU. Hence, step 2 is assumed as same time of

GPU implementations. Finally, our GPU implementations is about 41.176 times faster

than CPU implementations.

6.5.2 Comparison with Related Works

Table Comp shows that the comparison with the related work. Yang et. al. solve

the system of n quadratic and n quotic equations in n unknowns [55]. The row of

multiplications in Table Comp means the expected number of multiplications in the XL-

Wiedemann algorithm (given by 3numNZN [55]). It shows that our MQ is about 1.2

times larger than Yang. et. al. Then, our result is roughly 4 times faster than their

result.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6 Accelerating Extended Linearization Algorithm 100

Table 6.7: Comparison with the related work.
Yang et. al. [55] our works

Implementation Environment CPU GPU
Field GF(28) GF(24) GF(7)
Constructions Unknowns 15 24

Equations 15 quadratic, 15 quotic 48
Degree of regularity D 8 6

Matrix Linearized terms 490,314 593,774
Non-zero terms 385 (average of row) 325

Memory (MB) Matrix N.A. 2,208.44
Operations Multiplications 2.78 · 1014 3.44 · 1014
Running Time(sec) 1.17 · 106 3.49 · 105

6.6 Conclusion

We provide GPU implementations of the XL-Wiedemann algorithm using both inte-

ger arithmetic and floating-point arithmetic via cuSPARSE library. Our implementation

can solveMQ instances of 74 equations in 37 unknowns over GF(2) in 36,972 seconds,

of 48 equations in 24 unknowns over GF(3) in 933 seconds, as well as 42 equations in 21

unknowns over GF(5) in 347 seconds by using cuSPARSE library. Finally, we solve the

largest case of D = 7 over GF(7),MQ of 24 unknowns and 48 equations. The version

of using the cuSPARSE library solves the MQ in 34,882 seconds. Our next goal is to

estimate the expected solving time for larger-degree cases.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 7 Concluding Remarks and Future Work 101

Chapter 7

Concluding Remarks and Future Work

7.1 Concluding Remarks

We proposed that GPU parallelization techniques for evaluation of a multivariate

quadratic system. Moreover, we implemented our technique, and measured evaluating

times of multivariate quadratic systems.

First, we presented and evaluated the GPU implementation techniques for QUAD

stream cipher. Also we provided optimization techniques of QUAD to suit NVIDIA

GeForce GTX 480. Moreover, we carried out the experiments on the implementations of

QUAD over GF (2), GF (22), GF (24) and GF (28). As a result, the larger the number of

unknowns n is, the slower the throughput of QUAD is. However, when tn(n+2) ≤ 32C,

it is stable. The condition for stable throughputs depends on the number of cores

C. Although the GTX 480 has only 480 cores, the GTX 680, which is the latest

high-performance GPU, has 1536 cores. Therefore, the throughput of QUAD(2, n, n)

is stable if n ≤ 439. We expect that future GPUs allow efficient implementation of

QUAD(2, 512, 512) and more heavy constructions of QUAD.

Second, we discuss fast implementations of QUAD over GF(232). We discuss 3

approaches of accelerating QUAD, parallelization of evaluating multivariate quadratic

polynomials, finding the most suited multiplication method on GPU and optimizing

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 7 Concluding Remarks and Future Work 102

on CUDA. In the parallelization approach, we also provide the variable-base reduction

method of terms in polynomials. By the experimentation of multiplication over GF(232).

We find a more suited method than in our previous work [50]. The multiplication using

bitslicing show a throughput of over 800 Gbps. Moreover, we show implementations of

QUAD steam cipher over GF(232) on GPU with several optimizations. QUAD(232, 48, 48)

and QUAD(232, 64, 64) show speed up factors of over 90 times compared to CPU. We

consider that our implementation result is a tradeoff point between speed and security.

Third, we discuss how to parallelize on GPU Petzoldt’s LRS QUAD [42]. We show

two designs and their corresponding implementations. The first version is a näıve par-

allelization, while the second exploits parallelism in evaluating quadratic polynomials.

The latter is about 2.5 times faster than the former on modern GPU. Moreover, we use

the multi-stream strategy of Chen et al [20]. Running 256 streams of QUAD with 64

polynomials in 32 unknown over GF(232) achieves a throughput of 193.396 Mbps, while

128 polynomials in 64 unknowns, 170.476 Mbps. We can see that running 256 streams

of QUAD with 128 polynomials in 64 unknowns is a new trade-off between throughput

and security.

Finally, we provide GPU implementations of the XL-Wiedemann algorithm using

both integer arithmetic and floating-point arithmetic via cuSPARSE library. Our im-

plementation can solve MQ instances of 74 equations in 37 unknowns over GF(2) in

36,972 seconds, of 48 equations in 24 unknowns over GF(3) in 933 seconds, as well as 42

equations in 21 unknowns over GF(5) in 347 seconds by using cuSPARSE library. Also,

we solve the largest case of D = 7 over GF(7),MQ of 24 unknowns and 48 equations.

The version of using the cuSPARSE library solves theMQ in 34,882 seconds.

7.2 Further Issues

We have some issues for further improvements.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 7 Concluding Remarks and Future Work 103

Extending QUAD Implementations to General Finite Fields

Generalizations of fields for evaluating quadratic polynomials : we would like to dis-

cuss the security of our QUAD implementations. For example, evaluating how decrease

the security in our variable-base reduction method. Also, we are interested to general-

izations to other extensions of the binary field (e.g. GF(216) or GF(264)).

Improvements of Multiplications over GF(232)

Our multiplication techniques are specialized to the parallelization on GPUs. How-

ever, each multiplication method is plain. Therefore, we can achieve the known mul-

tiplication methods. For example, we can use methods of the optimal extension fields

(OEFs) [10]. OEFs are efficient fields specialized to the word size. These fields are

GF(pm), where p = 2ω − c, log c ≤ ⌊n
c
⌋ and m is the word-size bit. Although, OEF

should compute over GF(p) for additions and multiplications, computational costs of

them are low. For additions over GF(p), they require 2 integer additions or subtractions.

On the other side, for multiplications over GF(p), they require 1 integer multiplication,

6 additions and subtractions, and 6 shifts. We can choose p = 232 − 5 and m = 1 as a

parameter for GF(pm). About our textbook multiplications, they require 34.25 XORs

and 32 ANDs for each multiplication (actually, 1,096 XORs and 1,024 ANDs for 32 mul-

tiplications because of using the bitslicing methods). Also, our additions over GF(232)

takes 1 XOR. Therefore, if we use OEF GF (232 − 5) to QUAD(232 − 5, 32, 32), we can

accelerate roughly to 9.3 times faster than QUAD(232, 32, 32) without memory loading.

Also, QUAD(232 − 5, 64, 64) is 3.1 times faster than QUAD(232, 64, 64).

Reducing Registers in Kernels

On the other standing, we should reduce the registers in kernels. In CUDA version

3.5, each SM can have 64 warps (i.e. 2,048 threads). However, this number is also

limited by the number of registers. Each SM has only 65,536 registers. If each block

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix Concluding Remarks and Future Work 104

in a kernel has over 65,536 registers, the kernel does not work. In contrast, if a sum

of registers in several blocks is less than 65,536 registers, SMs can handle such blocks

simultaneously. SMs switch different warps per cycle, and handle at most 2 warps in

a cycle. This switching makes hiding latency of memory loading. To achieve maximal

efficiency, we should use at most 32 registers in a thread.

Especially, we should improve our multiplications over GF(232). Because, our multi-

plication kernels have 135 threads in a kernel. Then, each SM has only 19 If we improve

the occupancy to 100 %, we can accelerate 2.3 times faster for QUAD(232, 32, 32) and

5.7 times faster for QUAD(232, 64, 64).

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 105

Appendix A

Source Code

A.1 Evaluating Polynomial over GF(2)

A.1.1 Main Function of Evaluation

This code shows the entire of evaluating a multivariate quadratic system.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <cutil.h>

/*

Definitions

numUnk number of unknowns

numUnkP1 (numUnk + 1)

numUnkP2 (numUnk + 2)

numPol number of polynomials

numPol_32 bitsliced polynomials

*/

#define numUnk 320

#define numUnkP1 321

#define numUnkP2 322

#define numPol 640

#define numPol_32 20 /* POLYNOMIALS >> 5 */

#define SquredUNK 103684

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 106

#define Sum1ToUNK 51360

#define LOOP 131072

/* Main Function */

int main(int argc, char** argv) {

/* Initialization */

srand((unsigned)time(NULL));

int i, j, k, l;

/* CPU Variables */

int ***Coeffs; /* Coefficients */

int *x, *xx; /* Unknowns */

int *S, *Sout; /* Values */

/* GPU Variables */

int *GA; /* Coefficients */

int *GSout, *GS;

int *GT1, *GT2, *GT3, *GT4, *GT5; /* Temporary Datas */

int *GAxx, *Gxx;

int k30;

/* GPU start up */

CUT_DEVICE_INIT(argc, argv);

if ((fp = fopen("plaintext.dat", "r")) == NULL) {

CUT_EXIT(argc, argv);

exit(1);

}

/* Ensure CPU variables */

Coeffs = (int***)malloc(numPol_32*sizeof(int**));

for (i = 0; i < numPol_32; i++) {

Coeffs[i] = (int**)malloc(numUnkP2*sizeof(int*));

for (j = 0; j < numUnkP2; j++) {

Coeffs[i][j] = (int*)malloc(numUnkP2*sizeof(int));

}

}

x = (int*)malloc(numUnkP2 * sizeof(int));

xx = (int*)malloc(352 * sizeof(int));

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 107

S = (int*)malloc(30*numPol_32*sizeof(int));

Sout = (int*)malloc(VARPerInt*sizeof(int));

/* Set coeffcients */

for (k = 0; k < numPol_32; k++) {

for (j = 0; j < numUnkP2; j++) {

for (i = 0; i < numUnkP2; i++) {

A[k][j][i] = 0;

if (j > i) { continue; }

if (i == numUnkP1) { continue; }

for (l = 0; l < sizeof(int) * 8; l++) {

A[k][j][i] = A[k][j][i] << 1 | (rand() % 2);

}

}

}

}

/* Set IV */

for (i = 0; i < numUnk; i++) {

x[i] = rand() % 2;

printf("%d ", x[i]);

}

x[numUnk] = 0x01;

x[numUnkP1] = 0x00;

/* Ensure GPU variables */

cudaMalloc((void**)&GA, numPol_32 * numUnkP2 * numUnkP2 * sizeof(int

));

cudaMalloc((void**)&Gxx, 352 * sizeof(int));

cudaMalloc((void**)&GAxx, 180 * 352 * sizeof(int));

cudaMalloc((void**)&GT1, 352 * 32 * numPol_32 * sizeof(int));

cudaMalloc((void**)&GT2, 480 * numPol_32 * sizeof(int));

cudaMalloc((void**)&GT3, 120 * numPol_32 * sizeof(int));

cudaMalloc((void**)&GT4, 30 * numPol_32 * sizeof(int));

cudaMalloc((void**)&GT5, 5 * numPol_32 * sizeof(int));

cudaMalloc((void**)&GS, numPol_32*sizeof(int));

cudaMalloc((void**)&GSout, VARPerInt*sizeof(int));

/* Transfer coefficients */

for (j = 0; j < numPol_32; j++) {

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 108

for (i = 0; i < numUnk; i++) {

int* tmp = Coeffs[j][i];

cudaMemcpy((int*)GA + numUnkP2 * numUnkP2 * j + numUnkP2 *

i, tmp, numUnkP2 * sizeof(int), cudaMemcpyHostToDevice);

}

}

/* Dimensions */

dim3 Grid15x1, Grid15x2, Grid15x4;

dim3 Block32xPIntx1, Block32x6x3, Block32x5x6, Block4x8x5;

Grid15x1=dim3(15,1,1); Grid15x2=dim3(15,2,1);

Grid15x4=dim3(15,4,1);

Block32xPIntx1=dim3(32,numPol_32,1); Block4x8x5=dim3(4,8,5);

Block32x6x3=dim3(32,6,3); Block32x5x6=dim3(32,5,6);

for (k = 0; k < LOOP; k++) {

/* Cout non-zero unknowns */

k30 = checkXX(x, xx);

/* Transfer unknonws */

cudaMemcpy(Gxx, xx, 352 * sizeof(int), cudaMemcpyHostToDevice);

switch (k30) {

case 6:

/* Set a trinanguller matrix */

SetArray06<<<Grid15x2, Block32x6x3>>>(Gxx,GAxx);

/* Compute summations of submatrix rows */

ComputeSRow06<<<Grid15x4, Block32x5x6>>>(GAxx, GT1, GA);

/* Compute summations of submatrix culmns */

ComputeSCul06<<<Grid15x1, Block32xPintx1>>>(GT1, GT2);

break;

case 7: case 5: case 8: case 4: case 9:

case 3: case 10: case 2: case 11: case 1:

}

/* Compute 15x32 matrix */

ComputeSRow_1<<<Grid15x1, Block4x8x5>>>(GT2, GT3);

ComputeSRow_2<<<30, 20>>>(GT3, GT4);

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 109

ComputeSCul_1<<<5, 20>>>(GT4, GT5);

ComputeSCul_2<<<1, 20>>>(GT5, GS);

/* Transfer result */

cudaMemcpy(S, GS, numPol_32 * sizeof(int), cudaMemcpyDeviceToHos

t);

/* Output keystream */

outS(S, Sout);

/* Update next unknowns */

upX(S, x);

for (j = 0; j < VARPerInt; j++) {

s[k+j] ^= Sout[j];

//printf("%d %d ", S[2*j], S[2*j + 1]);

}

}

/* Release GPU variables*/

cudaFree(GA);

cudaFree(Gxx); cudaFree(GAxx);

cudaFree(GT1); cudaFree(GT2); cudaFree(GT3);

cudaFree(GT4); cudaFree(GT5);

cudaFree(GS); cudaFree(GSout);

/* Release CPU variables */

for (i = 0; i < numPol_32; i++) {

for (j = 0; j < numUnkP2; j++)

free(Coeffs[i][j]);

free(Coeffs[i]);

}

free(Coeffs);

free(x); free(xx);

free(S); free(Sout);

/* Halt */

CUT_EXIT(argc, argv);

return 0;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 110

}

A.1.2 Parallelization for a Summation of Polynomial

Counting Non-zero Unknown

This kernel counts non-zero variables in unknowns.

__host__ int checkXX(int *x, int *xx) {

int i, j, k, l;

j = 0; k = 0; l = 0;

for (i = 0; i < numUnkP2; i++) {

if (x[i]) {

xx[k] = i;

k++;

l++;

if (l == 0x1f) {

l = 1;

j++;

}

}

}

for (l = k; l < numUnkP2; l++) {

xx[l] = numUnkP1;

}

return j+1;

}

Setting Summations of Polynomial

This kernel sets a triangular matrix from non-zero monomials. Here is only described

a case 151− 180 non-zero variables.

__global__ void SetArray6(int *xx, int *Axx) {

__shared__ int Pxx1[192];

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 111

int i = blockIdx.x, j = (threadIdx.z << 1) + blockIdx.y,

k = threadIdx.x, l = threadIdx.y, m, o, p;

m = ((j << 4) - j) + i; //block 15j + i

o = (l << 5) + k; //thread 32l + k

p = umul24(m, 192) + o; //(32k)m + o, xx_mo

Pxx1[o] = xx[o];

__syncthreads();

if (m < o) {

Axx[p] = umul24(Pxx1[m], numUnkP2) + Pxx1[o-1];

} else {

Axx[p] = umul24(Pxx1[179-m], numUnkP2) + Pxx1[191-o];

}

}

Computing summation of matrix row

This kernel computes a summation of row elements in a matrix. Here is only described

a case 151− 180 non-zero variables.

__global__ void ComputeSRow6(int *Axx, int *T1, int *A) {

int j, l, m, p, q, k1, k2, k3, k4, k5, k6;

int *ptr1, *ptr2;

ptr1 = Axx;

ptr2 = A;

q = (threadIdx.y << 2) + blockIdx.y;

ptr2 += umul24(SquredUNK, q);

j = umul24(2880, q);

m = (threadIdx.z << 4) - threadIdx.z + blockIdx.x;

l = (m << 5) + threadIdx.x;

ptr1 += umul24(l, 6);

p = j + l;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 112

k1 = *ptr1++; k2 = *ptr1++; k3 = *ptr1++;

k4 = *ptr1++; k5 = *ptr1++; k6 = *ptr1;

T1[p] = *(ptr2+k1) ^ *(ptr2+k2) ^ *(ptr2+k3) ^

*(ptr2+k4) ^ *(ptr2+k5) ^ *(ptr2+k6);

}

Computing summations of matrix column

This kernel computes a summation of column elements in a matrix. Here is only

described a case 151− 180 non-zero variables.

__global__ void ComputeSCul06(int *T1, int *T2) {

int j, m, p, k1, k2, k3, k4, k5, k6;

int *ptr;

ptr = T1;

j = umul24(threadIdx.y, 480);

m = (blockIdx.x << 5) + threadIdx.x;

p = j + m;

ptr += umul24(p, 6);

k1 = *ptr++; k2 = *ptr++; k3 = *ptr++;

k4 = *ptr++; k5 = *ptr++; k6 = *ptr;

T2[p] = k1 ^ k2 ^ k3 ^ k4 ^ k5 ^ k6;

}

A.2 Evaluating Polynomials for GF(232)

A.2.1 Header File of Program Files

This configulation file ”condQUAD.h” shows constructions of QUAD and threads,

blocks and grid of its kernels.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 113

#define numUnk 64

#define numUnk_2 62

#define numPol_Half 64

#define numPol 128

/* nQT = comb(n+2, 2) = (n+2)(n+1)/2 */

#define numQuadTerm 1953

#define numLinearBase 1984

#define numPolyTerm 2016

#define widPolyTerm 2048

#define widPolyTermx32 65536

#define numSystemTerm 131072

#define lengInitVector 120

/* MB/sizeof(int) */

#define lengData 2621440

#define BytePerCycle 256

#define IntPerCycle 64

#define iterateTime 40960

#define lengStream 2621440

typedef unsigned int element;

A.2.2 Main Frame of QUAD

This program shows main function of QUAD encryption test and own timer function.

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include "condQUAD.h"

extern "C" int encryptQUAD(element *QuadSystem[3], element *, element *,

element *, element *, double *);

/* Print function */

void printStream(element *, int);

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 114

/* Time get function */

extern "C" double gettimeofday_sec();

int main(int argc, char *argv[]) {

/* CPU variables */

element *QuadSys[3]; /* P&Q, S0, S1 */

element OriKey[numUnk * 32];

element *Key, *InitVec;

element *plaintext, *ciphertext;

/* Timer variable */

double timeEncrypt[7];

double timeBase;

double timeStart, timeEnd;

double timeMalloc, timeFree;

double timeGenerate;

double timeEnc;

/* counter */

int i, j, k;

int idx;

timeStart = gettimeofday_sec();

srand((unsigned int)timeStart);

/* Memory allocation */

timeBase = gettimeofday_sec();

QuadSys[0] = (element *)malloc(2*numSystemTerm * sizeof(element));

QuadSys[1] = (element *)malloc(numSystemTerm * sizeof(element));

QuadSys[2] = (element *)malloc(numSystemTerm * sizeof(element));

Key = (element *)malloc(widPolyTermx32 * sizeof(element));

InitVec = (element *)malloc(lengInitVector * sizeof(element));

plaintext = (element *)malloc(lengData * sizeof(element));

ciphertext = (element *)malloc(lengData * sizeof(element));

timeMalloc = gettimeofday_sec() - timeBase;

fprintf(stderr, "CPU memory allocated.\n");

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 115

timeBase = gettimeofday_sec();

/* Create/load QUAD data */

idx = 0;

for (i = 0; i < 2; ++i) {

for (j = 0; j < 32; ++j) {

for (k = 0; k < numPolyTerm; ++k) {

idx = (i << 16) | (j << 11) | k;

QuadSys[0][idx] = rand();

QuadSys[0][idx+numSystemTerm] = rand();

QuadSys[1][idx] = rand();

QuadSys[2][idx] = rand();

}

for (k = numPolyTerm; k < widPolyTerm; ++k) {

idx = (i << 16) | (j << 11) | k;

QuadSys[0][idx] = 0;

QuadSys[0][idx+numSystemTerm] = 0;

QuadSys[1][idx] = 0;

QuadSys[2][idx] = 0;

}

}

}

fprintf(stderr, "Polynomial set.\n");

/* Create/load key and Initialization vector */

for (i = 0; i < numUnk * 32; ++i) {

OriKey[i] = ((rand() >> 3) & 0x01) * 0xFFFFFFFF;

}

for (i = 0; i < widPolyTermx32; ++i) { Key[i] = 0; }

for (i = 0; i < 32; ++i) {

idx = i << 11;

for (j = 0; j < 2; ++j) {

for (k = 0; k < 31; ++k) {

Key[idx + (j * 31) + k + numLinearBase] = (OriKey[(i <<

6) | (j << 5) | k] << (k+1)) | (OriKey[(i << 6) | (j << 5) | (k+1)] >>

(31 - k));

}

}

}

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 116

Key[2047] = 0xFFFFFFFF;

fprintf(stderr, "Key set.\n");

for (i = 0; i < lengInitVector; ++i) {

InitVec[i] = (rand() >> 7) & 0x01;

}

/* Generate/load stream data */

for (i = 0; i < lengData; ++i) {

plaintext[i] = (element)rand();

}

timeGenerate = gettimeofday_sec() - timeBase;

//printStream(plaintext, 2000);

/* Encryption */

timeBase = gettimeofday_sec();

encryptQUAD(QuadSys, Key, InitVec, plaintext, ciphertext, timeEncryp

t);

timeEnc = gettimeofday_sec() - timeBase;

//printStream(ciphertext, 2000);

/* Memory release */

timeBase = gettimeofday_sec();

free(QuadSys[0]);

free(QuadSys[1]);

free(QuadSys[2]);

free(Key);

free(InitVec);

free(plaintext);

free(ciphertext);

timeFree = gettimeofday_sec() - timeBase;

timeEnd = gettimeofday_sec() - timeStart;

printf("Running time\n All: %f[sec]\n", timeEnd);

printf("1.Memory allocation: %f[sec]\n", timeMalloc);

printf("2.Generate Data: %f[sec]\n", timeGenerate);

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 117

printf("3.Encrypting time: %f[sec]\n", timeEnc);

printf("3.1.GPU memory allocation: %f[sec]\n", timeEncrypt[0]);

printf("3.2.Data CPU => GPU: %f[sec]\n", timeEncrypt[1]);

printf("3.3.Vector Initialize: %f[sec]\n", timeEncrypt[2]);

printf("3.4.Generate PRN: %f[sec]\n", timeEncrypt[3]);

printf("3.5.Encrypt message: %f[sec]\n", timeEncrypt[4]);

printf("3.6.Data GPU => CPU: %f[sec]\n", timeEncrypt[5]);

printf("3.7.GPU memory release: %f[sec]\n", timeEncrypt[6]);

printf("4.Memory release: %f[sec]\n", timeFree);

return 0;

}

void printStream(element *stream, int width) {

int i;

for (i = 0; i < width; ++i) {

printf("%x ", stream[i]);

}

putchar(’\n’);

}

extern "C" double gettimeofday_sec() {

struct timeval t;

gettimeofday(&t, NULL);

return (double)t.tv_sec + (double)t.tv_usec * 1e-6;

}

A.2.3 Encrypting Functions of QUAD

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <cuda.h>

#include "condQUAD.h"

extern __global__ void setX(element *, element *);

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 118

extern __global__ void multiply(element *, element *);

extern __global__ void prodMatVec(element *, element *, element *);

extern __global__ void prodMatVecP(element *, element *);

extern __global__ void prodMatVecPQ(element *, element *, element *, ele

ment *);

extern __global__ void outputStream(element *, element *, element *);

extern __global__ void setNextVec(element *, element *);

extern __global__ void initStreamCounter(element *);

/* Encrypt message */

extern __global__ void computeXOR(element *, element *, element *);

extern "C" double gettimeofday_sec();

extern "C" int encryptQUAD(

element *QuadSystem[3], /* 0: P&Q, 1: S0, 2: S1 */

element *key,

element *InitVec,

element *plaintext,

element *ciphertext,

double *timeFunc

) {

/* GPU variables */

element *devSysP = 0, *devSysS0 = 0, *devSysS1 = 0;

element *devX = 0, *devY = 0, *devAXX = 0, *devVecX = 0;

element *devPlain = 0, *devCipher = 0;

element *devStream = 0;

element *devCou = 0;

/* Timer variables */

double timeBase;

/* Dimension variable */

dim3 gridSetX, blockSetX;

dim3 gridAXX;

dim3 blockAXX1, blockAXX2;

dim3 gridAdd1, blockAdd;

dim3 gridAdd2;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 119

/* counter */

int i;

gridSetX = dim3(numUnk_2, 1, 1);

blockSetX = dim3(numUnk_2, 32, 1);

gridAXX = dim3(32, 1, 1);

blockAXX1 = dim3(64, 2, 1);

blockAXX2 = dim3(64, 4, 1);

gridAdd1 = dim3(2, 32, 1);

blockAdd = dim3(1024, 1, 1);

gridAdd2 = dim3(4, 32, 1);

/* -1: GPU initialize */

/* GPU initialize */

if (cuInit(0) != CUDA_SUCCESS) {

fprintf(stderr, "GPU cannot be opened.\n");

return -1;

}

/* Shared/L1 configulation change */

cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);

/* 0: GPU memory allocation */

timeBase = gettimeofday_sec();

cudaMalloc((void **)&devSysP, 2 * numSystemTerm * sizeof(element));

cudaMalloc((void **)&devSysS0, numSystemTerm * sizeof(element));

cudaMalloc((void **)&devSysS1, numSystemTerm * sizeof(element));

cudaMalloc((void **)&devX, widPolyTermx32 * sizeof(element));

cudaMalloc((void **)&devY, widPolyTermx32 * sizeof(element));

cudaMalloc((void **)&devAXX, 2 * numSystemTerm * sizeof(element));

cudaMalloc((void **)&devVecX, 640 * sizeof(element));

cudaMalloc((void **)&devPlain, lengData * sizeof(element));

cudaMalloc((void **)&devCipher, lengData * sizeof(element));

cudaMalloc((void **)&devStream, lengStream * sizeof(element));

cudaMalloc((void **)&devCou, 64 * sizeof(element));

timeFunc[0] = gettimeofday_sec() - timeBase;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 120

/* 1: Data transfer HtoD */

timeBase = gettimeofday_sec();

cudaMemcpy(devSysP, QuadSystem[0], 2 * numSystemTerm * sizeof(elemen

t), cudaMemcpyHostToDevice);

cudaMemcpy(devSysS0, QuadSystem[1], numSystemTerm * sizeof(element),

cudaMemcpyHostToDevice);

cudaMemcpy(devSysS1, QuadSystem[2], numSystemTerm * sizeof(element),

cudaMemcpyHostToDevice);

cudaMemcpy(devX, key, widPolyTermx32 * sizeof(element), cudaMemcpyHo

stToDevice);

cudaMemcpy(devPlain, plaintext, lengData * sizeof(element), cudaMemc

pyHostToDevice);

initStreamCounter<<<1, 64>>>(devCou);

timeFunc[1] = gettimeofday_sec() - timeBase;

/* 2: Initialize */

timeBase = gettimeofday_sec();

for (i = 0; i < lengInitVector; ++i) {

/* Precomputation x => x’(={x_(1,1), x_(1_2), x_(2_2), ...} */

/* 1984 = 62 * 32 */

setX<<<gridSetX, blockSetX>>>(devX, devY);

multiply<<<31, 64>>>(devX, devY);

/* nextX <= P(x) */

if (InitVec[i] == 0) {

prodMatVec<<<gridAXX, blockAXX1>>>(devX, devSysS0, devAXX);

} else {

prodMatVec<<<gridAXX, blockAXX1>>>(devX, devSysS1, devAXX);

}

prodMatVecP<<<gridAdd1, blockAdd>>>(devAXX, devVecX);

setNextVec<<<64, 31>>>(devVecX, devX);

}

cudaThreadSynchronize();

for (i = 0; i < lengInitVector; ++i) {

/* Precomputation x => x’(={x_(1,1), x_(1_2), x_(2_2), ...} */

setX<<<gridSetX, blockSetX>>>(devX, devY);

multiply<<<31, 64>>>(devX, devY);

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 121

prodMatVec<<<gridAXX, blockAXX1>>>(devX, devSysP, devAXX);

prodMatVecP<<<gridAdd1, blockAdd>>>(devAXX, devVecX);

setNextVec<<<64, 31>>>(devVecX, devX);

}

cudaThreadSynchronize();

timeFunc[2] = gettimeofday_sec() - timeBase;

fprintf(stderr, "Initialized\n");

/* 3: Generate sequence */

timeBase = gettimeofday_sec();

for (i = 0; i < iterateTime; ++i) {

/* Precomputation x => x’(={x_(1,1), x_(1_2), x_(2_2), ...} */

setX<<<gridSetX, blockSetX>>>(devX, devY);

multiply<<<31, 64>>>(devX, devY);

/* y = Ax’ */

/* stream <= Q(x) */

prodMatVec<<<gridAXX, blockAXX2>>>(devX, devSysP, devAXX);

/* nextX <= P(x) */

prodMatVecP<<<gridAdd2, blockAdd>>>(devAXX, devVecX);

outputStream<<<2, 32>>>(devVecX, devStream, devCou);

setNextVec<<<64, 31>>>(devVecX, devX);

}

cudaThreadSynchronize();

timeFunc[3] = gettimeofday_sec() - timeBase;

fprintf(stderr, "generated.\n");

/* 4: Encrypt with stream */

timeBase = gettimeofday_sec();

computeXOR<<<2560, 1024>>>(devPlain, devCipher, devStream);

cudaThreadSynchronize();

timeFunc[4] = gettimeofday_sec() - timeBase;

fprintf(stderr, "encrypted.\n");

/* 5: Data transfer DtoH */

timeBase = gettimeofday_sec();

cudaMemcpy(ciphertext, devCipher, lengData * sizeof(int), cudaMe

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 122

mcpyDeviceToHost);

timeFunc[5] = gettimeofday_sec() - timeBase;

fprintf(stderr, "translated.\n");

/* 6: GPU memory release */

timeBase = gettimeofday_sec();

if (devSysP != 0) { cudaFree(devSysP); }

if (devSysS0 != 0) { cudaFree(devSysS0); }

if (devSysS1 != 0) { cudaFree(devSysS1); }

if (devX != 0) { cudaFree(devX); }

if (devY != 0) { cudaFree(devY); }

if (devAXX != 0) { cudaFree(devAXX); }

if (devVecX != 0) { cudaFree(devVecX); }

if (devPlain != 0) { cudaFree(devPlain); }

if (devCipher != 0) { cudaFree(devCipher); }

if (devStream != 0) { cudaFree(devStream); }

if (devCou != 0) { cudaFree(devCou); }

timeFunc[6] = gettimeofday_sec() - timeBase;

return 0;

}

A.2.4 GPU Kernels of QUAD over GF(232)

#include <cuda.h>

#include "condQUAD.h"

__global__ void setX(element *X, element *Y) {

//int laneId = threadIdx.x & 0x1f;

int idx_bl, idx_th, idx_base, idx;

int value;

idx_bl = blockIdx.x;

idx_th = threadIdx.x;

idx_base = threadIdx.y << 11;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 123

if (idx_th == 0) {

value = X[(idx_base) | (idx_bl + numLinearBase)];

}

value = __shfl(value, 0);

if (idx_bl <= idx_th) { X[idx_base + ((idx_th * (idx_th + 1)) >> 1)

+ idx_bl] = value; }

if (idx_bl >= idx_th) { Y[idx_base + ((idx_bl * (idx_bl + 1)) >> 1)

+ idx_th] = value; }

}

/* multiple 32 elementxelement */

__global__ void multiply(element *X, element *Y) {

/* pseudo-code */

element A00 to A1f;

element B00 to B1f;

/* AB00 to AB1f: data of 1st to 32nd bit of A * B */

element AB00 to AB1f;

/* Carry00 to Carry1e: data of 33rd to 63rd bit of A * B */

element Carry00 to Carry 1e;

/* CXXYY := CarryXX ^ CarryYY */

element C0B15, C0C16, C0D17, C0E18, C0F19, C101A, C111B, C121C,

C131D, C141E;

/* CXXYYZZ := CXXYY ^ CarryZZ */

element C000A14, C010B15, C020C16, C030D17, C040E18, C050F19,

C06101A, C07111B, C08121C, C09131D, C0A141E;

int idx_base, idx;

idx_base = (blockIdx.x << 6) + threadIdx.x;

idx = idx_base;

/* for XX as 00 to 1f */

A00 = X[idx_base]; B00 = X[idx_base]; idx += 2048;

A01 = X[idx_base]; B01 = X[idx_base]; idx += 2048;

...

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 124

AXX = X[idx_base]; BXX = X[idx_base]; idx += 2048;

...

A1f = X[idx_base]; B1f = X[idx_base];

/* for XX as 00 to 1f */

AB00 = (A00 & B00);

AB01 = (A01 & B00) ^ (A00 & B01);

...

ABXX = (A00 & BXX) ^ (A01 & B(XX-01)) ^ ... ^ (AXX & B00);

...

AB1f = (A00 & B1f) ^ (A01 & B1e) ^ ... ^ (A1f & B00);

/* for ZZ as 00 to 1e */

Carry00 = (A1f & B01) ^ (A1e & B02) ^ ... ^ (A01 & B1f);

Carry01 = (A1f & B02) ^ (A1e & B03) ^ ... ^ (A02 & B1f);

...

CarryZZ = (A1f & B(ZZ-1f)) ^ ... ^ (A(ZZ-1f) & B1f);

...

Carry1e = (A1f & B1f);

C0B15 = Carry0b ^ Carry15;

C0C16 = Carry0c ^ Carry16;

C0D17 = Carry0d ^ Carry17;

C0E18 = Carry0e ^ Carry18;

C0F19 = Carry0f ^ Carry19;

C101A = Carry10 ^ Carry1a;

C111B = Carry11 ^ Carry1b;

C121C = Carry12 ^ Carry1c;

C131D = Carry1e ^ Carry1d;

C141E = Carry14 ^ Carry1e;

C000A14 = Carry00 ^ Carry0a ^ Carry14;

C010B15 = Carry01 ^ C0B15;

C020C16 = Carry02 ^ C0C16;

C030D17 = Carry03 ^ C0D17;

C040E18 = Carry04 ^ C0E18;

C050F19 = Carry05 ^ C0F19;

C06101A = Carry06 ^ C101A;

C07111B = Carry07 ^ C111B;

C08121C = Carry08 ^ C121C;

C09131D = Carry09 ^ C131D;

C0A141E = Carry0a ^ C141E;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 125

X[idx_base] = AB00 ^ C000A14;

idx_base += 2048;

X[idx_base] = AB01 ^ C000A14 ^ C010B15;

idx_base += 2048;

X[idx_base] = AB02 ^ C000A14 ^ C010B15 ^ C020C16;

idx_base += 2048;

X[idx_base] = AB03 ^ C010B15 ^ C020C16 ^ C030D17;

idx_base += 2048;

X[idx_base] = AB04 ^ C020C16 ^ C030D17 ^ C040E18;

idx_base += 2048;

X[idx_base] = AB05 ^ C030D17 ^ C040E18 ^ C050F19;

idx_base += 2048;

X[idx_base] = AB06 ^ C040E18 ^ C050F19 ^ C06101A;

idx_base += 2048;

X[idx_base] = AB07 ^ C050F19 ^ C06101A ^ C07111B;

idx_base += 2048;

X[idx_base] = AB08 ^ C06101A ^ C07111B ^ C08121C;

idx_base += 2048;

X[idx_base] = AB09 ^ C07111B ^ C08121C ^ C09131D;

idx_base += 2048;

X[idx_base] = AB0a ^ C08121C ^ C09131D ^ C0A141E;

idx_base += 2048;

X[idx_base] = AB0b ^ C09131D ^ C0A141E ^ C0B15;

idx_base += 2048;

X[idx_base] = AB0c ^ C0A141E ^ C0B15 ^ C0C16;

idx_base += 2048;

X[idx_base] = AB0d ^ C0B15 ^ C0C16 ^ C0D17;

idx_base += 2048;

X[idx_base] = AB0e ^ C0C16 ^ C0D17 ^ C0E18;

idx_base += 2048;

X[idx_base] = AB0f ^ C0D17 ^ C0E18 ^ C0F19;

idx_base += 2048;

X[idx_base] = AB10 ^ C0E18 ^ C0F19 ^ C101A;

idx_base += 2048;

X[idx_base] = AB11 ^ C0F19 ^ C101A ^ C111B;

idx_base += 2048;

X[idx_base] = AB12 ^ C101A ^ C111B ^ C121C;

idx_base += 2048;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 126

X[idx_base] = AB13 ^ C111B ^ C121C ^ C131D;

idx_base += 2048;

X[idx_base] = AB14 ^ C121C ^ C131D ^ C141E;

idx_base += 2048;

X[idx_base] = AB15 ^ C131D ^ C141E ^ Carry15;

idx_base += 2048;

X[idx_base] = AB16 ^ Carry00 ^ Carry0a ^ Carry15 ^ Carry16 ^ Carry1e

;

idx_base += 2048;

X[idx_base] = AB17 ^ Carry01 ^ Carry0b ^ Carry16 ^ Carry17;

idx_base += 2048;

X[idx_base] = AB18 ^ Carry02 ^ Carry0c ^ Carry17 ^ Carry18;

idx_base += 2048;

X[idx_base] = AB19 ^ Carry03 ^ Carry0d ^ Carry18 ^ Carry19;

idx_base += 2048;

X[idx_base] = AB1a ^ Carry04 ^ Carry0e ^ Carry19 ^ Carry1a;

idx_base += 2048;

X[idx_base] = AB1b ^ Carry05 ^ Carry0f ^ Carry1a ^ Carry1b;

idx_base += 2048;

X[idx_base] = AB1c ^ Carry06 ^ Carry10 ^ Carry1b ^ Carry1c;

idx_base += 2048;

X[idx_base] = AB1d ^ Carry07 ^ Carry11 ^ Carry1c ^ Carry1d;

idx_base += 2048;

X[idx_base] = AB1e ^ Carry08 ^ Carry12 ^ Carry1d ^ Carry1e;

idx_base += 2048;

X[idx_base] = AB1f ^ Carry09 ^ Carry13 ^ Carry1e;

}

/*

20 * 641, 321

*/

__global__ void prodMatVec(element *extX, element *A, element *AXX) {

/* pseudo-code */

element A00 to A1f;

element B00 to B1f;

/* AB00 to AB1f: data of 1st to 32nd bit of A * B */

element AB00 to AB1f;

/* Carry00 to Carry1e: data of 33rd to 63rd bit of A * B */

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 127

element Carry00 to Carry 1e;

/* CXXYY := CarryXX ^ CarryYY */

element C0B15, C0C16, C0D17, C0E18, C0F19, C101A, C111B, C121C,

C131D, C141E;

/* CXXYYZZ := CXXYY ^ CarryZZ */

element C000A14, C010B15, C020C16, C030D17, C040E18, C050F19,

C06101A, C07111B, C08121C, C09131D, C0A141E;

int idx_base, idx;

idx_base = (blockIdx.x << 6) | threadIdx.x;

idx = idx_base;

/* for XX as 00 to 1f */

A00 = extX[idx]; idx += 2048;

A01 = extX[idx]; idx += 2048;

...

AXX = extX[idx]; idx += 2048;

...

A1f = extX[idx];

idx_base |= threadIdx.y << 16;

idx = idx_base;

/* for XX as 00 to 1f */

B00 = A[idx]; idx += 2048;

B01 = A[idx]; idx += 2048;

...

BXX = A[idx]; idx += 2048;

...

A1f = A[idx];

/* for XX as 00 to 1f */

AB00 = (A00 & B00);

AB01 = (A01 & B00) ^ (A00 & B01);

...

ABXX = (A00 & BXX) ^ (A01 & B(XX-01)) ^ ... ^ (AXX & B00);

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 128

...

AB1f = (A00 & B1f) ^ (A01 & B1e) ^ ... ^ (A1f & B00);

/* for XX as 00 to 1e */

Carry00 = (A1f & B01) ^ (A1e & B02) ^ ... ^ (A01 & B1f);

Carry01 = (A1f & B02) ^ (A1e & B03) ^ ... ^ (A02 & B1f);

...

CarryXX = (A1f & B(XX-1f)) ^ ... ^ (A(XX-1f) & B1f);

...

Carry1e = (A1f & B1f);

C0B15 = Carry0b ^ Carry15;

C0C16 = Carry0c ^ Carry16;

C0D17 = Carry0d ^ Carry17;

C0E18 = Carry0e ^ Carry18;

C0F19 = Carry0f ^ Carry19;

C101A = Carry10 ^ Carry1a;

C111B = Carry11 ^ Carry1b;

C121C = Carry12 ^ Carry1c;

C131D = Carry1e ^ Carry1d;

C141E = Carry14 ^ Carry1e;

C000A14 = Carry00 ^ Carry0a ^ Carry14;

C010B15 = Carry01 ^ C0B15;

C020C16 = Carry02 ^ C0C16;

C030D17 = Carry03 ^ C0D17;

C040E18 = Carry04 ^ C0E18;

C050F19 = Carry05 ^ C0F19;

C06101A = Carry06 ^ C101A;

C07111B = Carry07 ^ C111B;

C08121C = Carry08 ^ C121C;

C09131D = Carry09 ^ C131D;

C0A141E = Carry0a ^ C141E;

idx = idx_base;

AXX[idx] = AB00 ^ C000A14;

idx += 2048;

AXX[idx] = AB01 ^ C000A14 ^ C010B15;

idx += 2048;

AXX[idx] = AB02 ^ C000A14 ^ C010B15 ^ C020C16;

idx += 2048;

AXX[idx] = AB03 ^ C010B15 ^ C020C16 ^ C030D17;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 129

idx += 2048;

AXX[idx] = AB04 ^ C020C16 ^ C030D17 ^ C040E18;

idx += 2048;

AXX[idx] = AB05 ^ C030D17 ^ C040E18 ^ C050F19;

idx += 2048;

AXX[idx] = AB06 ^ C040E18 ^ C050F19 ^ C06101A;

idx += 2048;

AXX[idx] = AB07 ^ C050F19 ^ C06101A ^ C07111B;

idx += 2048;

AXX[idx] = AB08 ^ C06101A ^ C07111B ^ C08121C;

idx += 2048;

AXX[idx] = AB09 ^ C07111B ^ C08121C ^ C09131D;

idx += 2048;

AXX[idx] = AB0a ^ C08121C ^ C09131D ^ C0A141E;

idx += 2048;

AXX[idx] = AB0b ^ C09131D ^ C0A141E ^ C0B15;

idx += 2048;

AXX[idx] = AB0c ^ C0A141E ^ C0B15 ^ C0C16;

idx += 2048;

AXX[idx] = AB0d ^ C0B15 ^ C0C16 ^ C0D17;

idx += 2048;

AXX[idx] = AB0e ^ C0C16 ^ C0D17 ^ C0E18;

idx += 2048;

AXX[idx] = AB0f ^ C0D17 ^ C0E18 ^ C0F19;

idx += 2048;

AXX[idx] = AB10 ^ C0E18 ^ C0F19 ^ C101A;

idx += 2048;

AXX[idx] = AB11 ^ C0F19 ^ C101A ^ C111B;

idx += 2048;

AXX[idx] = AB12 ^ C101A ^ C111B ^ C121C;

idx += 2048;

AXX[idx] = AB13 ^ C111B ^ C121C ^ C131D;

idx += 2048;

AXX[idx] = AB14 ^ C121C ^ C131D ^ C141E;

idx += 2048;

AXX[idx] = AB15 ^ C131D ^ C141E ^ Carry15;

idx += 2048;

AXX[idx] = AB16 ^ Carry00 ^ Carry0a ^ Carry15 ^ Carry16 ^ Carry1e;

idx += 2048;

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 130

AXX[idx] = AB17 ^ Carry01 ^ Carry0b ^ Carry16 ^ Carry17;

idx += 2048;

AXX[idx] = AB18 ^ Carry02 ^ Carry0c ^ Carry17 ^ Carry18;

idx += 2048;

AXX[idx] = AB19 ^ Carry03 ^ Carry0d ^ Carry18 ^ Carry19;

idx += 2048;

AXX[idx] = AB1a ^ Carry04 ^ Carry0e ^ Carry19 ^ Carry1a;

idx += 2048;

AXX[idx] = AB1b ^ Carry05 ^ Carry0f ^ Carry1a ^ Carry1b;

idx += 2048;

AXX[idx] = AB1c ^ Carry06 ^ Carry10 ^ Carry1b ^ Carry1c;

idx += 2048;

AXX[idx] = AB1d ^ Carry07 ^ Carry11 ^ Carry1c ^ Carry1d;

idx += 2048;

AXX[idx] = AB1e ^ Carry08 ^ Carry12 ^ Carry1d ^ Carry1e;

idx += 2048;

AXX[idx] = AB1f ^ Carry09 ^ Carry13 ^ Carry1e;

}

__device__ void warpReduce(volatile element *sdata, int tid) {

sdata[tid] ^= sdata[tid+32];

sdata[tid] ^= sdata[tid+16];

sdata[tid] ^= sdata[tid+ 8];

sdata[tid] ^= sdata[tid+ 4];

sdata[tid] ^= sdata[tid+ 2];

sdata[tid] ^= sdata[tid+ 1];

}

/* m(=2) * 32 * 1024 */

__global__ void prodMatVecP(element *AXX, element *NextAXX) {

__shared__ element tmpData[1024];

int idxBase;

int tid;

tid = threadIdx.x;

idxBase = (blockIdx.x << 16) | (blockIdx.y << 11) | threadIdx.x;

tmpData[tid] = AXX[idxBase] ^ AXX[idxBase | 1024];

__syncthreads();

/* 2145 = 2 * 1024 + 97 */

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 131

if (tid < 512) { tmpData[tid] ^= tmpData[512 | tid]; }

__syncthreads();

if (tid < 256) { tmpData[tid] ^= tmpData[256 | tid]; }

__syncthreads();

if (tid < 128) { tmpData[tid] ^= tmpData[128 | tid]; }

__syncthreads();

if (tid < 64) { tmpData[tid] ^= tmpData[64 | tid]; }

__syncthreads();

if (tid < 32) { warpReduce(tmpData, tid); }

if (tid == 0) {

idxBase = (blockIdx.x << 5) | blockIdx.y;

NextAXX[idxBase] = tmpData[0];

}

}

/* P(x) => X */

__global__ void setNextVec(

element *X,

element *nextX)

{

int value;

element v1, v2;

int idx, idx1, idx2;

idx = threadIdx.x;

idx1 = ((blockIdx.x & 0x01) << 5) | idx;

idx2 = (blockIdx.x & 0x3e) << 10;

if (idx == 0) { value = X[blockIdx.x]; }

value = __shfl(value, 0);

v1 = ((value >> idx) & 0x01) * 0xFFFFFFFE;

v2 = ((value >> (idx + 1)) & 0x01) * 0x7FFFFFFF;

nextX[idx2 | (numQuadTerm + idx2)] =

(v1 << idx) | (v2 >> (30 - idx));

}

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 132

/*

Output Stream

resFx: result of f(x)

stream: keystream data

cou: index counter of keystream

*/

__global__ void outputStream(

element *resFx,

element *stream,

element *cou)

{

int idx = (blockIdx.x << 5) | threadIdx.x;

stream[cou[idx]] = resFx[64 | idx];

cou[idx] += 64;

}

/*

Initialize Counter of Keystream

cou: index counter of keystream

*/

__global__ void initStreamCounter(

element *cou)

{

int idx;

idx = threadIdx.x;

cou[idx] = idx;

}

/*

Encrypting Message

plain: original plaintext message

cipher: encrypted ciphertext

stream: keystream data

*/

__global__ void computeXOR(

element *plain,

element *cipher,

element *stream)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Appendix A Source Code 133

{

int idx;

idx = (blockIdx.x << 10) | threadIdx.x;

cipher[idx] = plain[idx] ^ stream[idx];

}

Graduate School of Information Science and Electrical Engineering, Kyushu University



References 134

References

[1] Cuda c programming guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/, Accessed July 2014.

[2] cusparse::cuda toolkit documentation. http://docs.nvidia.com/cuda/cusparse,

Accessed August 2014.

[3] Nvidia developer zone. https://developer.nvidia.com/category/zone/

cuda-zone, Accessed July 2014.

[4] Opencl - the open standard for parallel programming of heterogeneous systems.

http://www.khronos.org/opencl/: Accessed August 2014.

[5] Optimizing parallel reduction in cuda. http://developer.download.nvidia.com/

compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.

pdf: Accessed August 2014.

[6] Visual computing leadership from nvidia. http://www.nvidia.com/page/home.

html: Accessed August 2014.

[7] ISO/IEC 18031. Information technology—Security techniques—Random bit gen-

eration: second edition. ISO/IEC 18031: 2011(E), International Organization for

Standardization, Geneva, Switzerland, 2011.

[8] David Arditti, Côme Berbain, Oliver Billet, and Henri Gilbert. Compact fpga

implementations of quad. In Proc. of the 2nd ACM symposium on information,

Graduate School of Information Science and Electrical Engineering, Kyushu University



References 135

computer and communications security (ASIACCS’07), Singapore, pages 135–147.

ACM, March 2007.

[9] Gwénolé Ars, Jean-Charles Faugere, Hideki Imai, Mitsuru Kawazoe, and Makoto

Sugita. Comparison between xl and gröbner basis algorithms. In Advances in

Cryptology-ASIACRYPT 2004, pages 338–353. Springer, 2004.

[10] Daniel V Bailey and Christof Paar. Optimal extension fields for fast arithmetic in

public-key algorithms. In Advances in Cryptology - CRYPTO’98, pages 472–485.

Springer, 1998.

[11] Gregory V. Bard. Algebraic Cryptanalysis. Springer, 2009.

[12] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux

codes correcteurs et à la cryptographie. PhD thesis, Université Pierre et Marie

Curie-Paris VI, 2004.

[13] Côme Berbain, Oliver Billet, and Henri Gilbert. Efficient implementations of multi-

variate quadratic systems. In Proc. of the 13th International Workshop on Selected

Areas in Cryptography (SAC’06), Revised Selected Papers, LNCS, volume 4356,

pages 174–187. Springer-Verlag, August 2006.

[14] Côme Berbain, Henri Gilbert, and Jacques Patarin. Quad: A pratical stream cipher

with provable security. In Proc. of the 25th Annual International Conference on

the Theory and Applications of Cryptographic Techniques Advances (EUROCRYPT

2006), St. Petersburg, Russia, LNCS, volume 4004, pages 109–128. Springer-Verlag,

May-June 2006.

[15] Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo-

random number generator. SIAM Journal on Computing, 4(2):364–384, May 1986.

[16] D. Bonenberger and M. Krone. Factorization of rsa-170. Technical report, Tech.

rep., Ostfalia University of Applied Sciences, 2010.

Graduate School of Information Science and Electrical Engineering, Kyushu University



References 136

[17] Joppe W. Bos and Deian Stefan. Performance analysis of the sha-3 candidates

on exotic multi-core architectures. In Proc. of the 12th International Workshop

on Cryptographic Hardware and Embedded Systems (CHES 2010), Santa Barbara,

USA, LNCS, volume 6225, pages 279–293. Springer-Verlag, August 2010.

[18] Christophe De Cannière and Bart Preneel. Trivium specifications. Technical report,

eSTREAM, the ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/

stream/p3ciphers/trivium/trivium_p3.pdf, 2006. Accessed August 2014.

[19] Anna Inn-Tung Chen, Ming-shing Chen, Tien-Ren Chen, Jintai Ding, Eric Li-hsiang

Kuo, and Frost Yu-shuang Li. Small odd prime field multivariate pkcs. 2008.

[20] M.-S. Chen, T.-R. Chen, C.-M. Cheng, C.-H. Hsiao, Niederhagen R., and B.-Y.

Yan. What price a provably secure stream cipher?, 2010.

[21] Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and Bo-Yin Yang. Solving

quadratic equations with xl on parallel architectures. In Cryptographic Hardware

and Embedded Systems–CHES 2012, pages 356–373. Springer, 2012.

[22] Nicolas Courtois, Alexander Kilmov, Jacques Patarin, and Adi Shamir. Efficient

algorithms for solving overdefined systems of multivariate polynomial equations.

In Proc. of the 19th Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques Advances (EUROCRYPT 2000), Bruges, Bel-

gium, LNCS, volume 1807, pages 392–407. Springer-Verlag, May 2000.

[23] VO Drelikhov, GB Marshalko, and AV Pokrovskiy. On the security of mq drbg.

IACR Cryptology ePrint Archive, 2011:548, 2011.

[24] James Goodman and Anantha P. Chandrakasan. An energer-efficient reconfigurable

public-key cryptography processor. In Proc. of the 2nd International Workshop

on Cryptographic Hardware and Embedded Systems (CHES 2000), Worcester, Mas-

sachusetts, USA, LNCS, volume 1965, pages 175–190. Springer-Verlag, August 2000.

Graduate School of Information Science and Electrical Engineering, Kyushu University



References 137

[25] Jason R. Hamlet and Robert W. Brocato. Throughput optimized implementations

of quad. Technical Report 118, Cryptology ePrint Archive, http://eprint.iacr.

org/2013/118, February 2013. Accessed August 2014.

[26] Klaus Huber. Some comments on zech’s logarithms. Journal of IEEE Transactions

on Information Theory, 36(4):946–950, July 1990.

[27] Kyoki Imamura. A method for computing addition tables in gf(pn). Journal of

IEEE Transactions on Information Theory, 26(4):367–369, May 1980.

[28] Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and KyoungSoo Park. Accel-

erating ssl with gpus. In Proc. of the 16th Conference of the ACM Special Interest

Group on Data Communication (SIGCOMM’10), New Delhi, India, pages 437–438.

ACM, August-September 2010.

[29] G. Kedem and Y. Ishihara. Brute force attack on unix passwords with simd com-

puter. In Proceedings of the 8th conference on USENIX Security Symposium-Volume

8, pages 8–8. USENIX Association, 1999.

[30] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar

signature schemes. In Advances in Cryptology - EUROCRYPT’ 99, pages 206–222.

Springer, 1999.

[31] Matthew Kwan. Reducing the gate count of bitslice des. Technical Report 051,

Cryptology ePrint Archive, http://eprint.iacr.org/2000/051, October 2000.

Accessed August 2014.

[32] Arjen K Lenstra and Eric R Verheul. Selecting cryptographic key sizes. Journal of

cryptology, 14(4):255–293, 2001.

[33] Svetlin A. Manavski. Cuda compatible gpu as an efficient hardware accelerator

for aes cryptography. In Proc. of the 2007 IEEE International Conference on Sig-

Graduate School of Information Science and Electrical Engineering, Kyushu University



References 138

nal Processing and Communications (ICSPC 2007), Dubai, United Arab Emirates,

pages 65–68. IEEE, November 2007.

[34] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

[35] Atsuko Miyaji, Mohammad Shahriar Rahman, and Masakazu Soshi. Efficient and

low-cost rfid authentication schemes. Journal of Wireless Mobile Networks, Ubiqui-

tous Computing, and Dependable Applications, 2(3):4–25, 2011.

[36] Wael Said Abdelmageed Mohamed, Jintai Ding, Thorsten Kleinjung, Stanislav Bu-

lygin, and Johannes Buchmann. Pwxl: A parallel wiedemann-xl algorithm for solv-

ing polynomial equations over GF(2). SCC, 2010:89–100, 2010.

[37] Andrew Moss, Daniel Page, and Nigel P. Smart. Toward acceleration of rsa using 3d

graphics hardware. In Proc. of the 11th IMA international conference on Cryptogra-

phy and Coding, Cirencester, United Kingdom, LNCS, volume 4887, pages 364–383.

Springer-Verlag, December 2007.

[38] D. Osvik, J. Bos, D. Stefan, and D. Canright. Fast software aes encryption. In Fast

Software Encryption, pages 75–93. Springer, 2010.

[39] Nasrollah Pakniat and Ziba Eslami. A proxy e-raffle protocol based on proxy signa-

tures. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable

Applications, 2(3):74–84, 2011.

[40] J. Patarin and L. Goubin. Asymmetric cryptography with s-boxes is it easier than

expected to design efficient asymmetric cryptosystems? Information and Commu-

nications Security, pages 369–380, 1997.

[41] Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of polynomials

(ip): Two new families of asymmetric algorithms. In Advances in Cryptology -

Eurocrypt’96, pages 33–48. Springer, 1996.

Graduate School of Information Science and Electrical Engineering, Kyushu University



References 139

[42] Albrecht Petzoldt. Speeding up quad. Technical Report 263, Cryptology ePrint

Archive, http://eprint.iacr.org/2013/263, July 2013. Accessed August 2014.

[43] Chester Rebeiro, David Selvakumar, and ASL Devi. Bitslice implementation of aes.

In Proc. of the 5th International Conference on Cryptology and Network Security,

(CANS 2006), Suzhou, China, LNCS, volume 4301, pages 203–212. Springer-Verlag,

December 2006.

[44] Aresh Reyhani-Masoleh and M. Anwar Hasan. Efficient digit-serial normal basis

multipliers over binary extension fields. Journal of ACM Transactions on Embedded

Computing Systems, 3(3):575–592, August 2004.

[45] Harald Niederreiter Rudolf Lidl. Introduction to finite fields and their applications,

Revised edition. Cambridge University Press, 1994.

[46] Satoshi Tanaka, Tung Chou, Bo-Yin Yang, Chen-Mou Cheng, and Kouichi Sakurai.

Efficient parallel evaluation of multivariate quadratic polynomials on gpus. In Proc.

of the 13th International Workshop on Information Security Applications (WISA

2012), Jeju Island, Korea, LNCS, volume 7690, pages 28–42. Springer-Verlag, Au-

gust 2012.

[47] Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai. Efficient implementation of

evaluating multivariate quadratic system with gpus. In Proc. of the Sixth Interna-

tional Conference on Innovate Mobile and Internet Services in Ubiquitous Comput-

ing (IMIS 2012), Palermo, Italy, pages 660–664. IEEE, July 2012.

[48] Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai. Efficient implementation

for quad stream cipher with gpus. Journal of Computer Science and Information

Systems, 10(2, special issue):897–911, April 2013.

[49] Satoshi Tanaka, Takanori Yasuda, and Kouichi Sakurai. Fast evaluation of multi-

Graduate School of Information Science and Electrical Engineering, Kyushu University



References 140

variate quadratic polynomials over gf(232) using grahpics processing units. Journal

of Internet Services and Information Security (JISIS), 4(3):1–20, August 2014.

[50] Satoshi Tanaka, Takanori Yasuda, and Kouichi Sakurai. Implementation of efficient

operations over gf(232) using graphics processing units. In Proc. of the Second Inter-

national Conference on Information & Communication Technology (ICT-EurAsia

2014), Bali, Indonesia, LNCS, volume 8407, pages 602–611. Springer-Verlag, April

2014.

[51] Satoshi Tanaka, Takanori Yasuda, Bo-Yin Yang, Chen-Mou Cheng, and Kouichi

Sakurai. Efficient computing over gf(216) using graphics processing unit. In Proc. of

the Seventh International Conference on Innovative Mobile and Internet Servicies

in Ubiquitous Computing (IMIS 2013), Taichung, Taiwan, pages 843–846. IEEE,

July 2013.

[52] Douglas Wiedemann. Solving sparse linear equations over finite fields. Information

Theory, IEEE Transactions on, 32(1):54–62, 1986.

[53] Hongjun Wu. A new stream cipher hc-256. In Proc. of the 11th International

Workshop on Fast Software Encryption (FSE 2004), Delhi, India, Revised Papers,

LNCS, volume 3017, pages 226–244. Springer-Verlag, February 2004.

[54] Hongjun Wu. The stream cipher hc-128. Technical report, eSTREAM,

the ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/stream/

p3ciphers/hc/hc128_p3.pdf, 2008. Accessed August 2014.

[55] Bo-Yin Yang, Daniel J. Bernstein Owen Chia-Hsin Cheng, and Jiun-Ming Chen.

Analysis of quad. In Proc. of the 14th International Workshop on Fast Software

Encryption (FSE2007), Luxembourg, Luxembourg, Revised Selected Papers, LNCS,

volume 4593, pages 290–308. Springer-Verlag, March 2007.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Publications 141

Publications

Refereed Journal Papers

（1）Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai, “Efficient Implementation

for QUAD Stream Cipher with GPUs.” Journal of Computer Science and Infor-

mation Systems, vol. 10, issue 2, special issue, pp.897-911, ComSIS Consortium,

April 2013.

（2）Satoshi Tanaka, Takanori Yasuda, and Kouichi Sakurai. “Fast Evaluation of Mul-

tivariate Quadratic Polynomials over GF(232) using Grahpics Processing Units.”

Journal of Internet Services and Information Security (JISIS), vol. 4, issue 3,

pp.1-20, ISYOU, ISEP/IPP, August 2014.

Refereed International Conference Papers

（1）Satoshi Tanaka, Tung Chou, Bo-Yin Yang, Chen-Mou Cheng, and Kouichi Sakurai,

“Efficient Parallel Evaluation of Multivariate Quadratic Polynomials on GPUs.”

In Proc. of the 13th International Workshop on Information Security Applications

(WISA 2012), Jeju Island, Korea, LNCS, vol. 7690, pp.28-42, Springer-Verlag,

August 2012.

（2）Satoshi Tanaka, Takashi Nishide, and Kouichi Sakurai, “Efficient Implementation

of Evaluating Multivariate Quadratic System with GPUs.” In Proc. of the Sixth

Graduate School of Information Science and Electrical Engineering, Kyushu University



Publications 142

International Conference on Innovate Mobile and Internet Services in Ubiquitous

Computing (IMIS 2012), Palermo, Italy, pp. 660-664, IEEE, July 2012.

（3）Satoshi Tanaka, Takanori Yasuda, Bo-Yin Yang, Chen-Mou Cheng, and Kouichi

Sakurai, “Efficient Computing over GF(216) using Graphics Processing Unit.” In

Proc. of the Seventh International Conference on Innovative Mobile and Internet

Servicies in Ubiquitous Computing (IMIS 2013), Taichung, Taiwan, pp. 843-846,

IEEE, July 2013.

（4）Satoshi Tanaka, Takanori Yasuda, and Kouichi Sakurai, “Implementation of Effi-

cient Operations over GF(232) using graphics processing units.” In Proc. of the

Second International Conference on Information & Communication Technology

(ICT-EurAsia2014), Bali, Indonesia, LNCS, vol. 8407, pp. 602-611, Springer-

Verlag, April 2014.

（5）Satoshi Tanaka, Chen-Mou Cheng, Takanori Yasuda, Kouichi Sakurai, “Paral-

lelization of QUAD Stream Cipher using Linear Recurring Sequences on Graphics

Processing Unit.” In Proc. of the 1st International Workshop on Information and

Communication Security (WICS’14), pp.543-548, IEEE, December, 2014.

（6）Satoshi Tanaka, Chen-Mou Cheng, Kouichi Sakurai, “Evaluation of Solving Time

for Multivariate Quadratic Equation System using XL Algorithm over Small Finite

Fields on GPU.” In Proc. of the 2nd International Conference on Mathematics

and Computing (ICMC 2015), Springer Proceedings in Mathematics & Statistics,

Springer, January, 2015.

Unrefereed International Conference Papers

（1）Satoshi Tanaka, Takashi Nishide, Kouichi Sakurai, “Efficient Computation Method

of Multivariate Quadratic Polynomial Systems for Cryptography on Graphics Pro-

Graduate School of Information Science and Electrical Engineering, Kyushu University



Publications 143

cessing Unit.” In 2013 International Symposium on Information Science and Elec-

trical Engineering, poster session, January, 2013.

（2）Satoshi Tanaka, Takanori Yasuda, Kouichi Sakurai, ”Implementation of Efficient

Operations over GF(232) using Graphics Processing Units.” In the 8th Interna-

tional Workshop on Security (IWSEC 2013), poster session, September, 2013.

（3）Satoshi Tanaka, Takanori Yasuda, Kouichi Sakurai, “Efficient Implementation of

Multiplication on Extension Field Using Grahics Processing Unit.” In Forum

“Math-for-Industry” 2013, poster session, November, 2013.

（4）Satoshi Tanaka, Takanori Yasuda, Kouichi Sakurai, “Parallel Implementations of

QUAD Stream Cipher over Binary Extension Fields on Graphics Processing Units.”

In the 9th International Workshop on Security (IWSEC 2014), poster session, Au-

gust, 2014.

Domestic Conference Papers

（1）Satoshi Tanaka, Takanori Yasuda, Kouichi Sakurai, “Notes on Efficient Computing

over GF(216) using Graphics Processing Unit.” In IEICE Technical Report, vol.

112, no. 460, pp.143-147, Marchi, 2013.

（2）Satoshi Tanaka, Bo-Yin Yang, Chen-Mou Cheng, Kouichi Sakurai, “Accelerating

of Solving Method for Non-linear Multivariate System with Graphics Processing

Unit.” In Proc. of the 67th Joint Conference of Electrical, Electronics and Engi-

neers in Kyushu (JCEEE 2013), page 184, September, 2013.

（3）Satoshi Tanaka, Takanori Yasuda, Kouichi Sakurai, “Implementation on Efficient

Operations over GF(232) using Graphics Processing Unit.” In Proc. of Computer

Security Symposium 2013 (CSS 2013), pp.565-572, October, 2013.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Publications 144

（4）Satoshi Tanaka, Takanori Yasuda, Kouichi Sakurai, “Accelerating QUAD Stream

Cipher over Extend Field using Graphics Processing Unit.” In Proc. of Forum on

Information Technology 2014 (FIT2014), pp.149-150, September, 2014.

（5）Satoshi Tanaka, Takanori Yasuda, Kouichi Sakurai, “Parallel Implementation of

QUAD Stream Cipher over GF(232) using Linear Recurring Sequence.” In Proc.

of the 67th Joint Conference of Electrical, Electronics and Information Engineers

in Kyushu (JCEEE 2014), September, 2014.

（6）Satoshi Tanaka, Chen-Mou Cheng, Kouichi Sakurai, “Evaluating Solving Time of

Multivariate Quadratic Equation System using XL Algorithm over Small Finite

Fields.” In Proc. of Computer Security Symposium 2014 (CSS 2014), pp.124-131,

October, 2014.

（7）Satoshi Tanaka, Chen-Mou Cheng, Takanori Yasuda, Kouichi Sakurai, “Acceler-

ating QUAD Stream Cipher using Multi-Stream Method on Graphics Processing

Unit.” In IEICE Technical Report, vol. 114, no. 319, ISEC2014-56, pp. 1-6,

November, 2014.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Index 145

Index

Symbol/Number

3DCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A

AMD stream . . . . . . . . . . . . . . . . . . . . . . . . 26

asymmetric key cryptography . . . . . . . . 13

B

Berlekamp-Massey algorithm. . . . . . . . .90

BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

block Wiedemann. . . . . . . . . . . . . . . . . . . .90

Blum Blum Shub PRNG. . . . . . . . . . . . .74

Blum-Blum-Shub . . . . . . . . . . . . . . . . . . . . . 1

blum1986simple. . . . . . . . . . . . . . . . . . . . . . .1

boolean algebra . . . . . . . . . . . . . . . . . . . . . . 20

brute force attack. . . . . . . . . . . . . . . . . . . .28

C

COO format . . . . . . . . . . . . . . . . . . . . . . . . . 92

cryptographic primitive . . . . . . . . . . . . . . 12

cryptography . . . . . . . . . . . . . . . . . . . . . . . . 13

CSR format . . . . . . . . . . . . . . . . . . . . . . . . . 92

cuBLAS library . . . . . . . . . . . . . . . . . . . . . . 91

CUDA . . . . . . . . . . . . . . . . . . . . . . . 26, 27, 91

cuSPARSE library . . . . . . . . . . . . . 6, 88, 91

cyclic group . . . . . . . . . . . . . . . . . . . . . . . . . 22

D

degree of regularity . . . . . . . . . . . . . . . . . . 87

DirectX . . . . . . . . . . . . . . . . . . . . . . 26, 27, 91

DRBG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

E

ELL format. . . . . . . . . . . . . . . . . . . . . . . . . .92

extension field . . . . . . . . . . . . . . . . . . . 22, 51

F

Fermi architecture . . . . . . . . . . . . . . . . . . . 27

finite field . . . . . . . . . . . . . 13, 20, 29, 45, 51

FLOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

G

Galois extension . . . . . . . . . . . . . . . . . 22, 51

Galois group . . . . . . . . . . . . . . . . . . . . . . . . . 22

Gaussian elimination . . . . . . . . . . . . . 24, 90

GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . 25, 26

GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 30

Gröbner basis. . . . . . . . . . . . . . . . . . . . . . . .86

Graduate School of Information Science and Electrical Engineering, Kyushu University



Index 146

H

HFE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

I

integer factorization. . . . . . . . . . . . . . . . . . .1

ISO/IEC 18031 . . . . . . . . . . . . . . . . . . . . . . 18

K

Kepler architecture . . . . . . . . . . . . . . . . . . 27

L

LRS . . . . . . . . . . . . . . . . . . . . . . . 2, 11, 75, 77

LRS QUAD . . . . . . . . . . . . . . . . . . . 2, 75, 79

LU decomposition . . . . . . . . . . . . . . . . . . . 90

M

MP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

MP problem . . . . . . . . . . . . . . . . . . . . . 17, 32

MPKC . . . . . . . . . . . . 12, 13, 18, 20, 24, 86

MQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

MQ problem . . . . . . . . . . 17, 29, 32, 75, 86

multi-stream strategy . . . . . . . . . . . . . . . . 80

multivariate polynomial . . . . . . . . . . . 9, 13

multivariate quadratic polynomial . . . . 9,

11–13, 31, 53, 77

multivariate quadratic polynomial system

10

N

NP-complete . . . . . . . . . . . . . . . . . 18, 24, 75

NP-hard . . . . . . . . . . . . . . . . . . . . . . . . . 17, 32

O

OEF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 103

OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

OpenGL . . . . . . . . . . . . . . . . . . . . . 26, 27, 91

P

parallel reduction. . . . . . . . . . . . .36, 47, 80

PixelFlow. . . . . . . . . . . . . . . . . . . . . . . . . . . .28

polynomial. . . . . . . . . . . . . . . . . . . . . . . . . . . .9

primitive polynomial . . . . . . . . . . . . . . . . .22

PRNG. . . . . . . . . . . . . . . . . . . . . 1, 14, 18, 77

public key cryptography . . . . . . . . . . . . . 13

Q

QUAD. . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 90

QUAD stream cipher . . 1, 12, 18, 29, 31,

32, 45, 53, 54, 74, 77, 86

S

SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

stream cipher . . . . . . . . . . . . . . . . . . . . . . . . . 1

symmetric key cryptography . . . . . . . . . 13

T

term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

U

UOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

W

warp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Graduate School of Information Science and Electrical Engineering, Kyushu University



Index 147

Wiedemann algorithm. . . . . . . . . . . .25, 90

Wiedemann alogrithm . . . . . . . . . . . . . . . 86

X

XL. . . . . . . . . . . . . . . . . . . .16, 24, 86, 89, 90

XL-Wiedemann . . . . . . . . . . . . . . . . . . 60, 87

Graduate School of Information Science and Electrical Engineering, Kyushu University


