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Abstract

This thesis studies the convergence rates of strong solutions of the compressible
Navier-Stokes equations on the whole space R™. The main part of this thesis is
divided into two part.

In Part I, we study the optimal convergence rates for the compressible Navier-
Stokes equation with a potential external force V& for space dimension n > 3. It
is proved that the perturbation and its first order derivatives decay in L? norm in
O(t~1) and O(t~172) respectively, if the initial perturbation is small in H*(R™) N
L'(R"™) with sy = [2] + 1 and the potential force ® is small in some Sobolev space.

In Part II, we consider the optimal decay estimates in critical Besov spaces. The
optimal decay estimates in critical spaces are established if the iglitial perturbations
of density and velocity are small in BZ,(R") N BY_(R") and B2, YR N BY (R

with 1 <p< nz—fl, respectively, for n > 2.
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1 Introduction

This thesis studies the initial value problem for the compressible Navier-Stokes
equation (with potential force) on R™ :

O+ (u- V)u+ Y22 = Ay 4 BHEY(V - u) — VO(x), (1)
(0, u)(0,2) = (po, uo)(x) — (p,0)  |a| = o0
Here t > 0 and = = (z1,x2, -+ ,x,) € R"; the unknown functions p = p(t,z) > 0
and u = u(t,z) = (ui(t,x),us(t,x), -+ ,u,(t,x)) denote the density and velocity,

respectively; P = P(p) is the pressure that is assumed to be a function of the
density p; pu and p' are the viscosity coefficients satisfying the conditions p > 0 and
w+ %,u > 0; and V-, V and A denote the usual divergence, gradient and Laplacian
with respect to x, respectively.

We assume that P(p) is smooth and P’(p) is positive for p in a neighborhood of
p, where p is a given positive constant .

When & = 0, (1); — (1) has a (constant) stationary solution (p.(z),u.) =
(p,0). On the other hand, when & is small but ® # 0, the Navier-Stokes equation
(1)1 — (1)2 with potential force has the stationary solution (p.,u.) = (p«(z),0),
where p, satisfies, cf. [20]

p(z) pl(g
/ Lcls + ®(x) = 0. (2)
p S
In this thesis we derive the convergence rate of solutions of problem (1) to the
stationary solution (p.,0) as t — oo when the initial perturbation is sufficiently
small.
We first state our result on the convergence rate when & # 0.

Theorem 1.1. Assume that n > 3. Let (p,u) be a global solution in H* with sy =
[2]+1, to the problem (1). Then there exist € > 0 such that if (po— ps,ug) € H*NL!
and

H(PO — P, u0)| HoonL! <€

[Pl g0t + 11+ |2 )V P[22 < €

then, the estimates
IV (0 = pesu)(®)l22 < Co(1+6)7F72, k=01, 3)
hold fort > 0.

The proof of Theorem 1.1 will be given in Part I.

Remark 1.2. When ® = 0, one can also obtain the decay rates for the perturbation
of higher-order spatial derivatives. In fact, one can prove the following estimates.
Let ® = 0 and let (p,u) be a global solution in H' with | > sy = [2] + 1, to the



problem (1) and assume that (py — p,u) is sufficiently small in H'. Then it holds
that .
Hka<t>H2 < Co(l—i_t)i%iE? k:0>1a ) 50,

IVFU )], < Co(l4+8)"57, 59 <k <I
fort > 0.

We next states our result on the convergence rate of solution in critical Besov
spaces when ® = 0. When ® = 0, we have the constant stationary solution (p.,0) =

(7,0).

Theorem 1.3. Assume thatn >2 and ® =0 and 1 <p < nz—fl . Then there exists
e > 0 such that if

(po—p) € BEHNBY ., wpe BE ' NBY
and

||p0 - ﬁ|’3§1m32,m + Hu0||32%7171032700 S €,

then problem (1) has a unique global solution (p,u) satisfying
(p = p.w) € C(10,00); Bjy) x (C([0,00); B, ) N L}(0, 005 B}, ).

Furthermore, there exists a constant Cy > 0 such that the estimates

_nel_1
l(p = 7, w)(t)]|z2 < Co(1+t) 2072, (4)
lu@)ll g < Co(L+8) 67273 for 0<s <2-1 (5)
_n(l_1y_ 53
||(p—ﬁ)(t)|32921 < Co(1+1) 5373 22’ for 0<s <2 (6)

hold fort > 0.

The proof of Theorem 1.3 will be given in Part II

For the compressible Navier-Stokes equations, a lot of works on the large time
behavior of solutions have been done. Concerning the convergence rate to the mo-
tionless stationary solution, which is the main subject of this thesis, we first mention
that, when ® = 0, Matsumura-Nishida [18] showed the global in time existence of
the solution of (1) for n = 3, provided that the initial perturbation (py — p, uo) is
sufficiently small in H3(R3?) N L*(R?). (See also [19].) Furthermore, the following
decay estimates were obtained in [18]

IV (p — pu)(t)[| e < C(L+ )15 k=0,1. (7)

These results were proved by combining the energy method and the decay estimates
of the semigroup E(t) generated by the linearized operator A at the constant state

(7,0).



On the other hand, Kawashita [14] showed the global existence of solutions for
initial perturbations sufficiently small in H*°(R") with so = [§] + 1, n > 2. (Note
that sp = 2 for n = 3). Wang-Tan [26] then considered the case n = 3 when the
initial perturbation (pg — p, ug) is sufficiently small in H?(R?) N L}(R?), and proved
the decay estimates (7). Li- Zhang [17] showed that the density and momentum
converge at the rates (1 4 ¢)~ 175 in the L2 -norm, when initial perturbations are
sufficiently small in H'(R?) N B2 (R?) with [ > 4 and s € [0,1]. Note that L is

included in B?,oo‘ We also mentlon interesting works in [9, 16] where decay estimates
in LP norm were studied.

Danchin [2] proved the global existence in a critical homogeneous Besov space,
i.e., a scaling invariant Besov space. The system (1); — (1)s is invariant under the
following transformation

pa(t, ) == p(N2t, Ax),  up(t,z) = Mu(\*, \x).

More precisely, if (p, u) solves (1), so dose (py, uy) provided that the pressure law P
has been changed into A2P. Usually, we call that a functional space is a critical space
for (1) if the associated norm is invariant under the transformation (p, u) — (px, uy)
(up to a Constant mdependent of A). It is easy to see that homogeneous Besov space

C([0, 00); Bp L X B ) is a critical space for (1); and Danchin [2] proved the global

existence in C'([0, );Bp?l) X (C([O,oo);BEl_l) N L (0700;351“))’ together with
the estimate,

sup{p(8) = Pl -+ + et g} + [l 0
t>0 0 2,1

< MUMm—ﬂmagl+H%H74) ®)

if the initial perturbation is sufficiently small in (BQ%1 N Bﬂfl) X ngfl for n > 2.

On the other hand, nonhomogeneous Besov space B ”1 X B, p 1s called a critical
regularity space for (1). Haspot [8] proved the local solvablhty in a critical regularity
space. In Theorem 1.3, we obtained decay estimate of solution if initial perturbation
is sufficiently small in the critical regularity space and L!.

Concerning the case ® # 0, Matsumura-Nishida [20] proved the global in time
existence of solution of (1) for n = 3, provided that the initial perturbation (py —
P, up) and @ are sufficiently small. Moreover, Duan-Liu-Ukai-Yang [5] established
the decay estimates :

[SIE

IV (0= posu)(O)llz2 < COL+)757% k=0,1

for initial perturbation (pg — ps, ug) sufficiently small in H3(R3) N L*(R3). (Cf, [22].)

Concerning the problem on the half-space and exterior domains we refer the reader
to [4, 10, 11, 12, 15]. (See also [13].)

Theorem 1.1 is an extension of the results in [5] and [26] by an approach different

o [5, 26]. To prove Theorem 1.1, as in [13], we introduce a decomposition of the

perturbation U(t) = (p — ps, u)(t) associated with the spectral properties of the



linearized operator A at the constant state (p,0). In the case of our problem, we
simply decompose the perturbation U(t) into low and high frequency parts. As for
the low frequency part, we apply the decay estimates for the low frequency part of
E(t); while the high frequency part is estimated by using the energy method. One
of the points of our approach is that by restricting the use of the decay estimates for
E(t) to its low frequency part, one can avoid the derivative loss due to the convective
term of the transport equation (1);. On the other hand, the convective term of (1),
can be controlled by the energy method which we apply to the high frequency part.
Another point is that in the high frequency part we have a Poincaré type inequality:
IVUsollz2 = C||Us|| 12, where U, is the high frequency part of the perturbation U.
This yields the strict positivity inequality (AUse, Uso)12+7]|Voso||72 > Col|Uso|3 for
some positive constants Cy and v, where 0., denotes the density component of U,,.
Furthermore, the Poincaré type inequality makes the estimate of the nonlinearity
a little bit simpler in the energy method. Using these properties we can deal with
the time decay of |U(t)||gso in contrast to the approach in [5, 26] which, roughly
speaking, deals mainly with ||VU ()]] gso-1.

To prove Theorem 1.3, as in [13] and Theorem 1.1, we introduce a decomposition
of the perturbation U(t) = (p—p, u)(t) associated with the spectral properties of the
linearized operator A. In the case of our problem, we decompose the perturbation
U(t) into low and high frequency parts. As for the low frequency part, we apply
the decay estimates for the low frequency part of the semigroup FE(t); while the
high frequency part is estimated by using the energy method by Danchin. We note
that in estimating the low frequency part, we also make use of the fact that any
order of differentiation acts as a bounded operator on the low frequency part, so
that we can establish the decay estimate for the norm of the velocity with critical
regularity. (See Remark 7.4 below.) On the other hand, the convective term of (1),
can be controlled by the energy method and commutator estimate which we apply
to the high frequency part. In the estimates of nonlinearities we carefully compute
nonlinear interactions between low-low, low-high and high-high frequency parts.
We also use the estimate [~ ||u||Bg+1dt < Me, that follows from (8) established by

2.1

Danchin [2].

The thesis is organized as follows. In Section 2 we introduce the notations, some
properties of Besov spaces, and auxiliary lemmas used in this thesis. The main part
of this thesis is divided into two parts. In Part I, which consists of Sections 3, 4
and 5, we study the compressible Navier-Stokes equation with potential force. In
Section 3 we state the existence and spacial decay property of stationary solution for
the compressible Navier-Stokes equation with potential force. We then rewrite the
problem to perturbation equations. In Section 4 we introduce a decomposition of
the solution into low and high frequency parts, and we state properties of functions
of low and high frequency parts. In Section 5 we give the proof of Theorem 1.1. In
Part II, which consists of Sections 6 and 7, we study the compressible Navier-Stokes
equation in critical spaces. In Section 6, we rewrite the system into the one for the
perturbation and introduce auxiliary lemmas used in the proof of Theorem 1.3. In
Section 6, we give a proof of Theorem 1.3.




2 Preliminaries

In this section we first introduce the notation which will be used throughout this
thesis. Some useful lemmas will be given subsequently.

2.1 Notation

Let LP(1 < p < 00) denote the usual LP-Lebesgue space on R™ with norm || - [|,. For
nonnegative integer m, we denote by W™P?(1 < p < 0o) the usual LP-Sobolev space
of order m whose norm is denoted by || - [[wms. When p = 2, we define H™ = W2,
S’ denotes dual space of the Schwartz space. The inner-product of L? is denoted
by (-,-). If S is any nonempty subset of Z, sequence space [P(S) denote the usual (?
sequence space on S.

We introduce the following notation for spatial derivatives. For a multi-index
a = (ag,a, -+ ,a,), we denote

xr1 Tx2

a — 9192 . ag‘:, |O¢‘ = i&i,

and for any integer [ > 0, V! f denotes all of [-th derivatives of f .
For a function f, we denote its Fourier transform by §[f] = f:

SO =) = | J@e"tde (R
The inverse Fourier transform is denoted by §'[f] = f,

§@) = fl@)=@m)™ [ f(©e*7ds  (z €R).
R”L
For operators A, B, we denote the commutator of A and B by [A, BJ:

[A, Blf = A(Bf) = B(Af).

BC* denotes the set of all functions such that V!f is a bounded function for [ < k.
Let us next define the homogeneous and nonhomogeneous Besov spaces. First we

introduce the dyadic partition of unity. We can use for instance any {¢, x} € C*,

such that 3 8
Suppd C{EER| < |¢| =

4
Suppx C {{ € R"[[¢] < g},

&)+ _d(27¢) =1 for { €R",

7>0

> 627 =1 for & € R"\{0},

JEZ



Supp ¢(277-) N Suppp(277) =0 for |j — 5| > 2,
Supp x N Suppp(277-) =0 for j > 1.

Denoting h = F'¢ and h = F 1y, we then define the dyadic blocks by
A_ju=hx*u,
Aju = 2j"/ W2y)u(z —y)dy if j >0,
Aju = 2j"/ h(2'y)u(x —y)dy ifj € Z.

The low-frequency cut-off operators are defined by

Sju = Z Apu, Sju: Z Aju.

—1<k<j-1 k<j-1
Obviously we can write that: Id = ; Aj. The high-frequency cut-off operators S’j

are defined by
S’ju = Z Aku

k>j

We define ¢; by ¢;(§) = ¢(277¢).

To begin with, we define Besov spaces.

Definition 1. For s e Rand 1 < p,r < 0o, and u € §’ we set

lullss, == ||27° 12wl e

Ir({j=-1})’

lullsy = (2% ullo

The nonhomogeneous Besov space B; . and the homogeneous Besov space B;,, are
the sets of functions u € &’ such that ||lul[ps, and [Juf|z, < oo respectively.
3T D,

2.2 Useful lemmas
The following lemmas will be used frequently.

Lemma 2.1 (Hardy’s inequality ). Assume that n > 3. Then there holds the
inequality

||%||2 < OVl
foru e H'.

See, e.g., [6], for the proof.

Lemma 2.2. Assume that n > 3. Then there holds the inequality

1 £lloe < CIV £l zz50-1
for f e H®.

10



Lemma 2.2 is proved as follows. Let p = 2% Then, since sy — 1 > %, by the

n—2
Sobolev inequalities, we have

[fllee < Cllfllwso-1r < CIVS]

Hso—1.
This proves Lemma 2.2.
Lemma 2.3. Suppose a(z) € BC'. For u € L?* set
0 0 Ju

@) 5= nerlu(@) = ala) 5 —(nx w)(@) = (e (a75) 2.
Here n. x u is standard Friedrichs mollifier. Then it holds that

0
la(z) 75— nexfu(@)llz < ClIValsollull2-
k

and p
lla(z) z—, nexfu(@)llz — 0 (e = 0).
Ty
See, e.g., [21], for the proof.

Lemma 2.4. Suppose u € L*(0,T; H') and Zu € L*(0,T; H'). Then,
the mapping t — ||u(t)||3 is absolutely continuous, with

d 2 /
S lu®llz =2 <u'(t), u(t) >

in the sense of distribution.

See, e.g., [6], for the proof.

Lemma 2.5. If0 <s;(j =1,2,--- 1) satisfy s; < 5 (j = 1,2,--- ,1) and s+ s+
-4 5;> (5)(I = 1), then there holds

l
- far e fills < Copos TT Il s
j=1

See, e.g., [14], for the proof.

By using Lemma 2.5 we have the following estimates.

Lemma 2.6. (i) If1<|a| < s, g € H® and f € HI then

IV gllgso—t || f1] i

02, <C
119z 9)11l2 {HWMNNWA.

11



(i) Let I be a compact interval of R and let R(y,z) € C(I x R™).
If 1 < |a| < sg, then there holds

195 (R(g(x), 2)f)lla < C{Ro(@)II fll2 + RV f Il zr1e1
+Ra(9) (L + gllro) IV gll o1 || 1ot}

for g € H* such that g(z) € I(x € R") and f € H°l. Here

Ro(g) == sup |(9IR)(g(x), z)

Y

Rilg) = swp_ [(0/R)(g(x). )],
Ra(g) = _ max_ sup [(9,0/R)(g(), ).

E>1,k+|8|<|a| zeRrn

Lemma 2.6 can be proved in a similar way to the proof of [14, Lemma 3]. (See
also [12, Lemma 4.3] and [11, Lemma A.2])

Lemma 2.7. The following inequalities hold:
(4) [[VA_1ullp2 < CllA_yul| 2.
(u) C
(iid) IVSjullzs < C¥||Syullze (7> 0).
(iv)

YN Ajullre < VAl < C2|Azulle (j € Z).

HS ul|p2 < C2° JHVS ullpz (j > 0).
Lemma 2.7 easily follows from the Plancherel theorem.

Remark 2.8. For s e R and 1 < p,r < oo, we have
. 1 .
() O™ (Tpeyr 27 Ail3,)* 5, < C( ey 2741 Aul,)

(”) c! ( Zij 28rk||Au||2p) r < C( zkzj QSrkHAUHZP)

One can easily prove Remark 2.8.

1
T

S =

Lemma 2.9. The following properties hold:
(i) O ull, <
(1) |Vullgsr <

(iti) If s > s orif s =s and ry <r then Bs, C BS,.

p,r1

(i) Ifry <r then B;Tl C B;T.

(v) Let A :==+/—A and t € R. Then the operator A* is an isomorphism from B’;J
to B37*.

12



See, e.g., [2], [3] and [8] for a proof of Lemma 2.9.

Lemma 2.10. The following properties hold:
() lullew < Clullg  (Bii € L%).
(i) BY, C L' C BY ..
(iii) Bs, = H*.
(i) By, C B;T (s > 0).
See, e.g., [2], [3] and [8] for a proof of Lemma 2.10.

Lemma 2.11. Let 1 < p < q < oo. Assume that f € LP(R™). Then for any
a € (NU{0})", there exist constants Cy, Cy independent of f,j such that

1

Supp f C {|€] < 427} = 1|02 f||za < C127G3)| £l 1,

Supp f € {A127 < [¢] < A2’} = || fllr» < Co277 sup (|02 f]| o

[B]=]al
See, e.g., [1] for a proof of Lemma 2.11.
By Lemma 2.11, we see that
D NAfll <O 227G AL 12, (9)

jez jez
hence, we obtain Bf;l c By,
Remark 2.12. Let s > 0 and 1 < p < 2. Then
By, NBY., CB; CL.

Proof. By using Lemma 2.11, we have

lulle = (Y IAzullF2)® < (Do NAulF2)® + (D 1A ul)?

JEL §<0 3>0
) . 1 .
< O(X 2 AulE)? + 30 27 Aulle
Jj<0 Jj=>0
. . 1 . .

< Osupl|Agullp (D 29"672)2 £ 37 25| Ajul e

3<0 §<0 >0

This completes the proof. 0

13



3 Decay estimate for the compressible Navier-
Stokes equation with potential force in Sobolev
space

In sections 3-5 we prove Theorem 1.1. We consider the compressible Navier-
Stokes equation with potential force.

In this section, we first state the existence of stationary solution (p,, 0) and some
estimates on p, which were obtained in Matsumura-Nishida [20]. We then rewrite
system (1) into the one for the perturbation.

Proposition 3.1 (Matsumura-Nishida [20]). There exist positive constants € and C
such that if
K4

o+ (L4 [2) VO] < e,

the problem (1); — (1)2 has a stationary solution (p.,u) = (p.(2),0) in a small
neighborhood of (p,0) ; and it satisfies

192(2) = Allgeoss + (1 + |2l) Vpu (@)
< c(||<1>|Hso+1+||<1+|:c|)v<1>||2),

DO | =
Bl

p(x) — 4l <

Let us rewrite the problem (1). By the change of variables,
ﬁ(tvz) :p(t,l') —p*(x), ﬂ(t,$) :u(t,x),
problem (1) is transformed into
0p+ ¥ - (pst) = Fi,

Oyt — LA — HHEVY i Ty () - PRdyyp 5 = By,
(5, 8)(0,2) = (po — per o) (&) —> (0,0) (] = 00).

where )
Fy ==V (pu),
By = (- V)i~ p LN ()L V(Y )
p«(p + ps) PP+ ps)
P'(p.) 1 /1 o -
+ — — = P (sp+ p.)ds ) pV
<p*(p+p*) p+ps Jo (5P + ) >p ’
PII(P*) Pl(p*) Vp* ! "y~ ~2
+ ~—Vp*—~—V,0*—~—/ 1—5)P"(sp+ p.)ds)p
<p*(p+p*) PP+ pi) P+ P 0( JE ) )

14



Next, we define py, o and v by

!/

ptp

MlZ% Ho = 5 Y=V P(p)
We also set
o = plz) —p.
By using the new unknown functions
o(t,x) = iﬁ(t,x), w(t,z) = ! u(t, ),
p P'(p)

the initial value problem (1) is reformulated as

oo +~4V -w— B U = Fy(U),
Ow — i Aw — paV(V - w) +vVo — BU = F»(U), (10)
(0’ w)(O,m) = (JO’w(J)('CE)’

where, U = ( 7 ),
w

BU = —z(’w Vo 4oV -w),
p

BU = —ul—Aw—,ugin(V w)+7p—VJ
—~ 1 = . P . P! .
TP+ 0 Px Px
F(U)=—y(w-Vo+oV-w),
2 72
EBLU) = —vw -VYw—pyy————0Aw — go———0oV(V - w
V) ( ) "p.(po + p.) “p.(po + p.) ( )
=2 / 1
p*( Pps) 1 / -
+— - — = P"(spo + ps)ds )oVo
ot <p*(p0+p*) po + ps Jo ( ) )
AL ( P'(p.)  P'(ps)
— 57
v \pu(po+p.)  p2(po+ pa)
1 1
. 1_ P/// — + . d 2‘
p0+p*/0( s)P"(spo + ps) 8)0

For problem (50), Kawashita [14] proved the following global existence result.

Proposition 3.2 (Kawashita [14]). Let n > 2 and let Uy = (09, wy) € H*®. There
exist a positive constant €, such that if

freny

H*®0 S €1,

[l zzsor + 1T+ 2DV |2 < €1 (n=3),
=0 (n=2),

15



then problem (50) has a unique global solution U :

U = (o,w) € () €7([0, 00); H*™) x C7([0, 00); H*~),

J=0

w € L*(0,00; HOT) N HY(0, 00; H® ).

Proposition 3.2 were proved for the case ® = 0 in [14]. In a similar manner one
can see that Proposition 3.2 holds for ® # 0 satisfying the smallness condition of
Proposition 3.2 when n > 3. In terms of U, Theorem 1.1 is restated as follows:

Theorem 3.3. Assume that n > 3. Let (o,w) be a global solution in H*® with sy =
[2] 4+ 1, to the problem (10). Then there exist € > 0 such that if (0o, wo) € H*® N L
and

H(UOa w0)| HeonLl < €

1P| grso+r + (1 + |z)) V|2 <€

then, the estimates
k
2

IV (o, w) (B)ll2 < Co(1+ )55, k=0,1, (11)
hold fort > 0.

4 Decomposition of solution

In this section we introduce a decomposition of solutions to prove Theorem 3.3.

We set
v=(0)n=(5)
w Wo
A 0 V-
9V A+ VY- )
Then problem (50) is written as
8tU - AU - BU — F(U), Ultzo — U(], (12)

_ BIU - F1 (U)
BU = ( BQU)’ FU) = ( RU) )
We next decompose a solution U of (12) into low and high frequency parts. Let
X1 be a cutoff function defined by

we-{y 50 we-1-ue

Here r = ——=—. (As for the number r, see Lemma 5.1 below.)
We define operator Q;(j = 1,00) on L? by

Qu=F '(X;a) (j=1,00), wel”
The operators Q;(j = 1, 00) have the following properties.

where

16



Lemma 4.1. Q;(j = 1,00) satisfy the following relations.

(Qju,v) = (u,Qjv) foru,v € L2

Lemma 4.1 can be easily verified; and we omit the proof.

We next state boundedness properties of Q; (j = 1, 00).

Lemma 4.2. (i) For each nonnegative integer k, Q;(j = 1,00) are bounded linear
operator on H.
(i) For each nonnegative integer k, it holds that |[V*Quulls < |lulls  (u € L?).
(11i) For each nonnegative integer k, it holds that ||V*Qqullee < Cllulls  (u € L?).

() Qoo satisfies |VQuulla > C||Quoullz  (u € HY).

The assertions (i), (i), (iv) easily follow from the Plancherel theorem. The in-
equality (7ii) is obtained by (ii) and the Sobolev inequality.

In terms of Q1 and Q,, we decompose a solution U(t) of (12) as
U(t) = Ui(t) + Ux(t), U;(t) = Q;U(t) (j =1,00).

It then follows that U;(t) and U (t) are governed by equations (18) and (19) given
in Proposition 4.3 below.

To state Proposition 4.3 we introduce a semigroup associated with a low fre-
quency part of A. We set

Ei(t)u = 3_1[)516A(5)tﬁ] for v € L2,
where .
, 0 —iv€ )
A& = ) .
(5) ( —i7 _M1’£|21n - Mzﬁft
Here and in what follows the superscript -* means the transposition.

Proposition 4.3. Let T > 0 and let U = (o,w)" be a solution of problem (12) on
[0,T] such that

U= (o,w)" € [)C/([0,T]; H* ) x C/([0,T]; H*~), (13)

J=0

17



w e L2(0,T; Ho™) N HY(0,T; H*™1),

and let
Uj:QjU, O'j:QjO', wj:ij (jzl,OO)

Then,
UIECI([OuT};Hk)a Vk:071727"'7

1
Us € () CU([0,T]; H79) x C7([0,T]; H*=%),

=0
Woo € L*(0,T; HOT) N HY(0,T; H*™).
Furthermore Uy (t) and Ux(t) satisfy

U1<t> == E1<t>U01 + \/Ot El(t — S)Ql(B<U1 + Uoo)(s) + F(Ul + Uoo)(S))dS

and

Usolt=0 = Upeo,
where Up; = QU (j = 1, 00).

(14)

Proof. Let U(t) = (o,w)" be a solution of (12) satisfying (13) and (14). It then
follows from Lemma 4.2 that Uy (t) and Uy (t) satisfy (15), (16) and (17), respectively.
Since Q;AU = AQ;U for U € H* (j = 1,00), applying @), to (12), we obtain

OUL — AUy — Q1B(Uy + Uy) = Q1F(Uy + Us), Utli—o = Uny,
8tUoo - AUOO - QooB(Ul —|— Uoo) - QOOF<U1 —|— Uoo)a Uoolt:O - UOoo-

Taking the Fourier transform of (21);, we have

—

X10:U = X1 AU + X, BU + X1F(U).
It follows from (22) that

~ —

~ t —_—
X1U(t) = e U(0) + / e (¥, BU + Y1 F(U))(s)ds.
0

We thus obtain

U1<t) = E1<t)U01 + /t El(t — S)Ql (B(Ul + Uoo> + F(Ul + Uoo))<8)d8

This completes the proof.
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5 Apriori estimate with time weight

In this section we prove apriori estimate with time weight. In subsections 5.1 and 5.2
we establish the necessary estimates for U; (t) and U (t), respectively. In subsection
5.3 we derive the a priori estimate to complete the proof of Theorem 3.3.

Set .
= sup Z 14 7)5+5 | VAU (7)),
0<r<t £
Moo (t) :== sup (1+ T)Z+5||UOO(T)| Hso,
0<r<t
M(t) := M (t) + My (t).
uso for all

We also set § = ;Z-, where C; is constant such that ||f[l. < Cslf]
f € H*°. Hereafter, we assume that

sup [l (?)]
0<t<

o < 0.

=~

Then we have
lo(t)]loe < Csllo(®)||ms0 <

5.1 Estimate of U ()
In this subsection we derive the estimate of Uy (¢), in other words, we estimate M ()
(i) The set of all eigenvalues of A(€) con-

Lemma 5.1 (Matsumura-Nishida [19])

sists of (&) (i = 1,2,3), where
Ay2—(pr+p2) €|

—(p1+p2)l€?+i
>\1<§> _ (B1+p2) €7 +il€]
A2 (&) = Au(§),
A3(8) = —l€l?,
ulruz' Here A\(€) denotes the complex conjugate of

for €] < r, where r =

A (8)-

(i) €O has the spectral resolution

3

— Z ot (€)
7j=1

where P;(§) is the eigenprojection for \;(§)
_M1;#2|£|2 and

for all [&| # \/% ;
we have M\ (&) = Xo(§) =

For |§| = W;
etA(E) — () ([ + t(A(f) _ /\1]))})1 + etx\s(ﬁ)p3

where Py(€), P3(€) is the eigenprojection for A1(§), A3(§)
19



Remark 5.2. For each M > 0 there exist Cy = Co(M) > 0 and Py = fo(M) > 0

such that the estimate A
4@ < CpeRlE

holds for |£] < M and t > 0.

F(t) satisfies the following estimate:

Lemma 5.3. Let k be a nonnegative integer. Then there holds
IVEE ()@ Uoll2 < C(1+ )G 2|y
fort > 0.

Proof. By Lemma 5.1 (i) we see that there exists a constant 8 > 0 such that

2R (O < 01— BlERt (1<j<3).

Therefore, by Plancherel’s theorem and Lemma 5.1 (i7), we have

IV EO@QUOL < C( [ e’
gl<r

< o[ et ae)

< CtE||U .
We also find that
IV'E(OQUlls < Cllalle( [ e oag)?
|§l<r

< CllGollr-
The estimate of Lemma 5.3 follows from (23) and (24).

As for M (t), we show the following estimate.
Proposition 5.4. Let n > 3. There exists a € > 0 such that if
[@[[rso+r + (1 + |2 )V L2 <,

H*s0 S (57

sup |[lo(t)]
0<t<T

and
M(t) <1

fort € [0,T], then there exists a constant C' > 0 independent of T such that

M;(t) < C||\Ugli + CeM(t) + CM>(t)
fort € [0,T]

20
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To prove Proposition 5.4, we will use the following estimates on B(U) and F(U).

Lemma 5.5. Let n > 3. There exists a € > 0 such that if
[ @[ gsor + [[(1+ [2]) V|2 < ¢,

and
M(t) <1

fort € [0, T], then there exists a constant C > 0 independent of T' such that
| B + Us @) < Ce(l+1)7 M (1)
fort € [0,T].

Lemma 5.6. Let n > 3. There exists a € > 0 such that if
M(t) <1

and
[ D] grso+1 + [[(1 + [2]) V|2 <€

fort € [0,T], then there exists a constant C' > 0 independent of T" such that

n+1

IF(U1(t) + U ()]l < C(1+1)7 5 M(2)
fort € [0,T].

We will prove Lemma 5.5 and Lemma 5.6 later. Now we prove Proposition 5.4.
Proof of Proposition 5.4. By Lemma 5.3 and (18), we see that
IV*UL(T)]l2 < [V*EL(T) Vo |15
+/OT IV*EL(r = $)(QuB(UL(s) + Use(5)) + QuE(Ur(s) + Use(5))) |lzds
< O+ 7))
b [ r =) DB + Ul
HIF(Us(5) + Uso(s))ll1) ds. (25)

Using Lemma 5.5 and Lemma 5.6, we have

n

/OT<1+r—s> D (IBL(s) + U ()1 + [ F(UL(s) + Uno(s))ll1)ds

SC’/ (1+7—s)"GTF
0

< CeM(t) /T(l +7—s5)" Gt

n+2 +1

He(L4 )T M(t) + (1+ )2 M*(t)}ds

7L+2

w\x-

)1+ )T ds

+OM2(t)/ (1+7—s) G (1+5) "7 ds
0

< Ce(l+7)~ it

SIS

IM(t) + C(1+ 1)~ G2 A2 (t). (26)
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n+2

Here we used "+2 > 1 for n > 3 to handle the term €(1+ s)~ + M(¢). By (25) and

(26), we obtain

n

VRO (7)[|2 < C(L+7) G| Up |y + Ce(14+7) " E+D M (1) + C(1+7) "G+ M2(1),
and hence,
(1+7)5t2 | VEUL (7) |2 < C||Uolly + CeM (t) + CM2(#).

Taking the supremum in 7 € [0, ¢], we obtain the desired estimate for n > 3.

It remains to prove Lemma 5.5 and Lemma 5.6.
Proof of Lemma 5.5. By Lemma 2.1 and Proposition 3.1, we have

lw-Vally < (1 +[2) Va2l s (w1 + weo) 2

1+ |z]
< e([Vurllz + [[Vweoll2),

H o ﬁVP* (P”(p*) T Pl(p*))O'Hl

¥ P+ p2
P"(p.) | P'(ps) 1
< C| + ool (1 + |2|)Vpull2|l-——= 7|2
P p? 1+ a]

< Ce(|IVaillz + |Vosll2)-

By using the Holder inequality and Lemma 4.2, one can see that the L' norms of
the others terms are bounded by Ce(||Vo1 |2 + | Vowll2). We thus conclude that

IB(UL + Us)lli < Ce(lIVULl2 + VU]l 112

n+

< Ce(l+s)"F M(t).

This completes the proof. O
Proof of Lemma 5.6.
When n > 3, we see from Lemma 2.2 that

P"(p.) P'(p.)
V. - — -
Ive <p*(p0+p*) p2(po + p)

1 1
T / (1—s)P"(spo + p*)ds> 2|
«Jo

ClIVpullllollslloll2
ClIVa |l gso-tlloll2
C(1+s) " M(t).

VAN VARVAN

The L! norm of the other terms are estimated by using the Holder inequality,
and bounded by C(1 +s)~ "2 M2(t). Hence, we have

|F(Uy + Ul < C(1+5)""5 M2(1).
This completes the proof. [l
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5.2 Estimate of U (t)

We next derive estimates for Uy,. The system (19) is written as

(9taoo+7V-woo:Qoo(BlU+F1(U)), (27)
OWoo — 1 AWso — 12V + (V) + YV 0o = Qoo(B2U + Fy(U)).

Proposition 5.7. There holds

S L O + VOl el VO =300 (29)

0<|a|<sg i=1

for a.e. t €[0,T]. Here,

L= Y (08B, &0x).

0<a|<so
L = Y (0F(U),0%0x)
0<]ar|<sp—1
= 30 10wV, 000w) = 3T (-0 0V - w), o)
|a| S0 |a)=s0 >
—5 S (Vow doel?) + Y (w- Vo, 8o,
|a|=s0 |ar|=s0
=Y N @B ) + Y (98B, 02w,
la|=s0 |v[=1 0<|r|<sp—1
=)D (TRWU), 5w+ Y (08F(U), 05 wse).
lal=s0 |v|=1 0<|er|<sp—1

Proof. Let n € C§°(R") satisfying n >0, suppn C {z;|z| < 1}, n(—z) = n(x) and
[ n(x)dz = 1. Set n(x) = e "n(Z£). Note that due to n(—=z) = n(x) we have

(e x f,9) = (fine x g).

Let ¢ € C§° and |a| = sg. We take the inner product of (27); with 9% (7. * ) to
obtain

(01000, 02 % ) + (VV - Woo, Igne * )
(Quo(BLU + F1(U)), 02 (ne * )
(QuoB1U, 95ne * @) = 1{(Qoo(aV - w), 031 % )
(w - Vo, 09n. * gp) — (Ql(w Vo), d5n, * gp)} (29)
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By integration by parts, we have

(01 ¥ 07000), ) +7(Ne ¥ V - oo, )
= (1 #07QuB1U, ) — H{(ne * 02 Qo (0V - 0), )
+(ne * (07, w]V)a,¢) — ([nex, w - V]0Fa, ¢))
(- Ve 90,0) — (0 # Qi (w - Vo), 0) (30)
Next, we multiply (30) by h € C§°(0,T) and take ¢ = 7, * 0% € C>* N L.

Integrating the resulting equation over [0, 7], we obtain

1" d r
~5 | ool hde+ [ (0267 ). 020

T
Z/ —(1e % (85 Qoo B1U ), e * 05 05 hdll
T
/ w - V(ne x 050),me *6’;1000)hdt
0
T
+’Y/ [ex, w - V]0Z @, ne % 0% 000 ) hadt
0
T
+’Y/ ], Me * 8aaoo)hdt
0
T
7/ Ne % 02 Qoo(0V - W), ne % 2000 ) hdlt
0

+7 / (1e % 02Q1(w - V), 1 % g 050 ) halt.
0

We rewrite this equality to let € — 0. The second term on the right hand-side is
written as

(U) 776 *850)7775 *ago-oo)
= (w (Me * 05 0oo), Me * 83000) + (w V(e % Og 1), me * 83?‘700)

— %(w Vlne*aO‘Uoo‘ ) (w'vmﬁ*agal)ﬂk*ag(foo)

(V cw, |ne * 6§Joo|2) + (w -V (ne % 0g01),Me * 8?000).

1
2
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Hence, we obtain

e d g
5 | I econlghdesy [ (e V0w x o2t
0 t 0

T
/ (e * 03 Qoo B1U, M * 07 00 ) Nt
T

(V- w, e * 020 |?) hdt

’\ N —

V(1 x 0501),me * 8§‘Um)hdt
([nex, w - V)05, e * 9 00 ) hdlt
(ne * (05, w|V o, 1 % 05 000 ) halt
=y [ (0% 05Quc(0V - w), me O 00c ) hdlt
0
T
# [ (s 2@ V) mex oo (31)
0
Letting € — 0 in (31), we can obtain
1 (T4 T
5/ —l0Foucll3hdt + 7/ (V - 0%Wao, 02000 ) hdlt
0

09 B1U, 050 ) hdt

(V- w, [0200|?) hdt

l\:JIr—l

+ (w- V801,000 )hdt

T
+

O
O\..o\éo\ﬁo

w|Va, 0y (Too)hdt
_7/ (8§(0V w),@i‘aoo)hdt. (32)
0

In fact, as for the third term on the right hand-side of (31), by Lemma 4.2, we
see that

(w- V(1 x (8501)), e * 95 00)
[wloo V0501 |2]|05 0o |2
Voill2[|050sll2 € L'(0,T).

||w| H*0
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Hence, we have

T
| (Vs @o).n oo
0
T
— (w-V(0501),0500)dt
0

The fourth term on the right hand-side of (31) can be shown to go to zero by using
Lemma 2.3. In fact, since 0%c € C([0,T]; L?),w € L*(0,T; H*') c L*(0,T; BC),
applying Lemma 2.3, we have

||[776*aw'v]8§0||2 — 0 (E_>O)7
for a.e. t € (0,7). We thus obtain

|(n6>|<,w V)05, ne x 0y Uoo h|

o IVe@®lll 07 (@)][I31h(2)]
- [[nex, w - V10 o |[2]|ne * O oollo| A ()] —> O (¢ = 0).

for a.e. t € (0,7). Since, [|[Vw(t)||e < Cllw(t)]

msot1 € L2(0,T), we see that
T
/ ([nex, w - V)9S o, me % 0300 ) hdt — 0.
0

As for the seventh term on the right hand-side of (31), by Lemma 4.2 and the
dominated convergence theorem, we have

T
/ (e % 05Q1 (w - V), me * 05000 ) hdlt
OT
- / (07 Qi1(w - Va),0505) hdt = 0.
0

Here we have used (05Q1(w- Vo0),0%04) = (Q102Q1(w - Vo), 0%0) = (92Q1(w
VO'), 8?@10’00) =0.

For the other terms of (31), one can apply the dominated convergence theorem
to pass the limit and we obtain (32). It then follows from (32) that
1 d lo' 2 o' lor lot lor 1 a |2
+y(w - Voo, 00 0x)
+’y([8§‘, w|Vo, 8;‘000)
—7(02(oV - w), 0%0) (33)

for a.e. t € (0,7) and || = s0.
When |a| < sq — 1, by simply taking the inner product of 9¢(27); with 00,
we have
1d le' 2 le' le' le' le' le' le¥
2 dt”a 000( )HZ + ’Y(v ’ axwocﬂ amaoo) = (a:r B1U7 8m000) + (a:t F1U7 8360-00>

(34)
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We see from (33) and (34) that

1 d fe} 2 fe% fe

0<]a|<s0
= > (BUEc)+ Y (F(U),00x)
0<|a|<s0 0<|r|<s0—1
+ Z (—%[8§,w-]VU, 0%000) + Z (—%8?(0V-w)6§aoo)
er|=s0 lar|=s0
1
-5 D (Vw, |000s?) + Y (w- Vo, 050x) (35)
|a|=s0 |a)=s0

for a.e. t € (0,7).

We next consider (27)s. Let ¢ € C§° and let |a| = so. We take the inner-product
of (27)y with 0% to obtain

(Otoo, 07 ) — 11 (Atwe, 03¢p) — 112 (V(V - weg), 05 0)
+Y(V0oo, 50) = (QoeB2U, 950) + (Qua Fo(U), 95 ).

Integrating by parts, we obtain

—H@(V ’ a;cxwooa V- 90) - 7(8:?‘7007 V- (10>
= =) (007QuBaU, 0p) = > (057 Qoo Fa(U), 070).

[v=1 Ivl=1

Here we have used the fact that Zmzl 047 7Qu Fy € L*, which can be seen from the
proof of Proposition 5.8 below. By density, we can set ¢ = 0%w. So we obtain by
Lemma 2.4,

1d
5 7108w} + VO w3 + ol V - O wec |3 — 40 0, V - O )
= = (057 BU, 008 wee) — Y (05T Fy(U), 0105 wso)- (36)
[v|=1 [v|=1

for a.e. t € (0,7).
When |a| < sy — 1, in a similar way as above we get

1d

5 g 105 waollz + 11V weo 3 + p12llV - O w5 = (0000, V - D)

= Y @B 8w + (92 F(U), 8w} (37)

0<]a|<sp—1
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We see from (36) and (37) that

1d o o
> 50wl il Vsl + 2|V - 0w
0<|e|<s0

—Y(0%000, V - 05 W)
= = > D (B, 0]00wse) — > > (0T R(U), 005 wse).

la]=s0 |v[=1 la=s0 |7|=1
+ > (02 BaU, 0%wse) + (2 Fa(U), 0%woc) }. (38)
0<|r|<sp—1
A linear combination of (35) and (38) yields the desired result. O

We next estimate [; and I5.

Proposition 5.8. Let n > 3. There exists a constant € > 0 such that if

2]

oo+ (L4 [2) V]2 < e,
sup [l (t)][se0 < 6.
0<t<T

and
M(t) <1

fort €[0,T], then
L]+ |13 < Cef(1+ 1)~ CM2(8) + |V s (1)]3}

fort €1]0,T]. Here C' > 0 is a constant independent of T'.

Proof. First we show the estimate of I;. We have

L] = | Y {(0(w-V6),080x) + (05(5 - Vw), 050) }|
0<]ar| <50
< Z (107 (w - V&) ||z + (105 (GV - w)][2)[|05 Oosl|2- (39)
0<]ar|<s0

By Lemma 2.2 and Lemma 2.6, the terms on the right-hand side of (39) is estimated
as

107 (w- Vo)l < C{llwlllIVallmo + [Vwlls-1[[Valls }
< Ce(1+t)" G2 M),

1056V -w)ll2 < CllpllaslVw| mwo
< Ce(1+ 1) G M(t) + Cel|[ Vo wefo.

Hence, we obtain the estimate of I;.
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Let us next consider I5:

L= 1= > Y (@ BU, 0 we) + Y (02BaU, 05w
la[=s0 |v[=1 0<]ax|<sp—1
< O( > 02BU|s) Vool oo
la|<sp—1

We estimate ||09BaU ||z (Ja| < so — 1). We write BoU as

B U = G1(7,2)Aw+ Go(a,2)V(V - w) + G3(7,x)Vo + Gy(z)o,

where _
o
Gl(a-ax) = —H1—
1,0*
o
GQ(a-)'r) = —H2—
s
- __ 1
Gs(o,1) = —'yi + 2P / P"(sa + p)ds,
P« VP« Jo
Y N )24 N P .
Y P Px
We thus obtain by Lemma 2.2 and Lemma 2.6
102 B2Ullz < C{llo ]| o I V2wl srs0-1 + 151 o1 |0l 110 + 105 Ga(@) |12l ]| }

<
< Cel(1+ )T M) + [V w0}

Hence, we have
II3] < Ce(1+1)"GTVMA(t) + Ce|| VO wa 2.

This completes the proof.

Proposition 5.9. Let n > 3. There exists a constant € > 0 such that if

14

Hso+1 + H(l + |.CL"DV(I>||L2 <e

sup || (t)[|ms0 <6,

0<t<T

and
M(t) <1

fort € 10,77, then
L] + [ L] < O+ ) TME{(L+6)EHIM(2) + |V wa (2[5}

fort € [0,T]. Here C > 0 is a constant independent of T'.
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Proof. Let us estimate [5. For the first term of I5, by Lemma 2.6 and Lemma 4.2
we have

‘ Z (a?Fl(U>7a§Uoo)‘

0<]a|<sp—1
CIVoll gso-tllw]lmo + [[o]| s Vew] gso-1) | oo | 20
C{+ 1) FFVMPE) + (1 + )T M) [V w2}

<
<

By Lemma 2.6, the second term of I5 is estimated as

| Z —— (0%, w|V0,0%0.)| < C||Vul

lal=

Vo|

Hso H30—1H0—oo‘ Hso

We finally, we consider 1, :

Ll = 1) D OTRU),8 )+ Y (08R(U), 0 ws)]

la|=s0 |v[=1 0<|ar|<sg—1

< Y S e RO o s+ Y 0SB0 208wz
lo|=s0 |7]=1 0<|a|<sp—1

< () 102 RU)]2) I Vwsllo
0<]al<so—1

Let us estimate [[02F5(U)||2 for |a| < sg — 1. F5(U) is written as

FU) = Ro(w)-Vw+ Ry(o,z)Aw + Ry(o,2)V(V - w)
+R3(0,x)0 + Ry(o,z)Vo,

where
Ry(w) = —yw
P’ P
Ri(o,2) = —py———0, Rs(o,x) = —pjio——0,
(o) " pu(po + p.) 0. 0) = i )
—2v . P// » P/ .
Ry(0.2) p p( e 2_(p)
v \pu(po+pe)  p2(po+ pa)
1 1
— 1 —8)P"(spo + p. ds)a,
—— [P+ )
o Pllp) 1

1
Ry(o,x) = p—(p /P"(sﬁa—i—p*)ds)a.
x 0

Y \pu(po +ps)  po+ p.

From Lemma 2.2 and Lemma 2.6, we have

107 (Ro(w) - Vw)l2 < C[Vuwllz

Hso—1»

107 (R1 (0, 2) Aw) |2 < C|| Vo

Hso—1 HAU}' Hso—1,
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10 (Ra(0, 2)V(V - w)) ll2 < C[IVa| g1 [V(V - w)]|
197 (B3(0, 2)a) |2 < ClIVol oot [l o1,
107 (Ra(0, 2)Vo)|l2 < C||Vo|
We thus obtain

L] < O+ TMO{(L+ )" EHIM () + [V we (1) 3}

Hso—1,

Hso—1 HVO" Hso—1.

This completes the proof. (l

Proposition 5.10. There holds the inequality

d
S (1), 0 Vo (t) + 2102V ()] < Ol Vi

0<]|a|<sp—1

4
%ISO + Z Ji (40)
i=1

for a.e. t € (0,T), where,

Jl: Z ‘(a?QooBlU>a§vwoo)’7 J2: Z ‘(a?QooFl(U)7angoo)|a

0<|a|<sp—1 0<|a|<sp—1
Js=C Y [(00BU Vo), Ji= > (05QuF(U),05V0u)l.
0<]|<sp—1 0<]a|<sp—1

Proof. Let |a] < so — 1. We take the inner-product of 9%(27)y with 0%Vo,, to
obtain

(07 Orwes, 7 Voo,) + 'YHVQ?UOOHE
= 11(08 Awes, 00V 0os) + 112 (92V - (Vwes), 05 Vo)
H(05 Qoo Fo(U), 09V 000) — (05 Qoo B2U, 03V 0 ). (41)

We next take the inner-product of 0% (27); with —02V - w4 to obtain

—(05010 06, 05V - Woo) = +7(02(V - Weo), 05V - W)
—(09QuoeB1U, 02V - o) — (09Qu F1(U), 05V - W), (42)

Since
(08 B, 95 Vo) < 0 B3 4+ 1198 Voo,

and
2 (92V - (Vi) 92 Vo) < C05 Dwe3 + 11105 Vo 3

by adding (41) and (42), we obtain the desired inequality

d
> (0w (0), 02V 0 (1) + L VO (1)

dt
0<]ar|<sp—1
< CIVullio + D [(00QuBiU, 0V - wyo)| + [(02Que Fi (U), 02V - wo )|
0<]x|<sp—1
(02 BoU, 02V 0o0) | + |(02Qua Fo(U), 92V 0 ) ) (43)

31



for a.e. t € [0,T]. In fact, let h € C5°(0,T") and let 7. is standard Friedrichs mollifier,
as for the first term on the left hand side of (43)

T
/ (02 O W0, OF NV Ne * 000 ) hdl
0

Td T
— | OV kot — [ (@, 050,V o)
0 0

T T
= — / (05 W0, 05V (1, * aw))%hdt + / (O9V + Woo, Me * 0405 0o ) hdt. (44)
0 0

Since 0%Weg, 2V + Weo, 0%0s0 and 9200 € C([0,T]; L?) for |a| < so — 1, letting
¢ — 0 in (44) we can obtain by similar to proof of Lemma 5.7

(05 0iWeo, 09V 0) = %(aﬁwm, 0NV 0 ) + (09V - Weo, 05010 )

for a.e. t € [0,77.
This completes the proof. 0

Proposition 5.11. Let n > 3. There exists a € > 0 such that if
@]

oo+ (L4 2V 2 < e,

sup HO’(t)’ s <0,
0<t<T

and
M(t) <1

fort €[0,T], then there holds
1] + | J5] < Ce{(141)75 M2(t) + |V wa (1)][3}.

fort € [0,T]. Here C > 0 is a constant independent of T'.

The proof is similar to that of Proposition 5.8 . We omit it.
Proposition 5.12. Let n > 3. There exists a € > 0 such that if

1P|

oot + [[(1+ 2 Ve[| 2 < e

sup [lo()[[z=0 <6,
0<t<T

and
M(t) <1

fort € [0,T], then there hold
ol + | Ta] < CL+ )T MO{(1+ )% M(1) + [V s ()3}

firt €[0,T]. Here C > 0 is a constant independent of T.
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The proof is similar to that of Proposition 5.9. We omit it.

Proposition 5.13. Let n > 3. There exists a € > 0 such that if

@]

oo + (1L +[2))VO[l2 < e

sup |[lo(t)[[ =0 <9,
0<t<T
and
M(t) <1

fort € [0,T], then there holds

%Em(t) + C1Es(t) + CaDoo(t) < Ce(1 4+ )73 72 M2(1)

+C(1+ 1)~

37L+4

T M)+ C(1+t) T M(t) Do (t) (45)

fort €0, T] Here, Eo(t) and Do (t) are equivalent to |[Uy(t)]|3:0 and ||Vws ()]
Voo (t)||3750-1 respectively. That is, there exist dy,dy > 0 such that

2ot

LBt < UL

20 S diEs (1),
d,

1
d_zD“(t) < Voo ()50 + IV Toe ()1 Fe0-1 < d2Doc(t).

Proof. We add x x (28) to (40) with a constant £ > 0 to be determined later.
Then, by Proposition 5.8 and Proposition 5.12, we obtain

d K 2 o e’
E(EHUOJ mso T Z (axwom o5 vam))
0<|a|<s0—1
a o 7
+r( Y mHV@xwooH%+quV-8xwoo(t>H§)+§I|Vooo|im4
0<|a|<s0
< C Y 0 Vwslfgr + Cel(1+ )75 M) + [V w2}
0<|er|<s0—1
FO+ 1) TME) (1 +6)7F M()? + ||V wa|2). (46)
We set .
Ew(t) = 5lUs O+ D (5wee(t), 05Vos(t)),
0<]al<so—1
K; (0% (0%
Du(t) = 5 > (mll VO wa (B3 + 2]V - 02wa (1)]3) + —HVaoo()!HsOl
0<]a|<s0

For each k > 0, Do (t) and ||Vweo () ||350 + [[Vooo ()|

| D (Bwa(t), 07 Vow(t))] < C' U (b7

0<|al<so

quo,l are equivalent. Since

H*®0>»
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if x is fixed in such a way that k > 2C", then one can see that F(t) and ||Us(t)||%

are equivalent. With this £ > 0, we see from (46) that

%Em(t) + 205D < Ce(1+1t)72 2 M2(t)

FO(1+1)"7 5 M3 () + C(1+ 1)~ 5 M(t) Do (t).

By Lemma 4.2, we have
En(t) < CDw ().

This, together with (47), gives the desired inequality (45).

5.3 Proof of Theorem 3.3.

Proposition 5.14. There exists a constant e > 0 such that if

1Uol

2
oonpt < €2,

then there holds
M(t) < CHUOHHSOﬂLl

for 0 <t < T, where the constant C does not depend on T.

Proof. By (45) we have
t
Eau(t) + Cs / O D (r)dr
0
t
< e NE(0) + CeM2(t)/ e (14 1) dr
0

_ 3n+44

t
+C{M3(t)/(1+7') e Oty
0

t
M) / (14 7)1 CEDD ()dr)
0
3n+4

< e OEL(0) + Ce(1+ )" M2(t) + C(1+1)~ 71 M3(t)

¢
+CM(t)/ e~ =D (7)dr.
0

(48)

We set Doo(t) := (1+1)"2 ft e~ =1 D (7)dr. Since 3t > 2 we see from (48)

0 4 2

that

M2 (t) + CoDoo(t) < C(Ea(0) + eM?(t) + M?(t) + CM (t)Des(2)).

This, together with Proposition 5.4, gives

M?(t) + CoDuo(t) < C(Ex(0) + ||Upll} + M () + M?(t) + M (t)Doo(t) + eM*(2)).

By taking € > 0 suitable small, we obtain

M(t) + C3Doo(t) < Cs (|| Ul + MO (t) + M () Doo(t)).-
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We observe that there exists a constant C4y > 0 such that

M(0) < Cy|| Uy

HsoNL1.
Since M (t) is continuous in ¢, there exists to > 0 such that

M(t) < 2C4||U0‘

HsonL!

for all ¢ € [0, ¢9]. Moreover there exists constants Cs > 0 and C7 such that

HUO| Hso + HTUO| oo < CgM(O).

We set C5 := max{ %, Cy}, and take €5 in such a way that 0 < €3 <
. 2 C! .
mm{ﬁ, ﬁ, cglcgv 160%052, 160503}. We will show M (t) < 2C5||Upl| gsonrr, 0 <t <
T.

Assume that there exists ¢, € (fo, 7] such that

M(t) < 2C5]| U]

HsonL!

for 0 <t < t; and
M(ty) = 205Uy |

It then follows from (49) that

HsonL!-

M?(t) + C3Do(t) < Cs|Uy]

%SonLl + C3M(t) (MQ(t) + Doo (ﬂ)

1 !
< Csl|Uo||3s0mp1 + 5(MQ(zf) + CyDus(t))

for t € [0, 1], and hence,

M2(t) + CyDos(t) < 2C5(E(0) + |Uo|1rr2)
< 4052||U0|

2
HsonL!

for t € [0,t1]. But this contradicts to M(t;) = 2C5||U|
that

wonLt- We thus conclude

forall 0 <t <T. O
It follows from Theorem 3.2 and Proposition 5.14 that

M(t) < Cy for all ¢.

Hence we obtain the desired decay estimate in Theorem 3.3.

6 Decay estimate of strong solutions in critical
spaces
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In sections 6-7 we prove Theorem 1.3. We consider the compressible Navier-
Stokes equation in critical space.

We first rewrite system (1) into the one for the perturbation. We then introduce
some auxiliary lemmas which will be useful in the proof of the main result.

Let us rewrite the problem (1). We define p, s and ~y by

[ pt =
—, M2 = — y Y = Pl(p)
p p

M1 =

By using the new unknown function

_p(t,ZL‘)—ﬁ wl(t.r :lu T
O'(t,]?)——ﬁ ) (t, ) ~ (t7 )7

the initial value problem (1) is reformulated as

0o +yV -w = Fy(U),
Ow — 1 Aw — pV(V - w) + yVo = Fy(U), (50)
(07 w)(O,a:) = (Uo,wo)(x),

F(U)=—y(w-Vo+oV-w),

o
BU) = —’V(’w'V)W—/mo_Jr1Aw—uza+1V(V'w)
1 _ _
- - pr +p)d
+< Py _Bfo (sp0 + p) 8>0Vc7.
co+1 v oc+1

We set
A 0 —yV-
=V A+ ppVV- )
By using operator A, problem (50) is written as

U — AU = F(U), Uli—o = Uy, (51)

r0= (5 ) 5=(R)

In terms of U, Theorem 1.3 is restated as follows:

where

Theorem 6.1. Assume thatn >2 and ® =0 and 1 <p < f—fl . Then there exists
e > 0 such that if
UoEBglﬂBO woeB;’l_lﬂBg’oo

p,007

and
+ [|wo|

||0‘0HBQ%,1038,00 BQ%,l_lmBg,oo S €,
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then problem (1) has a unique global solution (p,u) satisfying
(0.w) € C([0,00): BF) x (C([0,00); By ') N LN(0,005 B, ).

Furthermore, there exists a constant Cy > 0 such that the estimates

(o w)(t)]l2 < Co(1+1)" 267, (52)
lwo@llgy, < Cot+0)7E27%, for 0<s <41 (53)
lo®)llgg < Co+07EE27%, for 0<s < (54)

hold fort > 0.

We introduce a semigroup generated by A. We set
E(t)u := 3_1[6’4(5)%] foru € L?,
where

(0 —iE!

Here and in what follows the superscript -* means the transposition.

We next state some basic lemmas.
Lemma 6.2. Let 51,50 < 5 such that sy + sy > 0; and let u € B;ll and v € B§21
Then uv € B;}JSZ_E and

vl ooa-s < Cllulgs ol

See, e.g., [1], for a proof of Lemma 6.2.

emma 6.3. Let s > 0 and let u € BS, N L>®. Let F € W2(R") such tha
L 6.3. Let s > 0 and let u € By, N L®. Let F € WE™(R h that

F(0) =0. Then F(u) € B§1 Moreover, there exists a function Cy of one variable
depending only on s,n and F' such that

£ (w)]

s, < Cilllullz)[ul

25 .
B3,

See, e.g., [2], for a proof of Lemma 6.3.
Lemma 6.4. (i) Let a,b > 0 satisfying max{a,b} > 1. Then

t
/ (1+45)%(1+t—s)"ds <C(1+ )" mintabl ¢ >0,
0
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(i) Let f € LP(0,00) and a,b > 0 satisfying max{a,b} > Z% for1 <p<oo andp
18 the conjugate exponent to p. Then

t 1
/(1+s) YL+t —s)fds < O(1+ ) minlebl( /|f|pds )7, t>0.
0

For a proof of (i), see [19]. Proof of (ii) is given by using Holder inequality; we
omit it.
Let us now introduce a few bilinear estimates in Besov spaces. We will use the

Bony decomposition
w = T,v+ Tyu+ R(u,v), (55)

with

Tw=7) Siubjy, R(uv)=) Aubdy, Bp=»Ai v+ b+ D

JEL jJEZ
Lemma 6.5. It holds that
(%) . . .
sup 18Ty fllzr < Cl[Safr2][Sagllre,
j<
sup IAR(f,9)llpr < C(1S5f 121959122 + 190 12211 Sogll 22).-
j<
(1) If 0 < 81,52, 83,54 < 5, then

Ssf| S-sf|

> 2O T fle < C(HstgH SR

v HIS gl g
7>0 Y 21

- 51+S3),
B2,1

51+54

S 2VAR( 9|z < OISl 315101l

3>0

Remark 6.6. By Lemma 6.5, we have

(4)

S,ulg ||A7~W||L1 < O(HSMHL?HSWHL? + HSOUHL?HSOUHL?)-
1<

(#9) If 0 < s1,89,83,54 < Z, then

o2 Auoll: < OIS sull 3 4o

7>0

S_5U||le+s2 + ||S_5U|| 7_33 S_5U||Bs1+s3

+Héf5uuB§f4 Sosol

syses):
Proof of Lemma 6.5. We have

AT f = Y Bi(Siaghif), DjR(Fg)= > DAy fDyg).

I3 —31<4 J'>j-3

38



For any 5 < 0, by the Holder inequality, we have
1A Tl < C > 1ISy-19A5 e

7' —j|<4

< C|Sugl2l|Saf 2,
and

IARf ) < Cl Y- AApfAg)ln

i3
< CY A fligllin + 1A fAjgln
J<0 i1

< C(I185fl1zl1S59ll 22 + 1So fll 211 Sog]l 22).

Taking the supremum in j < 0, we obtain the desired estimates of (7).
We next prove (i7). Choose s; € [0, 5]. We then obtain by Hélder inequality and
Lemma 2.11 that

D 2VNAL e < O3 3 2B Sy19by )i
§>0 720 |j'—j|<4
S C Z 281j/||S«jl_1gAj/f||L2
j'>—4
< O3 27 |{S 59+ (Syo1 — S-5)g} Ay f 12
i'z—4
< C ) 2|Ise T
j'>—4 :
HI(Sj—1 = 5-5)all, & L2 )
< (||S—59H —s2 S—59”391+92+HS—59H **53 S—5g”B91+S3)

SoIAR( e < €YD YT 2INA(AfA )] e

>0 >0 j/>j-3
< OY Y 20 A (A fAg) e
§>0 §/>j—3
< €)Y 200G A | 22600 A g 2
720 4'>5-3
< CHS_4fHBQg’;b4 49| Byt
This completes the proof. O

We now introduce commutator estimates.

Lemma 6.7. Let s € (— 5,5+ 1}. There exists a sequence ¢; € [*(Z) such that
llcjllin = 1 and a constant C' depending only on n and s such that

Vi€Z, |f-V,A)gl < Ce;2 ‘”||Vf|| ||9||B
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See, e.g., [1] for a proof of Lemma 6.7.

1

Lemma 6.8. Let 0 < p < qg<r < oo and set § = Z;::: € (0,1). Then it holds
that

(i) LP N L7 C L and || fllee < I A1,
(ii) By, 0 By, € By and | fllzo, < I£15 50 Ml

b, for1 <l < 0.

BO)

Proof. (i) is a well-known inequality. Let us prove (i7). Let 1 <[ < co. Then
by using (z) and Hélder inequality of sequence space, we have

Iz, = (D IA 1L

JEZ

< (S IA LN A1)
JEZ

< 1AL (1A 1)y
JEZ JEZ

<

0 1-6
< 1% 1715
When [ = oo, we have

11l 0 <supHA FUENAGFNE™ < U1 15"
q,00 D,00 7,00

This completes the proof. 0

7 Apriori estimate in critical space with time weight

In this section we prove Theorem 6.1. In subsections 7.1 and 7.2 we establish the
necessary estimates for A_;U(t) and A;U(t) for j > 0, respectively. In subsection
7.3 we derive the a priori estimate to complete the proof of Theorem 1.3.

We first explain known results which are used to prove Theorem 1.3.
Danchin [2] proved the following global existence result in nonhomogeneous
Besov space.

Proposition 7.1 (Danchin [2]). Let n > 2. There are two posztwe constam‘s €1 and
M such that for all (po,ug) with (po — p) € B 510 32 L s U € B and

||p0 - ﬁHBQ%’lﬂBZ%’l_l + HUOHBz%J_l S €1, (56)

problem (1) has a unique global solution (p,u) € C(R*; B2 lﬂBQ%; )x (LY (R ijl)ﬂ
C(R*; Bgl_l)) that satisfies the estimate

sup{[lp(t)—pll —1+||U()||B§1—1}+/ IIUII-E+1dt<M(|Ipo Pll g i tluoll 7—1)'
2 ) 0
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Haspot [8] proved the following local existence result in nonhomogeneous Besov
space.

Proposition 7.2 (Haspot [8]). Let n > 2 and 1 < p < 2n. Let uy € BE_1 and

(po—p) € B”1 wzth bounded away from zero. Then there exist a constant T > 0

such that the pmblem (1) has a local solution (p,u) on [0,T] with 5 > 0 bounded
away from zero and:

= 3 2-1 241
p—peC(0,T;Bry), we (C(0,T);By, )NLY(0,T;BL, )).
Moreover, this solution is unique if
p<n.

Proposition 7.3. Let T' > 0 and let (o, w) be a solution of problem (51) on [0,T]
such that

o € C(0,T); Bi,),w € C(0,T); BS,) N L'(0, T B, ™), (57)
Then, N;U(t) = (Ajo, Ajw)* for j > —1 satisfy
AUl = U, (59)
Moreover, A_1U(t) satisfy

A U(t) € C([0,T]; BY)), Vk € [0,00) (60)

and .
AU = B()A_ Uy + / Bt — $)A 1 F(U)(s)ds. (61)

0

Proof. Let U(t) = (o,w)" be a solution of (51) satisfying (57). Since A;AU =
AN U, applying A, to (51), we obtain (58) and (59). It then follows that

ANU(t) = E(t) AUy + /t E(t —s)A;F(U)(s)ds.

We also have (60) from Lemma 2.7. This completes the proof. O
Set
nl_ l
M (t) := sup (1+T)2 »2 ||A 1U(7)|| L2

0<r<t

+ sup (1+7) 67242 37 29| A,U(r)| 12
0<r<t
- 7<0

+ sup (1+ QL_ 2E’13AU 2
1495 AU
- 7<0

+sup (L+7)% ) 2 AU e,
0<r<t j<0
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Moo(t) == sup (1+7)2 22(%_1)j{||AjU(T)HL2 + 2|80 |12},

M(t) := My(t) + M (2).

If we could obtain uniform estimates of M;(¢t) and M (t), then Theorem 1.3
would be proved.

Remark 7.4. M, (t) includes the Bil—norm of the low frequency part of perturbation
with time weigh. Since any order of differentiation acts as a bounded operator on

the low frequency part, we can treat Bgl—nor’m of the low frequency part of velocity,
although the velocity itself belongs to C([0, 00); B;ﬁ/f*l). M (t) is B;l X 13251_1 -norm
of the high frequency part of perturbation with time weigh. We note that the decay

order of high frequency part is faster than the low frequency part. These facts are
used to obtain decay estimates of nonlinear term.

7.1 Estimate of low frequency parts

In this subsection we derive the estimate of A_1U(t), in other words, we estimate
M, (t).

Lemma 7.5. Let s > 0 and let 1 < p < 2. Then E(t) satisfies the estimates

1

_nel_ 1 .
IE()A_Uslle < CA+1)" 2572 sup || A, Up]| v,
j<0

N 29| E()AU|| 12 < O(L+ 1) 30725 sup || AUy | s
j<0 3<0
fort > 0.

To prove Lemma 7.5, we will use the following inequalities.

Lemma 7.6. Let o > 0, pg > 0 and s > —pﬁo. Then there holds the estimate

(/ |€|pose—poa|£\2td€)
2-1<|g]<2i+2

1 n

o< C(L+ )0

(SIS

j<0

for allt > 0.

We will prove Lemma 7.6 later. Now we prove Lemma 7.5.

Proof of Lemma 7.5. Let 1 < p < 2 and p’ be the Holder conjugate exponent
to p. By Plancherel’s theorem and Lemma 5.1 (i), we have that there exists a
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constant 4’ > 0 such that

EOAT0le < o [ A0 )

< Csuquﬁj UO”LP Z/ 6_%5’|§|2td§)%_%
<0 Y2 gl<2+?
< C(1+1)73672) supuA Uollz, (62)
and
S 2IE0bUOle < cX ([ g gefe)’
<0 <0 2T i<[g| <2+
< 02(/_ eI g (€ U(€) )
j<0 27 -l<|g]<27+2
. 1_1
< CZHAonHLP(/ Bt S e)r
j<0 20— 1<|g]<2i+2
< CA+t) 26 D 3 sup |A,; Uy 1o (63)
7<0

Here we used Lemma 7.6.
The desired estimates of Lemma 7.5 for 1 < p < 2 follow from (62) and (63).
We can easily prove for p = 2. O

It remains to prove Lemma 7.6.

Proof of Lemma 7.6. Let a > 0, py > 0 and s > —pﬂo. We have

(/ |€|pos€—poa\§|2td§)%
oo Juiclg<aie

< 02218/ dg)m

7<0 |§]<29+2
< ¢y 20 < (64)
7<0

We will next show the the inequality

S

(/2j L<lg|<2it2 |§|POS “relel td£>F < Ct 22, (65)

J<0

By the substitution n = t2 , We obtain

Z / |§|pose—poa|£|2td5)%
27—

j<0 L<jg<2i+2
1
— 2§ / \n|pose*poa|"|2d§)%
j<o TNVt VE
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If t <1, we can easily prove (65).
We suppose t > 1. There exist an integer J < 0 such that 272/ < t < 272(/=1),
We have

nlpose—poa\deg) %

] (/2f—1ﬁ<|s<zj+wz

1
(/ ‘n’posefpoalang)%
j<J 2j7J—1<|§|<2j7J+3

+ Z (/2 |n|Pos€*p0a|7l|2d£)%

J<j<0 J—T—1<|¢|<2i=T+3

= ]1 + ]2.

i<

IN

By the substitution k = 5 — J, we have

I, = Z (/2 |n|pose—poa|n\2d€)% <C,

k<0 k71<‘£|<2k+3
and
I, < Z (/ ’n‘pose—poaln|2d£)%
E>0 2k71<|£|<2k+3
< C’Ze?k(/ m|posefépoalnl2d§)%
=0 2k—1<|g|<2k+3
< oY P <o
k>0
Hence we obtain (65). By (64) and (65) we have the desired inequality . O

As for M (t), we show the following estimate.

Proposition 7.7. Let1 < p < f—fl Then there exists a constant C' > 0 independent
of T such that

t
My(t) < ClUsll gy _ + CM(t)/ ] 517 + CAL(H)
’ 0 2,1

fort e [0,T].

To prove Proposition 7.7, we will use the following estimate on F(U).
Lemma 7.8. Suppose that 1 < p < f—f:l Then there exists a constant C' > 0
independent of T' such that

DIAFD)llw < OO+ FM@)ull 30+ 1L+ TEH 20 (1)

<0
fort € [0,T7].
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We will prove Lemma 7.8 later. Now we prove Proposition 7.7.
Proof of Proposition 7.7. By Lemma 7.5 and (61), we see that

[ALUM) e < [E(T) Aol +/ 1E(T = 7)ALFU(T))]| 2dr’
0

< CA+7)" 20D sup | A;Up| 1o
j<0

t
+/ (147 —7) "% sup | A F(U(T)) | prds, (66)
0 §<0
and
225j||AjU(T)HL2 S Z”E(T)A]Uo”[p—f—/ Z||E(T_T,)AjF(U(T/))||L2dT/
j<0 j<0 0 j<o
< C+7)7 367D 5 sup | AUy
§<0
+/ (1+7—7)"572 supHAjF(U(T'))HleT' (67)
0 §<0
for s > 0.
Using Lemma 7.8, for 0 < s < 7, we have

/0 (1+7—7)"572 sup HAJ-F(U(T’))HleT’

t
< C/ (147 =) {1+ 7)) F M) w50 + (1 + )G MR ()
0 2,1

< CM(t) / (1+7 =) 351+ )76 ()| g ndr
0 2,1
+CM2(t)/ (1+7—_7—/)7%7%(1+T/)_n(%_%)_%d7-’
0
< C(I—I—T)_Z_;M(t)/ ||w(T/)||B%+1d7J—|—C(1—I—T)_%_%MQ(t). (68)
0 2,1

Here we used Lemma 6.4 and the facts that n(
1<p< n2—]:1 By (66) and (68), we obtain

5 —3) +3 > 1forn>2and

IA LUz < CL+7) 2672 |Upll gy _
+O(1+7)"TM(t) /Ot () g adr’ +C(1+ )T MA(t),
and hence,
1+ DI DIALUOl < ClUalag,, + (1) [ )l g+ M),
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Similarly, we get estimates

(1) 36D S VAU 2 < OVl gy _+CM(E / (7 e +CI(0),

7<0

(147573 S 2BV AU ()]l < C|Upllgy_+CM(E /||w g ndr'+ M)

7<0

(L+7)% 328 A Ul < CllUollgy, + CM(t / () 5.r” + CM(0).

7<0

Taking the supremum in 7 € [0, ¢], we obtain the desired estimate. O
It remains to prove Lemma 7.8.

Proof of Lemma 7.8. We consider each term of F'(U). By Lemma 6.5, we
have

s,ugl!Aj(w-W)Hu < C{l1Saw] 2194 Vol| 2 + [|Sowl 2| So Vol 2}
1<

< C(L+07"emD7ar(),

IN

sup 18,(0V - w)|l s C{l1S10 ] 21 SeVwl 2 + [ Soo | 21| SoVew| 2}
1<

IN

C{||Su0 |22 (|| SoVw| 12 + HAome + HANUHL2
+[[Agw|| 2 + IIAswllm) + [[Soo ||z || SoVw|| 2 }
L+ 07 G W) + (L4 M) ul ).

IN

Similarly, we have

sup [ A;(w- Vu) [ < {46 DM () + (14 ) FMB)w] 430}

7<0

We obtain by Lemma 2.7, 6.3 and 6.5

Aw)llp < C{18( )IIL2I|54AwIIL2+II3o( )||L2||50AwIIL2}

: o
sup || A\ ;(——
j<g” ](U+1

< C{HUHLZHSMHBl + IS0 [SoAw|2}

H)nBﬂ
< C{A+0TGIERMG + 1+ T EMOwl 1)

The other terms are estimated similarly, and we arrive at

sup IAF@) < C(L+ )62 M2() + C(L+ )5 M(t )Ile32+1
1<
This completes the proof. [l
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7.2 Estimate of high frequency parts

We next derive estimates for M (t). The system (58) is written as

8tAja —f- ’}/v . Ajw = AjF1<U), (69)
8tAjw — ,ulAAjw — MQV(V : A]w) + ’}/VAJ‘O' = A]FQ(U)
Proposition 7.9. Let j > 0. There holds
ld 2 2 2
5 7 1BV Oz + mllV A )72 + pallV - Ajw()lzs
(AR (U), Ajo) + (A F(U), Ajw) (70)

for a.e. t €10,T].

Proof. We take the inner product of (69); and (69), with A ;o and Ajw respectively,
integrating by parts and then adding them together, we obtain our proposition. []

We recall that for s € R, A® is defined by A%z := F7[|€|°2]. Let d = A7V - w
be the ”compressible part” of the velocity. Applying A=V to (69),, system (69)
writes

where we denote v = iy + puo.
Proposition 7.10. Let j > 0. There holds

lvd d
3o IAB s = S0 85 + ALl = A dlE:

—(ALFL(U), Djd) — (A - A Fy(U), A o) + %(AAjFl(U), ADo)(72)

for a.e. t €10,T).

Proof. We apply A to the equation (71); and then take L? inner product with A;d.
We take L? inner product of (71) with AA;o0. We also apply A to the equation
(71); and take L? inner product with ZAjo. By a suitable linear combination of
them, we obtain the desired identity of the proposition. [l

We introduce a lemma for estimates of the right-hand side of (72).

Lemma 7.11. The following inequalities hold

(4) |
‘ (AA](U} ) VO'), AAjO-) | < CO‘/JQ_(E_UJ ||w||32%1+1 ”0-”32%1 ||AAJO-||L2>
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’ (AA](U) . VO'), Ajd) |
< a2 E Vi ullygallol g 185d)e

IVl (20wl 5 1852 + 22 Sl 51 185dl22)

,1

where C is independ of j € Z and {a;} with |[{a;}|in < 1.

Proof. As for (i), see, e.g., [2].
Let us prove (ii). By using Lemma 6.7, we obtain

|(ALj(w- Vo), A;d) |

S ’([wV,A]]a,AAJdN + |(U)VAJO',AAJ(1){
< Cla2 9Vl g o] 5 185l

VA 0| 2 ([[Sow p= AL d] 2 + | Sowl| o [|AL ]| 20, )}
< O{Osz_(%_l)jHVwHB% ”O-HB% ”AjdHL2

2.1 2.1
IV 2501 (2710wl 5 185d]1 22 + 221 Sow] g 11 A5dl2) 3.
Bj, Bs
This completes the proof. O

Proposition 7.12. There holds

d
EEj(t) + coE;(1)

Cla(L+ 1) B MO wll g+ + (14 )26 Ad]| 2 M (1)

IN

+25 AN (0V - w) |2 + 25V A F(U) |12
+2E 7 A Ry (U], (73)
fort €[0,T] andj > 1, where ZjeZ a; <1, and ¢ is a positive constant independent
of j. Here, E;(t) is equivalent to 205~V || AU (t)|| 12 +237(| Ao () || 2. That is, there
exists a positive constant Dy such that
o EVIAT Ol + 2 250(0) 12
E5(t)
Dy (250U )] 2 + 227 B0 (1))
Proof. We add (70) to xk x (72) with a constant £ > 0 to be determined later.
Then, we obtain
d 1
dt ‘2
+l[VAjwlZe + 2|V - Ajwlz. + k| AL;o |2,
= YR[ADw|Z: + (A F(U), Ajo) + (L F(U), Ajw) + “%(AﬁjFl(U%AAjU)

—k(ALF(U), Ajd) — k(AT'V - A F(U), AL o). (74)

IAINA

RV
12,013 + 52 1AL 013 — K(AD0, 2,d))

48



We set
EX(t) = 22(5-1)j {—||A Ul%. + ||AA o|2. — k(ADo, Ad) )

It is not difficult to see that there exists D; > 0 such that, if k = min{Dlg, 1}, then

E;(t) is equivalent to 202 ~VI||A;U(¢)|| g2 + 227||Ajo(t)||z2 and that there exists a
co > 0 such that

2c0 7 < 227V [ VA0 + |V - AjwlfFe + KIIAL 0|72 — ysl| AL jw][7: ).

Let us next estimate the right-hand side of 22(2=17 x (74). By Hélder’s inequality,
we obtain

22501 (AR (U), o) < 257V AP (U)]| 1225 79| Ao e,

22E(D; B (U), Djw) < 2G4 F(U) | 12227 (| Ajw]) 2,
22(%71)]' (Ailv . A]FQ(U>, A]O') < 2(571)]HAJF2<U)”L22(%71)] HA]O—HLQ

By Lemma 7.11 we have
22V (AN P (U), AL o)
= 2267V (AA(w - Vo), ADo) + 2227V (AN (oV - w), AL o)
< Cajl!wHBzgfl||aHBQ%12<%*1>J‘||AA].U\|L2 + 22GVIAA (0V - w)| 2| AL o || 2,

and

2251 (AN FL(U), Agd)

22 (AN (w - Vo), Ad) + 22V (AL (0V - w), A;d)
C{a27 GV wll, sialollys 185

IN

I 30 (2l 15+ 2l )
+22 G| AL (0V - w>||L2||Ajdl|L2>

where > jez @ < 1. Hence we obtain

d _n
B2 4 2¢)E? gCEj{aj(lth) 2 M (t)||w]| . BiH

dt
(14 1) 202G Ayd]| 2 M (1) + 2G| AL (0V - w)| 2
+2E AR (U) |2 + 257V A, R (U)]|12}- (75)
From (75) and dividing by E;, we get the desired result. 0
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7.3 Proof of Theorem 6.1.

Proposition 7.13. Let 1 < p < nQ—]:l There exists a constant e > 0 such that if

HUO”Bﬁflmngo + HO'OHBE1 S €9,
then there holds
M(t) < O]y

1 OBS,OO + ||O_O||BQ%71

for 0 <t <T, where the constant C' does not depend on T'.

Proof. By (73) we have
Ej(t) < e 'E;(0)
t
+C/ e a;(1+7) M) w54
0 By

+(1+7) B 2E | Ad] 2 M (2)
+2G DI AN (0V - w)| 12
+2G VI A Ry (U) |12 + 215D A Fo(U) | 2 Y, (76)

where Z;io a; < 1. Hence summing up on j > 0, by the monotone convergence
theorem, we obtain

Y Ej(t) < ety E(0)
Jj=0 j=0
t . e
+C / e (1) EM) [0l g0+ 23 [ A0V - w)]| 2
0 Bz,l =0
+3 PEVNARU) 2 + Y 2E AR (U)]| 2} (77)
7=0

Jj=0

We next estimate the right-hand side of (77). From Lemma 6.2, we have

o0
2 2ENA0Vwlie < loVullyy < Cllol g IVl < CO+n) ™S M()ull,g0.
=0 21 2.1 21 >

Let us next consider the quantities ) 77 2GED|A;F(U)]| 2

Y 2G| Ay (w- Vo)

: < ||w.VU\|B§1,1
7=0
< Clulyg IVall 3
< C(lISowllz5 +11Sowl 3 )llol 5
<

C(L+7) 7 M*(1) + C(L+7) 5 M(7)|[w] 54,

20



S VEVA 0V )z < oV w] 5
2,1

=0

IN

CIIUH HVwH 3
< 0<1+T) pM2(T)+0(1+T)—%M( )wl| . Bl

Hence, we obtain the estimate of 37 2G=D||A;F (U)| 2. By using Lemma 6.2,
Lemma 6.3 and Lemma 6.5, "7 2G| A Fy(U)|| 2 is estimated as

ZQJ D Aj(w- Viw| < C{||5—5w|| ||5—5Vw|| 4o

HIS-sVwl 5155wl y3 +15-sul 5 1155wl 5
< C(L+7) 2PM(T)|IwHB§I+1.

Here we used
—1
IS sl 5 < CUCYS 2ENAwllie) + Syl 3} < O +7) S (7).

i=—5

I1S_sw]| 85, < Cllwll ,g+1-
B3

o
o+

Mz <l

A’LUHBQ%;1

1
g
C o |lA

Il 1wl

Cliall .3 [[wll
B3

n_q

52
B,

IN

n
LB+l
32,1

IN

C(L+7) s M(7)|wl 5+,
2,1

g
oc+1
o

< C n
< Ol |

< C(1+71)" 7 M?*(7).

ez <

Vol g

00
Jj=0

VUHB§1—1

In the same way as above, we can obtain estimates of other terms on ”FQ(U)HB%—l.
2,1

Hence, by using Lemma 6.4, the integral of the right-hand side of (77) is estimated
as

t
/ e~ L1 7) T MP(7) + (14 7) "% M(7)[|w]| 41 pdr
; 21

IN

t t
M) /O It ) ] g e+ M) /0 et (1 4 1) S dr

< Cl+t) 2eM(t) + C(141)"» M(t).
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Hence, we obtain

M (t) < C(||UOIIB§1_1 + ||00||32g1) + CeaM(t) + CM?(2). (78)

By Proposition 7.7 and (78), we have

M(t) < C([|IUoll + ool .5 ) + CeaM(t) + CM(t).

.%_1 50
BQ,l nBp,

By taking e; > 0 suitably small, we obtain

M) < Ol 31,0+ oll2)

for all 0 <t < T with C independent of T'. This completes the proof. 0

It follows from Proposition 7.2 and Proposition 7.13 that

M(t) < Cs for all ¢,

if the initial perturbation is sufficiently small. Hence we obtain the desired decay
estimate (52), (53) and (54) of Theorem 6.1.
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