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Abstract

The security of pairing-based cryptography is based on the hardness of solving the

discrete logarithm problem (DLP) over an extension field GF(pn) of characteristic

p and degree n. Joux et al. proposed the asymptotically fastest algorithm for

solving DLPs over GF(pn) (JLSV06-NFS). This algorithm is an extension of the

number field sieve over the prime field GF(p) (JL03-NFS).

The lattice sieve is often used in large-scaled experiments on solving DLPs

over GF(p). Franke and Kleinjung proposed a two-dimensional lattice sieve that

efficiently enumerates all the points in a given sieve region of the lattice. However,

we have to consider a sieve region of more than two dimensions in the lattice sieve

of JLSV06-NFS.

In this paper, we presented an implementation of the number field sieve for

solving the DLP over an extension field GF(pn) that underpinned the security of

pairing-based cryptography. Especially we proposed the implementation of the

lattice sieve of more than two dimensions. In our experiment, we discussed the

dimension and size of sieve region suitable for the number field sieve over an

extension field GF(p12). Finally we have solved the DLP over an extension field

GF(p12) of 203 bits using a PC of 16 CPU cores in about 43 hours.

Additionally, we extend the Franke-Kleinjung method to a three-dimensional

sieve region. We construct an appropriate basis by using the Hermite normal
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form. An experiment on a GF(p12) of 303 bits indicated that we can enumer-

ate more than 90% of the points generated by special-q in the three-dimensional

sieve region. Moreover, we implemented a number field sieve using the three-

dimensional lattice sieve. Our implementation of JLSV06-NFS over a GF(p6) of

240 bits was about as efficient as the current record holder, a three-dimensional

line sieve by Zajac, over a GF(p6).
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Chapter 1

Introduction

1.1 Pairing-based cryptography

Nowadays, services on the Internet are ordinary tools in our daily life. For in-

stance, e-mail, banking, shopping and so on. When we use these services, cryp-

tography is utilized in order to hide our secret information such as a password,

a credit card number and so on. Especially, public-key cryptography is the fun-

damental factor to hide the secret information’s. Public-key cryptography plays

an important role to communicate secretly and verify signature through insecure

channel by solving key distribution problem. Recently, in many cases, our sev-

eral sensitive data is stored on not a private storage but a storage connected to the

Internet by growth of cloud computing. Thus, more functional cryptosystems are

needed to protect such data effectively.

Pairing-based cryptography is a cryptosystem that attracts due to the novel

cryptographic protocols such as ID-based cryptography [12], functional encryp-

tion [69], etc. It is expected that these more functional protocols are useful for

prospective information security. Many efficient implementations of pairing have
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been reported, and one of the most efficient algorithms for computing pairing is

the optimal Ate pairing [89] using BN curves [10]. The security of pairing-based

cryptography using BN curves is based on the hardness of the discrete logarithm

problem over finite field GF(p12). The complexity of solving the discrete loga-

rithm problem over finite field GF(p12) of 3072 bits is estimated as 2128 [10].

1.2 The number field sieve over GF(pn)

In this paper, we deal with the discrete logarithm problems over an extension field

GF(pn) with extension degree n > 1 and large characteristic p since we consider

the security of pairing-based cryptography.

The number field sieve algorithms belongs to index calculus algorithm class.

We usually describe the running time of an algorithm belonging to index calculus

algorithm class as follows:

Lpn(u, c) = exp((c+ o(1))(log pn)u(log log pn)1−u)

If the constant c is not given we use Lpn(u). If u = 0 holds, the running time of the

algorithm is polynomial time. On the other hand, If u = 1 holds, the running time

of the algorithm is exponential time. Additionally, If 0 < u < 1 holds, the running

time of the algorithm is subexponential time. The number field sieve consists of 4

major steps: polynomial selection, collection of relation, linear algebra, individual

logarithms. First, we select two polynomials that defines a number field F in the

polynomial selection step. Second, we try to find sufficient pairs of integer that

satisfies some conditions in the collection of relation step. Third, we construct

a linear system that consists of the relations in linear algebra step. Finally, we

compute target logarithm from the solution of the linear system.

At the beginning, we introduce the number field sieve over a prime field
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GF(p). The number field sieve over GF(p) was first proposed by Gordon in [29]

as an extension of the number field sieve for integer factorization and its running

time is Lp(1/3, 3
2/3). Next, Schirokauer improved the structure of a relation and

the running time to Lp(1/3, (64/9)
1/3) [74]. Furthermore, Joux and Lercier pro-

posed the polynomial selection method and the construction of the linear system

by introducing virtual logarithms [37].

The asymptotically fastest algorithm for solving the discrete logarithm prob-

lems over an extension field GF(pn) is the number field sieve proposed by Joux et

al. at CRYPTO 2006 [41]. In this paper, we denote the number field sieve method

by JLSV06-NFS. There are two experimental reports on the implementation of

the number field sieve over an extension field GF(pn) of n = 3 [41] and n = 6

[94, 95]. However, to the best of our knowledge, there is no experimental report

on the hardness of the DLP over finite field GF(p12) by the number field sieve.

In order to correctly estimate the security of the pairing-based cryptography we

need some experimental evaluations of number field sieve over an extension field

GF(p12).

The number field sieve over an extension field GF(pn) has a substantially dif-

ferent sieving step from that over a prime field GF(p). There are two sieving

algorithms, called the line sieve and lattice sieve [71]. The large-scale implemen-

tation of the number field sieve over a prime field GF(p) deploys the lattice sieve

of two dimensions, but we have to construct the lattice sieve of more than two

dimensions for the number field sieve over an extension field GF(p12). The cur-

rently known reports on the multi-dimensional sieving have discussed only the

case of dimension three [94, 95].
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1.3 Contribution

In this paper, we propose the lattice sieving of more than 2 dimensions for the

number field sieve over an extension fields GF(pn) by naturally extending the lat-

tice sieve of two dimensions. We implemented the proposed multi-dimensional

lattice sieve over an extension field GF(p12) of 203 bits, and we show some ex-

perimental data for accelerating the number field sieve by choosing the suitable

dimensions and sizes of the sieving region. Consequently we have solved the DLP

over an extension field GF(p12) of 203 bits by the number field sieve using a PC

of 16 CPU cores in about 43 hours.

On the other hand, we extend the Franke-Kleinjung method to a three-dimensional

sieve region. We construct an appropriate basis by using the Hermite normal form.

An experiment on a GF(p12) of 303 bits indicated that we can enumerate more

than 90% of the points generated by special-q in the three-dimensional sieve re-

gion. Moreover, we implemented a number field sieve using the three-dimensional

lattice sieve. Our implementation of JLSV06-NFS over a GF(p6) of 240 bits was

about as efficient as the current record holder,- a three-dimensional line sieve by

Zajac, over GF(p6).

13



Chapter 2

The Number Field Sieve over

GF(pn)

In this chapter, we give an overview of the number field sieve over extension

field GF(pn) proposed by Joux et al. at CRYPTO 2006 [41]. The number field

sieve consists of four steps: polynomial selection, searching relations, and linear

algebra. We explain each step of the number field sieve in the following.

2.1 Discrete Logarithm Problem over GF(pn)

We denote by GF(pn)∗ the multiplicative group of finite field of cardinality pn,

where p is a prime number and n is an extension degree. Let γ be a generator

of GF(pn)∗. The discrete logarithm problem (DLP) over finite field GF(pn) tries

to find the non-negative smallest integer x that satisfies γx = δ for a given δ in

GF(pn). This discrete logarithm x is written as logγ δ in this paper.
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2.2 Polynomial Selection

In the polynomial selection of the number field sieve proposed by Joux et al., we

generate two polynomials f1, f2 ∈ Z[X]\{0} that satisfy the following conditions.

1. f1 6= f2,

2. deg f1 = n,

3. f1 is irreducible in GF(p),

4. f1 | f2 mod p.

From the conditions there exists v ∈ GF(pn) such that f1(v) = f2(v) = 0 in

GF(pn). Let α1 and α2 ∈ C be the root of f1(X) = 0 and f2(X) = 0, respectively.

Let O1 and O2 be the ring of integers of the number field Q(α1) and Q(α2),

respectively. There are homomorphism maps

φ1 : Z[α1]→ GF(pn), α1 7→ v

φ2 : Z[α2]→ GF(pn), α2 7→ v.
(2.1)

2.3 Searching Relations

In the step of searching relations, we try to find many relations of certain polyno-

mials of degree t ≥ 1. Let B1, B2 ∈ R>0 be the smoothness bound associated with

polynomials f1, f2 in Section 2.2. We define the factor base B1,B2 as follows.

Bi = {(q, g) | q : prime, q ≤ Bi, and irreducible monic g ∈ Z[X] : g|fi mod q}

In this paper we represent polynomial ha(X) = a0+a1X+· · ·+atX
t ∈ Z[X] as a

vector a = (a0, a1, . . . , at)
T ∈ Zt+1. For a given H = (H0, H1, . . . , Ht) ∈ Rt+1

>0 ,

we define the (t+ 1)-dimensional regionHa(H) as

Ha(H) = {(a0, a1, . . . , at)T ∈ Zt+1 | |ai| ≤ Hi (0 ≤ i ≤ t), at ≥ 0}.

15



Here H and Ha are called as the sieving interval and the sieving region, respec-

tively. Next, the norm of ha(αi) is defined by N(ha(αi)) = |Res(ha, fi)|, where

Res(ha, fi) is the resultant of ha(X) and fi(X) for i = 1, 2. In the step of search-

ing relations, for given sieving interval H and smoothness bound B1, B2, we try

to find a ∈ Zt+1 (called the hit tuple) that satisfies the following conditions.

1. N(ha(α1)) is B1-smooth,

2. N(ha(α2)) is B2-smooth,

where B-smooth is the integer whose prime factors are at most B. Denote by S

the set of all hit tuples gathered in searching relations. In order to solve the correct

discrete logarithm, the size of S is chosen as

]S ≥ ]B1 + ]B2 + 2n. (2.2)

2.4 Linear Algebra

Next the hit tuple a ∈ S has relationship (ha(αi))Oi =
∏

q∈Bi
qεq for i =

1, 2. We can compute εq from the prime decomposition of norm N(ha(αi)) =∏
q:prime,q≤Bi

qeq for q - [Oi : Z[αi]]. Let ri be the torsion-free rank of Oi for

i = 1, 2. From φ1(ha(α1)) = φ2(ha(α2)) using homomorphism map (2.1), we

obtain the following relation of the discrete logarithm

∑
q∈B1

εq log φ1(q) +

r1∑
j=1

λj(ha(α1)) log Λ1,j ≡

∑
q∈B2

εq log φ2(q) +

r2∑
j=1

λj(ha(α2)) log Λ2,j (mod pn − 1),

where log q and log Λi,j are called the virtual logarithms [37, 77] and λj(ha(αi)) is

the character map proposed by Schirokauer [74]. Consequently, we can compute
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Figure 2.1: Line sieve and lattice sieve in two dimensions

log q, log Λi,j (mod pn − 1) by solving the linear algorithm obtained from the

relations.

2.5 Searching Relations by Sieving in Multi Dimen-

sions

In this section we discuss how to search the hit tuple in the sieving region of t+1

dimensions from Section 2.3.

Sieving methods try to find elements (a0, a1, . . . , at) in the sieving region Ha

whose norm is divisible by prime number q smaller than the smoothness bound.

There are two different sieving methods, called the line sieve and lattice sieve

[71, 27]. The line sieve searches elements (a0, a1, . . . , at) by repeatedly adding a0

to q for fixed (a1, . . . , at). The lattice sieve generates a lattice of elements whose

norm is divisible by q, and then finds elements a ∈ Ha whose norm is divisible

by prime r in the lattice.

The number field sieve for solving the DLP over prime field GF(p) [74, 37]

or for factoring integers [50] utilizes the lattice sieve of two dimensions, namely

t = 1. Fig. 2.1. shows a figure of the line sieve and lattice sieve in two dimen-
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sions. Currently the lattice sieve is often used for solving the DLP or factorization

problem by the number field sieve of the size of more than 500 bits.

On the other hands, the lattice sieve of two dimensions can not efficiently

accumulate sufficient number of smooth elements for the number field sieve for

solving the DLP over extension field GF(p12), and thus we have to extends the

sieving region to more than two dimensions. Zajac presented an implementation

of the line sieve of three dimensions [94, 95], but there is no report on the imple-

mentation of the lattice sieve of more than dimension two.

2.5.1 Line Sieve in Multi Dimensions

In the following we describe the line sieve presented by Zajac [95]. If q | N(ha(αi))

holds for a prime q < Bi and i = 1, 2, then q | N(h(αi)) satisfies for polynomials

h(X) = ha(X) + kq where k is any integer. From this fact, we can search a

hit tuple a divisible by q in the sieving region without performing the division of

integers. Similarly, for q = (q, g) ∈ Bi (i = 1, 2), we have relationship

g | ha mod q ⇒ qdeg g | N(ha(αi)). (2.3)

Then we can find a candidate of hit tuple a ∈ Ha whose norm N(ha(αi)) is

Bi-smooth by repeatedly adding L[a] to deg g log q for the elements which satisfy

the left-hand side of equation (2.3) for ∀q ∈ Bi (i = 1, 2). The candidate a is

confirmed by checking N(ha(αi)) is Bi-smooth using the trial division, and then

we obtain a hit tuple a ∈ Ha.

Let Id be an identity matrix of size d×d. The set of all polynomials in Z[X] of

degree less than t+ 1 that satisfy the left-hand size of equation (2.3) is generated

by the integer linear combination of the columns of the following matrix:

18





g0 0

qIdeg g g1
. . .

... . . . g0

gdeg g g1

0
. . . ...

0 gdeg g


, (2.4)

where g0, g1, . . . , gdeg g is the coefficient of the polynomial g =
∑deg g

j=0 gjX
j , re-

spectively.

From gdeg g = 1, we can convert the (deg g+1)-th column to (t+1)-th column

of this matrix (2.4) by the integer linear combination of columns as follows.

Mq =



qIdeg g Tq

0 It−deg g+1


, (2.5)

where Tq is a deg g×deg g integer matrix. Conversely, for any c = (c0, c1, . . . , ct)
T ∈

Zt+1 the relation a = Mq c satisfies the left-hand side of equation (2.3). There-

fore, for deg g × (t− deg g + 1) matrix Tq and c ∈ Zt+1, we can represent Mq as

follows. 
a0

a1
...

adeg g−1

 = q


c0

c1
...

cdeg g−1

+ Tq


adeg g

adeg g+1

...

at

 . (2.6)
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Here set (u0, . . . , udeg g−1) = Tq (adeg g, . . . , at)
T for the input adeg g, . . . , at. Then

we can search a that satisfies the left-hand size of equation (2.3) by repeatedly

adding u0, . . . , udeg g−1 to q in sieving regionHa for (u0, . . . , udeg g−1, adeg g, . . . , at).

2.5.2 Lattice Sieve in Multi Dimensions

In this section we propose a lattice sieve in the sieving region of multi dimensions

by extending the lattice sieve of two dimension used for the number field sieve

over prime field GF(p) [71, 6].

The lattice sieve tries to find a candidate of hit tuples in the lattice whose

elements are divisible by q ∈ Bi (called special-q). For special-q, q = (q, g) ∈ Bi,
let Mq be the matrix of equation (2.5), and let MLLL

q be the matrix generated by

LLL reduction algorithm [51] from Mq.

In this paper we call the search space of t+1 dimensions for hit tuple a ∈ Ha

as the a-space. On the other hand, the (t + 1)-dimensional lattice MLLL
q , which

is generated by MLLL
q c for c ∈ Zt+1, is called as the c-space. Moreover, for the

sieving interval Hc ∈ R>0, we define the sieving region over the c-space by

Hc(Hc) = {(c0, c1, . . . , ct)T ∈ Zt+1 | |ci| ≤ Hc(0 ≤ i ≤ t), ct ≥ 0}.

The lattice sieve for the special-q searches the candidates of the hit tuple in the

sieving regionHc in the c-space.

Next we construct the matrix Mr from the element r = (r, h) ∈ Bi that is dif-

ferent from q in the factor base. By the same method for generating Mq from

q, we can obtain equation (2.6) corresponding to Mr, and by reducing vector
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r(c0, . . . , cdeg h−1)
T modulo r the next equation yields

a0

a1
...

adeg h−1

 ≡ Tr


adeg h

adeg h+1

...

at

 (mod r). (2.7)

Here we decompose the (t+1)× (t+1) matrix MLLL
q into the deg h× (t+1)

matrix MLLL
q,1 and the (t− deg h+ 1)× (t+ 1) matrix MLLL

q,2 as follows.

MLLL
q =

(
MLLL

q,1

MLLL
q,2

)
. (2.8)

The set of all elements a divisible by q is represented by a = MLLL
q c for c ∈ Zt+1,

namely 
a0

a1
...

adeg h−1

 = MLLL
q,1 c,


adeg h

adeg h+1

...

at

 = MLLL
q,2 c. (2.9)

Therefore, from equations (2.7) and (2.9) we obtain

(MLLL
q,1 − Tr M

LLL
q,2 ) c ≡ 0 (mod r). (2.10)

Next let Mq,r be the lattice generated by c from equation (2.10), namely Mq,r is

the kernel of linear map (MLLL
q,1 − Tr M

LLL
q,2 ). Note that a = MLLL

q Mq,r e for any

e = (e0, e1, . . . , et) ∈ Zt+1 satisfies the left-hand size of equation (2.3) for both q

and r. We can compute Mq,r from the matrix MLLL
q,1 − Tr M

LLL
q,2 corresponding to

equation (2.10).

From the above observations, we present the proposed lattice sieve for the

special-q, q as Algorithm 1.
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Algorithm 1 Proposed Lattice Sieve in Multi Dimensions
Input: special-q where Q ⊂ Bj , factor base B1,B2, sieving regionHc(Hc).

Output: S is the set of candidates of hit tuples.

1: k ← (j mod 2) + 1.

2: for all q = (q, g) ∈ Q do

3: Compute matrix MLLL
q from q using LLL.

4: L[c]← 0 for ∀c ∈ Hc.

5: D[c]← logN(ha(αj)) where a = MLLL
q c for ∀c ∈ Hc.

6: for all r = (r, h) ∈ Bj s.t. r < q do

7: Compute lattice Mq,r of r over c-space from q.

8: L[c]← L[c] + deg h log r s.t. c ∈ Hc, c ∈Mq,r.

9: end for

10: for all c ∈ Hc do

11: if L[c] + deg g log q −D[c] is small then

12: L[c]← 0

13: else

14: L[c]← −∞
15: end if

16: end for

17: D[c]← logN(ha(αk)) where a = MLLL
q c for ∀c ∈ Hc.

18: for all r = (r, h) ∈ Bk do

19: Compute lattice Mq,r of r over c-space from q.

20: L[c]← L[c] + deg h log r s.t. c ∈ Hc, c ∈Mq,r.

21: end for

22: for all c ∈ Hc s.t. L[c]−D[c] is small do

23: S ← S ∪MLLL
q c

24: end for

25: end for

26: return S 22



Chapter 3

The 3-dimensional Lattice Sieve

3.1 The Franke-Kleinjung method in 2 dimensions

In this section, we explain how to efficiently enumerate the points in the two-

dimensional lattice proposed by Franke and Kleinjung [27].

Let L2
q,r be the two-dimensional lattice generated by M2

q,r defined in Section

2.5.2 for the case of 2 dimension i.e. t = 1. Let u = (u0, u1)
T,v = (v0, v1)

T be

the basis of L2
q,r. LetH2

c be the sieve region such that

H2
c = {(c0, c1)T ∈ Z2 | −I/2 ≤ c0 < I/2, 0 ≤ c1 < J},

where I, J ∈ Z>0 and I is even.

The Franke-Kleinjung method enumerates the points in sieve region H2
c by

a special basis u,v of lattice L2
q,r, which has the following good properties (See

Figure 4.1 for an example: v = (27, 1)T and u = (−47, 2)T with I = 64). (1)

We can exhaustively compute all the points inH2
c ∩L2

q,r by adding vector u, v, or

u+v recursively. (2) The second coordinate of the points in sieve regionH2
c∩L2

q,r

generated by the enumeration algorithm is monotonically increasing. Indeed we
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Figure 3.1: An example of an enumeration of lattice points with the generated

basis u,v by the Franke-Kleinjung method on 2 dimensions

have the following theorem. We also show a proof which will be extended to the

case of 3 dimensions in the proposed method in Section 3.2.

Theorem 3.1.1 ((Franke-Kleinjung [27])) We assume that the basis u = (u0, u1)
T,v =

(v0, v1)
T of lattice L2

q,r satisfies the following conditions:

A1: |u0| < I and |v0| < I , A2: |u0 − v0| ≥ I , A3: u1 > 0 and v1 > 0.

Let p = (p0, p1)
T, q = (q0, q1)

T be points in H2
c ∩ L2

q,r. If q1 > p1 holds, then

q = p+ iu+ jv satisfies i ≥ 0, j ≥ 0 and i+ j 6= 0.

Proof 3.1.1 From p,q ∈ L2
q,r, then we have q = p+ iu+ jv, q0 = p0+ iu0+ jv0

and q1 = p1 + iu1 + jv1.

At first, both i = 0 and j = 0 can not be satisfied due to q1 > p1. If i = 0 and

j 6= 0 hold, then we obtain 0 < q1 − p1 = jv1 and thus j > 0 from Condition A3.

The assertion of the theorem is derived. Similarly, if i 6= 0 and j = 0 hold, then

the theorem holds.

Next, we assume i 6= 0 and j 6= 0. We will prove that i > 0 and j > 0 hold

under the assumption of q1 > p1 and p,q ∈ H2
c , i.e., −I/2 ≤ p0 < I/2 and

−I/2 ≤ q0 < I/2. At first, if i < 0 and j < 0 hold, then we have iu1 + jv1 < 0
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from Condition A3. However, it contradicts from the assumption of q1 > p1 due to

q1−p1 = iu1+jv1. Next, we consider the case that i and j have the different sign.

Note that if u0 and v0 satisfy Conditions A1 and A2, then u0v0 < 0 holds. From

u0v0 < 0, we know that iu0 and jv0 have the same sign and |u0|+ |v0| = |u0−v0|.
Then we obtain |q0−p0| = |iu0+jv0| = |iu0|+|jv0| ≥ |u0|+|v0| = |u0−v0| ≥ I

from Condition A2. However, it contradicts |q0 − p0| < I from the assumption of

p,q ∈ H2
c .

In the following, we denote by MFK2
q,r the basis (u,v) that satisfies Conditions

A1, A2 and A3 in Theorem 3.1.1. Franke and Kleinjung showed that the basis

that satisfies Conditions A1, A2 and A3 in Theorem 3.1.1 can be generated by the

continued fraction method shown in Algorithm 2.

From Theorem 3.1.1 Franke-Kleinjung proved the following theorem [27].

We also show the proof which is extended to the case of 3-dimensions.

Theorem 3.1.2 Let u = (u0, u1)
T,v = (v0, v1)

T be the basis of MFK2
q,r . Let p =

(p0, p1),q = (q0, q1) be points in H2
c ∩ L2

q,r. If q1 is the smallest among all the

points whose second coordinate is larger than p1, then q is one of the points p+u,

p+ v, or p+ u+ v.

Proof 3.1.2 From Theorem 3.1.1, we know that all the points, whose second co-

ordinate is larger than p1 in H2
c ∩ L2

q,r, can be obtained by repeatedly adding u

or v. Every time we add point u or v, then the second coordinate of the resulting

point becomes larger from Condition A3. At first note that if p + u is contained

in H2
c , then p + v 6∈ H2

c holds from Condition A2. Therefore, if p + u ∈ H2
c

holds, then the second coordinate of p+u is the smallest among all points whose

second coordinate is larger than p1 inH2
c ∩L2

q,r. Similarly, we can prove the case

of p + v ∈ H2
c . Finally, if both p + v and p + u are not contained in H2

c , then
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Algorithm 2 Generation of basis MFK2
q,r of Franke-Kleinjung method

Input: bound of the lattice region I , M2
q,r = (u,v) = ((u0, u1)

T, (v0, v1)
T) =

((r, 0)T, (z, 1)T), where r > I and 0 < z < r (Case 1 of HNF in Section 3.1)

Output: MFK2
q,r that satisfies Conditions A1, A2 and A3 in Theorem 3.1.1

1: v← v − u

2: while |v0| ≥ I do

3: u← u+ av, a = b−u0/v0c
4: SWAP(u,v)

5: a← b(|u0|− I)/|v0|c+1 /* a is the least positive integer s.t. |u0+ av0| < I

*/

6: u← u+ av

7: return MFK2
q,r = (u,v)

p+u+ v ∈ H2
c from Condition A2. Therefore either p+u, p+ v, or p+u+ v

is contained inH2
c ∩ L2

q,r.

From this monotonically increasing property, we can enumerate all the points

inH2
c ∩ L2

q,r by Algorithm 3.

We stress that the Franke-Kleinjung method for M2
q,r is not required in some

cases. The Hermite normal form (HNF) of the basis of M2
q,r in Section 2.5.2

becomes one of the following:

Cases 1 :

r z

0 1

 , 2 :

r 0

0 1

 , 3 :

1 0

0 r


where z ∈ Z>0, z < r. The basis is orthogonal in Cases 2 and 3, and thus we can

use the line sieve on c-space. Therefore we only deal with Case 1 where r > I

for the lattices sieve.
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Algorithm 3 NEXTFK2(I,MFK2
q,r , p)

Input: bound of the lattice region I , MFK2
q,r = (u,v) = ((u0, u1)

T, (v0, v1)
T),

where u0 < 0, point p = (p0, p1)
T ∈ L2

q,r ∩H2
c

Output: point q = (q0, q1) s.t. q ∈ L2
q,r ∩H2

c and q1 > p1 and q1− p1 is the least

1: if −I/2 ≤ p0 + u0 then return p+ u

2: if p0 + v0 < I/2 then return p+ v

3: return p+ u+ v

3.2 Proposed extension of the Franke-Kleinjung method

to 3 dimensions

In this section, we extend the Franke-Kleinjung method of 2 dimensions in Sec-

tion 3.1 to that of 3 dimensions. First we give a classification of matrix M3
q,r

by Hermite normal form. We then explain the conditions for the proposed ba-

sis in 3 dimensions and how to generate such a basis in analogue with Section

3.1. Finally, we present an enumeration algorithm using the proposed basis of the

3-dimensional lattice.

3.2.1 Hermite normal form of M 3
q,r

Let L3
q,r be the the 3-dimensional lattice generated by the basis M3

q,r of size 3× 3

in Section 2.5.2 for the case of t = 2. We classify the HNF matrix M3
q,r to exclude
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some trivial cases. The HNF of matrix M3
q,r becomes one of the following:

Cases 1 :


r z1 z2

0 1 0

0 0 1

 , 2 :


r z1 0

0 1 0

0 0 1

 , 3 :


r 0 z2

0 1 0

0 0 1

 , 4 :


r 0 0

0 1 0

0 0 1

 ,

5 :


1 0 0

0 r z2

0 0 1

 , 6 :


1 0 0

0 r 0

0 0 1

 , 7 :


1 0 0

0 1 0

0 0 r

 ,

8 :


r 0 z1

0 r z2

0 0 1

 , 9 :


r 0 0

0 r z2

0 0 1

 , 10 :


r 0 z1

0 r 0

0 0 1

 , 11 :


r 0 0

0 r 0

0 0 1

 ,

12 :


r z1 0

0 1 0

0 0 r

 , 13 :


r 0 0

0 1 0

0 0 r

 , 14 :


1 0 0

0 r 0

0 0 r

 .

where z1, z2 ∈ Z>0, z1, z2 < r.

The basis is orthogonal in Cases 4, 6, 7, 11, 13 and 14, and thus we can

efficiently use the line sieve on c-space. Moreover, Cases 2, 3, 5, 9, 10, and

12 contain an orthogonal subspace spanned by the 2-dimensional basis of the

Franke-Kleinjung type which are colored by gray. We use the line sieve on the

non-colored vector and the 2-dimensional Franke-Kleinjung method for its or-

thogonal projection. Consequently, we have to consider an HNF matrix M3
q,r that

corresponds to one of the Case 1 and 8 in the following.

3.2.2 The proposed conditions for M 3
q,r

In this section we extend the conditions of Theorem 3.1.1 used in the Franke-

Kleinjung method to the lattice of 3 dimensions, and then present how to generate

the proposed basis.

LetH3
c be the sieve region in Z3 such that

H3
c = {(c0, c1, c2)T ∈ Z3 | −I/2 ≤ ci < I/2 (i = 0, 1), 0 ≤ c1 < J},
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Figure 3.2: An example of an enumeration of lattice points with the generated ba-

sis u(0),u(1) and u(2) by the proposed Franke-Kleinjung method on 3 dimensions

where I, J ∈ Z>0 is a bound of lattice region and I is even. Our proposed

enumeration algorithm can generate all the points in sieve region H3
c if we gen-

erate an appropriate basis u(0) = (u
(0)
0 , u

(0)
1 , u

(0)
2 )T, u(1) = (u

(1)
0 , u

(1)
1 , u

(1)
2 )T

and u(2) = (u
(2)
0 , u

(2)
1 , u

(2)
2 )T of lattice L3

q,r with the following properties (See

Figure 3.2 for an example: u(0) = (22, 39, 1)T, u(1) = (−63,−12, 7)T, and

u(2) = (45,−49, 11)T with I = 64). (1) We can exhaustively compute all the

points in H3
c ∩ L3

q,r by adding the linear combination of u(0), u(1) and u(2), recur-

sively. (2) The third coordinate of the points in sieve region H3
c ∩ L3

q,r generated

by the enumeration algorithm is monotonically increasing. Indeed we can prove

the following theorem.

Theorem 3.2.1 We assume that the basis u(0) = (u
(0)
0 , u

(0)
1 , u

(0)
2 )T, u(1) = (u

(1)
0 , u

(1)
1 , u

(1)
2 )T,

u(2) = (u
(2)
0 , u

(2)
1 , u

(2)
2 )T of lattice L3

q,r satisfies the following conditions:

B1: |u(a)
0 | < I and |u(a)

1 | < I for a = 0, 1, 2,

B2: |u(b)
0 − u

(c)
0 | ≥ I or |u(b)

1 − u
(c)
1 | ≥ I for all pairwise differences (b, c) ∈

{0, 1, 2}2,
B3: u(0)

2 ≥ 0 and u
(1)
2 ≥ 0 and u

(2)
2 ≥ 0 and u

(0)
2 + u

(1)
2 + u

(2)
2 6= 0.
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B4: |i0u(0)
0 + i1u

(1)
0 + i2u

(2)
0 | ≥ I or |i0u(0)

1 + i1u
(1)
1 + i2u

(2)
1 | ≥ I , if one of

i0, i1, i2 ∈ Z is

negative and the others are positive or equal to 0.

Let p = (p0, p1, p2)
T, q = (q0, q1, q2)

T be points in H3
c ∩ L3

q,r with p 6= q. If

q2 ≥ p2 holds, then q = p+j0u
(0)+j1u

(1)+j2u
(2) satisfies (j0 ≥ 0, j1 ≥ 0, j2 ≥ 0

and j0 + j1 + j2 6= 0) or (j0 ≤ 0, j1 ≤ 0, j2 ≤ 0 and j0 + j1 + j2 6= 0).

Proof 3.2.1 From p,q ∈ L3
q,r, then we have relation q = p + j0u + j1v + j2w,

qk = pk+j0u
(0)
k +j1u

(1)
k +j2u

(2)
k for j0, j1, j2 ∈ Z and k = 0, 1, 2. Moreover, from

−I/2 ≤ pk < I/2 and−I/2 ≤ qk < I/2 for k = 0, 1, then we have |qk−pk| < I

for k = 0, 1.

First of the proof, we prove the theorem in the cases of q2 > p2. We first

consider the case that some coefficients j0, j1, j2 are equal to zero. At first j0 =

j1 = j2 = 0 can not be satisfied due to q2 > p2. If j0 = 0, j1 = 0 and j2 6= 0

hold, then we obtain 0 < q2 − p2 = j2u
(2)
2 and thus j2 > 0 from Condition B3.

The assertion of the theorem is derived. Similarly, two of coefficients j0, j1, j2 are

zero, the theorem holds. If we assume that one of coefficients j0, j1, j2 is zero.

In the case of j0 6= 0, j1 6= 0 and j2 = 0. From Conditions B1 and B2. there

exists k ∈ {0, 1} s.t. ukvk < 0. For such k, if j0 and j1 have different sign, we

have |j0uk− j1vk| > I in the same manner of Theorem 3.1.1. Then, it contradicts

|qk − pk| < I for k = 0, 1. On the other hand, if j0 < 0 and j1 < 0 holds, we

have j0u2 + j1v2 ≤ 0 from Condition B3. Then, it contradicts q2 > p2. Similarly,

we can prove that the theorem holds in the case of (j0 6= 0, j1 = 0, j2 6= 0)

or (j0 = 0, j1 6= 0, j2 6= 0). Next, we consider the case of j0 6= 0, j1 6= 0,

and j2 6= 0. We will prove that j0 > 0, j1 > 0 and j2 > 0 hold under the

assumption of Condition B4, q2 > p2, and p,q ∈ H3
c , i.e., −I/2 ≤ pk < I/2 and

−I/2 ≤ qk < I/2 for k = 0, 1. Recall that Condition B4 assume that |u0| ≥ I

or |u1| ≥ I for (u0, u1, u2)
T = i0u

(0) + i1u
(1) − i2u

(2) (i0, i1, i2 ∈ Z>0). At first,
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if j0 < 0, j1 < 0 and j2 < 0 hold, then we have j0u
(0)
2 + j1u

(1)
2 + j2u

(2)
2 < 0

from Condition B3. However, it contradicts from the assumption of q2 > p2 due to

q2−p2 = j0u
(0)
2 +j1u

(1)
2 +j2u

(2)
2 . Next, we assume that one of j0, j1, j2 is negative.

Here we show the case of j0 < 0, j1 > 0 and j2 > 0 (the other cases can be

obtained similarly). From Condition B4, we know that |j0u(0)
0 +j1u

(1)
0 +j2u

(2)
0 | ≥ I

or |j0u(0)
1 + j1u

(1)
1 + j2u

(2)
1 | ≥ I holds. However, it contradicts |q0 − p0| < I and

|q1 − p1| < I from the assumption of p,q ∈ H3
c . Finally, if one of j0, j1, j2

is negative, then we can show a contradiction using Condition B4 in the same

manner.

In the following, we prove the case of q2 = p2. First, we consider the case

that some coefficients j0, j1, j2 are equal to zero. From p 6= q and q2 = p2 we

know that p0 6= q0 or p1 6= q1. At first j0 = j1 = j2 = 0 can not be satisfied

due to q0 6= p0 or q1 6= p1. Second, if two of coefficients j0, j1, j2 are zero, the

theorem holds. Third, if we assume that one of coefficients j0, j1, j2 is zero. We

can prove that the theorem in the same manner of the case of q2 > p2. Next, we

consider the case of j0 6= 0, j1 6= 0 and j2 6= 0. At first we assume that two

of j0, j1, j2 are negative. Here we show the case of j0 < 0, j1 > 0 and j2 > 0

(the other cases can be obtained similarly). From Condition B4, we know that

|j0u(0)
0 + j1u

(1)
0 + j2u

(2)
0 | ≥ I or |j0u(0)

1 + j1u
(1)
1 + j2u

(2)
1 | ≥ I holds. However, it

contradicts |q0 − p0| < I and |q1 − p1| < I from the assumption of p,q ∈ H3
c .

Finally, if one of j0, j1, j2 is negative, then we can show a contradiction using

Condition B4 in the same manner.

We propose an algorithm for generating MFK3
q,r that satisfies Conditions B1,

B2, B3 and B4. Algorithm 4 presents a procedure to transform M3
q,r to MFK3

q,r . In

Algorithm 4, we first reduce u0 and u1-coordinate of u(0),u(1) and u(2) to satisfy

Condition B1 as Steps 1-6, and we adjust the basis in Steps 7 and 8 to satisfy
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Algorithm 4 Proposed generation of 3-dimensional basis MFK3
q,r

Input: region bound I , integer matrix M3
q,r = (u(0),u(1),u(2)) =

((r, 0, 0)T, (z1, 1, 0)
T, (z2, 0, 1)

T) s.t. r > I, 0 < z1 < r and 0 < z2 < r

(Case 1 of HNF in Section 5.1).

Output: reduced integer matrix MFK3
q,r

1: reduce by Algorithm 2 with respect to u(0),u(1).

2: while |u(2)1 | ≥ I do

3: RADIATE(u(0),u(1),u(2))

4: if sign(u(0)1 ) = sign(u(1)1 ) then do REDUCE1(u(0),u(1),u(2))

5: else do REDUCE2(u(0),u(1),u(2))

6: if |u(0)1 | > |u
(1)
1 | then do SWAP(u(2),u(0)) else do SWAP(u(2),u(1))

7: if ∃a ∈ {0, 1, 2} s.t. u(a)2 < 0 then u(a) ← −u(a)

8: ADJUST(u(0),u(1),u(2))

9: return MFK3
q,r = (u(0),u(1),u(2))

Conditions B2 and B3. We deal with whether MFK3
q,r generated by Algorithm 4

satisfies Condition B4 in Section 4.2.

In Step 1 of Algorithm 4, we use Algorithm 2 with respect to u0 and u1-

coordinate of u(0),u(1) and u(2), then we have |u(0)
0 |, |u

(1)
0 |, |u

(2)
2 | < I . Note that

we don’t need to care the values |u(0)
2 | and |u(1)

2 |, since |u(0)
2 | = |u

(1)
2 | = 0.

In Steps 2-6, we reduce u1-coordinate of u(0),u(1) and u(2) with keeping the

condition of |u(a)
0 | < I , where a = 0, 1 and 2. At first, Step 3 adjusts u(0),u(1) and

u(2) to reduce u(2) by adding u(0) and u(1) with the subroutine RADIATE. The

subroutine RADIATE in Algorithm 7 transforms u(0),u(1) and u(2) to satisfy that

the angle between x and y is less than π, where x and y are any two of u(0),u(1)

and u(2).

Second, we generate u(2) s.t. (u
(2)
1 ≤ u

(0)
1 ) ∨ (u

(2)
1 ≤ u

(1)
1 ) ∨ (|u(2)

1 | < I)

by adding u(1) and u(2) in Steps 4 and 5. If sign(u(0)
1 ) = sign(u(1)

1 ) holds, we
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Algorithm 5 REDUCE1(u(0),u(1),u(2))

Input: bound of lattice region I , basis u(0),u(1),u(2) of the lattice generated by M3
q,r s.t.

sign(u(0)
1 ) = sign(u(1)

1 )

Output: reduced basis u(2) s.t. |u(2)
1 | < |u

(0)
1 | or |u(2)

1 | < |u
(1)
1 |

1: (x,y) ← (u(0),u(1)) /* (x0, x1, x2) ← (u
(0)
0 , u

(0)
0 , u

(0)
0 ), (y0, y1, y2) ← (u

(1)
0 , u

(1)
0 , u

(1)
0 )

*/

2: if x2 > y2 then do SWAP(x,y)

3: else if (x2 = y2) ∧ (x1 > y1) then do SWAP(x,y)

4: while true do

5: while |u(2)
0 + x0| < I do

6: if (|u(2)
1 | < |x1|) ∨ (|u(2)

1 | < I) then return u(2)

7: u(2) ← u(2) + x

8: if (|u(2)
1 | < |y1|) ∨ (|u(2)

1 | < I) then return u(2)

9: u(2) ← u(2) + y

10: return u(2)

Algorithm 6 REDUCE2(u(0),u(1),u(2))

Input: bound of lattice region I , basis u(0),u(1),u(2) of the lattice generated by M3
q,r

u(0),u(1),u(2) s.t. sign(u(0)
1 ) 6= sign(u(1)

1 )

Output: reduced basis u(2) s.t. |u(2)
1 | < |u

(0)
1 | or |u(2)

1 | < |u
(1)
1 |

1: if sign(u(0)
1 ) 6= sign(u(2)

1 ) then x← u(0),y← u(1) else x← u(1),y← u(0)

2: while |u(2)
1 | < I do

3: u(2) ← u(2) + x

4: while |u(2)
0 | ≥ I do

5: u(2) ← u(2) + y

6: if (|u(2)
1 | < |u

(0)
1 |) ∨ (|u(2)

1 | < |u
(1)
1 |) then break

7: return u(2)

use the subroutine REDUCE1 presented in Algorithm 5, otherwise we use RE-

DUCE2 presented in Algorithm 6. In Step 6, we swap u(2) for u(a) s.t. |u(a)
1 | =

max(|u(0)
1 |, |u

(1)
1 |), where a ∈ {0, 1}. From Step 6, |u(2)

1 | > |u
(0)
1 | and |u(2)

1 | >
|u(1)

1 | hold at Step 2.
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In the following, we explain the subroutine REDUCE1. In Steps 1-3 of RE-

DUCE1, we select two bases x,y ∈ {u(0),u(1)} s.t. the elements x2 (resp. x1)

is less than or equals to y2 (resp. y1). In Steps 5-7, we reduce u
(2)
1 by adding x

with keeping |u(2)
0 | < I . If |u(2)

1 | < |x1| in Step 6, then u(2) satisfies u(2)
1 ≤ u

(0)
1

or u(2)
1 ≤ u

(1)
1 . Moreover, if |u(2)

1 | < I holds in Step 6, we have |u(0)
1 |, |u

(1)
1 | < I ,

since |u(2)
1 | is the largest in |u(0)

1 |, |u
(1)
1 |, |u

(2)
1 | at beginning of REDUCE1, namely

then Condition B1 is satisfied. Therefore, we return u(2) in Step 6. Similarly,

Steps 8-9 reduce u
(2)
1 by adding y.

In the following, we explain the subroutine REDUCE2. At first, we select two

bases x,y ∈ {u(0),u(1)} s.t. sign(x1) = sign(u(2)
1 ) in Step 1. From sign(x1) 6=

sign(y1) and sign(x1) 6= sign(u(2)
1 ), we have sign(y1) = sign(u(2)

1 ). Therefore, we

are able to reduce u(2)
1 by adding only x. In Steps 2-6, we reduce u(2)

1 by adding x.

However, we use y if |u(2)
0 | ≥ I holds in Steps 4 and 5 to satisfy |u(2)

0 | < I again.

If u(2) satisfies the condition in Step 6, the termination condition of REDUCE2

holds. Therefore, we break while loop in Step 6 and return u(2). Moreover, from

the same reason in REDUCE1, if |u(2)
1 | < I holds in Step 2, we also break the

while loop and return u(2). Therefore, we repeat the procedures in Step 2-6 in

Algorithm 4 until |u(2)
1 | < I is satisfied, then we obtain u(0),u(1) and u(2) that

satisfy Condition B1.

Finally, Step 7 of Algorithm 4 negates the bases s.t. u2-coordinate is negative,

and Step 8 adjusts u(0),u(1) and u(2) to satisfy Conditions B1 and B2.

3.2.3 The proposed enumeration algorithm

In this section, we propose an enumeration algorithm which can exhaustively enu-

merate all the points in the sieve region H3
c using the basis MFK3

q,r in the previous

section.
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Algorithm 7 RADIATE(u(0),u(1),u(2))

Input: basis u(0),u(1),u(2) of the lattice generated by M3
q,r

Output: basis u(0),u(1),u(2) s.t. the angle of any two of u(0),u(1),u(2) is less than π

1: if IS_OPPOSITE(u(0),u(1),u(2)) is true then

2: if IS_OPPOSITE(u(1),u(2),u(0)) is false then u(0) ← −u(0)

3: else

4: if IS_OPPOSITE(u(1),u(2),u(0)) is true then u(1) ← −u(1) else u(2) ← −u(2)

5: end if

6: return u(0),u(1),u(2)

Algorithm 8 IS_OPPOSITE(u(0),u(1),u(2))

Input: basis u(0),u(1),u(2) of the lattice generated by M3
q,r

Output: true: if the angle between u(0) and u(a) is less than π for a = 1 and 2, false: otherwise.

1: if u(0)
0 = 0 then

2: if sign(u(1)
0 ) 6= sign(u(2)

0 ) then return true else return false

3: g = u
(0)
1 /u

(0)
0

4: y = gu
(1)
0 − u

(1)
1 , z = gu

(2)
0 − u

(2)
1

5: if sign(y) 6= sign(z) then return true else return false

Algorithm 9 ADJUST(u(0),u(1),u(2))

Input: basis u(0),u(1),u(2) of the lattice generated by M3
q,r

Output: basis u(0),u(1),u(2) that satisfies Conditions B1 and B2 in Theorem 3.2.1

1: for any two x,y of u(0),u(1) and u(2) do

2: z← x− y /* (z0, z1, z2)← (x0 − y0, x1 − y1, x2 − y2) */

3: if (|z0| < I) ∧ (|z1| < I) then

4: if |x2| ≥ |y2| then x = z else y = z

5: RADIATE(u,v,w)

6: return u,v,w

At first, we give an order to all the points in H3
c ∩ L3

q,r using the property of

Theorem 3.2.1. Let a,b be two points in H3
c ∩ L3

q,r. From Theorem 3.2.1, if the

third coordinate of a is equal to or larger than that of b, then we can write a =
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b+j0u
(0)+j1u

(1)+j2u
(2) for integers j0, j1, j2 that satisfy (j0 ≥ 0, j1 ≥ 0, j2 ≥ 0

and j0 + j1 + j2 6= 0) or (j0 ≤ 0, j1 ≤ 0, j2 ≤ 0 and j0 + j1 + j2 6= 0). Note

that all integers j0, j1, j2 become zero simultaneously, if and only if a = b holds.

Here, we define b ≺ a, if a − b is equal to j0u
(0) + j1u

(1) + j2u
(2) for some

j0 ≥ 0, j1 ≥ 0, j2 ≥ 0. Then,H3
c ∩ L3

q,r becomes a totally ordered set by order ≺,

and we can enumerate the points in H3
c ∩ L3

q,r by introducing a product order for

the pair (j0, j1, j2) of j0u(0) + j1u
(1) + j2u

(2). Here we define the product order

(j0, j1, j2) ≤ (j′0, j
′
1, j

′
2) for two pairs (j0, j1, j2), (j

′
0, j

′
1, j

′
2) ∈ Z2

>0, if and only

if j0 ≤ j′0, j1 ≤ j′1 and j2 ≤ j′2 hold. In Algorithm 10, we show an algorithm

for exhaustively enumerating all points in H3
c ∩ L3

q,r. Indeed we can prove the

following theorem.

Theorem 3.2.2 Let u(0),u(1),u(2) be the basis of MFK3
q,r . Let p = (p0, p1, p2),q =

(q0, q1, q2) be points inH3
c ∩ L3

q,r. If q2 is the smallest among all the points whose

third coordinate is equal to or larger than that of p2, then q is computed by Algo-

rithm 10.

Proof 3.2.2 From Theorem 3.2.1, we know that all the points, whose third coor-

dinate is is equal to or larger than pw inH3
c ∩L3

q,r, can be obtained by repeatedly

adding u(0),u(1), or u(2).

Every time we add basis u(0),u(1), or u(2) to p, then the third coordinate of

the resulting point becomes equal to or larger than that of p from Condition B3.

Note that only one of p + u(0), p + u(1), and p + u(2) is contained in H3
c ∩ L3

q,r.

Therefore, Step 1 checks if there exists a ∈ {0, 1, 2} s.t. p + u(a) ∈ Hc, and

we return such a point if exists. In Steps 2-6, we deal with the case of adding

more than one basis of u(0),u(1), or u(2) to point p. In this step, we search the

smallest pair (i, j, k) ∈ Z3
>0 in the sense of the above product order that satisfies

p + j0u
(0) + j1u

(1) + j2u
(2) ∈ H3

c. Such a point satisfies the assertion of the
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Algorithm 10 NEXTFK3(H3
c,M

FK3
q,r , p)

Input: bound of lattice region I , point p = (p0, p1, p2)
T ∈ L3

q,r ∩ H3
c, MFK3

q,r =

(u(0),u(1),u(2))

Output: q = (q0, q1, q2)
T ∈ L3

q,r ∩ H3
c, s.t. q2 is the smallest under the condition of

q2 > p1

1: while true do

2: r← p /* (r0, r1, r2)← (p0, p1, p2) */

3: while true do

4: s← r /* (s0, s1, s2)← (r0, r1, r2) */

5: while true do

6: s← s+ u(0)

7: if s ∈ H3
c then return s

8: if I/2 ≤ s0 or I/2 ≤ s1 then break

9: r← r+ u(1)

10: if I/2 ≤ r0 or I/2 ≤ r1 then break

11: p← p+ u(2)

theorem.

From Theorem 5.2, we construct an enumeration algorithm for exhaustively

enumerating all the points in H3
c with MFK3

q,r by repeatedly adding u(0),u(1), or

u(2).

Example 3.2.1 We show an example of the basis of the proposed algorithm. We

choose an extension field GF(pn) of size 303 bits s.t. p = 38486027, n = 12, and

choose a polynomial f1(X) = X12 + X2 − 1. Additionally, for f1, we obtain

f2 by adding p to f1 as f2(X) = f1 + p. We take special-q as q = (q, g) =

(99989, X + 8368), and the other prime ideal r = (r, h) = (89107, X + 54851).

37



Then, we compute the basis as the HNF matrix of Mq,Mr as follows:

Mq =


99989 8368 0

0 1 8368

0 0 1

 , Mr =


89107 54851 0

0 1 54851

0 0 1

 .

We obtain the basis of M3
q,r and the proposed basis MFK3

q,r used for the lattice sieve

as follows:

M3
q,r =


89107 27083 −50795
0 1 0

0 0 1

 , MFK3
q,r =


23 −57 35

23 −10 −48
7 28 13

 .
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Chapter 4

Experimental Results

4.1 Solving DLP over GF(p12) of size 203 bits

In this section, we report our experiment on solving the discrete logarithm prob-

lem over extension field GF(p12) of 203 bits using the number field sieve in Sec-

tion 2. We chose the characteristic p = 122663 of 17 bits, namely the cardinality

of the extension field GF(p12) is

p12 = 11602804790149348991289364161245260072909585140266491307794081.

The computational environment in our experiment is as follows. We used one

PC equipped with four CPUs (Intel Xeon X7350 2.93 GHz; Core2 micro archi-

tecture; 16 cores in total) and 64 GBytes of RAM. We utilize gmp-5.0.5 for the

arithmetic of multi-precision integers, openmpi-1.6 for parallel implementation

between processes, pari-2.5.1 [70] for the decomposition of ideals in the number

field, and ntl-5.5.2 for the computation of lattice reduction using LLL. We use

C++ with compiler gcc-4.7.1 on Linux OS (64 bits).

Table 4.1 presents the experimental data in our implementation and the previ-

ous ones of the number field sieve over extension field GF(pn).
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Table 4.1: Comparison of known experiments of the number field sieve over ex-

tension field GF(pn)

Finite Field GF(p3) GF(p6) GF(p12)

Authors Joux et al. [41] Zajac [94] Ours

Year 2006 2008 2012

CPU Alpha (1.15GHz) × 8 Sempron (2.01GHz) × 8 Xeon (2.93GHz) × 4

Days 19 days 5 days 2 days

Bit Length 394 242 203

Sieving 2-dim. lattice sieve 3-dim. line sieve 7-dim. lattice sieve

4.1.1 How to Select Parameters t,H,B1, B2

In this section we explain how to select the parameters of the lattice sieve in Sec-

tion 2.3 for given two polynomials f1, f2 in the polynomial selection in Section

2.2. In particular, we discuss the suitable size of dimension t+ 1, sieving interval

H , and the smoothness bound B1, B2 that satisfy the equation (2.2) for the number

field sieve over extension degree GF(p12). If we select the parameters that accel-

erate both the searching relation step and the linear algebra step simultaneously,

then the total running time of the number field sieve becomes faster.

Selection of t

Denote by VH the size of sieving region Ha(H), namely VH = 2t
∏t

j=0 Hj . We

extend the estimation of the average norm in the two-dimensional lattice sieve [66,

5] to our multi-dimensional case. The average norm Nave(ha(αi)) of polynomial

fi (i = 1, 2) in the lattice sieve of t + 1 dimensions is evaluated by the following
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equation.

Nave(ha(αi)) =

√∫ Ht

0

∫ Ht−1

−Ht−1
. . .

∫ H0

−H0
(Res(ha, fi))2 da0 . . . dat

VH

Moreover, we approximate the probability ρ(x, y) that the integers smaller than x

are y-smooth as (logy x)
− logy x, and we assume that the total size of factor bases

B1,B2 is VB = π(B1) + π(B2) where π(Bi) is the number of primes smaller than

or equal to Bi (i = 1, 2). Let R be the number of relations in the sieving region

Ha(H), and then R is calculated by

R = ρ(Nave(ha(α1)), B1)ρ(Nave(ha(α2)), B2)VH . (4.1)

Here we have to find the parameters that satisfy (2.2), namely R > VB. Fig.

4.1. shows the minimal VB that satisfies R > VB for VH in the lattice sieve

of t + 1 dimensions in the extension field GF(p12) of 203, 514 and 3075 bits,

respectively. In order to reduce the time of searching such bound VB we set H0 =

H1 = · · · = Ht and B1 = B2. From Fig. 4.1., we can select smaller sizes of

sieving region VH and factor base VB that satisfy equation (2.2) using 8 dimension

(6 or 4 dimensions) for extension field GF(p12) of 203 bits (514 or 3075 bits),

respectively.

Selection of H and B1, B2

In the following we discuss the choice of the sieving interval H and the smooth-

ness bound B1, B2 so that the running time of the number field sieve becomes

faster.

For the fixed size of sieving interval VH and factor base VB, we first select the

sieving interval H and then the smoothness bound B1, B2. The sieving interval H

is chosen that the probability of ρ(Nave(ha(α1)), B1)ρ(Nave(ha(α2)), B2) arisen
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Figure 4.1: VH and VB are the size of sieving region and the factor base of multi-

dimensional lattice sieve for the number field sieve over extension field GF(p12)

of 203 bits (top), 514 bits (middle) and 3075 bits (bottom).
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from the hit tuple of equation (4.1) is maximum for fixed B1, B2 with B1 = B2.

For the above H , we then select the smoothness bound B1, B2 so that the number

of relations in equation (4.1) become maximum.

4.1.2 Polynomial Selection

In order to select two polynomials f1, f2 in Section 2.2, we use the polynomial

selection similar to the previous experiments [41] and [94]. At first an irreducible

polynomial f1 ∈ Z[X] of degree 12 with small coefficients is chosen, and then we

set f2 = f1 + p or f2 = f1 − p.

In this paper, Murphy’s α function [66, 7] is used for selecting a more suitable

pair of polynomials f1, f2. If the Murphy’s α function fi (i = 1, 2) is smaller,

then the norm N(ha(αi)) (i = 1, 2) is expected to become smoother, namely it

is divisible by small prime divisors with higher probability. The coefficient of

polynomial f1 is searched in the range of ±10, and then the sum of the Murphy’s

α of the following polynomials f1, f2 is smallest among the range of our search.

f1(X) = X12 − 3X4 + 9X3 − 9X2 − 9X + 2,

f2(X) = X12 − 3X4 + 9X3 − 9X2 − 9X − 122661.

4.1.3 Searching Relations

We used the method in Section 4.1.1 to select the dimension t+1, sieving interval

H and smoothness bound B1, B2 for our implementation of the lattice sieve.

In the estimation of Section 4.1.1, the suitable dimension of the lattice sieve

for extension field GF(p12) of 203 bits was estimated as eight. We perform some

experiments of the lattice sieve of 6, 7 and 8 dimensions for random special-q

with fixed VH and VB. From this experiments, the lattice sieve of 7 dimen-
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sions yields the largest number of relations for one special-q, and then we se-

lect H = (443, 427, 304, 140, 70, 24, 9) and smoothness bounds B1 = 114547,

B2 = 148859.

We run the lattice sieve using the above polynomials f1, f2 and parameters

t,H,B1, B2. Our experiment has generated 32,241 hit pairs in about 42 hours

using only 6 cores in our computational environment. This is about 1.3 times

larger than the sufficient number of relations ]B1 + ]B2 + 2n.

4.1.4 Linear Algebra

From the hit pairs in the searching relations we construct a matrix of linear equa-

tions modulo ` = 6118607636866573789 (63 bits) that is the maximum prime

divisor of p12 − 1. The size of the matrix is 32241 × 24463, and it is shrunk to

16579×15073 by the filter process such as eliminating duplicated relations. Then

we solve it by Lanczos method [48, 46].

We found the solutions of the linear equations in about 25 minutes using the

16 cores in our computational environment, and the virtual logarithms log q and

log Λi,j was obtained.

Finally we present an example of the discrete logarithm in finite field GF(p12)

of p = 122663. Let g = x2 + x − 7 be a generator of the multiplicative group

GF(p12)∗ = (GF(p)[X]/f1(X))∗. Let a = x2−5x+7 be a target element of solv-

ing the discrete logarithm logg a in GF(p12). Note that both g and a are B1-smooth.

The above linear equations modulo ` yields log a = 3540036734608022534 and

log g = 3897708711757659596, and thus the discrete logarithm logg a in GF(p12)

is computed by log a/ log g = 3161374319443177763 mod `.
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4.2 An experiment on 3-dimensional lattice sieve

In the following, we show some data of the proposed 3-dimensional lattice sieve.

We implemented the sieve step of the number field sieve for solving the discrete

logarithm problem over finite field GF(p12). The finite field of extension degree

n = 12 is used for efficient implementation of pairing-based cryptography using

BN curves [10].

Table 4.2: Computational environment in our experiment in Section 4.2

CPU Intel Core i7-3770 3.40 GHz

RAM 8 GBytes

OS Linux (64 bits)

Language C++

Compiler gcc-4.7.2

Library gmp-5.0.5

Table 4.2 shows the computational environments of our experiment. In order

to perform many experiments in this computational resources, we choose a char-

acteristic p = 38486027 of 26 bits. In the polynomial selection step, we choose a

polynomial f1 = x12+x2−1 ∈ Z[X], which is irreducible in GF(p) and has small

coefficients. Then polynomial f2 is chosen as f2 = f1+p = x12+x2+38486026.

In our experiment of the 3-dimensional lattice sieve generated by M3
q,r defined

in Section 2.5.2 for the case of t = 2, we set the following parameters. We choose

10 special-qs s.t. q = (q, g) ∈ B2 from 99871 ≤ q ≤ 99989. The bound of

sieve region is I = 2k (k = 7, 8, . . . , 11), J = I/2. We generate prime ideals

r = (r, h) ∈ B2 s.t. I < r ≤ 85386 and deg h = 1. The number of such r is

about 8000 for one special-q, namely we deal with about 80000 lattices generated
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by M3
q,r for one fixed I .

Table 4.3: Rate of M3
q,r that satisfies Condition B4

I ]M3
q,r B1, B2, B3, B4 B1, B2, B4 B1, B2, B3

128 84005 62395 (74%) 3724 (4%) 18765 (22%)

256 83865 61717 (73%) 322 (0%) 21918 (26%)

512 83445 55746 (66%) 2 (0%) 27681 (33%)

1024 82645 54204 (65%) 0 (0%) 28425 (34%)

2048 81185 52446 (64%) 0 (0%) 28725 (35%)

For chosen special-q, I and r, we generate the basis M3
q,r by the proposed

generation algorithm in Section 3.2. Table 4.3 shows some probabilities related

to the basis M3
q,r in our experiments. The first column of Table 4.3 is the number

of M3
q,r we generated for each bound I . The second column is the number of M3

q,r

that satisfies all conditions in Section 3.2. The third column is the number of M3
q,r

that does not satisfies only Condition B3. The fourth column is the number of

M3
q,r that does not satisfies only Condition B4. The number of the other types of

the basis is less than 2% among the total number of M3
q,r. About 74% of the basis

M3
q,r fulfill all the conditions for I = 128, namely we are able to compute all the

points inH3
c in the lattice for the basis M3

q,r. If the basis M3
q,r does not fulfill them,

Condition B4 is critical for all sieve bound in the experiment.

Once the basis M3
q,r does not fulfill all the conditions in Section 3.2, Algorithm

10 not always enumerate all the points in the sieve region H3
c . Table 4.4 shows

the percentages of the points generated by Algorithm 10 over the all points in H3
c

using the same basis M3
q,r in the previous experiment. Here we assume that the

number of all points in H3
c as I2J/r. The proposed enumeration algorithm can

enumerate more than 90% of the points in the sieve region using the basis M3
q,r.
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Table 4.4: Rate of the points that enumerated by M3
q,r that don’t satisfies Condition

B4
I rate

128 90%

256 94%

512 96%

1024 98%

2048 99%

4.3 An experiment on the number field sieve over

GF(p6)

In this section, in order to confirm our 3-dimensional lattice sieve works effi-

ciently, we report an experiment on a sieve step of the number field sieve over

GF(p6). The finite field of extension degree r is used for efficient implementation

of pairing-based cryptography using MNT curves [65]. Zajac solved the discrete

logarithm problem over GF(p6) of 240 bits [94] (Zaj08-exp), which is the cur-

rent record of JLSV06-NFS over finite fields of extension degree 6. We perform

an experiment on the proposed lattice using same parameter in the experiment of

Zaj08-exp.

Our experiment uses the computers in Table 4.5. We deploy the parameters

in our experiment as similar as possible those used in Zaj08-exp. Zajac solved

the discrete logarithm problem over the extension field whose characteristic p =

1081034284409 of 40 bits, namely the cardinality of GF(p6) is

p6 = 15960144001970777403060723996771756 \

92025917352715453344036177063352145041

47



Table 4.5: The data of computers that we use in the experiment in Section 4.3

CPU Intel Core i7-3770 3.40 GHz ×8 Intel Xeon E5-2430L 2.00GHz ×24

RAM 32 GBytes 32 GBytes

OS Linux (64 bits)

Language C++

Compiler gcc-4.7.2

Library gmp-5.0.5, openmpi-1.6

of 240 bits. For the extension field, he chose two polynomials

f1(X) = x6 − 2x5 + x3 − x+ 2,

f2(X) = x6 − 2x5 + x3 − x+ 1081034284411.

Additionally, he also chose smoothness bounds B1 = B2 = 6532326 and 3-

dimensional sieve region in a-space Ha s.t. −218 ≤ a0 ≤ 218, −213 ≤ a1 ≤ 213,

1 ≤ a2 ≤ 1149. In the experiment in Zaj08-exp, he executed 3-dimensional line

sieve inHa above with elements in factor bases (q, g) ∈ B1 ∪ B2 s.t. deg g = 1.

In our experiment, the same parameter p, n, f1, f2, B1 and B2 were imple-

mented. Instead the a-space, our 3-dimensional lattice uses a sieve region over

c-space H3
c . Here, we try to chose the sieve region H3

c such that the number of

hit tuples we can obtain in H3
c is larger than ]B1 + ]B2 + 2n = 893773. In our

3-dimensional lattice sieve, we choose 223595 special-q = (q, g) from B2 s.t.

3112117 ≤ q ≤ 6532291 and deg g = 1. We executed our lattice sieve for 10

special-qs that is randomly chosen in 3112117 ≤ q ≤ 6532291 with respect toH3
c

whose bound of lattice region is I = 2k (k = 4, 5, . . . 10). Then, we estimated the

number of hit tuples we obtain for all special-qs in 3112117 ≤ q ≤ 6532291 with

respect to I = 2k (k = 4, 5, . . . 10). From the estimated number of hit tuples for
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I = 2k (k = 4, 5, . . . 10), we chosen I = 27 since k = 7 is the least integer s.t. the

estimated number of hit tuples is larger than ]B1 + ]B2 + 2n = 893773.

For example, in the case of special-q = (6532291, X + 1470092) and r =

(751691, X + 268635), the basis of MFK3
q,r becomes

MFK3
q,r =


230 −6 −35
−192 235 −42
27 19 4

 .

Then an example of the hit tuple in the lattice generated by MFK3
q,r is a = (−63189, 410, 72)T,

where the norms of a are

N1 (a) = 62542949671969989956089853213

= 412 × 2371× 6869× 101863× 4700621× 4771049,

N2 (a) = 163052524927266549898884794543221597

= 7× 17× 12953× 22271× 116461× 1344457× 4643843× 6532291.

In the result, the whole running time of the lattice sieve was 50996 seconds,

namely about 14 hours, and we got 1041417 hit tuples. Then, we eliminated

103842 duplicate hit tuples. Therefore, we obtained 937575 hit tuples in contrast

to 1077984 obtained in Zaj08-exp.

Table 4.6 shows the experimental data in both our implementation and the

previous one in Zaj08-exp. Our experiment deploys about 4 time more CPU cores

than Zaj08-exp, but the running time reduces from 3 days to 14 hours.
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Table 4.6: Comparison of our experiment with the top record of the number field

sieve over GF(p6)

Zajac [94] Ours

Year 2008 2014

CPU and ]cores Sempron (2.01GHz) × 8

Core i7 (3.40GHz)

× 8

Xeon (2.00GHz)

× 24

Timing of Sieve 3 days 14 hours

Sieve 3-dim. line sieve 3-dim. lattice sieve
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Chapter 5

Conclusion

In this paper we presented an implementation of the number field sieve for solv-

ing the DLP over extension field GF(pn) that underpinned the security of pairing-

based cryptography. Especially we proposed the implementation of the lattice

sieve of more than two dimensions. In our experiment, we discussed the dimen-

sion and size of sieve region suitable for the number field sieve over extension

field GF(p12). Finally we have solved the DLP over extension field GF(p12) of

203 bits using a PC of 16 CPU core in about 43 hours.

Additionally, we proposed a three-dimensional lattice sieve as an extension

of the Franke-Kleinjung method that is used for enumerating points in a two-

dimensional sieve region. First, we gave a natural extension of the basis conditions

used in the Franke-Kleinjung method to the 3-dimensional case. We proved that

a basis the conditions can exhaustively enumerate all points in the sieve region of

the three-dimensional lattice. We then described an enumeration algorithm that

can trace all the points in the three-dimensional sieve region if such a basis exists.

In an experiment using GF(p12) of 303 bits, our algorithm enumerated more than

90% of all points in the sieve region of the three-dimensional lattices, even though
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the basis did not satisfy the above conditions.

Finally, we compared the running times of our three-dimensional lattice sieve

and the current record holder of GF(p6) of 240 bits by Zajac. We found that the

sieve step using our extended three-dimensional lattice sieve is about as efficient

as that of three-dimensional line sieve used by Zajac.

In the future, we have to discuss how to select more optimal parameters of

the number field sieve for the DLPs over an extension field GF(p12) of larger bits.

Then, we will estimate the security of pairing-based cryptography more precisely

by experiments over an extension field GF(p12) of more than 300 bits with the

parameters.
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Appendix

PARI/GP script to find singular prime

In this section, we show a sample script code of PARI/GP [70] for finding singular

prime with respect to a polynomial f .

? fa = 65*x^3 - x - 576

%1 = 65*x^3 - x - 576

? fw = 65^2 * subst( fa, x, x/65 )

%2 = x^3 - 65*x - 2433600

? factor(round(sqrt( poldisc(fw)/ nfdisc(fw) )))

%3 =

[ 2 1]

[ 5 1]

[13 1]

? nf = nfinit(fw);

? p2 = idealprimedec( nf , 2 )

%5 = [[2, [1, 0, 1]~, 1, 1,
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[0, 18720 , -18720; 0, -32, 160; 1, -65, 33]],

[2, [1, 1, 1]~, 1, 1,

[0, 18720 , 0; 1, 33, 128; 1, 65, -32]],

[2, [2, 1, 0]~, 1, 1,

[1, 0, 18720; 1, 66, -32; 0, 130, -64]]]

? factor(idealnorm( nf, 1+x ))

%6 =

[ 2 9]

[ 7 2]

[97 1]

? idealval( nf, 1+x, p2[1] )

%7 = 8

? idealval( nf, 1+x, p2[2] )

%8 = 1

? idealval( nf, 1+x, p2[3] )

%9 = 0

? idealfactor( nf , 1+x )

%10 =

[ [2, [1, 0, 1]~, 1, 1, [0, 18720, -18720;

0, -32, 160; 1, -65, 33]] 8]

[ [2, [1, 1, 1]~, 1, 1, [0, 18720, 0;

1, 33, 128; 1, 65, -32]] 1]

[ [7, [8, 1, 0]~, 1, 1, [-1, -56160, 74880;

1, 160, -512; -3, 325, -165]] 2]
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[[97, [1, 1, 0]~, 1, 1, [33, 617760 , -1235520;

-33, -3168, 6336; 33, -6435, 3267]] 1]

An example of enumerating lattice points

In this section, we show an example of enumerating lattice points. First, we chose

an extension field GF(pn) with the extension degree n = 6 and the characterisitic

p6 = 15960144001970777403060723996771756 \

92025917352715453344036177063352145041

Second, we chose two polynomial f1, f2 as follows:

f1(X) = x6 − 2x5 + x3 − x+ 2,

f2(X) = x6 − 2x5 + x3 − x+ 1081034284411,

and we set I = 256, J = 128 as the bound of regionH. Next, we chose special-q

as q = (6532291, X + 1470092)，and r = (751691, X + 268635). Then, we get

MFK
q,r =


230 −6 −35
−192 235 −42
27 19 4

 .

Finally, the lattice points generated by the basis MFK
q,r in the region H are

enumerated as follows:

#1:(0, 0, 0)

step 7: q + w = (-35, -42, 4)

#2:(-35, -42, 4)

step 7: q + w = (-70, -84, 8)
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#3:(-70, -84, 8)

step 7: q + w = (-105, -126, 12)

#4:(-105, -126, 12)

step 5: q + u = (125, -318, 39)

step 7: q + w = (-140, -168, 16)

step 9: q + u + w = (90, -360, 43)

step 16: q + v = (-111, 109, 31)

#5:(-111, 109, 31)

step 5: q + u = (119, -83, 58)

#6:(119 , -83, 58)

...

#13:(-97, -100, 101)
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