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ON THE ZEROS OF EISENSTEIN SERIES
FOR Γ∗0(p) AND Γ0(p) OF LOW LEVELS

JUNICHI SHIGEZUMI

Abstract. We decide the locating of all the zeros of Eisenstein series associated with the Fricke groups
Γ∗0(2) and Γ∗0(3) in their fundamental domains with applying the method of F. K. C. Rankin and H. P.
F. Swinnerton-Dyer [RSD]. Also, we give some more consideration on Γ∗0(p) and Γ0(p) of low levels.

1. Introduction

The motive of this research is to decide the locating the zeros of modular forms from codes and lattices.
Then Eisenstein series seems to be one of the most important modular forms. For example, SL2(Z) is
generated by E4 and E6, which are Eisenstein series associated with SL2(Z).

In [RSD], F. K. C. Rankin and H. P. F. Swinnerton-Dyer considered the locating the zeros of Eisenstein
series for SL2(Z). They proved, in 1970, that for k = 12n + s (s = 4, 6, 8, 10, 0, and 14), then n zeros in
their fundamental domain are on

A := {z ∈ C ; |z| = 1, π/2 < Arg(z) < 2π/3}.
We calculated the locating of the zeros of some modular forms from codes in computers. For some

codes, all the zeros seems to be on A. However, for the other codes, it does not hold.
In last May, we (Tsuyoshi Miezaki, Hiroshi Nozaki, and I) were introduced Fricke group Γ∗0(2) and

Γ∗0(3) by Professor Eiichi Bannai. Then he adviced us to try to consider the locating the zeros of them.
We applied the method of F. K. C. Rankin and H. P. F. Swinnerton-Dyer (RSD Method) to the Eisenstein
series E∗

k,p associated with Γ∗0(p) for p = 2, 3. Define

A∗2 := {z ∈ C ; |z| = 1/
√

2, π/2 < Arg(z) < 3π/4},
A∗3 := {z ∈ C ; |z| = 1/

√
3, π/2 < Arg(z) < 5π/6}.

Then we have A∗2 = A∗2 ∪ {i/
√

2, e3π/4/
√

2}, and A∗3 = A∗3 ∪ {i/
√

3, e5π/6/
√

3}.
We proved the next theorems.

Theorem 1. Let k > 4 be an even integer. E∗
k,2(z) has all zeros on A∗2.

Theorem 2. Let k > 4 be an even integer. E∗
k,3(z) has all zeros on A∗3.

After that we tried for Γ∗0(p) of upper levels and for Γ0(p) of low levels. I succeeded to decide almost
all the zeros (exactly, all the zeros except for at most 2 zeros) of Eisenstein series for Γ∗0(5) and Γ∗0(7),
and decided all zeros of Eisensitein series of low weights (such that 4 6 k 6 40) for Γ0(2) and Γ0(3).

In section 2, we recall definitions concerning modular group and some groups, then in section 3, we
recall classical methods for modular group. Section 4 gives definitions concerning Γ0(p) as a preliminaries
for Γ∗0(p). In section 5, we give the proof of the above theorems, and consider about Γ∗0(p) of low levels.
Finally, section 6 gives the results for Γ0(p) of low levels, where we decide the locating of many zeros.
However, it is far from “complete”, which means to decide locating of all zeros.

Date: January 16, 2005.

1



2 JUNICHI SHIGEZUMI

2. General theory

2.1. The modular group and some groups.

2.1.1. The modular group. (See §[VII.1] [SE], [I-I] [SI], and §[III.1] [KO])
We have a special linear group defined by following:

(1) SL2(R) :=
{(

a b
c d

)
; ∀a, b, c, d ∈ R s.t. ad− bc = 1

}
.

Write H := {z ∈ C ; Im(z) > 0}, which is complex upper half-plane. We consider a action of SL2(R)
on H ∪ {∞} in the following way:

For every γ =
(

a b
c d

) ∈ SL2(R) and every z ∈ H, we put

(2) γz :=
az + b

cz + d
.

Now we have −γz = γz for every z ∈ H. So we may consider PSL2(R) = SL2(R)/{±I} instead of
SL2(R), where I := − ( 1 0

0 1 ). But we discuss SL2(R) in this note.
Futhermore, note that

(3) Im(γz) = Im(z)/|cz + d|2.
In this note, we consider some discrete subgroups of SL2(R).
For example, we have

(4) SL2(Z) :=
{(

a b
c d

)
∈ SL2(R) ; ∀a, b, c, d ∈ Z

}
,

which is called the (full) modular group. (Sometimes, PSL2(Z) = SL2(Z)/{±I} is called the modular
group instead.) This group is a classical Fuchsian group of the first kind.

2.1.2. Congruence subgroup. (See §[III.1] [KO])
For another example of discrete subgroups of SL2(R), for a positive integer N , we have

(5) Γ(N) :=
{(

a b
c d

) ∈ SL2(Z) ; a ≡ d ≡ 1, b ≡ c ≡ 0 (mod N)
}

.

This group is a subgroup of the modular group SL2(Z), and it is called the principal congruence subgroup
of level N .

Also, if Γ′ is a subgroup of SL2(Z) such that Γ′ ⊃ Γ(N), then Γ′ is called a congruence subgroup of
level N . Here are some examples:

Γ0(N) :=
{(

a b
c d

) ∈ SL2(Z) ; c ≡ 0 (mod N)
}

,(6)

Γ1(N) :=
{(

a b
c d

) ∈ SL2(Z) ; a ≡ d ≡ 1, c ≡ 0 (mod N)
}

.(7)

These groups are the most important examples of congruence subgroups.

2.1.3. Fricke group. (See [KR], [Q])
For a positive integer N , we consider the Fricke group Γ∗0(N). We define the following;

(8) Γ∗0(N) := Γ0(N) ∪ Γ0(N) WN , WN :=
(

0 −1/
√

N√
N 0

)
.

This group is not subgroup of the modular group SL2(Z), but it is discrete subgroup of SL2(R) and
commensurable with SL2(Z). This is as an important and interesting group as the modular group and
congruence subgroups.
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2.2. Fundamental domain. (See §[VII.1] [SE], §[I-I.4] [SI])
We refer to [SI] for definitions, and refer to [SE] for proofs of propositions.
Let Γ be a discrete subgroup of SL2(R).

Definition 2.1. FΓ is a fundamental domain if and only if it satisfies following conditions:
(FD1) For every z ∈ H, there exists γ ∈ Γ such that γz ∈ FΓ.
(FD2) For every two distinct points z1, z2 ∈ FΓ, there does not exist γ ∈ Γ such that γz1 = z2.

Define T (x) := ( 1 x
0 1 ) (∈ SL2(R)) and P := {±T (x) ; x ∈ R}. In many cases, at least for the subgroups

in this paper, we have

(9) Γ ∩ P \ {±I} 6= φ.

We assume that the above inequality holds.
Put u := min{x > 0 ; T (x) ∈ Γ}, then we define

(10) F0,Γ :=
{
z ∈ H ; −u/2 < Re(z) < u/2 , |cz + d| > 1 for ∀γ =

(
a b
c d

) ∈ Γ \ P
}

.

Also, we have

F0,Γ =
{
z ∈ H ; −u/2 6 Re(z) 6 u/2 , |cz + d| > 1 for ∀γ =

(
a b
c d

) ∈ Γ \ P
}

.

(See Theorem 1.7 and 1.15, §[I-I.4 & 5] [SI])
Now, we have the following fact:

Proposition 2.1.

(i) F0,Γ satisfies the condition (FD1).
(ii) F0,Γ satisfies the condition (FD2).

Proof. (cf. proof of Theorem 1, §[VII.1] [SE])
(i) Let z ∈ H be a fixed point. Recall that Im(γz) = Im(z)/|cz + d|2 for every γ =

(
a b
c d

) ∈ Γ (See
formula (3)).

Considering that Γ is a discrete group, numbers |cz + d| have a lower bound greater than 0.
Thus there exists γ ∈ Γ which maximizes Im(γz). Furthermore, there exists v ∈ uZ such that
−u/2 6 Re(T (v)γz) 6 u/2 (i.e. v = −u bRe(γz)/u + 1/2c).

Suppose T (v)γz /∈ F0,Γ, then there exists γ′ =
(

a′ b′
c′ d′

) ∈ Γ such that |c′T (v)γz + d′| < 1. Now,
Im(γ′T (v)γz) = Im(T (v)γz)/|c′T (v)γz + d′|2 > Im(T (v)γz) = Im(γz). This contradicts the
way of choosing γ. Thus T (v)γz ∈ F0,Γ.

(ii) By the deffinition of F0,Γ, for every z ∈ F0,Γ and every γ =
(

a b
c d

) ∈ Γ, Im(γz) = Im(z)/|cz+d|2 <
Im(z). Let z1, z2 be distinct points of Γ.

Suppose that there exists γ =
(

a b
c d

) ∈ Γ such that γz1 = z2, then Im(z2) = Im(γz1) < Im(z1).
Note that γ−1z2 = z1 and γ−1 ∈ Γ, then Im(z1) = Im(γ−1z2) < Im(z2). These facts contradict
each other. Thus there does not exist γ ∈ Γ such that γz1 = z2.

¤

Here, F0,Γ does not satisfy the condition (FD2). We can, however, remove points from F0,Γ to satisfy
(FD2). Define

(11) F1,Γ :=





z ∈ H ; −u

2
6 Re(z) <

u

2
,

|cz + d| > 1 if Re(z) 6 −d/c,
|cz + d| > 1 if Re(z) > −d/c

for ∀γ =
(

a b
c d

)
∈ Γ \ P





.

Then we have F0,Γ ⊂ F1,Γ ⊂ F0,Γ. Moreover, we have following;

Lemma 2.1. Let z ∈ ∂F0,Γ. (i.e. |cz + d| > 1 for ∀γ =
(

a b
c d

) ∈ Γ \ P )

(i) If |cz + d| = 1 for some γ0 =
(

a0 b0
c d

) ∈ Γ \ P , then there exist γ =
(

a b
c d

) ∈ Γ \ P such that
γz ∈ ∂F0,Γ uniquely.

(ii) For every γ′ =
(

a′ b′
c′ d′

) ∈ Γ \ P such that |c′z + d′| > 1, γ′z /∈ F0,Γ.

Proof.
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(i) Write z = (eiθ − d)/c for θ ∈ [0, π], then we have γz = (ei(π−θ) + a)/c for γ =
(

a b
c d

) ∈ Γ \ P .
Let n = −bRe(γz)/u + 1/2c, then −u/2 6 Re(T (nu)γz) < u/2. Here, we have T (nu)γ =(

a+cnu b+dnu
c d

)
. Thus we can choose “a” such that −u/2 6 Re(γz) < u/2. We may assume

−u/2 6 Re(γz) < u/2.
Also, write z′ = γz(= (ei(π−θ) + a)/c). We have | − cz′ + a| = 1/|cz + d| = 1, so z′ /∈ F0,Γ.
Suppose z′ /∈ ∂F0,Γ (i.e. z′ /∈ F0,Γ), then |c′z′ + d′| < 1 for some γ′ =

(
a′ b′
c′ d′

) ∈ Γ \ P . For

γ′γ =
(

aa′+b′c a′b+b′d
ac′+cd′ bc′+dd′

)
,

|(ac′ + cd′)z + (bc′ + dd′)| =
∣∣∣∣
(ac′ + cd′)eiθ − c′

c

∣∣∣∣

=
∣∣∣∣
c′ei(π−θ) + (ac′ + cd′)

c

∣∣∣∣
∣∣∣∣

1
e−iθ

∣∣∣∣
= |c′z′ + d′| < 1.

This inequality contradicts z ∈ F0,Γ. Thus z′ ∈ ∂F0,Γ.
Now, the rest of the question is uniqueness of γ. Suppose γ′′z ∈ ∂F0,Γ for some γ′′ =

(
a′′ b′′
c d

) ∈
Γ \ P , then γ′′γ−1 =

(
1 ab′′−a′′b
0 1

) ∈ Γ. Furthermore, ab′′ − a′′b = n′u for some n′ ∈ Z. So we
have γ′′z = z′+ n′u. If n′ 6= 0, then Re(γ′z) /∈ [−u/2, u/2], and then γ′z /∈ F0,Γ. Thus n′ = 0. In
conclusion, we have γ′ = γ.

(ii) Let γ′ =
(

a′ b′
c′ d′

) ∈ Γ \ P satisfy |c′z + d′| > 1, and write z′′ = γ′z. Then we have Im(z′′) =
Im(γ′z) = Im(z)/|c′z + d′|2 < Im(z).

Suppose γ′z ∈ F0,Γ, then | − c′z′′ + a′| > 1. Also, we have Im(z) = Im(γ′−1
z′′) = Im(z′′)/| −

c′z′′ + a′|2 6 Im(z′′). These facts contradict each other.
¤

Let z, z′ ∈ ∂F0,Γ. By Lemma2.1, if γz = z′ for some γ =
(

a b
c d

) ∈ Γ \ P , then |cz + d| = 1. Also, we
have z = (eiθ − d)/c and z′ = (ei(π−θ) + a)/c. So we can remove the points with θ ∈ [0, π/2) from ∂F0,Γ.
Thus we have following;

Proposition 2.2. F1,Γ satisfies the condition (FD2).

However, if

|c1z + d1| = 1, Re(z) 6 −d1/c1 for some γ1 =
(

a1 b1
c1 d1

) ∈ Γ \ P, and

|c2z + d2| = 1, Re(z) > −d2/c2 for some γ2 =
(

a2 b2
c2 d2

) ∈ Γ \ P,

then we can write z = (eiθ1 − d1)/c1 = (eiθ2 − d2)/c2. Because Re(z) 6 −d1/c1, we have θ ∈ [π/2, π], so
we should not remove z from ∂F0,Γ. On the other hand, because Re(z) > −d2/c2, we have θ ∈ [0, π/2),
so we should remove z. These contradict each other. We need another consideration on these points.

We define

V0 :=
{

z ∈ ∂F0,Γ ;
|c1z + d1| = 1, Re(z) 6 −d1/c1 for ∃γ1 =

(
a1 b1
c1 d1

) ∈ Γ \ P

|c2z + d2| = 1, Re(z) > −d2/c2 for ∃γ2 =
(

a2 b2
c2 d2

) ∈ Γ \ P

}

∪ {z ∈ ∂F0,Γ ; Re(z) = −1/2}.
(12)

Furthermore, we can remove points from V0 to satisfy the condition (FD2). Let VΓ be the subset of V0

which satisfies (FD2). Then we have following theorem:

Theorem 2.1. F1,Γ ∪ VΓ is a fundamental domain of Γ.

Let Γ1 be a set of representatives of Γ/(Γ ∩ P ), then Γ = Γ1(Γ ∩ P ), and define

Γ0 := {γ =
(

a b
c d

) ∈ Γ1 ; |cz + d| = 1 for ∃z ∈ F1,Γ}.
Now, let G be the subgroup of Γ generated by Γ0 ∪ {T (u)}, then F1,Γ ∪ VΓ is a fundamental domain of
G. For every γ ∈ Γ and a fixed point z ∈ F0,Γ, there exist some γ′ ∈ G such that γ′γz ∈ F1,Γ. Because
γ′γ ∈ Γ, we have γ′γz = z. Put γ′γ =

(
a b
c d

)
, then |cz + d| = 1. Thus γ = γ′−1 or −γ′−1 ∈ G. In

conclusion, the next corollary follows:

Corollary 2.1.1. If Γ 3 −I, then Γ0∪{T (u),−I} generates Γ. On the other hand, if Γ 63 −I, Γ0∪{T (u)}
generates Γ.
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2.3. Modular forms.

2.3.1. Preliminaries. (See §[III.2, 3] [KO] and §[VII.1] [SE])
Let Γ be a discrete subgroup of SL2(R). For a cusp κ of Γ, we define

Γκ := {γ ∈ Γ ; γκ = κ}.
In the previous section, we assume that Γ∩P \ {±I} 6= φ. Then ∞ is one of the cusps of Γ, and we have
Γ∞ = Γ ∩ P . Furthermore, there exist some γκ ∈ SL2(R) such that γκ∞ = κ and

Γκ = γκΓ∞γ−1
κ .

Let f be a function on H. The relation

(13) f(γz) = (cz + d)kf(z) for every z ∈ H and every γ =
(

a b
c d

) ∈ Γ

is called the transformation rule for Γ.
Incidentally, since SL2(Z) = 〈( 1 1

1 0 ) ,
(

0 −1
1 0

)〉 (See (37)), transformation rule for SL2(Z) is equivalent
to the following two equations:

f(z + 1) = f(z),(14)

f

(
−1

z

)
= zkf(z).(15)

We also have the following Fourier expansion for every cusp κ of Γ:

(16) (cz + d)−kf(γκz) =
∑

n∈Z
aκ,nqn for γκ =

(
a b
c d

)
, where q = e2πiz.

We say f is meromorphic at κ if aκ,n is zero for n small enough. Also, we call f holomorphic at at κ if
aκ,n is zero for every negative integer n.

Definition 2.2. Let f be a meromorphic function on H. f is called a modular function for Γ if f is
meromorphic at every cusp and satisfies transformation rule for Γ.

When f is holomorphic at a cusp κ, f(κ) = 0 if and only if aκ,0 = 0.

Definition 2.3. Let f be a modular function for Γ which is holomorphic on H. f is called modular form
for Γ if f is holomorphic at its evry cusp. In addition, if f is equal to 0 at its every cusp, we call f cusp
form for Γ.

For a function f , let vp(f) be the order of f at p ∈ H. In addition, we also define the order of f at a
cusp κ:

vκ(f) := min{n ∈ Z ; aκ,n 6= 0}.
Finally, we have following facts:

Proposition 2.3. Let f be a modular form for Γ such that every coefficient of Fourier expansion is real.
Then we have

(17) f(−z) = f(z).

Proof. (See [G]) Let f be a modular form for Γ, and let

f(z) =
∑

n>0

ane2πinz

be a Fourier expansion of f with real coefficients an. Put z = x + yi, then we have

f(z) =
∑

n>0

ane2πn(−y+xi),

f(−z) =
∑

n>0

ane2πn(−y−xi).

¤
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Corollary 2.1.2. Let f be a modular form for Γ such that every coefficient of Fourier expansion is real.
Then we have

(18) vρ(f) = vρ(f).

Proof. Let f be a modular form for Γ such that every coefficient of Fourier expansion is real, and let r
be a positive number such that {z ; 0 < |z − ρ| 6 r} has no zeros of f . Then

vρ(f) =
1

2πi

∫

{|z−ρ|=r}

df(z)
f(z)

= − 1
2πi

∫

{|z−(−ρ)|=r}

df(−z)
f(−z)

=
1

2πi

∫

{|z−(−ρ)|=r}

df(z)
f(z)

= vρ(f) = vρ(f).

¤

2.3.2. Eisenstein series. (See [SU])
Let Γ be a discrete subgroup of SL2(R).

Definition 2.4. For z ∈ H,

(19) Ek,κ := e
∑

γ∈Γκ\Γ
j
(
γ−1

κ γ, z
)−k

(e : fixed number)

is the Eisenstein series associated with Γ for a cusp κ, where j(γ, z) := cz + d for γ =
(

a b
c d

) ∈ Γ. e is
often selected so that the constant term of Ek,κ is 1.

Note that Eisenstein series Ek,κ is modular function for Γ of weight k.
For the cusp ∞, any elements of Γ∞ stabilize (c, d) of γ =

(
a b
c d

) ∈ Γ. Thus we have only to consider
about the pairs (c, d) as representatives of Γ∞ \ Γ.

For example, let Γ = SL2(Z), then we have only ∞ as the cusp of SL2(Z). Now, for an even integer
k > 4, we have

(20) Ek(z) :=
1
2

∑

(c,d)=1

(cz + d)−k

as the Eisenstein series associated with SL2(Z).

2.3.3. Some notations. For a prime p, we define

Dk,p(z) :=
1
2

∑

(c,d)=1
p-cd

(cz + d)−k,(21)

Bk,p(z) :=
1
2

∑

(c,d)=1
p|c

(cz + d)−k, Ck,p(z) :=
1
2

∑

(c,d)=1
p|d

(cz + d)−k.(22)

Then we have

Bk,p(z) =
1
2

∑

n∈N

∑

(c,d)=1
p-cd

(pncz + d)−k =
∑

n∈N
Dk,p(pnz),

Ck,p(z) =
1
2

∑

n∈N

∑

(c,d)=1
p-cd

(cz + pnd)−k =
∑

n∈N
p−knDk,p

(
z

pn

)
.

Furthermore

Ek(z) = Dk,p(z) + Ck,p(z) + Bk,p(z)

= Dk,p(z) +
∑

n∈N
Dk,p(pnz) +

∑

n∈N
p−knDk,p

(
z

pn

)
.
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Conversely, let us consider to write Bk,p and Ck,p with Ek.

Ek(pz) = p−kDk,p(z) +
∑

n∈N
Dk,p(pnz) +

∑

n∈N
p−k(n+1)Dk,p

(
z

pn

)
.

Then Ek(z)− pkEk(pz) = (1− pk)
∑

n∈NDk,p(pnz) = (1− pk)Bk,p(z). In conclusion,

(23) Bk,p(z) =
1

1− pk

(
Ek(z)− pkEk(pz)

)
.

Similarly,

(24) Ck,p(z) =
1

1− pk

(
Ek(z)− Ek

(
z

p

))
.

Furthermore, similar to equations(14) and (15),

Dk,p(z + p) = Dk,p(z) Dk,p(−1/z) = zkDk,p(z),

Bk,p(z + 1) = Bk,p(z) Bk,p(−1/z) = zkBk,p(z),

Ck,p(z + p) = Ck,p(z) Ck,p(−1/z) = zkCk,p(z).

(25)

In the last part of this subsection, for 0 6 n 6 p− 1, we define

(26) Dn
k,p(z) :=

1
2

∑

(c,d)=1
p-cd

d≡nc (mod p)

(cz + d)−k.

Then we have D0
k,p(z) = Ck,p(z),

∑
16n6p−1 Dn

k,p(z) = Dk,p(z), and

(27) Dn
k,p(z + 1) = Dn+1

k,p (z).

2.3.4. Eta function. (See §[III.2] [KO])
We put

(28) ∆(z) :=
1

1728

(
(E4(z))3 − (E6(z))2

)
.

∆ is a cusp form for SL2(Z) of weight 12. Now, we have

Theorem 2.2 (Jacobi’s product formula).

(29) ∆(z) = q

∞∏
n=1

(1− qn)24 where q = e2πiz.

Also, we have

(30) η(z) = q
1
24

∞∏
n=1

(1− qn),

which is called the Dedekind η-function. Then we have

(31) η(z + 1) = e
2πi
24 η(z) and η

(
−1

z

)
=

√
z

i
η(z) (See [KO]),

where
√· denote a square root which has nonnegative real part. Furthermore, we have

(32) η

(
az + b

cz + d

)
= ε

√
cz + d

i
η(z) for

(
a b
c d

) ∈ SL2(Z),

where ε is one of the 24th-roots of 1 which depends on a, b, c, and d.
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3. Modular group SL2(Z)

3.1. Eisenstein series. Let k be an even integer greater than 4. We have Eisenstein series associated
with SL2(Z):

Ek(z) =
1
2

∑

(c,d)=1

(cz + d)−k.

We also have its Fourier Expansion:

(33) Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where q := e2πiz, σk(n) :=
∑

d|n dk which is called divisor function, and Bk are Bernoulli number which
are defined by

x

ex − 1
=

∞∑

k=0

Bk
xk

k!
.

For example:

E4(z) = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + · · ·
E6(z) = 1− 504q − 16632q2 − 122976q3 − 532728q4 − · · ·

It is easy to show that Ek(z) is modular form (not cusp form) for SL2(Z) for every k > 4.
For k = 2, we can define E2(z) as Ek(z) for k > 4.

E2(z) :=
1
2

∑

(c,d)=1

(cz + d)−2 = 1− 24
∞∑

n=1

σ1(n)qn

= 1− 24q − 72q2 − 96q3 − 168q4 − · · ·
(34)

However, E2(z) is not modular form for SL2(Z). E2(z) satisfies transformation rule (14), but it does not
satisfy (15). We have

(35) E2

(
−1

z

)
= z2E2(z) +

12
2πi

z.

3.2. Fundamental domain. For deciding a fundamental domain, we consider the following condition:

(C) |cz + d| > 1, −1/2 < Re(z) < 1/2 for ∀γ =
(

a b
c d

) ∈ SL2(Z) \ P.

By
(

0 −1
1 0

) ∈ SL2(Z), we have the condition |z| > 1. In addition, by −1/2 < Re(z) < 1/2, we have
Im(z) >

√
3/2. If |c| > 2 or d 6= 0, then we have Im(z) <

√
3/2 for z ∈ H such that |cz + d| = 1 and

−1/2 < Re(z) < 1/2. Thus the condition

(C0) |z| > 1, −1/2 < Re(z) < 1/2

is a sufficient condition for (C). Now, we have a fundamental domain for SL2(Z) as follows:

(36) F :=
{
|z| > 1, −1

2
6 Re(z) 6 0

} ⋃ {
|z| > 1, 0 6 Re(z) <

1
2

}

-1
-

1
����

2
1
����

2
1

1

-1
-

1
����

2
1
����

2
1

1

Figure 1. SL2(Z)
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We have
(

0 −1
1 0

)2 = −I. Thus, by corollary2.1.1, we have

(37) SL2(Z) = 〈( 1 1
1 0 ) ,

(
0 −1
1 0

)〉.

3.3. RSD Method. (See [RSD])
At the beginning of the proof of [RSD], they considered the following;

(38) Fk(θ) := eikθ/2Ek

(
eiθ

)
,

which is real for ∀θ ∈ R. Considering the four terms with c2 + d2 = 1, they proved

(39) Fk(θ) = 2 cos(kθ/2) + R1,

where R1 is the rest of the series (i.e. c2 + d2 > 1). Moreover they showed

(40) |R1| 6 1 +
(

1
2

)k/2

+ 4
(

2
5

)k/2

+
20
√

2
k − 3

(
9
2

)(3−k)/2

.

They computed the value of the right-hand side of (40) at k = 12 whose value is 1.03562. At this point,
it is obviously monotonically decreasing in k. Thus they could show |R1| < 2 for ∀k > 12.

For π/2 6 θ 6 2π/3, we obtain k
4π 6 kθ/2 6 k

3π. So for any integer m ∈ [
k
4 , k

3

]
, if m is even or odd,

then cos(kθ/2) is +1 or −1, respectively; and Fk(2mπ/k) is positive or negative, respectively.
How many integers are there in

[
k
4 , k

3

]
? If k is indivisible by 4, i.e. k = 4l + 2 (∃l ∈ N), then[

k
4 , k

3

]
=

[
l + 1

2 , 4l+2
3

]
. Then it has

⌊
k
12 − 1

2

⌋
+ 1 integers. On the other hand, if k is divisible by 4, then

by the same consideration, it has
⌊

k
12

⌋
+1 integer points. Write m(k) :=

⌊
k
12 − t

4

⌋
, where t = 0 or 2, such

that t ≡ k (mod 4). Then k = 12m(k) + s (s = 4, 6, 8, 10, 0, and 14).
In conclusion, they proved that m(k) zeros were in A.

Remark 3.1. (i) Fk(θ) is real. (ii)
[

k
4 , k

3

]
has m(k) integers. (iii) For any integer m ∈ [

k
4 , k

3

]
, if m is

even or odd, then Fk(2mπ/k) is positive or negative, respectively.

They said in the last part of their paper [RSD], “This method can equally well be applied to Eisenstein
series associated with subgroup of the modular group.” However, it seems unclear how widely this claim
holds.

3.4. Valence formula. In order to decide the locating of all zeros of Ek(z), we need the valence formula:

Proposition 3.1 (valence formula). Let f be a modular function of weight k for SL2(Z), which is not
identically zero. We have

(41) v∞(f) +
1
2
vi(f) +

1
3
vρ(f) +

∑

p∈SL2(Z)\H
p 6=i, ρ

vp(f) =
k

12
,

where vp(f) is the order of f at p, and ρ := e2π/3. (See [SE])

Proof. Let f be a nonzero modular function of weight k for SL2(Z), and let C be a contour of F represented
in Figure 2., whose interior contains every zero and pole of f except for i and ρ. By the Residue theorem,
we have

1
2πi

∫

C

df

f
=

∑

p∈F\{i,ρ}
vp(f).

(i) For the arc EA, we have

1
2πi

∫ A

E

df

f
=

1
2πi

∫ 1
2

− 1
2

f ′(u + Ki)
f(u + Ki)

du =
1

2πi

∫

w={|q|=e−2πK}

f ′(q)
f(q)

dq = −v∞(f).

(ii) For the arcs BB′ which is a part of the circle around ρ, when the radius of the arc tends to 0, the
angle of it tends to π/3. Then we have

1
2πi

∫ B′

B

df

f
→ −1

6
vρ(f).
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Similarly, when the radii of the arcs CC ′ and DD′ tend to 0, the angles of them tend to π and π/3,
respectively. We have

1
2πi

∫ C′

C

df

f
→ −1

2
vi(f) and

1
2πi

∫ D′

D

df

f
→ −1

6
vρ(f).

(iii) For the arcs AB and D′E, since f(Tz) = f(z) for T = ( 1 1
0 1 ),

1
2πi

∫ B

A

df

f
+

1
2πi

∫ E

D′

df

f
=

1
2πi

∫ B

A

df

f
+

1
2πi

∫ A

B

df

f
= 0.

(iv) For the arcs B′C and C ′D, since f(Sz) = zkf(z) for S =
(

0 −1
1 0

)
, we have

df(Sz)
dz

= kzk−1f(z) + zk df(z)
dz

,
df(Sz)
f(Sz)

= k
dz

z
+

df(z)
f(z)

.

When the radii of the arcs BB′, CC ′, DD′ tend to 0, the angle of the arc B′C tend to π/6. Thus we
have

1
2πi

∫ C

B′

df(z)
f(z)

+
1

2πi

∫ D

C′

df(z)
f(z)

=
1

2πi

∫ C

B′

df(z)
f(z)

+
1

2πi

∫ B′

C

df(Sz)
f(Sz)

=
1

2πi

∫ C

B′

(
df(z)
f(z)

− df(Sz)
f(Sz)

)

=
1

2πi

∫ C

B′

(
−k

dz

z

)
→ k

12
.

(v) Finally, when f has a zero or pole on ∂F \ {i, ρ}, we can transform C as Figure 3. Then we can show
in a similar way to Figure 2.

¤

By previous subsection (RSD Method), Ek(z) has m(k) zeros on A, so
∑

p∈SL2(Z)\H
p 6=i, ρ

vp(Ek) > m(k).

If k ≡ 4, 6, 8, 10, and 0 (mod 12), then k/12−m(k) < 1, so any other zero does not exist except for i
and ρ. Thus all zeros of Ek(z) is on A ∪ {i, ρ}.

But if k ≡ 2 (mod 12), we need another consideration because we have k/12−m(k) > 1.
Recall that Ek(z) is a modular form of weight k for SL2(Z). By the equation (15), substituting i for z,

we have Ek(i) = ikEk(i). Because k 6≡ 0 (mod 4), Ek(i) = 0. Thus i is a zero of Ek(z), i.e. vi(Ek) > 1,
then we have k/12−m(k)− vi(Ek)/2 < 1.
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In conclusion, for every even integer k > 4, all zeros of Ek(z) are on A ∪ {i, ρ}.

3.5. The space of modular forms. Let Mk be the space of modular forms for SL2(Z) of weight k, and
let M0

k be the space of cusp forms for SL2(Z) of weight k. Because dim(Mk/M0
k ) 6 1, Mk = CEk ⊕M0

k .
As a classical result, we have the following theorem(See [SE]):

Theorem 3.1. Let k be an even integer, and let ∆ := 1
1728 (E3

4 − E2
6).

(1) For k < 0 and k = 2, Mk = 0.
(2) For k = 0, 4, 6, 8, 10, and 14, we have M0

k = 0, and dim(Mk) = 1 with a base Ek.
(3) M0

k = ∆Mk−12.

Furthermore, for a non-negative integer k, dim(Mk) = bk/12c if k ≡ 2 (mod 12), and dim(Mk) =
bk/12c+ 1 if k 6≡ 2 (mod 12).

Let k be an even integer k > 4. Write n := dim(Mk)− 1, then k − 12n = 0, 4, 6, 8, 10, or 14. Because
Ek − Ek−12nE12n ∈ M0

k , we have Mk = CEk−12nE12n ⊕M0
k . Then

Mk = Ek−12n(CE12n ⊕ CE12(n−1)∆⊕ · · · ⊕ C∆n)

Thus, for every p ∈ H and for every f ∈ Mk, vp(f) > vp(Ek−12n).
In the previous subsection, we have v∞(Ek) =

∑
p∈SL2(Z)\H

p6=i, ρ

vp(Ek) = 0 for k = 0, 4, 6, 8, 10, or 14.

Thus, by the valence formula, vi(f)/2 + vρ(f)/3 = k/12. In conclusion, the next proposision follows:

Proposition 3.2. Let k > 4 be an even integer. For every f ∈ Mk, we have

vi(f) > sk (sk = 0, 1 such that 2sk ≡ k (mod 4)),

vρ(f) > tk (tk = 0, 1, 2 such that − 2tk ≡ k (mod 6)).
(42)

In paticular, if f is a constant multiple of Ek, then the equalities hold.

Remark 3.2. Every modular form for SL2(Z) is generated by

E4 and E6.

3.6. On Ek(i) and Ek(ρ). We consider the bound for |R1| again. Let k > 4 be an even integer.
Define vk(c, d, θ) := |ceiθ/2 + de−iθ/2|−k, then vk(c, d, θ) = 1/(c2 + d2 + 2cd cos θ)k/2 and vk(c, d, θ) =

vk(−c,−d, θ).
Now we will consider the next three cases, namely N = 2, 5, and N > 10. Considering θ ∈ [π/2, 2π/3],

we have the following:
When N = 2,

vk(1, 1, θ) =
(

1
2 + 2 cos θ

)k/2

6 1, vk(1,−1, θ) =
(

1
2− 2 cos θ

)k/2

6
(

1
2

)k/2

.
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When N = 5,

vk(1, 2, θ) =
(

1
5 + 4 cos θ

)k/2

6
(

1
3

)k/2

, vk(1,−2, θ) =
(

1
5− 4 cos θ

)k/2

6
(

1
5

)k/2

.

When N > 10,

|ceiθ/2 ± de−iθ/2|2 > c2 + d2 − 2|cd|| cos θ|

=
1
2

(|c| − |d|)2 + |cd| (1− 2| cos θ|) +
1
2
(c2 + d2)

> 1
2
(c2 + d2) =

1
2
N,

and the rest of the question is about the number of terms with c2+d2 = N . The number of |c| is not more
than N1/2, and we consider four terms (±(c, d), ±(c,−d)) and the number 1/2 which is the coefficient of
the summation. Thus the number of terms is not more than 2N1/2. Then

|R1|N>10 =
∞∑

N=10

2N1/2

(
1
2
N

)−k/2

6 2
√

2
∫ ∞

9

(
1
2
x

)(1−k)/2

dx

=
8
√

2
k − 3

(
2
9

)(k−3)/2

=
108

k − 3

(
2
9

)k/2

.

Thus

|R1| 6 1 +
(

1
2

)k/2

+ 2
(

1
3

)k/2

+ 2
(

1
5

)k/2

+
108

k − 3

(
2
9

)k/2

6 1.61013... (k > 6)

Similarly, for θ = π/2, we have the following:
When N = 2,

vk(1, 1, π/2) = vk(1,−1, π/2) =
(

1
2

)k/2

.

When N = 5,

vk(1, 2, π/2) = vk(1,−2, π/2) =
(

1
5

)k/2

.

When N > 10,

|cei(π/2)/2 ± de−i(π/2)/2|2 = c2 + d2 = N,

and the number of terms is not more than 2N1/2. Then

|R1|N>10, θ=π/2 = 2
∞∑

N=10

N (1−k)/2 6 108
k − 3

(
2
9

)k/2

.

Thus

|R1|θ=π/2 6 2
(

1
2

)k/2

+ 4
(

1
5

)k/2

+
108

k − 3

(
1
3

)k

6 1.99333... (k > 4)

Now, we have

F4k(π/2) = eikπE4k(i) = 2 cos(kπ) + R1,

F6k(2π/3) = ei2kπE6k(ρ) = 2 cos(2kπ) + R1.

For both equations, we have the bound |R1| < 2. Thus we have following proposition:

Proposition 3.3. Let k > 4 be an even integer. We have

Ek(i)

{
> 0 k ≡ 0 (mod 4)
= 0 k ≡ 2 (mod 4)

,

Ek(ρ)

{
> 0 k ≡ 0 (mod 6)
= 0 k 6≡ 0 (mod 6)

.
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4. Preliminaries for Congruence subgroups Γ0(p)

4.1. Fandamental domain. Let p be a prime. We consider the following condition for every m ∈ N:

(Cm) |z − n/mp| > 1/mp, −1/2 < Re(z) < 1/2 for ∀n ∈ N such that (mp, n) = 1.

It is easy to show that |z−n/mp| > 1/mp is a necessary condition for |z−bn/mc/p| > 1/p. Thus the
condition

(C0) |z − n/p| > 1/p, −1/2 < Re(z) < 1/2 for ∀n ∈ N such that 1 6 |n| 6 p/2.

is sufficient condition for (Cm) for every m ∈ N.
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Figure 4. Congruence subgroups Γ0(p)

By corollary2.1.1, we have

(43) Γ0(p) = 〈−I, ( 1 1
0 1 ) ,

(
a b
p n

) ∈ Γ0(p)/(Γ0(p) ∩ P ) ; 1 6 |n| 6 p/2〉.
For example: (these are for subsection4.3, cf. [RD])

Γ0(2) = 〈( 1 1
0 1 ) , ( 1 0

2 1 )〉
Γ0(3) = 〈( 1 1

0 1 ) , − ( 1 0
3 1 )〉

Γ0(5) = 〈( 1 1
0 1 ) , ( 1 0

5 1 ) , ( 3 1
5 2 )〉

Γ0(7) = 〈( 1 1
0 1 ) , − ( 1 0

7 1 ) , ( 4 1
7 2 )〉

Γ0(11) = 〈( 1 1
0 1 ) , − ( 1 0

11 1 ) , ( 4 1
11 3 ) , ( 3 1

11 4 )〉
Γ0(13) = 〈( 1 1

0 1 ) , ( 1 0
13 1 ) , ( 7 1

13 2 ) ,
(−5 −2

13 5

)
,

(
5 −2
13 −5

)〉
Γ0(17) = 〈( 1 1

0 1 ) , ( 1 0
17 1 ) , ( 9 1

17 2 ) , ( 6 1
17 3 ) , ( 3 1

17 6 )〉
Γ0(19) = 〈( 1 1

0 1 ) , − ( 1 0
19 1 ) , ( 10 1

19 2 ) , ( 5 1
19 4 ) , ( 4 1

19 5 )〉
Γ0(23) = 〈( 1 1

0 1 ) , − ( 1 0
23 1 ) , ( 12 1

23 2 ) , ( 6 1
23 4 ) , ( 4 1

23 6 ) , ( 3 1
23 8 )〉

Calculation.
For p = 2, we have

(
1 −1
0 1

)
( 1 0

2 1 ) =
(−1 −1

2 1

)
,
(−1 −1

2 1

)2 = −I, and ( 1 0
2 1 )−1 =

(
1 0
−2 1

)
.

For p = 3, we have (− ( 1 0
3 1 ))

(
1 −1
0 1

)
=

(−1 1
−3 2

)
,
(−1 1
−3 2

)3
= −I, and (− ( 1 0

3 1 ))−1 =
(−1 0

3 −1

)
.

For p = 5, we have
(

1 −1
0 1

)
( 3 1

5 2 ) =
(−2 −1

5 2

)
,
(−2 −1

5 2

)2 = −I, ( 1 0
5 1 )−1 =

(
1 0
−5 1

)
,

and ( 3 1
5 2 )

(
1 0
−5 1

)
=

(−2 1
−5 2

)
.

For p = 7, we have (− ( 1 0
7 1 )) ( 4 1

7 2 )−1 =
(−2 1
−7 3

)
,
(−2 1
−7 3

)3
= −I, (− ( 1 0

7 1 ))−1 =
(

1 0
−7 1

)
,(−2 1

−7 3

)−1
=

(
3 −1
7 −2

)
, and ( 4 1

7 2 )−1 ( 1 1
0 1 ) =

(
2 1
−7 −3

)
.

For p = 11, we have ( 4 1
11 3 ) ( 3 1

11 4 )−1 =
(

5 −1
11 −2

)
, ( 4 1

11 3 )−1 ( 3 1
11 4 ) =

(−2 −1
11 5

)
,(

1 −1
0 1

) (
5 −1
11 −2

)
(− ( 1 0

11 1 ))
(−2 −1

11 5

)
= −I, (− ( 1 0

11 1 ))−1 =
(−1 0

11 −1

)
,(−2 −1

11 5

)−1 =
(

5 1
−11 −2

)
,
(

5 −1
11 −2

)−1
=

( −2 1
−11 5

)
, ( 3 1

11 4 )−1 =
(

4 −1
−11 3

)
, and ( 4 1

11 3 )−1 =
(

3 −1
−11 4

)
.
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For p = 13, we have
(−5 −2

13 5

)2 = −I, ( 1 0
13 1 )−1 =

(
1 0
−13 1

)
,(−5 −2

13 5

)2 ( 7 1
13 2 )

(
1 0
−13 1

)
=

(
6 −1
13 −2

)
,
(

1 −1
0 1

)
( 7 1

13 2 ) =
(−6 −1

13 2

)
,
(−±6 −1

13 ∓2

)−1
=

( ∓2 1
−13 ±6

)
,(−5 −2

13 5

) (
1 −1
0 1

)
( 7 1

13 2 ) =
(

4 1
−13 −3

)
,
(

5 −2
13 −5

)
( 7 1

13 2 )
(

1 0
−13 1

)
=

( −4 1
−13 3

)
,

and
( ±4 1
−13 ∓3

)−1
=

(∓3 −1
13 ±4

)
.

For p = 17, we have ( 6 1
17 3 ) ( 9 1

17 2 )−1 ( 1 1
0 1 ) ( 3 1

17 6 )−1 =
(

4 −1
17 −4

)
,
(

4 −1
17 −4

)2
= −I,

( 1 0
17 1 )−1 =

(
1 0
−17 1

)
, ( 6 1

17 3 )−1 ( 9 1
17 2 )

(
1 0
−17 1

)
( 3 1

17 6 ) =
(−4 −1

17 4

)
,(

1 −1
0 1

)
( 9 1

17 2 )
(

1 0
−17 1

)
=

(
9 −1
−17 2

)
,
(

9 ±1
±17 2

) (
1 ±1
0 1

)
=

(
2 ±1
∓17 −8

)
,

( 3 1
17 6 )−1 =

(
6 −1
−17 3

)
, ( 6 1

17 3 )−1 =
(

3 −1
−17 6

)
,(

1 −1
0 1

)
( 9 1

17 2 ) ( 6 1
17 3 )−1 =

(−7 2
17 −5

)
, ( 9 1

17 2 )
(

1 0
−17 1

)
( 3 1

17 6 ) =
( −7 −2
−17 −5

)
,

and
( −7 ±2
±17 −5

)−1
=

( −5 ∓2
∓17 −7

)
.

For p = 19, we have
(

1 −1
0 1

)
( 10 1

19 2 ) ( 5 1
19 4 )−1 ( 4 1

19 5 ) =
(

8 3
−19 −7

)
,
(

8 3
−19 −7

)3 = −I,
(− ( 1 0

19 1 ))−1 =
(−1 0

19 −1

)
, ( 10 1

19 2 )
(−1 0

19 −1

)
( 4 1

19 5 ) ( 5 1
19 4 )−1 =

( −8 3
−19 7

)
,
( ±8 3
−19 ∓7

)−1
=

(∓7 −3
19 ±8

)
,

( 10 1
19 2 )

(−1 0
19 −1

)
=

(
9 −1
19 −2

)
,
(

1 −1
0 1

)
( 10 1

19 2 ) =
(−9 −1

19 2

)
,
(±9 −1

19 ∓2

)−1
=

( ∓2 1
−19 ±9

)
,

( 5 1
19 4 ) ( 4 1

19 5 )−1 =
(

6 −1
19 −3

)
, ( 4 1

19 5 )−1 ( 5 1
19 4 ) =

(
6 1
−19 −3

)
,
(

6 ∓1
±19 −3

)−1
=

( −3 ±1
∓19 6

)
,

( 4 1
19 5 )−1 =

(
5 −1
−19 4

)
, and ( 5 1

19 4 )−1 =
(

4 −1
−19 5

)
.

For p = 23, we have
( 1 1

0 1 ) ( 3 1
23 8 )−1 ( 4 1

23 6 ) ( 6 1
23 4 )−1 ( 12 1

23 2 ) (− ( 1 0
23 1 ))−1 ( 3 1

23 8 ) ( 4 1
23 6 )−1 ( 6 1

23 4 ) ( 12 1
23 2 )−1 = −I,

(− ( 1 0
23 1 ))−1 =

(
1 0
−23 1

)
,
(

1 −1
0 1

)
( 12 1

23 2 ) (− ( 1 0
23 1 ))−1 =

(−12 1
23 −2

)
,
(±12 1

23 ±2

)−1
=

( ±2 −1
−23 ±12

)
,

± (
2 ∓1
∓23 12

) (
1 ±1
0 1

)
=

( ±2 1
−23 ∓11

)
, ( 12 1

23 2 ) (− ( 1 0
23 1 ))−1 ( 3 1

23 8 ) = ( 10 3
23 7 ),

( 3 1
23 8 )−1 =

(
8 −1
−23 3

)
, ( 12 1

23 2 ) (− ( 1 0
23 1 ))−1 ( 3 1

23 8 ) = − ( 8 1
23 3 ),

( 4 1
23 6 )−1 =

(
6 −1
−23 4

)
, ( 6 1

23 4 )−1 =
(

4 −1
−23 6

)
,

( 10 3
23 7 ) ( 4 1

23 6 )−1 =
( −9 2
−23 5

)
, ( 3 1

23 8 )−1 ( 4 1
23 6 ) =

(
9 2
−23 −5

)
,
( ±9 2
−23 ∓5

)−1
=

(∓5 −2
23 ±9

)
,

( 3 1
23 8 )−1 ( 4 1

23 6 ) ( 6 1
23 4 )−1 =

(−10 3
23 −7

)
, and

(±10 3
23 ±7

)−1
=

( ±7 −3
−23 ±10

)
.

¤

4.2. Eisenstein series. Let p be a prime, and let Γ = Γ0(p). Γ0(p) has two cusps ∞ and 0.
For the cusp ∞, we have only to consider about the pairs (c, d) of γ =

(
a b
c d

) ∈ Γ0(p) as representatives
of Γ∞ \ Γ0(p). Then we have

(44) E∞
k,p(z) :=

1
2

∑

(c,d)=1
p|c

(cz + d)−k

as the Eisenstein series associated with Γ0(p) for the cusp ∞. Incidentally, we have E∞
k,p(z) = Bk,p(z).

Then we can write

(45) E∞
k,p(z) =

1
1− pk

(
Ek(z)− pkEk(pz)

)
.

For the cusp 0, let γ =
(

a b
c d

) ∈ Γ0(p). If γ ∈ Γ0, then we have b = 0, and then we have

Γ0 =
{(

1 0
np 1

)
; n ∈ Z}

= WpΓ∞W−1
p .

Thus γ0 = Wp, then j(W−1
p γ, z) = −√p(az + b). Because any elements of Γ0 stabilize the pair (a, b), we

have only to consider about the pairs (a, b) as representatives of Γ0 \ Γ0(p). Then we have

(46) E0
k,p(z) :=

1
2

∑

(c,d)=1
p-c

(cz + d)−k

as the Eisenstein series associated with Γ0(p) for the cusp 0. Incidentally, we have E∞
k,p(z) + E0

k,p(z) =
Ek(z). Then we can write

(47) E0
k,p(z) =

1
1− p−k

(Ek(z)− Ek(pz)) .
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It is easy to show that E∞
k,p(z) and E0

k,p(z) are holomorphic on H and at ∞ by equations (45), (47).
For γ0 = Wp, we have

(
√

pz)−kE∞
k,p(Wpz) = (p−k/2)E0

k,p(z),

(
√

pz)−kE0
k,p(Wpz) = (pk/2)E∞

k,p(z).

Thus both of them are holomorphic at cusp 0, i.e. E∞
k,p(z) and E0

k,p(z) are modular form for Γ0(p).
Furthermore, we have E∞

k,p(0) = E0
k,p(∞) = 0, E∞

k,p(∞) 6= 0 and E0
k,p(0) 6= 0. Then, E∞

k,p(z) and
E0

k,p(z) are not cusp form for Γ0(p).

4.3. Eta function. Let p be a prime, and let k be a minimum positive even integer such that 24 | k(p+1)
(i.e. k = 24/(p + 1, 12)). We put

(48) ∆p(z) := ηk(z)ηk(pz),

then for T = ( 1 1
1 0 ) by the equations(31), we have T : z 7→ z + 1 and

(49) ∆p(Tz) = ηk(z + 1)ηk(pz + p) = e2πi·k(p+1)/24ηk(z)ηk(pz) = ∆p(z).

Also, for Wp =
(

0 −1/
√

p√
p 0

)
, we have Wp,W

−1
p : z 7→ −1/pz and

(50) ∆p(Wpz) = ηk

(
− 1

pz

)
ηk

(
−1

z

)
=

(
√

pz)k

ik
∆p(z).

Then for Sp :=
(

1 0
p 1

)
, because Sp = WpT

−1W−1
p and k is even, we have

(51) ∆p(Spz) = (pz + 1)k∆p(z).

Furthermore, we have next proposition:

Proposition 4.1. Let γ =
(

a b
c d

)
be a element of Γ0(p). If c = bp, then we have

(52) ∆p(γz) = (cz + d)k∆p(z).

Proof. For γ =
(

a b
c d

) ∈ Γ0(p), if c = bp, then γWp =
(

b
√

p −a/
√

p

d
√

p −b
√

p

)
, and put γ′ := γWp. In addition,

we put γ1 :=
(

b −a
d −bp

)
and γ2 :=

(
bp −a
d −b

)
, then we have γ1, γ2 ∈ SL2(Z), γ′z = γ1(pz), p · γ′z = γ2z.

Moreover, because γ1γ2 = −I, γ1w = z for w := γ2z. By the equation(31), for some ε1, ε2 : 24th-roots of
1, we have

η(γ1z) = ε1

√
dz − bp

i
η(z), η(γ2z) = ε2

√
dz − b

i
η(z)

Now,

η(z) = η(γ1w) = ε1

√
dw − bp

i
η(w) = ε1ε2

√
dw − bp

i

√
dz − b

i
η(z).

Furthermore,

dw − bp = − 1
dz − b

=
−(dz − b)
|dz − b|2 ,

√
dw − bp

i

√
dz − b

i
=

√(
dz − b

i|dz − b|
)√

dz − b

i|dz − b| = 1.

Thus we have η(z) = ε1ε2η(z), and ε1ε2 = 1.
In conclusion,

η(γ′z)η(p · γ′z) = η(γ1(pz))η(γ2z) = ε1ε2

√
dpz − bp

i

√
dz − b

i
η(z)η(pz)

=
d
√

pz − b
√

p

i
η(z)η(pz),

and

∆p(γ′z) =
(d
√

pz − b
√

p)k

ik
∆p(z).



16 JUNICHI SHIGEZUMI

Thus

∆p(γz) = ∆p(γ′W−1
p z) = ∆p

(
γ′

(
− 1

pz

))

=
(−d/

√
pz − b

√
p)k

ik
∆p

(
− 1

pz

)
=

(−d/
√

pz − b
√

p)k

ik
· (
√

pz)k

ik
∆p(z)

= (cz + d)k∆p(z).

¤
Proposition 4.2. Let γ =

(
a b
c d

)
be a element of Γ0(p). If d = −a, then we have

(53) ∆p(γz) = (cz + d)k∆p(z).

Proof. k ≡ 0 (mod 4) (i.e. γ2 = −I) This proof is similar to that of Proposition4.1.
For γ =

(
a b
c d

) ∈ Γ0(p), asume that d = −a, and write c = c′p for some c′ ∈ Z. Then we have

γ :=
(

a b
c′p −a

)
and |γ| = −a2 − bc′p = 1. Here, we have a2 ≡ −1 (mod p), i.e. −1 is a quadratic residue

modulo p. Then, by the Euler’s criterion, we have p ≡ 1 (mod 4). Thus k ≡ 0 (mod 4).
We put γ′ :=

(
a bp
c′ −a

)
, then we have γ′ ∈ SL2(Z), p · γz = γ′(pz). Moreover, because γ2 = −I, γw = z

for w := γz. By the equation(31), for some ε1, ε2 : 24th-roots of 1, we have

η(γz) = ε1

√
c′pz − a

i
η(z), η(γ′z) = ε2

√
c′z − a

i
η(z)

Now, we have

η(z) = ε21

√
c′pw − a

i

√
c′pz − a

i
η(z),

and c′pw − a = −1/(c′pz − a),
√

(c′pw − a)/i
√

(c′pz − a)/i = 1. Thus we have ε21 = 1. Also, because
γ′2 = −I, we have ε22 = 1.

In conclusion, η4(γz)η4(p·γz) = ε41ε
4
2 ((c′pz − a)/i)4 η4(z)η4(pz) = (cz+d)4η4(z)η4(pz). Thus, because

k ≡ 0 (mod 4),
∆p(γz) = (cz + d)k∆p(z).

¤
Remark 4.1. For definition of the integer k for prime p, we need the condition 24 | k(p + 1) for the
transformation rule for T . The other condition k : even is for −I, which is a element of Γ0(p).

In the subsection4.1, we have the basis of Γ0(p) for 2 6 p 6 23. We have c = bp or d = −a for
all the bases except for T and ±Sp, which is the condition for the Proposition4.1 or 4.2, respectively.
Thus ∆p satisfies the transformation rule for Γ0(p). In addition, because (∆p(z))p+1 = ∆(z)∆(pz) or
(∆(z)∆(pz))2, it is easy to show that ∆p is a cusp form for Γ0(p) for 2 6 p 6 23.

Finally, we have the following proposition:

Proposition 4.3. (See [KO])
For p = 2, 3, 5, and 11, every nonzero cusp form for Γ0(p) of weight k is a constant multiple of ∆p.

Proof. For p = 2, 3, 5, and 11, let f be a nonzero cusp form for Γ0(p) of weight k. Because (∆p(z))p+1 =
∆(z)∆(pz), and because vz(∆) = 0 for every z ∈ H, we have vz(∆p) = 0 for every z ∈ H. In addition, by
the definition of ∆p, v∞(∆p) = v0(∆p) = 1. Thus f/∆p is a modular form of weight 0, then it is clear
that f/∆p ∈ C. ¤
Remark 4.2. By the equation(50), if p = 2 and p ≡ 1 (mod 4), then k ≡ 0 (mod 4) and ∆p is a cusp
form of Γ∗0(p). On the other hand, if p ≡ 3 (mod 4), then k ≡ 2 (mod 4) and (∆p)2 is a cusp form of
Γ∗0(p).

Furthermore, similar to Proposition4.3, for p = 2 and 5, every nonzero cusp form for Γ∗0(p) of weight
k is a constant multiple of ∆p.
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5. Fricke group Γ∗0(p)

5.1. Preliminaries.

5.1.1. Fandamental domain. Let p be a prime. Similarly to Γ0(p), we consider the following condition:

(C0) |z − n/p| > 1/p, −1/2 < Re(z) < 1/2 for ∀n ∈ N such that 1 6 |n| 6 p/2.

In addition, we need to consider the following condition for every m ∈ N such that (m, p) = 1 for Γ0(p)Wp:

(Cp,m) |z − n/m| > 1/m
√

p, −1/2 < Re(z) < 1/2 for ∀n ∈ N such that (m,n) = 1.

By Wp, we have the condition |z| > 1/
√

p. In addition, by (C0), we have Im(z) >
√

3/2p. Thus we need
(Cp,m) only for m <

√
4p/3. In conclusion, we have following condition:

|z − n/m| > 1/m
√

p, − 1/2 < Re(z) < 1/2

for ∀m ∈ N such that m <
√

4p/3

∀n ∈ Z such that (m,n) = 1, |n| < m/2 + 1/
√

p.

(Cp)

It seems that (Cp) is a sufficient condition for (C0), but it is not clear.

5.1.2. Eisenstein series. Let p be a prime. Γ∗0(p) has only ∞ as a cusp. For γ =
(

a b
c d

) ∈ Γ0(p),

γWp =
(

b
√

p a/
√

p

d
√

p c/
√

p

)
. Thus we have only to consider about the pairs (c, d) and (d

√
p, c/

√
p). Then we

have

(54) E∗
k,p(z) :=

1
2

∑

(c,d)=1
p|c

(cz + d)−k +
pk/2

2

∑

(c,d)=1
p|d

(c(pz) + d)−k

as the Eisenstein series associated with Γ∗0(p) for the cusp ∞. Furhtermore, we have E∗
k,p(z) = Bk,p(z) +

pk/2Ck,p(pz). By the equations (23) and (24), we have

(55) E∗
k,p(z) =

1
pk/2 + 1

(
pk/2Ek(pz) + Ek(z)

)
.

We can use each of the expression as a deffinition.



18 JUNICHI SHIGEZUMI

5.2. Γ∗0(2) (Proof of Theorem1).

5.2.1. Preliminaries. In the previous subsection, we have two conditions for a fundamental domain for
Γ∗0(2):

(C0) |z ± 1/2| > 1/2, −1/2 < Re(z) < 1/2.

(Cp) |z − n| > 1/
√

2, −1/2 < Re(z) < 1/2 for n = 0, ±1.

By the condition |z| > 1/
√

2 and −1/2 < Re(z) < 1/2, we have Im(z) > 1/2. For z ∈ H such that
|z ± 1/2| = 1/2 or |z ± 1| = 1/

√
2, and −1/2 < Re(z) < 1/2, we have Im(z) < 1/2. Thus

|z| > 1/
√

2, −1/2 < Re(z) < 1/2

is a sufficient condition for (C0) and (Cp). Furthermore, we have the following transformation:

W2 : eiθ/
√

2 7→ ei(π−θ)/
√

2

Then we have VΓ∗0(2) = {e3π/4/
√

2} (Theorem2.1).
Now, we have a fundamental domain for Γ∗0(2) as follows:

(56) F∗(2) :=
{
|z| > 1/

√
2, −1

2
6 Re(z) 6 0

} ⋃ {
|z| > 1/

√
2, 0 6 Re(z) <

1
2

}
.
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Figure 5. Γ∗0(2)

5.2.2. The function F ∗k,2(θ). We give the next definition;

(57) F ∗k,2(θ) := eikθ/2E∗
k,2

(
eiθ/

√
2
)

.

Before proving Theorem1, we consider an expansion of F ∗k,2(θ).
In the definition of E∗

k,2(z) (cf. (54)), when 2 | c, then we can write c = 2c′ for ∃c′ ∈ Z, and have 2 - d.
Also, when 2 | d, then we have 2 - c and d = 2d′ for ∃d′ ∈ Z. Then

F ∗k,2(z) =
eikθ/2

2

∑

(c,d)=1
2|c

(ceiθ/
√

2 + d)−k +
2k/2eikθ/2

2

∑

(c,d)=1
2|d

(c(2eiθ/
√

2) + d)−k

=
eikθ/2

2

∑

(c,d)=1
2-d

(
√

2c′eiθ + d)−k +
2k/2eikθ/2

2

∑

(c,d)=1
2-c

(
√

2ceiθ + 2d′)−k

=
1
2

∑

(c,d)=1
2-d

(de−iθ/2 +
√

2c′eiθ/2)−k +
1
2

∑

(c,d)=1
2-c

(ceiθ/2 +
√

2d′e−iθ/2)−k

Thus we can write as follows;

(58) F ∗k,2(θ) =
1
2

∑

(c,d)=1
c:odd

(ceiθ/2 +
√

2de−iθ/2)−k +
1
2

∑

(c,d)=1
c:odd

(ce−iθ/2 +
√

2deiθ/2)−k.

Hence we use this expression as a definition.
In the last part of this section, we compare the two series in this expression. Note that for any pair

(c, d), (ceiθ/2 +
√

2de−iθ/2)−k and (ce−iθ/2 +
√

2deiθ/2)−k are conjugates of each other. The next lemma
follows.
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Lemma 5.1. F ∗k,2(θ) is real, for ∀θ ∈ R.

Define m2(k) :=
⌊

k
8 − t

4

⌋
, where t = 0, 2 is chosen so that t ≡ k (mod 4), and bnc is the largest integer

not more than n.

Remark 5.1. By Lemma5.1, F ∗k,2(θ) is real. Also, it can easily be shown that
[

k
4 , 3k

8

]
has m2(k) + 1

integers. Furthermore, for any integer m ∈ [
k
4 , 3k

8

]
, if m is even or odd, then F ∗k,2(2mπ/k) is positive or

negative, respectively. (cf. Remark3.1)

5.2.3. Application of the RSD Method. We will apply the method of F. K. C. Rankin and H. P. F.
Swinnerton-Dyer (RSD Method) to the Eisenstein series associated with Γ∗0(2). We note that N := c2+d2.

Firstly, we consider the case N = 1. Because c is odd, there are two cases, (c, d) = (1, 0) and
(c, d) = (−1, 0). Then

1
2

(
(eiθ/2)−k + (−eiθ/2)−k + (e−iθ/2)−k + (−e−iθ/2)−k

)
= 2 cos(kθ/2).

So we can write;

(59) F ∗k,2(θ) = 2 cos(kθ/2) + R∗2,

where

R∗2 =
1
2

∑

(c,d)=1
c:odd
N>1

(ceiθ/2 +
√

2de−iθ/2)−k +
1
2

∑

(c,d)=1
c:odd
N>1

(ce−iθ/2 +
√

2deiθ/2)−k.

Now,

|R∗2| 6
1
2

∑

(c,d)=1
c:odd
N>1

|ceiθ/2 +
√

2de−iθ/2|−k +
1
2

∑

(c,d)=1
c:odd
N>1

|ce−iθ/2 +
√

2deiθ/2|−k

=
∑

(c,d)=1
c:odd
N>1

|ceiθ/2 +
√

2de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

2de−iθ/2|−k, then

vk(c, d, θ) =
(
|ceiθ/2 +

√
2de−iθ/2|−2

)k/2

=
(

1
c2 + 2d2 + 2

√
2cd cos θ

)k/2

,

and vk(c, d, θ) = vk(−c,−d, θ).
Now we will consider the next three cases, namely N = 2, 5, and N > 10. Considering θ ∈ [π/2, 3π/4],

we have the following:
When N = 2,

vk(1, 1, θ) =
(

1
3 + 2

√
2 cos θ

)k/2

6 1,

vk(1,−1, θ) =
(

1
3− 2

√
2 cos θ

)k/2

6
(

1
3

)k/2

.

When N = 5,

vk(1, 2, θ) =
(

1
9 + 4

√
2 cos θ

)k/2

6
(

1
5

)k/2

,

vk(1,−2, θ) =
(

1
9− 4

√
2 cos θ

)k/2

6
(

1
3

)k

.
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When N > 10,

|ceiθ/2 ±
√

2de−iθ/2|2 > c2 + 2d2 − 2
√

2|cd|| cos θ|

=
1
3

(√
2|c| −

√
5|d|

)2

+ 2|cd|
(√

10/3−
√

2| cos θ|
)

+
1
3
(c2 + d2)

> 1
3
(c2 + d2) =

1
3
N,

and the rest of the question is about the number of terms with c2 + d2 = N . Because c is odd, |c| =
1, 3, ..., 2N ′ − 1 6 N1/2, so the number of |c| is not more than (N1/2 + 1)/2. Thus the number of terms
with c2 + d2 = N is not more than 2(N1/2 + 1) 6 3N1/2, for N > 5. Then

∑

(c,d)=1
c:odd
N≥10

|ceiθ/2 +
√

2de−iθ/2|−k =
∞∑

N=10

3N1/2

(
1
3
N

)−k/2

6 3
√

3
∫ ∞

9

(
1
3
x

)(1−k)/2

dx

=
18
√

3
k − 3

(
1
3

)(k−3)/2

=
162

k − 3

(
1
3

)k/2

.

Thus

(60) |R∗2| 6 2 + 2
(

1
3

)k/2

+ 2
(

1
5

)k/2

+ 2
(

1
3

)k

+
162

k − 3

(
1
3

)k/2

.

Recalling the previous section (RSD Method), we want to show that |R∗2| < 2. But the right-hand
side is greater than 2, so this bound is not good. The case when (c, d) = ±(1, 1) gives us bound equal to
2. We will consider the expansion of the method in the following sections.

5.2.4. Expansion of the RSD Method (1). In the previous subsection, we could not get a good bound for
|R∗2|. The point was the case (c, d) = ±(1, 1). Notice that “vk(1, 1, θ) = 1 ⇔ θ = 3π/4”. Furthermore,
“vk(1, 1, θ) < 1 ⇔ θ < 3π/4”. So we can easily expect that we get a good bound for θ ∈ [π/2, 3π/4− x]
for small x > 0. But if k = 8n, we need |R∗2| < 2 for θ = 3π/4 in this method. We will consider the case
when k = 8n, θ = 3π/4 in the next section.

Let k = 8n + s (n = m2(k), s = 4, 6, 0, and 10). We may assume that k > 8.
The first problem is how small x should be. We consider each of the cases s = 4, 6, 0, and 10.
When s = 4, for π/2 6 θ 6 3π/4, (2n + 1)π 6 kθ/2 (= (4n + 2)θ) 6 (3n + 1)π + π/2. So the last

integer point(i.e. ±1) is kθ/2 = (3n+1)π, then θ = 3n+1
4n+2π = 3π/4−π/k. Similarly, when s = 6, and 10,

the last integer points are θ = 3π/4− π/2k, 3π/4− 3π/2k, respectively. When s = 0, the second to the
last integer point is θ = 3π/4− π/k.

Thus we need x 6 π/2k.

Lemma 5.2. Let k > 8. For ∀θ ∈ [π/2, 3π/4− x] (x = π/2k), |R∗2| < 2.

Before proving the above lemma, we need the following preliminaries.

Proposition 5.1.

(1) If 0 6 x 6 π/2, then sin x > 1− cosx.
(2) If 0 6 x 6 π/16, then 1− cosx > 31

64x2.

This proposition is easily proved. The number 31
64 in Proposition 5.1 (2) is near to and less than

1
2 cos(π/16). We use the previous proposition for the following proof:

Proof of Lemma 5.2. Let k > 8 and x = π/2k, then 0 6 x 6 π/16.

|eiθ/2 +
√

2e−iθ/2|2 = 3 + 2
√

2 cos θ > 3 + 2
√

2 cos(3π/4− x)

= 1 + 2(1− cosx) + 2 sin x

> 1 + 4(1− cosx) (Prop.5.1(1))

> 1 +
31
16

x2. (Prop.5.1(2))
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|eiθ/2 +
√

2e−iθ/2|k >
(

1 +
31
16

x2

)k/2

= 1 +
k

2
31
16

x2 +
(

k/2
2

)(
31
16

)2

x4 + ...

> 1 +
k

2
31
16

x2 > 1 +
31
4

x2 (k > 8).

vk(1, 1, θ) 6 1
1 + (31/4)x2

= 1− (31/4)x2

1 + (31/4)x2

6 1− (31/4)
1 + (31/4)(π/16)2

x2 = 1− 31× 256
31π2 + 1024

x2.

Thus

2vk(1, 1, θ) 6 2− 31× 512
31π2 + 1024

x2 = 2− 31× 512
31π2 + 1024

( π

2k

)2

= 2− 31× 128π2

31π2 + 1024
1
k2

6 2− 265
9

1
k2

.

In inequality(60), replace 2 with the bound 2− 265
9

1
k2 . Then

|R∗2| 6 2− 265
9

1
k2

+ 2
(

1
3

)k/2

+ 2
(

1
5

)k/2

+ 2
(

1
3

)k

+
162

k − 3

(
1
3

)k/2

.

Furthermore,

2
(

1
3

)k/2

+ 2
(

1
5

)k/2

+ 2
(

1
3

)k

+
162

k − 3

(
1
3

)k/2

=

(
2 + 2

(
3
5

)k/2

+ 2
(

1
3

)k/2

+
162

k − 3

)(
1
3

)k/2

6 35
(

1
3

)k/2

(k > 8).

Now if we can show that

35
(

1
3

)k/2

<
265
9

1
k2

or
3k/2

35
>

9
265

k2,

then the bound is less than 2. Then the proof will be complete.
Put f(x) := (1/35)3x/2 − 9

265x2, then f ′(x) = (log 3/70)3x/2 − 18
265x, f ′′(x) = ((log 3)2/140)3x/2 − 18

265 .
Firstly, f ′′ is monotonically increasing for x > 8, and f ′′(8) = 0.63038... > 0, so f ′′ > 0 for x > 8.
Secondly, f ′ is monotonically increasing for x > 8, and f ′(8) = 0.72785... > 0, so f ′ > 0 for x > 8.
Finally, f is monotonically increasing for x > 8, and f(8) = 0.14070... > 0, so f > 0 for x > 8. ¤

5.2.5. Expansion of the RSD Method (2). For the case “k = 8n, θ = 3π/4”, we need the next lemma.

Lemma 5.3. Let k be an integer such that k = 8n for ∃n ∈ N. If n is even, then F ∗k,2(3π/4) > 0. On
the other hand if n is odd, then F ∗k,2(3π/4) < 0.

If we can show this lemma, then we consequently show that for any integer m ∈ [
k
4 , 3k

8

]
, if m is even

or odd, then F ∗k,2(2mπ/k) is positive or negative, respectively. (Remark 5.1)

Proof of Lemma 5.3. Let k = 8n (n > 1). By the definition of E∗
k,2(z), F ∗k,2(z) (cf. (54),(57)), we have

F ∗k,2(θ) =
eikθ/2

2k/2 + 1

(
2k/2Ek

(√
2eiθ

)
+ Ek

(
eiθ/

√
2
))

.

F ∗k,2(3π/4) =
ei3(k/8)π

2k/2 + 1

(
2k/2Ek(−1 + i) + Ek

(−1 + i

2

))
.

By using the equations (14) and (15),

Ek(−1 + i) = Ek(i),
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Ek

(−1 + i

2

)
= Ek

(
− 1

1 + i

)
= (1 + i)kEk(1 + i) = 2k/2Ek(i).

Then

F ∗k,2(3π/4) = 2ei3(k/8)π 2k/2

2k/2 + 1
Ek(i)

= 2ei(k/8)π 2k/2

2k/2 + 1
eik(π/2)/2Ek

(
ei(π/2)

)

= 2ei(k/8)π 2k/2

2k/2 + 1
Fk(π/2). (cf .(38))

When k = 8n,

(61) F ∗8n,2(3π/4) = 2einπ 24n

24n + 1
F8n(π/2).

Here 24n

24n+1 > 0. By proposition 3.3, we have F8n(π/2) = ei2nπE8n(i) > 0. So the sign(±) of F ∗k,2(3π/4)
is that of einπ. Thus the proof is complete. ¤

5.2.6. Valence formula for Γ∗0(2). By previous subsections, E∗
k,2(z) has m2(k) zeros on A∗2. In order to

decide the locating of all zeros of E∗
k,2(z), we need the valence formula for Γ∗0(2):

Proposition 5.2. Let f be a modular function of weight k for Γ∗0(2), which is not identically zero. We
have

(62) v∞(f) +
1
2
vi/

√
2(f) +

1
4
vρ2(f) +

∑

p∈Γ∗0(2)\H
p 6=i/

√
2, ρ2

vp(f) =
k

8
,

where ρ2 := e3π/4
/√

2.

The proof of this proposition is similar to Proposition 3.1 because the figure of fundamental domain
of Γ∗0(2) is similar to that of SL2(Z) (cf. Figure 1. and 5., and see [SE]). The angle of the arc around
ρ2 (BB′ in Figure2.) tends to π/4 when radius of it tends to 0, thus the coefficient of vρ2(f) is 1/4.
Furthermore, because the angle of the arc A∗2 is π/4, the right-hand side is k/8.

If k ≡ 4, 6, and 0 (mod 8), then k/8−m2(k) < 1. Thus all zeros of E∗
k,2(z) are on A∗2 ∪ {i/

√
2, ρ2}.

But if k ≡ 2 (mod 8), we need another consideration because we have k/8−m2(k) > 1.
Recall that E∗

k,2(z) is the modular form of weight k for Γ∗0(2). Any weight k modular form for Γ∗0(2)
satisfies

(63) f

(
az + b

cz + d

)
= (cz + d)kf(z)

for every z ∈ H, and
(

a b
c d

) ∈ Γ∗0(2). When z = i/
√

2 and
(

a b
c d

)
= W2, we have E∗

k,2(i/
√

2) =
ikE∗

k,2(i/
√

2). Because k 6≡ 0 (mod 4), E∗
k,2(i/

√
2) = 0. Thus we have k/8−m2(k)− vi/

√
2(E

∗
k,2)/2 < 1.

In conclusion, for every even integer k > 4, all zeros of E∗
k,2(z) is on A∗2 ∪ {i/

√
2, ρ2}.

5.2.7. The space of modular forms. Let M∗
k,2 be the space of modular forms for Γ∗0(2) of weight k, and let

M∗0
k,2 be the space of cusp forms for Γ∗0(2) of weight k. When we consider the map M∗

k,2 3 f 7→ f(∞) ∈ C,
the kernel of the map is M∗0

k,2. So dim(M∗
k,2/M

∗0
k,2) 6 1, and M∗

k,2 = CE∗
k,2 ⊕ M∗0

k,2. Recall that ∆2 =
η8(z)η8(2z). We have following theorem:

Theorem 5.1. Let k be an even integer.

(1) For k < 0 and k = 2, M∗
k,2 = 0.

(2) For k = 0, 4, 6, and 10, we have M∗0
k,2 = 0, and dim(M∗

k,2) = 1 with a base E∗
k,2.

(3) M∗0
k,2 = ∆2M

∗
k−8,2.
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Proof. Let f be a nonzero function of M∗
k,2, then vp(f) > 0 for every p ∈ H. By the valence formula for

Γ∗0(2)(Proposition5.2), we have k > 0.
For every f ∈ M∗0

k,2, we have vp(f/∆2) > 0 for every p ∈ H. Thus f/∆2 ∈ M∗
k−8,2. This proves (3).

By (3) and M∗
k,2 = 0 for k < 0, we have M∗0

k,2 = 0 for k = 0, 2, 4, and 6. We also have dim(M∗
k,2) = 1

for k = 0, 4, 6 with a base E∗
k,2.

Let f be a nonzero function of M∗
2,2. By the valence formula, we have vρ2(f) = 1 and vp(f) = 0 for

every p 6= ρ2. Because f3 ∈ M∗
6,2, f3 = cE∗

6,2 for some c ∈ C. So f3(i/
√

2) = cE∗
6,2(i/

√
2) = 0. This

contradicts vi/
√

2(f) = 0. Thus M∗
2,2 = 0. This proves (1).

Moreover, by (3), M∗0
10,2 = 0 and dim(M∗

10,2) = 1 with a base E∗
10,2. This makes the proof of this

theorem complete. ¤
Furthermore, for a non-negative integer k, dim(M∗

k,2) = bk/8c if k ≡ 2 (mod 8), and dim(M∗
k,2) =

bk/8c+ 1 if k 6≡ 2 (mod 8).
Let k be an even integer such that k > 4. Write n := dim(M∗

k,2) − 1, then k − 8n = 0, 4, 6, or 10.
Because E∗

k,2 − E∗
k−8n,2(E

∗
4,2)

2n ∈ M∗0
k,2, we have M∗

k,2 = CE∗
k−8n,2(E

∗
4,2)

2n ⊕M∗0
k,2. Then

M∗
k,2 = CE∗

k−8n,2(E
∗
4,2)

2n ⊕∆2M
∗
k−8,2

= CE∗
k−8n,2(E

∗
4,2)

2n ⊕ CE∗
k−8n,2(E

∗
4,2)

2(n−1)∆2 ⊕∆2
2M

∗
k−16,2

· · ·
= E∗

k−8n,2(C(E∗
4,2)

2n ⊕ C(E∗
4,2)

2(n−1)∆2 ⊕ · · · ⊕ C∆n
2 )

Thus, for every p ∈ H and for every f ∈ M∗
k,2, vp(f) > vp(E∗

k−8n,2).
By the valence formla and equation(63), we have vi/

√
2(E

∗
4,2) = 0, vρ2(E

∗
4,2) = 2, and vi/

√
2(E

∗
6,2) =

vρ2(E
∗
6,2) = 1. For k = 10, we have E∗

4,2E
∗
6,2 ∈ M∗

10,2 = CE∗
10,2. Thus E∗

10,2 = E∗
4,2E

∗
6,2, and

vi/
√

2(E
∗
10,2) = 1, vρ2(E

∗
10,2) = 3.

In conclusion, the next proposision follows:

Proposition 5.3. Let k > 4 be an even integer. For every f ∈ M∗
k,2, we have

vi/
√

2(f) > sk (sk = 0, 1 such that 2sk ≡ k (mod 4)),

vρ2(f) > tk (tk = 0, 1, 2, 3 such that − 2tk ≡ k (mod 8)).
(64)

In paticular, if f is a constant multiple of E∗
k,2, then the equalities hold.

Remark 5.2. Every modular form for Γ∗0(2) is generated by

(65) E∗
4,2, E∗

6,2, and ∆2.
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5.3. Γ∗0(3) (Proof of Theorem2).

5.3.1. Preliminaries. In the subsection5.1, we have two conditions for a fundamental domain for Γ∗0(3):

(C0) |z ± 1/3| > 1/3, −1/2 < Re(z) < 1/2.

(Cp) |z − n| > 1/
√

3, −1/2 < Re(z) < 1/2 for n = 0, ±1.

It is easy to show that
|z| > 1/

√
3, −1/2 < Re(z) < 1/2

is a sufficient condition for (C0) and (Cp). Furthermore, we have the following transformation:

W3 : eiθ/
√

3 7→ ei(π−θ)/
√

3

Then we have VΓ∗0(3) = {e5π/6/
√

3} (Theorem2.1).
Now, we have a fundamental domain for Γ∗0(3) as follows:

(66) F∗(3) :=
{
|z| > 1/

√
3, −1

2
6 Re(z) 6 0

} ⋃ {
|z| > 1/

√
3, 0 6 Re(z) <

1
2

}
.

-1
-

1
����

2
1
����

2
1

1
����������!!!!3

1

-1
-

1
����

2
1
����

2
1

1
����������!!!!3

1

Figure 6. Γ∗0(3)

5.3.2. The function F ∗k,3(θ). We give the next definition;

(67) F ∗k,3(θ) := eikθ/2E∗
k,3

(
eiθ/

√
3
)

.

Before proving Theorem1, we consider an expansion of F ∗k,3(θ).
In the definition of E∗

k,3(z) (cf. (54)), when 3 | c, then we can write c = 3c′ for ∃c′ ∈ Z, and have 3 - d.
Also, when 3 | d, then we have 3 - c and d = 3∃d′ for ∃d′ ∈ Z. Then

F ∗k,2(z) =
eikθ/2

2

∑

(c,d)=1
3|c

(ceiθ/
√

3 + d)−k +
3k/2eikθ/2

2

∑

(c,d)=1
3|d

(c(3eiθ/
√

3) + d)−k

=
1
2

∑

(c,d)=1
3-d

(de−iθ/2 +
√

3c′eiθ/2)−k +
1
2

∑

(c,d)=1
3-c

(ceiθ/2 +
√

3d′e−iθ/2)−k

Thus we can write as follows;

(68) F ∗k,3(θ) =
1
2

∑

(c,d)=1
3-c

(ceiθ/2 +
√

3de−iθ/2)−k +
1
2

∑

(c,d)=1
3-c

(ce−iθ/2 +
√

3deiθ/2)−k.

Hence we use this expression as a definition.
Note that for any pair (c, d), (ceiθ/2 +

√
3de−iθ/2)−k and (ce−iθ/2 +

√
3deiθ/2)−k are conjugates of each

other. The next lemma follows.

Lemma 5.4. F ∗k,3(θ) is real, for ∀θ ∈ R.

Define m3(k) :=
⌊

k
6 − t

4

⌋
, where t = 0, 2 is chosen so that t ≡ k (mod 4).

Remark 5.3. By Lemma5.4, F ∗k,3(θ) is real. Also, it can easily be shown that
[

k
4 , 5k

12

]
has m3(k) + 1

integers. Furthermore, for any integer m ∈ [
k
4 , 5k

12

]
, if m is even or odd, then F ∗k,3(2mπ/k) is positive or

negative, respectively. (cf. Remark3.1)
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5.3.3. Application of the RSD Method. We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

(69) F ∗k,3(θ) = 2 cos(kθ/2) + R∗3,

where

R∗3 =
1
2

∑

(c,d)=1
3-c

N>1

(ceiθ/2 +
√

3de−iθ/2)−k +
1
2

∑

(c,d)=1
3-c

N>1

(ce−iθ/2 +
√

3deiθ/2)−k.

Now,

|R∗3| 6
∑

(c,d)=1
3-c

N>1

|ceiθ/2 +
√

3de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

3de−iθ/2|−k, then vk(c, d, θ) =
(

1
c2+3d2+2

√
3cd cos θ

)k/2

, and vk(c, d, θ) =
vk(−c,−d, θ).

Now we will consider the next cases, namely N = 2, 5, 10, 13, 17, and N > 25. Considering θ ∈
[π/2, 5π/6], we have the following:
When N = 2,

vk(1, 1, θ) =
(

1
4 + 2

√
3 cos θ

)k/2

6 1,

vk(1,−1, θ) =
(

1
4− 2

√
3 cos θ

)k/2

6
(

1
2

)k

.

When N = 5,

vk(1, 2, θ) =
(

1
13 + 4

√
3 cos θ

)k/2

6
(

1
7

)k/2

,

vk(1,−2, θ) =
(

1
13− 4

√
3 cos θ

)k/2

6
(

1
13

)k/2

,

vk(2, 1, θ) =
(

1
7 + 4

√
3 cos θ

)k/2

6 1,

vk(2,−1, θ) =
(

1
7− 4

√
3 cos θ

)k/2

6
(

1
7

)k/2

.

When N = 10,

vk(1, 3, θ) =
(

1
28 + 6

√
3 cos θ

)k/2

6
(

1
19

)k/2

,

vk(1,−3, θ) =
(

1
28− 6

√
3 cos θ

)k/2

6
(

1
28

)k/2

.

When N = 13,

vk(2, 3, θ) =
(

1
31 + 12

√
3 cos θ

)k/2

6
(

1
13

)k/2

,

vk(2,−3, θ) =
(

1
31− 12

√
3 cos θ

)k/2

6
(

1
31

)k/2

.
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When N = 17,

vk(1, 4, θ) =
(

1
49 + 8

√
3 cos θ

)k/2

6
(

1
37

)k/2

,

vk(1,−4, θ) =
(

1
49− 8

√
3 cos θ

)k/2

6
(

1
7

)k

,

vk(4, 1, θ) =
(

1
19 + 8

√
3 cos θ

)k/2

6
(

1
7

)k/2

,

vk(4,−1, θ) =
(

1
19− 8

√
3 cos θ

)k/2

6
(

1
19

)k/2

.

When N > 25,

|ceiθ/2 ±
√

3de−iθ/2|2 > c2 + 3d2 − 2
√

3|cd|| cos θ|

=
1
6

(√
5|c| −

√
17|d|

)2

+ 2|cd|
(√

85/6−
√

3| cos θ|
)

+
1
6
(c2 + d2)

> 1
6
N,

and the rest of the question is about the number of terms with c2 + d2 = N . Because 3 - c, |c| =
1, 2, 4, 5, 7, ... 6 N1/2, so the number of |c| is not more than (2/3)N1/2 + 1. Thus the number of terms
with c2 + d2 = N is not more than 4((2/3)N1/2 + 1) 6 (11/3)N1/2, for N > 16. Then

∑

(c,d)=1
3-c

N≥25

|ceiθ/2 +
√

3de−iθ/2|−k =
∞∑

N=25

11
3

N1/2

(
1
6
N

)−k/2

=
11
√

6
3

∞∑

N=25

(
1
6
N

)(1−k)/2

6 11
√

6
3

∫ ∞

24

(
1
6
x

)(1−k)/2

dx =
352

√
6

k − 3

(
1
2

)k

.

Thus

(70) |R∗3| 6 4 + 2
(

1
2

)k

+ 6
(

1
7

)k/2

+ 4
(

1
13

)k/2

+ 4
(

1
19

)k/2

+ 2
(

1
28

)k/2

+ 2
(

1
31

)k/2

+ 2
(

1
37

)k/2

+ 2
(

1
7

)k

+
352

√
6

k − 3

(
1
2

)k

.

Recalling the “RSD Method” subsection, we want to show that |R∗3| < 2. But the right-hand side is
much greater than 2, so this bound is not good. The cases (c, d) = ±(1, 1), ±(2, 1) give us bound equal
to 4. We will consider the expansion of the method in the following sections.

5.3.4. Expansion of the RSD Method (1). In the previous subsection, we could not get a good bound for
|R∗3|. The points were the cases (c, d) = ±(1, 1), ±(2, 1). Notice that “vk(1, 1, θ) < 1 ⇔ θ < 5π/6”, and
“vk(2, 1, θ) < 1 ⇔ θ < 5π/6”. So we can easily expect that we get a good bound for θ ∈ [π/2, 5π/6− x]
for small x > 0. But if k = 12n, we need |R∗3| < 2 for θ = 5π/6. We will consider the case when
k = 12n, θ = 5π/6 in the next subsection.

How small should x be? Let k = 12m3(k) + s (s = 4, 6, 8, 10, 0, and 14). We may assume that k > 8.
When s = 4, 6, 8, 10 and 14, the last integer points are θ = 5π/6 − 4π/3k, 5π/6 − π/k, 5π/6 − 2π/3k,
5π/6 − π/3k, and 5π/6 − 5π/3k, respectively. When s = 0, the second to the last integer point is
θ = 5π/6− 2π/k. Thus we need x 6 π/3k.

Lemma 5.5. Let k > 8. For ∀θ ∈ [π/2, 5π/6− x] (x = π/3k), |R∗3| < 2.

Proof. Let k > 8 and x = π/3k, then 0 6 x 6 π/24.
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We try to prove Lemma 5.5 in a similar way to the proof of Lemma 5.2. Firstly, we have

2
(

1
2

)k

+ 6
(

1
7

)k/2

+ 4
(

1
13

)k/2

+ 4
(

1
19

)k/2

+ 2
(

1
28

)k/2

+ 2
(

1
31

)k/2

+ 2
(

1
37

)k/2

+ 2
(

1
7

)k

+
352

√
6

k − 3

(
1
2

)k

6 176
(

1
2

)k

. (k > 8)

Here, we want to prove

|R∗3| 6 2− a1
π2

9k2
+ 176

(
1
2

)k

< 2

for some positive integer a1. Then we have to show

176
(

1
2

)k

<
a1π

2

9
1
k2

or
2k

176
>

9
a1π2

k2 for ∀k > 8.

Put f(x) := (1/176)2x− 9
a1π2 x2, then f ′(x) = (log 2/176)2x− 18

a1π2 x, f ′′(x) = ((log 2)2/176)2x− 18
a1π2 .

If we can show f(x) > 0 for x > 8, then we can prove the above bound. f ′′ is monotonically increasing
for x > 8, and

f(8) > 0 ⇔ a1 >
99
π2
· 4,

f ′(8) > 0 ⇔ a1 >
99
π2
· 1
log 2

,

f ′′(8) > 0 ⇔ a1 >
99
π2
· 1
8(log 2)2

.

Thus we need a1 > 99
π2 · 4, then we can define a1 := 321

8 . Now, we have only to prove

vk(1, 1, θ) + vk(2, 1, θ) 6 1− 321
16

x2 for ∀θ ∈ [π/2, 5π/6− x] (x = π/3k).

In addition, because we have vk(1, 1, θ) = (1 + (3 + 2
√

3 cos θ))−k/2 and vk(2, 1, θ) = (1 + 2(3 +
2
√

3 cos θ))−k/2, we expect the following bounds:

vk(1, 1, θ) 6 2
3
− 107

8
x2,

vk(2, 1, θ) 6 1
3
− 107

16
x2.

To prove the former bound, we consider the following sufficient conditions:

(4 + 2
√

3 cos θ)k/2 > 3
2

+ a2x
2

4 + 2
√

3 cos θ > a3 + a4x
2

For the number a2, we want to show
1

3/2 + a2x2
6 2

3
− 107

8
x2.

Then
2
3
− 1

3/2 + a2x2
> 4a2

3(3 + 2a2(π/3k)2)
x2 > 107

8
x2,

a2 > 9 · 107
32− 6 · 107 · (π/24)2

for k > 8.

Thus we can define a2 := 64×7×13
127 .

For the numbers a3 and a4, we want to show

(a3 + a4x
2)

k
2 > 3

2
+

64× 7× 13
127

x2.

Then
(a3 + a4x

2)
k
2 > a

k
2
3 +

k

2
· a

k
2−1
3 · a4x

2 > 3
2

+
64× 7× 13

127
x2.
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Thus we can define a3 :=
(

3
2

)2/k and a4 := 256×7×13
3×127k

(
3
2

)2/k.
In conclusion, we have

4+2
√

3 cos θ >
(

3
2

)2/k (
1 +

256× 7× 13
3× 127k

x2

)

⇒ (4 + 2
√

3 cos θ)k/2 > 3
2

+
64× 7× 13

127
x2

⇒ vk(1, 1, θ) 6 2
3
− 107

8
x2.

Similarly, we have

7+4
√

3 cos θ > 32/k

(
1 +

256× 7× 13
3× 127k

x2

)

⇒ (7 + 4
√

3 cos θ)k/2 > 3 +
128× 7× 13

127
x2

⇒ vk(2, 1, θ) 6 1
3
− 107

16
x2.

Finally, we need the following preliminaries.

Proposition 5.4.

(1) For k > 8,
(

3
2

)2/k 6 1 +
(
2 log 3

2

)
1
k + 1

2

(
2 log 3

2

)2 (
3
2

)2/k 1
k2 .

(2) For k > 8, 3 + 2
√

3 cos
(

5π
6 − π

3k

)
> π√

3
1
k .

Proof.

(1) For k > 8,
(

3
2

)2/k

=
∞∑

n=0

(2 log 3/2)n

n!
1
kn

= 1 + (2 log 3/2)
1
k

+
∞∑

n=2

(2 log 3/2)n

n!
1
kn

= 1 + (2 log 3/2)
1
k

+
∞∑

n=0

(2 log 3/2)n+2

(n + 2)!
1

kn+2

= 1 + (2 log 3/2)
1
k

+
1
2
(2 log 3/2)2

1
k2

∞∑
n=2

2
(n + 1)(n + 2)

(2 log 3/2)n

n!
1
kn

6 1 + (2 log 3/2)
1
k

+
1
2
(2 log 3/2)2

1
k2

∞∑
n=2

(2 log 3/2)n

n!
1
kn

= 1 +
(

2 log
3
2

)
1
k

+
1
2

(
2 log

3
2

)2 (
3
2

)2/k 1
k2

.

(2) Let k > 8, and put

g(k) := 3 + 2
√

3 cos
(

5π

6
− π

3k

)
− π√

3
1
k

.

Then g′(k) = π√
3

1
k2

(
1− 2 sin

(
5π
6 − π

3k

))
6 0 (by k > 8). Thus g(k) is monotonically decreasing, and

limk→∞ g(k) = 0, so g(k) > 0.

¤

Proposition 5.5.

(1) For k > 8, 32/k 6 1 + (2 log 3) 1
k + 1

2 (2 log 3)232/k 1
k2 .

(2) For k > 8, 6 + 4
√

3 cos
(

5π
6 − π

3k

)
> 2π√

3
1
k .
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The proof of above proposition is similar to that of Proposition 5.4.

Then, write

f1(k) := 4 + 2
√

3 cos
(

5π

6
− π

3k

)
−

(
3
2

)2/k (
1 +

256× 7× 13× π2

27× 127
1
k3

)
.

If k = 8, then f1(8) = 0.00012876... > 0. Next, if k > 10, then

f1(k) = 1 +
(

3 + 2
√

3 cos
(

5π

6
− π

3k

))
−

(
3
2

)2/k

− 256× 7× 13× π2

27× 127

(
3
2

)2/k 1
k3

> 1 +
π√
3

1
k
−

{
1 +

(
2 log

3
2

)
1
k

+
1
2

(
2 log

3
2

)2 (
3
2

)2/k 1
k2

}

− 256× 7× 13× π2

27× 127

(
3
2

)2/k 1
k3

(by (1), (2))

=
1
k

{
π√
3
− 2 log

3
2
− 1

2

(
2 log

3
2

)2 (
3
2

)2/k 1
k
− 256× 7× 13× π2

27× 127

(
3
2

)2/k 1
k2

}

> 1
k

{
π√
3
− 2 log

3
2
− 1

20

(
2 log

3
2

)2 (
3
2

)1/5

− 64× 7× 13× π2

27× 25× 127

(
3
2

)1/5
}

> 1
k
× 0.24004... (k > 10) > 0.

Similarly, we write

f2(k) := 7 + 4
√

3 cos
(

5π

6
− π

3k

)
− 32/k

(
1 +

256× 7× 13× π2

27× 127
1
k3

)
.

If k = 8, then f2(8) = 0.015057... > 0. Next, if k > 10, then

f2(k) = 1 +
(

6 + 4
√

3 cos
(

5π

6
− π

3k

))
− 32/k

− 256× 7× 13× π2

27× 127
32/k 1

k3

> 1
k

{
π√
3
− 2 log 3− 1

2
(2 log 3)232/k 1

k
− 256× 7× 13× π2

27× 127
32/k 1

k2

}

> 1
k
× 0.29437... > 0.

¤

5.3.5. Expansion of the RSD Method (2). For the case “k = 12n, θ = 5π/6”, we need the next lemma.

Lemma 5.6. Let k be the integer such that k = 12n for ∃n ∈ N. If n is even, then F ∗k,3(5π/6) > 0. On
the other hand, if n is odd, then F ∗k,3(5π/6) < 0.

If we can show this lemma, then we consequently show that for any integer m ∈ [
k
4 , 5k

12

]
, if m is even

or odd, then F ∗k,3(2mπ/k) is positive or negative, respectively. (Remark 5.3)

Proof of Lemma 5.6. Let k = 12n (n > 1). By the definition of E∗
k,3(z), F ∗k,3(z) (cf. (54),(67)), we have

F ∗k,3(θ) =
eikθ/2

3k/2 + 1

(
3k/2Ek

(√
3eiθ

)
+ Ek

(
eiθ/

√
3
))

.

F ∗k,3(5π/6) =
ei5(k/12)π

3k/2 + 1

(
3k/2Ek

(
−3 +

√
3i

2

)
+ Ek

(
−√3 + i

2
√

3

))
.
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By using the equations (14) and (15),

Ek

(
−3 +

√
3i

2

)
= Ek

(
−1 +

√
3i

2

)
,

Ek

(
−√3 + i

2
√

3

)
= Ek

(
− 1

3+
√

3i
2

)
=

(
3 +

√
3i

2

)k

Ek

(
3 +

√
3i

2

)
= 3−k/2Ek

(
−1 +

√
3i

2

)
.

Then

F ∗k (5π/6) = 2ei5(k/12)π 3k/2

3k/2 + 1
Ek

(
−1 +

√
3i

2

)

= 2ei(k/12)π 3k/2

3k/2 + 1
Fk(2π/3) (cf.(38))

When k = 12n,

F ∗12n,3(5π/6) = 2einπ 36n

36n + 1
F12n(2π/3),

where 36n

36n+1 > 0, F12n(2π/3) = ei4nπE12n(ρ) > 0 (Proposition 3.3). So the sign(±) of F ∗k,3(5π/6) is that
of einπ. Thus the proof is complete. ¤

5.3.6. Valence formula for Γ∗0(3). By previous subsections, E∗
k,3(z) has m3(k) zeros on A∗3. In order to

decide the locating of all zeros of E∗
k,3(z), we need the valence formula for Γ∗0(3):

Proposition 5.6. Let f be a modular function of weight k for Γ∗0(3), which is not identically zero. We
have

(71) v∞(f) +
1
2
vi/

√
3(f) +

1
6
vρ3(f) +

∑

p∈Γ∗0(3)\H
p 6=i/

√
3, ρ3

vp(f) =
k

6
,

where ρ3 := e5π/6
/√

3.

The proof of this proposition is similar to Proposition 3.1, 5.2. (See [SE])
If k ≡ 4, 8, 10 and 0 (mod 12), then k/6−m3(k) < 1. Thus all zeros of E∗

k,3(z) are on A∗3∪{i/
√

3, ρ3}.
But if k ≡ 2, 6 (mod 12), we need another consideration because we have k/6−m3(k) > 1. Because

E∗
k,3(z) is the modular form of weight k for Γ∗0(3), we have E∗

k,3(i/
√

3) = ikE∗
k,3(i/

√
3). Because k 6≡ 0

(mod 4), E∗
k,3(i/

√
3) = 0. Thus we have k/6−m3(k)− vi/

√
3(E

∗
k,3)/2 < 1.

In conclusion, for every even integer k > 4, all zeros of E∗
k,3(z) is on A∗3 ∪ {i/

√
3, ρ3}.

5.3.7. The space of modular forms. Let M∗
k,3 be the space of modular forms for Γ∗0(3) of weight k, and let

M∗0
k,3 be the space of cusp forms for Γ∗0(3) of weight k. Because dim(M∗

k,3/M
∗0
k,3) 6 1, M∗

k,3 = CE∗
k,3⊕M∗0

k,3.
Rcall that ∆3 = η6(z)η6(3z). We have following theorem:

Theorem 5.2. Let k be an even integer.

(1) For k < 0 and k = 2, M∗
k,3 = 0.

(2) For k = 0, 4, 6, we have M∗0
k,3 = 0, and dim(M∗

k,3) = 1 with a base E∗
k,3.

(3) Let ∆3,8 := 41
1728 ((E∗

4,3)
2 − E∗

8,3). We have M∗0
8,3 = C∆3,8.

(4) Let ∆3,10 := 61
432 (E∗

4,3E
∗
6,3 − E∗

10,3). We have M∗0
10,3 = C∆3,10.

(5) Let ∆0
3,12 := (∆3)2, and ∆1

3,12 := ∆3,8E
∗
4,3. We have M∗0

12,3 = C∆0
3,12 ⊕ C∆1

3,12.
(6) Let ∆3,14 := ∆3,10E

∗
4,3. We have M∗0

14,3 = C∆3,14.
(7) M∗0

k,3 = M∗0
12,3M

∗
k−12,3.
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Before proving above theorem, we decide the order of E∗
k,3 at i/

√
3 and ρ3 for k = 0, 4, 6, 8, and 10.

By section??, we have vp(E∗
k,3) = 0 for every p 6= i/

√
3 and ρ3 and for k = 0, 4, 6, 8, or 10. Thus, by

the valence formula for Γ∗0(3) (Proposition5.6), vi/
√

3(E
∗
k,3)/2 + vρ3(E

∗
k,3)/6 = k/6.

Recall that any weight k modular form for Γ∗0(3) satisfies f
(

az+b
cz+d

)
= (cz + d)kf(z) for every z ∈ H

and every
(

a b
c d

) ∈ Γ∗0(3). When z = i/
√

3 and
(

a b
c d

)
= W3, we have E∗

k,3(i/
√

3) = ikE∗
k,3(i/

√
3). Then

vi/
√

3(E
∗
k,3) > 1 if k 6≡ 0 (mod 4). Also, when z = ρ3 and

(
a b
c d

)
=

(
1 −1
0 1

)
W3, we have E∗

k,2(ρ3) =
(e5π/6)kE∗

k,3(ρ3). Then vρ3(E
∗
k,3) > 1 if k 6≡ 0 (mod 12).

Moreover, by the definition of E∗
k,3(z) (cf. (54)), we have E∗

k,3(i/
√

3) = 1
3k/2+1

(3k/2Ek(
√

3i) +
Ek(i/

√
3)). And by the equation(15), if k ≡ 0 (mod 4), then Ek(i/

√
3) = 3k/2Ek(

√
3i). Thus, for

k ≡ 0 (mod 4), E∗
k,3(i/

√
3) = 2·3k/2

3k/2+1
Ek(

√
3i) 6= 0, i.e. vi/

√
3(E

∗
k,3) = 0.

In conclusion, we have the following table:
k vi/

√
3(E

∗
k,3) vρ3(E

∗
k,3)

0 0 0
14 1 5
4 0 4
6 1 3
8 0 2
10 1 1

We can not decide the orders of E∗
14,3 without above theorem. We decide it after the proof of the theorem.

proof of Theorem 5.2.

(1), (2) Let f be a nonzero function of M∗
k,3, then vp(f) > 0 for every p ∈ H. By the valence formula for

Γ∗0(3)(Proposition5.6), we have k > 0.
Let f be a nonzero function of M∗0

k,3, then v∞(f) > 1. By the valence formula, we have M∗0
k,3 = 0 for

k = 0, 2, 4. We also have dim(M∗
k,3) = 1 for k = 0, 4 with a base E∗

k,3.
∆3,10 is a cusp form of weight 10 with vi/

√
3(∆3,10) > 1 and vρ3(∆3,10) = 1 by the definition, and we

have v∞(∆3,10) = vi/
√

3(∆3,10) = vρ3(∆3,10) = 1 and vp(∆3,10) = 0 for every p 6= i/
√

3, ρ3,∞ by the
valence formula.

Let ∆3 be a nonzero cusp form of weight 6, then by v∞(∆3) > 1 and the valence formula, v∞(∆3) = 1
and vp(∆3) = 0 for every p 6= ∞. Then we have vp(∆3,10/∆3) > 0 for every p ∈ H, thus ∆3,10/∆3 ∈
M∗

4,3 = CE∗
4,3, and ∆3,10 ∈ CE∗

4,3∆3. However, we have vi/
√

3(∆3,10) = 1, vi/
√

3(E
∗
4,3∆3) = 0. These are

contradict each other. In conclusion, we have M∗0
6,3 = 0, and dim(M∗

6,3) = 1 with a base E∗
6,3.

Let f be a nonzero function of M2,3. By the valence formula, we have vρ3(f) = 2 and vp(f) = 0 for
every p 6= ρ3. Because f3 ∈ M6,3, f3 = cE∗

6,3 for some c ∈ C. So f3(i/
√

3) = cE∗
6,3(i/

√
3) = 0. It

contradicts f(i/
√

3) 6= 0. Thus M2,3 = 0.
(3) ∆3,8 is a cusp form of weight 8 with vρ3(∆3,8) = 2 by the definition, and we have v∞(∆3,8) = 1 and
vp(∆3,8) = 0 for every p 6= ρ3,∞ by the valence formula. Let f be a nonzero function of M∗0

8,3, then
we also have vρ3(f) = 2, v∞(f) = 1, and vp(f) = 0 for every p 6= ρ3,∞ by the valence formula. Thus
f/∆3,8 ∈ M∗

0,3 = C, and f ∈ C∆3,8. Note that

vi/
√

3(∆3,8) = vi/
√

3(E
∗
8,3) = 0,

vρ3(∆3,8) = vρ3(E
∗
8,3) = 2.

(4) Let f be a nonzero function of M∗0
10,3, then we also have v∞(f) = 1 and vp(f) = 0 for every

p 6= i/
√

3, ρ3,∞ by the valence formula. However, for the other others, we can consider two cases,
(i) vi/

√
3(f) = vρ3(f) = 1, and (ii) vi/

√
3(f) = 0 and vρ3(f) = 4.

For the first case(i), we have f/∆3,10 ∈ M∗
0,3 = C. For the second case(ii), define g := f/E∗

4,3. Then
we have v∞(g) = 1 and vp(g) = 0 for every p 6= ∞. Thus g ∈ M∗0

6,3. However, M∗0
6,3 = 0. It contracicts

that f is nonzero function. In conclusion, we have vi/
√

3(f) = vρ3(f) = 1, and f ∈ C∆3,10. Note that

vi/
√

3(∆3,10) = vi/
√

3(E
∗
10,3) = 1,

vρ3(∆3,10) = vρ3(E
∗
10,3) = 1.
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(5) ∆0
3,12 is a cusp form of weight 12 with

v∞(∆0
3,12) = 2, vp(∆0

3,12) = 0 for every p 6= ∞
by the definition, and ∆1

3,12 is a cusp form of weight 12 with

v∞(∆1
3,12) = 1, vρ3(∆

1
3,12) = 6, vp(∆1

3,12) = 0 for every p 6= ρ3,∞
by the definition. Because dim(M∗0

12,3) 6 2, we have M∗0
12,3 = C∆0

3,12 ⊕ C∆1
3,12.

(6) ∆3,14 is a cusp form of weight 14 with v∞(∆3,14) = vi/
√

3(∆3,14) = 1, vρ3(∆3,14) = 5, and vp(∆3,14) = 0
for every p 6= i/

√
3, ρ3,∞ by the definition. Let f be a nonzero function of M∗0

14,3. If v∞(f) > 2, then
v∞(f) = 2, vρ3(f) = 2, and vp(f) = 0 for every p 6= ρ3,∞ by the valence formula. Define g := f/∆3,8,
then v∞(g) = 1 and vp(f) = 0 for every p 6= ∞. Thus g ∈ M∗0

6,3 = 0. It contradicts that f is nonzero
function. Now, we have v∞(f) = 1. Then we can write f = a1q + a2q

2 + · · · . Also, we can write
∆3,14 = q + b2q

2 + · · · . Thus, f − a1∆3,14 = (a2 − a1b2)q2 + · · · ∈ M∗0
14,3. Because v∞(f − a1∆3,14) 6= 2,

we have f − a1∆3,14 = 0. Furthermore, f ∈ C∆3,14. Thus M∗0
14,3 = C∆3,14.

Furthermore, because E∗
14,3 − E∗

10,3E
∗
4,3 ∈ M∗0

14,3, we have E∗
14,3 ∈ M∗

14,3 = CE∗
10,3E

∗
4,3 ⊕ C∆3,14. In

conclusion, we have

vi/
√

3(∆3,14) = vi/
√

3(E
∗
14,3) = 1,

vρ3(∆3,14) = vρ3(E
∗
14,3) = 5.

(7) Let f be a nonzero function of M∗0
k,3. When v∞(f) > 2, v∞(f/∆0

3,12) = v∞(f) − 2 > 0 and
vp(f/∆0

3,12) = vp(f) > 0 for every p 6= ∞. Thus f/∆0
3,12 ∈ M∗

k−12,3, and f ∈ ∆0
3,12M

∗
k−12,3. On

the other hand, when v∞(f) = 1, we can write f = a1q + a2q
2 + · · · for some a1 6= 0. Also, we can write

E∗
k−12,3∆

1
3,12 = q+b2q

2+· · · . Then f−a1E
∗
k−12,3∆

1
3,12 = (a2−a1b2)q2+· · · , and v∞(f−a1E

∗
k−12,3∆

1
3,12) >

2. Thus f − a1E
∗
k−12,3∆

1
3,12 ∈ ∆0

3,12M
∗
k−12,3, and f ∈ CE∗

k−12,3∆
1
3,12 ⊕ ∆0

3,12Mk−12,3. In conclusion,
M∗0

k,3 ⊂ CE∗
k−12,3∆

1
3,12 ⊕∆0

3,12M
∗
k−12,3 ⊂ M∗0

12,3M
∗
k−12,3. This makes the proof of this theorem complete.

¤
Furthermore, for a non-negative integer k, dim(M∗

k,3) = bk/6c if k ≡ 2, 6 (mod 12), and dim(M∗
k,3) =

bk/6c+ 1 if k 6≡ 2, 6 (mod 12).
Let k be an even integer k > 16. Write n := bk/12c - 1 if k ≡ 2 (mod 12), and n := bk/12c if k 6≡ 2

(mod 12). Then n > 1 and k − 12n = 0, 4, 6, 8, 10, or 14. Because E∗
k,3 − E∗

k−12n,3(E
∗
4,3)

3n ∈ M∗0
k,3, we

have

M∗
k,3 = CE∗

k−12n,3(E
∗
4,3)

3n ⊕M∗0
12,3M

∗
k−12,3

= E∗
k−12n,3

{
C(E∗

4,3)
3n ⊕ (E∗

4,3)
3(n−1)M∗0

12,3 ⊕ (E∗
4,3)

3(n−2)(M∗0
12,3)

2 ⊕ · · · ⊕ (M∗0
12,3)

n
}

⊕M∗0
k−12n,3(M

∗0
12,3)

n

If k − 12n = 4, 6, 0, then M∗0
k−12n,3 = 0. On the other hand, If k − 12n = 8, 10, 14, then M∗0

k−12n,3 =
C∆3,k−12n. Furthermore, we have vi/

√
3(∆3,k−12n) = vi/

√
3(E

∗
k−12n,3) and vρ3(∆3,k−12n) = vρ3(E

∗
k−12n,3).

Thus, for p = i/
√

3, ρ3 and for every f ∈ M∗
k,3, vp(f) > vp(E∗

k−12n,3).
In conclusion, we have next proposision:

Proposition 5.7. Let k > 4 be an even integer. For every f ∈ M∗
k,3, we have

vi/
√

3(f) > sk (sk = 0, 1 such that 2sk ≡ k (mod 4)),

vρ3(f) > tk (tk = 0, 1, 2, 3, 4, 5 such that − 2tk ≡ k (mod 12)).
(72)

In paticular, if f is a constant multiple of E∗
k,3, then the equalities hold.

Remark 5.4. Every modular form for Γ∗0(3) is generated by

(73) E∗
4,3, E∗

6,3, ∆3,8, ∆3,10, and (∆3)2.
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5.4. Fundamental domains. In the subsection5.1, we have two conditions for a fundamental domain
for Γ∗0(p):

(C0) |z − n/p| > 1/p, −1/2 < Re(z) < 1/2 for ∀n ∈ N such that 1 6 |n| 6 p/2.

|z − n/m| > 1/m
√

p, − 1/2 < Re(z) < 1/2

for ∀m ∈ N such that m <
√

4p/3

∀n ∈ Z such that (m,n) = 1, |n| < m/2 + 1/
√

p.

(Cp)

5.4.1. Γ∗0(5). We have the folloing conditions for a fundamental domain for Γ∗0(5):

(C0) |z ± 1/5| > 1/5, |z ± 2/5| > 1/5, −1/2 < Re(z) < 1/2.

(C5) |z| > 1/
√

5, |z ± 1/2| > 1/2
√

5, −1/2 < Re(z) < 1/2.

Now,

|z| > 1/
√

5 ⇒ |z ± 1/5| > 1/5,

|z| > 1/
√

5 and |z ± 1/2| > 1/2
√

5 ⇒ |z ± 2/5| > 1/5.

Thus (C5) is a sufficient condition for (C0). Furthermore, we have the following transformation:

W5 :
eiθ

√
5
7→ ei(π−θ)

√
5

,

(−2 −1
5 2

)
W5 :

eiθ

2
√

5
+

1
2
7→ ei(π−θ)

2
√

5
− 1

2
.

Then we have VΓ∗0(5) = {i/2
√

5, −2/5 + i/5} (cf. Theorem2.1).
A fundamental domain for Γ∗0(5) is represented as Figure 7.

5.4.2. Γ∗0(7). We have the folloing conditions for a fundamental domain for Γ∗0(7):

(C0) |z ± 1/7| > 1/7, |z ± 2/7| > 1/7, |z ± 3/7| > 1/7, −1/2 < Re(z) < 1/2.

(C7) |z| > 1/
√

7, |z ± 1/2| > 1/2
√

7, |z ± 1/3| > 1/3
√

7, −1/2 < Re(z) < 1/2.

Now,

|z| > 1/
√

7 and |z ± 1/2| > 1/2
√

7 ⇒ |z ± 1/3| > 1/3
√

7,

|z| > 1/
√

7 ⇒ |z ± 1/7| > 1/7,

|z| > 1/
√

7 and |z ± 1/2| > 1/2
√

7 ⇒ |z ± n/7| > 1/7 (n = 2, 3).

Thus

(C7,0) |z| > 1/
√

7, |z ± 1/2| > 1/2
√

7, −1/2 < Re(z) < 1/2

is a sufficient condition for (C0) and (C7). Furthermore, we have the following transformation:

W7 :
eiθ

√
7
7→ ei(π−θ)

√
7

,

(−3 −1
7 2

)
W7 :

eiθ

2
√

7
+

1
2
7→ ei(π−θ)

2
√

7
− 1

2
.

Then we have VΓ∗0(7) = {i/2
√

7, −5/14 +
√

3i/14}. (Figure 7)
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5.4.3. Γ∗0(11). We have the folloing conditions for a fundamental domain for Γ∗0(11):

(C0) |z ± n/11| > 1/11 (1 6 n 6 5), −1/2 < Re(z) < 1/2.

(C11) |z| > 1/
√

11, |z ± 1/2| > 1/2
√

11, |z ± 1/3| > 1/3
√

11, −1/2 < Re(z) < 1/2.

Now,

|z| > 1/
√

11 ⇒ |z ± n/11| > 1/11 (n = 1, 2),

|z ± 1/2| > 1/2
√

11 ⇒ |z ± 5/11| > 1/11,

|z| > 1/
√

11 and |z ± 1/2| > 1/2
√

11 ⇒ |z ± 3/11| > 1/11,

|z ± 1/2| > 1/2
√

11 and |z ± 1/3| > 1/3
√

11 ⇒ |z ± 4/11| > 1/11.

Thus (C11) is a sufficient condition for (C0). Furthermore, we have the following transformation:

W11 :
eiθ

√
11
7→ ei(π−θ)

√
11

,

(−5 −1
11 2

)
W11 :

eiθ

2
√

11
+

1
2
7→ ei(π−θ)

2
√

11
− 1

2
,

(
4 1
11 3

)
W11 :

eiθ

3
√

11
+

1
3
7→ ei(π−θ)

3
√

11
+

1
3
,

(−4 1
11 −3

)
W11 :

eiθ

3
√

11
− 1

3
7→ ei(π−θ)

3
√

11
− 1

3
.

Then we have VΓ∗0(11) = {i/2
√

11, −25/66 +
√

35i/66}. (Figure 7)

5.4.4. Γ∗0(13). We have the folloing conditions for a fundamental domain for Γ∗0(13):

(C0) |z ± n/13| > 1/13 (1 6 n 6 6), −1/2 < Re(z) < 1/2.

(C13) |z| > 1/
√

13, |z ± 1/m| > 1/m
√

13 (2 6 m 6 4), −1/2 < Re(z) < 1/2.

Now,

|z| > 1/
√

13 and |z ± 1/3| > 1/3
√

13 ⇒ |z ± 1/4| > 1/4
√

13,

|z| > 1/
√

13 ⇒ |z ± n/13| > 1/13 (n = 1, 2),

|z ± 1/2| > 1/2
√

13 ⇒ |z ± 6/13| > 1/13,

|z| > 1/
√

13 and |z ± 1/3| > 1/3
√

13 ⇒ |z ± n/13| > 1/13 (n = 3, 4),

|z ± 1/2| > 1/2
√

13 and |z ± 1/3| > 1/3
√

13 ⇒ |z ± 5/13| > 1/13.

Thus

(C13,0) |z| > 1/
√

13, |z ± 1/2| > 1/2
√

13, |z ± 1/3| > 1/3
√

13, −1/2 < Re(z) < 1/2

is a sufficient condition for (C0) and (C13). Furthermore, we have the following transformation:

W13 :
eiθ

√
13
7→ ei(π−θ)

√
13

,

(−6 −1
13 2

)
W13 :

eiθ

2
√

13
+

1
2
7→ ei(π−θ)

2
√

13
− 1

2
,

(−4 −1
13 3

)
W13 :

eiθ

3
√

13
+

1
3
7→ ei(π−θ)

3
√

13
− 1

3
.

Then we have VΓ∗0(13) = {i/2
√

13, −7/26 +
√

3i/26, −5/13 + i/13}. (Figure 7)
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5.4.5. Γ∗0(17). We have the folloing conditions for a fundamental domain for Γ∗0(17):

(C0) |z ± n/17| > 1/17 (1 6 n 6 8), −1/2 < Re(z) < 1/2.

(C17) |z| > 1/
√

17, |z ± 1/m| > 1/m
√

17 (2 6 m 6 4), −1/2 < Re(z) < 1/2.

Now,

|z| > 1/
√

17 ⇒ |z ± n/17| > 1/17 (n = 1, 2, 3),

|z ± 1/2| > 1/2
√

17 ⇒ |z ± 8/17| > 1/17,

|z ± 1/3| > 1/3
√

17 ⇒ |z ± 6/17| > 1/17,

|z| > 1/
√

17 and |z ± 1/4| > 1/4
√

17 ⇒ |z ± 4/17| > 1/17,

|z ± 1/4| > 1/4
√

17 and |z ± 1/3| > 1/3
√

17 ⇒ |z ± 5/17| > 1/17.

|z ± 1/3| > 1/3
√

17 and |z ± 1/2| > 1/2
√

17 ⇒ |z ± 7/17| > 1/17.

Thus (C17) is a sufficient condition for (C0). Furthermore, we have the following transformation:

W17 :
eiθ

√
17
7→ ei(π−θ)

√
17

,

(−8 −1
17 2

)
W17 :

eiθ

2
√

17
+

1
2
7→ ei(π−θ)

2
√

17
− 1

2
,

(
6 1
17 3

)
W17 :

eiθ

3
√

17
+

1
3
7→ ei(π−θ)

3
√

17
+

1
3
,

(−6 1
17 −3

)
W17 :

eiθ

3
√

17
− 1

3
7→ ei(π−θ)

3
√

17
− 1

3
,

(−4 −1
17 4

)
W17 :

eiθ

4
√

17
+

1
4
7→ ei(π−θ)

4
√

17
− 1

4
.

Then we have VΓ∗0(17) = {i/2
√

17, −20/51 + 2
√

2i/51, −4/17 + i/17}. (Figure 7)

5.4.6. Γ∗0(19). We have the folloing conditions for a fundamental domain for Γ∗0(19):

(C0) |z ± n/19| > 1/19 (1 6 n 6 8), −1/2 < Re(z) < 1/2.

|z| > 1/
√

19, |z ± 1/m| > 1/m
√

19 (2 6 m 6 5), |z ± 2/5| > 1/5
√

19

− 1/2 < Re(z) < 1/2.
(C19)

Now,

|z| > 1/
√

19 and |z ± 1/4| > 1/4
√

19 ⇒ |z ± 1/5| > 1/5
√

19,

|z ± 1/3| > 1/3
√

19 and |z ± 1/2| > 1/2
√

19 ⇒ |z ± 2/5| > 1/5
√

19.

|z| > 1/
√

19 ⇒ |z ± n/19| > 1/19 (n = 1, 2, 3),

|z ± 1/2| > 1/2
√

19 ⇒ |z ± 9/19| > 1/19,

|z ± 1/3| > 1/3
√

19 ⇒ |z ± 6/19| > 1/19,

|z| > 1/
√

19 and |z ± 1/4| > 1/4
√

19 ⇒ |z ± 4/19| > 1/19,

|z ± 1/4| > 1/4
√

19 and |z ± 1/3| > 1/3
√

19 ⇒ |z ± 5/19| > 1/19.

|z ± 1/3| > 1/3
√

19 and |z ± 1/2| > 1/2
√

19 ⇒ |z ± n/19| > 1/19 (n = 7, 8).

Thus

(C19,0) |z| > 1/
√

19, |z ± 1/m| > 1/m
√

19 (2 6 m 6 4), −1/2 < Re(z) < 1/2.
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is a sufficient condition for (C0) and (C19). Furthermore, we have the following transformation:

W19 :
eiθ

√
19
7→ ei(π−θ)

√
19

,

(−9 −1
19 2

)
W19 :

eiθ

2
√

19
+

1
2
7→ ei(π−θ)

2
√

19
− 1

2
,

(−6 −1
19 3

)
W19 :

eiθ

3
√

19
+

1
3
7→ ei(π−θ)

3
√

19
− 1

3
,

(
5 1
19 4

)
W19 :

eiθ

4
√

19
+

1
4
7→ ei(π−θ)

4
√

19
+

1
4
,

(−5 1
19 −4

)
W19 :

eiθ

4
√

19
− 1

4
7→ ei(π−θ)

4
√

19
− 1

4
.

Then we have VΓ∗0(19) = {i/2
√

19, −15/38 +
√

3i/38, −21/76 +
√

15i/76}.
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Figure 7. Γ∗0(p)
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5.5. The function F ∗k,p,m(θ). Let p be a prime. If p > 5, then the figure of a fundamental domain of
Γ∗0(p) is more complex than Γ∗0(2), Γ∗0(3), and SL2(Z). We expect all the zeros are on the arcs eiθ/

√
p,

eiθ/2
√

p± 1/2, eiθ/3
√

p± 1/3, · · · , which form the boundary of the fundamental domain defined in the
sense of Theorem 2.1 (Figure 7). We will begin with consider the function F ∗k,p,m(θ).

Again, Eisenstein series associated with Γ∗0(p) is denoted by

E∗
k,p(z) =

1
2

∑

(c,d)=1
p|c

(cz + d)−k +
pk/2

2

∑

(c,d)=1
p|d

(c(pz) + d)−k.

5.5.1. For the arc eiθ/
√

p. We give the next definition;

(74) F ∗k,p,1(θ) := eikθ/2E∗
k,p

(
eiθ/

√
p
)
.

We consider an expansion of F ∗k,p,1(θ). Similarly to F ∗k,2(θ), we have

F ∗k,p,1(z) =
eikθ/2

2

∑

(c,d)=1
p|c

(ceiθ/
√

p + d)−k +
pk/2eikθ/2

2

∑

(c,d)=1
p|d

(c(peiθ/
√

p) + d)−k

=
1
2

∑

(c,d)=1
p-d

(de−iθ/2 +
√

pc′eiθ/2)−k +
1
2

∑

(c,d)=1
p-c

(ceiθ/2 +
√

pd′e−iθ/2)−k.

Thus we can write as follows;

(75) F ∗k,p,1(θ) =
1
2

∑

(c,d)=1
p-c

(ceiθ/2 +
√

pde−iθ/2)−k +
1
2

∑

(c,d)=1
p-c

(ce−iθ/2 +
√

pdeiθ/2)−k.

Hence we use this expression as a definition. Note that for any pair (c, d), (ceiθ/2 +
√

pde−iθ/2)−k and
(ce−iθ/2 +

√
pdeiθ/2)−k are conjugates of each other. The next proposition follows.

Proposition 5.8. F ∗k,p,1(θ) is real, for ∀θ ∈ R.

5.5.2. For the arcs eiθ/2
√

p± 1/2. Let p be a prime such that p > 5. Then we can write p = 2n + 1 for
∃n ∈ Z, and we have the following transformation:

(−n −1
p 2

)
Wp :

eiθ

2
√

p
+

1
2
7→ ei(π−θ)

2
√

p
− 1

2
.

Because we have the condition −1/2 6 Re(z) < 1/2, we have only eiθ/2
√

p − 1/2 in our fundamental
domain. Then we give the next definition:

(76) F ∗k,p,2(θ) := eikθ/2E∗
k,p

(
eiθ/2

√
p− 1/2

)
.
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We consider an expansion of F ∗k,p,2(θ). When p | c, then we can write c = c′p for ∃c′ ∈ Z, and have
p - d. Also, when p | d, then we have p - c and d = d′p for ∃d′ ∈ Z. Thus

F ∗k,p,2(z) =
eikθ/2

2

∑

(c,d)=1
p|c

(
c

(
eiθ

2
√

p
− 1

2

)
+ d

)−k

+
pk/2eikθ/2

2

∑

(c,d)=1
p|d

(
cp

(
eiθ

2
√

p
− 1

2

)
+ d

)−k

=
eikθ/2

2

∑

(c,d)=1
p-d

(
c′

(√
peiθ

2
− p

2

)
+ d

)−k

+
pk/2eikθ/2

2

∑

(c,d)=1
p-c

(
c
√

p

(
eiθ

2
−
√

p

2

)
+ d′p

)−k

=
eikθ/2

2

∑

(c,d)=1
p-d

(
c′

2
√

peiθ +
2d− c′p

2

)−k

+
eikθ/2

2

∑

(c,d)=1
p-c

(
c

2
eiθ +

2d′ − c

2
√

p

)−k

=
1
2

∑

(c,d)=1
p-d

(
2d− c′p

2
e−iθ/2 +

c′

2
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

(
c

2
eiθ/2 +

2d′ − c

2
√

pe−iθ/2

)−k

.

Now, we split terms in two cases, namely 2 | c or 2 - c. Note that the parities of c and c′ are same.
For the case 2 | c, we can write c′ = 2c′′ and c = 2c′′′ for ∃c′′, c′′′ ∈ Z. Then

1
2

∑

(c,d)=1
p-d
2|c′

(
2d− c′p

2
e−iθ/2 +

c′

2
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
2|c

(
c

2
eiθ/2 +

2d′ − c

2
√

pe−iθ/2

)−k

=
1
2

∑

(c,d)=1
p-d

(
(d− c′′p)e−iθ/2 + c′′

√
peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

(
c′′′eiθ/2 + (d′ − c′′′)

√
pe−iθ/2

)−k

.

Then we have (d− c′′p, c′′) = 1, p - d− c′′p, 2 | (d− c′′)c′′, and (c′′′, d′ − c′′′) = 1, p - c′′′, 2 | c′′′(d′ − c′′′).
Thus we can write above terms as follows:

1
2

∑

(c,d)=1
p-c
2|cd

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
2|cd

(
ceiθ/2 + d

√
pe−iθ/2

)−k

.

For the other case 2 - c,

1
2

∑

(c,d)=1
p-d
2-c′

(
2d− c′p

2
e−iθ/2 +

c′

2
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
2-c

(
c

2
eiθ/2 +

2d′ − c

2
√

pe−iθ/2

)−k

=
2k

2

∑

(c,d)=1
p-d

(
(2d− c′p)e−iθ/2 + c′

√
peiθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c

(
ceiθ/2 + (2d′ − c)

√
pe−iθ/2

)−k

.

Then we have (2d− c′p, c′) = 1, p - 2d− c′p, 2 - (2d− c′)c′, and (c, 2d′ − c) = 1, p - c, 2 - c(d′ − c). Thus
we can write above terms as follows:

2k

2

∑

(c,d)=1
p-c
2-cd

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c
2-cd

(
ceiθ/2 + d

√
pe−iθ/2

)−k

.
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In conclusion, we can write as follows;

F ∗k,p,2(θ) =
1
2

∑

(c,d)=1
p-c
2|cd

(
ceiθ/2 + d

√
pe−iθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
2|cd

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c
2-cd

(
ceiθ/2 + d

√
pe−iθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c
2-cd

(
ce−iθ/2 + d

√
peiθ/2

)−k

.

(77)

Hence we use this expression as a definition. Note that for any pair (c, d), (ceiθ/2 +
√

pde−iθ/2)−k and
(ce−iθ/2 +

√
pdeiθ/2)−k are conjugates of each other. The next proposition follows.

Proposition 5.9. F ∗k,p,2(θ) is real, for ∀θ ∈ R.

5.5.3. For the arcs eiθ/3
√

p± 1/3. Let p be a prime such that p > 11.
If p ≡ 1 (mod 3), then we can write p = 3n + 1 for ∃n ∈ Z, and we have the following transformation:

(−n −1
p 3

)
Wp :

eiθ

3
√

p
+

1
3
7→ ei(π−θ)

3
√

p
− 1

3
.

Thus we have only eiθ/3
√

p− 1/3 in our fundamental domain.
On the other hand, if p ≡ −1 (mod 3), then we can write p = 3n − 1 for ∃n ∈ Z, and we have the

following transformation:
(

n 1
p 3

)
Wp :

eiθ

3
√

p
+

1
3
7→ ei(π−θ)

3
√

p
+

1
3
,

(−n 1
p −3

)
Wp :

eiθ

3
√

p
− 1

3
7→ ei(π−θ)

3
√

p
− 1

3
.

Thus we have both eiθ/3
√

p± 1/3 in our fundamental domain.
Now, we give the next definition:

F ∗k,p,3(θ) := eikθ/2E∗
k,p

(
eiθ/3

√
p− 1/3

)
,(78)

F ∗,+k,p,3(θ) := eikθ/2E∗
k,p

(
eiθ/3

√
p + 1/3

)
.(79)

We consider an expansion of F ∗k,p,3(θ). When p | c, then we can write c = c′p for ∃c′ ∈ Z, and have
p - d. Also, when p | d, then we have p - c and d = d′p for ∃d′ ∈ Z. Similar to F ∗k,p,2(θ),

F ∗k,p,3(z) =
eikθ/2

2

∑

(c,d)=1
p|c

(
c

(
eiθ

3
√

p
− 1

3

)
+ d

)−k

+
pk/2eikθ/2

2

∑

(c,d)=1
p|d

(
cp

(
eiθ

3
√

p
− 1

3

)
+ d

)−k

=
1
2

∑

(c,d)=1
p-d

(
3d− c′p

3
e−iθ/2 +

c′

3
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

(
c

3
eiθ/2 +

3d′ − c

3
√

pe−iθ/2

)−k

.

Now, we split terms in two cases, namely 3 | c or 3 - c. Note that the parities of c and c′ are same.
For the case 3 | c, we can write c′ = 3c′′ and c = 3c′′′ for ∃c′′, c′′′ ∈ Z. Then

1
2

∑

(c,d)=1
p-d
3|c′

(
3d− c′p

3
e−iθ/2 +

c′

3
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
3|c

(
c

3
eiθ/2 +

3d′ − c

3
√

pe−iθ/2

)−k

=
1
2

∑

(c,d)=1
p-d

(
(d− c′′p)e−iθ/2 + c′′

√
peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

(
c′′′eiθ/2 + (d′ − c′′′)

√
pe−iθ/2

)−k

.



40 JUNICHI SHIGEZUMI

Then we have (d − c′′p, c′′) = 1, p - d − c′′p, d − c′′p 6≡ −p · c′′ (mod 3), and (c′′′, d′ − c′′′) = 1, p - c′′′,
c′′′ 6≡ −(d′ − c′′′) (mod 3). Thus we can write above terms as follows:

1
2

∑

(c,d)=1
p-c

c 6≡−pd (3)

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

c 6≡−d (3)

(
ceiθ/2 + d

√
pe−iθ/2

)−k

.

For the other case 3 - c,

1
2

∑

(c,d)=1
p-d
3-c′

(
3d− c′p

3
e−iθ/2 +

c′

3
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
3-c

(
c

3
eiθ/2 +

3d′ − c

3
√

pe−iθ/2

)−k

=
3k

2

∑

(c,d)=1
p-d

(
(3d− c′p)e−iθ/2 + c′

√
peiθ/2

)−k

+
3k

2

∑

(c,d)=1
p-c

(
ceiθ/2 + (3d′ − c)

√
pe−iθ/2

)−k

.

Then we have (3d − c′p, c′) = 1, p - 3d − c′p, 3d − c′p ≡ −p · c′ 6≡ 0 (mod 3), and (c, 3d′ − c) = 1, p - c,
c ≡ −(3d′ − c) 6≡ 0 (mod 3). Thus we can write above terms as follows:

3k

2

∑

(c,d)=1
p-c

c≡−pd 6≡0 (3)

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
3k

2

∑

(c,d)=1
p-c

c≡−d 6≡0 (3)

(
ceiθ/2 + d

√
pe−iθ/2

)−k

.

In conclusion, we can write as follows;

F ∗k,p,3(θ) =
1
2

∑

(c,d)=1
p-c

c 6≡−d (3)

(
ceiθ/2 + d

√
pe−iθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

c 6≡−pd (3)

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
3k

2

∑

(c,d)=1
p-c

c≡−d 6≡0 (3)

(
ceiθ/2 + d

√
pe−iθ/2

)−k

+
3k

2

∑

(c,d)=1
p-c

c≡−pd 6≡0 (3)

(
ce−iθ/2 + d

√
peiθ/2

)−k

.

(80)

Again, if p ≡ 1 (mod 3), then the condition “c 6≡ −pd (mod 3)” is equivalent to “c 6≡ −d (mod 3)”,
and “c ≡ −pd 6≡ 0 (mod 3)” is equivalant to “c ≡ −d 6≡ 0 (mod 3)”. In addition, for any pair (c, d),
(ceiθ/2 +

√
pde−iθ/2)−k and (ce−iθ/2 +

√
pdeiθ/2)−k are conjugates of each other. Thus F ∗k,p,3(θ) is real.

On the other hand, if p ≡ −1 (mod 3), then the condition “c 6≡ −pd (mod 3)” is equivalent to “c 6≡ d
(mod 3)”, and “c ≡ −pd 6≡ 0 (mod 3)” is equivalant to “c ≡ d 6≡ 0 (mod 3)”. Thus we need more
consideration.

Similarly to F ∗k,p,3(θ), we have another expansion, which is for F ∗,+k,p,3(θ):

F ∗,+k,p,3(θ) =
1
2

∑

(c,d)=1
p-c

c 6≡d (3)

(
ceiθ/2 + d

√
pe−iθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

c 6≡pd (3)

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
3k

2

∑

(c,d)=1
p-c

c≡d6≡0 (3)

(
ceiθ/2 + d

√
pe−iθ/2

)−k

+
3k

2

∑

(c,d)=1
p-c

c≡pd 6≡0 (3)

(
ce−iθ/2 + d

√
peiθ/2

)−k

.

(81)

Because p ≡ −1 (mod 3), we have F ∗,+k,p,3(θ) = F ∗k,p,3(θ).
Thus next proposition follows:

Proposition 5.10. If p ≡ 1 (mod 3), then F ∗k,p,3(θ) is real. On the other hand, if p ≡ −1 (mod 3), then

we have F ∗,+k,p,3(θ) = F ∗k,p,3(θ).
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5.5.4. For the arcs eiθ/4
√

p± 1/4. Let p be a prime such that p > 17, then p is odd.
If p ≡ 1 (mod 4), then we can write p = 4n + 1 for ∃n ∈ Z, and we have the following transformation:

(−n −1
p 4

)
Wp :

eiθ

4
√

p
+

1
4
7→ ei(π−θ)

4
√

p
− 1

4
.

Thus we have only eiθ/4
√

p− 1/4 in our fundamental domain.
On the other hand, if p ≡ −1 (mod 4), then we can write p = 4n − 1 for ∃n ∈ Z, and we have the

following transformation:
(

n 1
p 4

)
Wp :

eiθ

4
√

p
+

1
4
7→ ei(π−θ)

4
√

p
+

1
4
,

(−n 1
p −4

)
Wp :

eiθ

4
√

p
− 1

4
7→ ei(π−θ)

4
√

p
− 1

4
.

Thus we have both eiθ/4
√

p± 1/4 in our fundamental domain.
Now, we give the next definition:

F ∗k,p,4(θ) := eikθ/2E∗
k,p

(
eiθ/4

√
p− 1/4

)
,(82)

F ∗,+k,p,4(θ) := eikθ/2E∗
k,p

(
eiθ/4

√
p + 1/4

)
.(83)

We consider an expansion of F ∗k,p,4(θ). When p | c, then we can write c = c′p for ∃c′ ∈ Z, and have
p - d. Also, when p | d, then we have p - c and d = d′p for ∃d′ ∈ Z. Similar to F ∗k,p,2(θ),

F ∗k,p,4(z) =
eikθ/2

2

∑

(c,d)=1
p|c

(
c

(
eiθ

4
√

p
− 1

4

)
+ d

)−k

+
pk/2eikθ/2

2

∑

(c,d)=1
p|d

(
cp

(
eiθ

4
√

p
− 1

4

)
+ d

)−k

=
1
2

∑

(c,d)=1
p-d

(
4d− c′p

4
e−iθ/2 +

c′

4
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

(
c

4
eiθ/2 +

4d′ − c

4
√

pe−iθ/2

)−k

.

Now, we split terms in three cases, namely “4 | c” or “4 - c and 2 | c” or “2 - c”. Note that the parities
of c and c′ are same.

For the case “4 | c”, we can write c′ = 4c1 and c = 4c′1 for ∃c1, c
′
1 ∈ Z. Then

1
2

∑

(c,d)=1
p-d
4|c′

(
4d− c′p

4
e−iθ/2 +

c′

4
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
4|c

(
c

4
eiθ/2 +

4d′ − c

4
√

pe−iθ/2

)−k

=
1
2

∑

(c,d)=1
p-d

(
(d− c1p)e−iθ/2 + c1

√
peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

(
c′1e

iθ/2 + (d′ − c′1)
√

pe−iθ/2
)−k

.

Then we have (d− c1p, c1) = 1, p - d− c1p, 2 | (d− c1p) · c1, and (c′1, d
′ − c′1) = 1, p - c′1, 2 | c′1 · (d′ − c′1).

Thus we can write above terms as follows:
1
2

∑

(c,d)=1
p-c
2|cd

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
2|cd

(
ceiθ/2 + d

√
pe−iθ/2

)−k

.

For another case “4 - c and 2 | c”, we can write c′ = 2c2 and c = 2c′2 for ∃c2, c
′
2 ∈ Z, which are odd

integers. Then

1
2

∑

(c,d)=1
p-d

4-c′, 2|c′

(
4d− c′p

4
e−iθ/2 +

c′

4
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c

4-c, 2|c

(
c

4
eiθ/2 +

4d′ − c

4
√

pe−iθ/2

)−k

=
2k

2

∑

(c,d)=1
p-d

(
(2d− c2p)e−iθ/2 + c2

√
peiθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c

(
c′2e

iθ/2 + (2d′ − c′2)
√

pe−iθ/2
)−k

.
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Then we have (2d−c2p, c2) = 1, p - 2d−c2p, 2d−c2p ≡ p ·c2 ≡ ±1 (mod 4), and (c′2, 2d′−c′2) = 1, p - c′2,
c′2 ≡ 2d′ − c′2 ≡ ±1 (mod 4) because 2 - d, 2d ≡ 2 (mod 4). Thus we can write above terms as follows:

2k

2

∑

(c,d)=1
p-c
2-cd

c≡pd (4)

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c
2-cd

c≡d (4)

(
ceiθ/2 + d

√
pe−iθ/2

)−k

.

For the other case “2 - c”,

1
2

∑

(c,d)=1
p-d
4-c′

(
4d− c′p

4
e−iθ/2 +

c′

4
√

peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
4-c

(
c

4
eiθ/2 +

4d′ − c

4
√

pe−iθ/2

)−k

=
4k

2

∑

(c,d)=1
p-d

(
(4d− c′p)e−iθ/2 + c′

√
peiθ/2

)−k

+
4k

2

∑

(c,d)=1
p-c

(
ceiθ/2 + (4d′ − c)

√
pe−iθ/2

)−k

.

Then we have (4d − c′p, c′) = 1, p - 4d − c′p, 2 - (4d − c′p)c′, 4d − c′p ≡ −p · c′ 6≡ 0 (mod 4), and
(c, 4d′ − c) = 1, p - c, 2 - c(4d′ − c), c ≡ −(4d′ − c) 6≡ 0 (mod 4). Thus we can write above terms as
follows:

4k

2

∑

(c,d)=1
p-c
2-cd

c≡−pd (4)

(
ce−iθ/2 + d

√
peiθ/2

)−k

+
4k

2

∑

(c,d)=1
p-c
2-cd

c≡−d (4)

(
ceiθ/2 + d

√
pe−iθ/2

)−k

.

In conclusion, we can write as follows;

F ∗k,p,4(θ) =
1
2

∑

(c,d)=1
p-c
2|cd

(
ceiθ/2 + d

√
peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
2|cd

(
ce−iθ/2 + d

√
pe−iθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c
2-cd

c≡d (4)

(
ceiθ/2 + d

√
peiθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c
2-cd

c≡pd (4)

(
ce−iθ/2 + d

√
pe−iθ/2

)−k

+
4k

2

∑

(c,d)=1
p-c
2-cd

c≡−d (4)

(
ceiθ/2 + d

√
peiθ/2

)−k

+
4k

2

∑

(c,d)=1
p-c
2-cd

c≡−pd (4)

(
ce−iθ/2 + d

√
pe−iθ/2

)−k

.

(84)

Again, if p ≡ 1 (mod 4), then the condition “c ≡ pd (mod 4)” is equivalent to “c ≡ d (mod 4)”,
and “c ≡ −pd (mod 4)” is equivalant to “c ≡ −d (mod 4)”. In addition, for any pair (c, d), (ceiθ/2 +√

pde−iθ/2)−k and (ce−iθ/2 +
√

pdeiθ/2)−k are conjugates of each other. Thus F ∗k,p,4(θ) is real.
On the other hand, if p ≡ −1 (mod 4), then the condition “c ≡ pd (mod 4)” is equivalent to “c ≡ −d

(mod 4)”, and “c ≡ −pd (mod 4)” is equivalant to “c ≡ d (mod 4)”. Thus we need more consideration.
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Similaly to F ∗k,p,4(θ), we have another expansion, which is for F ∗,+k,p,4(θ):

F ∗,+k,p,4(θ) =
1
2

∑

(c,d)=1
p-c
2|cd

(
ceiθ/2 + d

√
peiθ/2

)−k

+
1
2

∑

(c,d)=1
p-c
2|cd

(
ce−iθ/2 + d

√
pe−iθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c
2-cd

c≡−d (4)

(
ceiθ/2 + d

√
peiθ/2

)−k

+
2k

2

∑

(c,d)=1
p-c
2-cd

c≡−pd (4)

(
ce−iθ/2 + d

√
pe−iθ/2

)−k

+
4k

2

∑

(c,d)=1
p-c
2-cd

c≡d (4)

(
ceiθ/2 + d

√
peiθ/2

)−k

+
4k

2

∑

(c,d)=1
p-c
2-cd

c≡pd (4)

(
ce−iθ/2 + d

√
pe−iθ/2

)−k

.

(85)

Because p ≡ −1 (mod 4), we have F ∗,+k,p,4(θ) = F ∗k,p,4(θ).
Thus next proposition follows:

Proposition 5.11. If p ≡ −1 (mod 4), then F ∗k,p,4(θ) is real. On the other hand, if p ≡ −1 (mod 4),

then we have F ∗,+k,p,4(θ) = F ∗k,p,4(θ).

5.6. Application of the RSD Method.

5.6.1. Γ∗0(5). We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,5,1(θ) = 2 cos(kθ/2) + R∗5,1,(86)

F ∗k,5,2(θ) = 2 cos(kθ/2) + R∗5,2(87)

where R∗5,1 and R∗5,2 are the terms such that N > 1 of F ∗k,5,1 and F ∗k,5,2, respectively.
For F ∗k,5,1(θ),

|R∗5,1| 6
∑

(c,d)=1
5-c

N>1

|ceiθ/2 +
√

5de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2+
√

5de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 5d2 + 2

√
5cd cos θ

)k/2
, and vk(c, d, θ) =

vk(−c,−d, θ). Now we will consider the next cases, namely N = 2, 5, 10, and N > 13. Considering
−2/

√
5 6 cos θ 6 0, we have the following:

When N = 2, vk(1, 1, θ) 6 (1/2)k/2, vk(1,−1, θ) 6 (1/6)k/2.

When N = 5, vk(1, 2, θ) 6 (1/13)k/2, vk(1,−2, θ) 6 (1/21)k/2,

vk(2, 1, θ) 6 1, vk(2,−1, θ) 6 (1/3)k.

When N = 10, vk(1, 3, θ) 6 (1/34)k/2, vk(1,−3, θ) 6 (1/46)k/2,

vk(3, 1, θ) 6 (1/2)k/2, vk(3,−1, θ) 6 (1/14)k/2.

When N > 13, |ceiθ/2 ±
√

5de−iθ/2|2 > N/6,

and the rest of the question is about the number of terms with c2 + d2 = N . Because 5 - c, the number
of |c| is not more than (4/5)N1/2 + 1. Thus the number of terms with c2 + d2 = N is not more than
4((4/5)N1/2 + 1) 6 (21/5)N1/2 for N > 13. Then

|R∗5,1|N>13 =
21
√

6
5

∞∑

N=13

(
1
6
N

)(1−k)/2

6 1008
√

6
5(k − 3)

(
1
2

)k/2

.
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On the other hand, for F ∗k,5,2(θ),

|R∗5,2| 6
∑

(c,d)=1
5-c
2|cd
N>1

|ceiθ/2 + d
√

5e−iθ/2|−k + 2k
∑

(c,d)=1
5-c
2-cd

|ceiθ/2 + d
√

5e−iθ/2|−k.

Now we will consider the next cases, namely N = 2, 5, 10, 13, 17, and N > 25. Considering 0 6 cos θ 6
1/
√

5, we have the following:

When N = 2, 2k · vk(1, 1, θ) 6 (2/3)k/2, 2k · vk(1,−1, θ) 6 1.

When N = 5, vk(1, 2, θ) 6 (1/21)k/2, vk(1,−2, θ) 6 (1/17)k/2,

vk(2, 1, θ) 6 (1/3)k, vk(2,−1, θ) 6 (1/5)k/2.

When N = 10, 2k · vk(1, 3, θ) 6 (2/23)k/2, 2k · vk(1,−3, θ) 6 (1/10)k/2,

2k · vk(3, 1, θ) 6 (2/7)k/2, 2k · vk(3,−1, θ) 6 (1/2)k/2.

When N = 13, vk(2, 3, θ) 6 (1/7)k, vk(2,−3, θ) 6 (1/37)k/2,

vk(3, 2, θ) 6 (1/29)k/2, vk(3,−2, θ) 6 (1/17)k/2.

When N = 17, vk(1, 4, θ) 6 (1/9)k, vk(1,−4, θ) 6 (1/73)k/2,

vk(4, 1, θ) 6 (1/21)k/2, vk(4,−1, θ) 6 (1/13)k/2.

When N > 25, |ceiθ/2 ±
√

5de−iθ/2|2 > N/2,

and the number of terms with c2 + d2 = N is not more than 4N1/2 for N > 25. Then

|R∗5,2|N>25 = 8
√

2
∞∑

N=25

(
1
8
N

)(1−k)/2

6 378
√

6
k − 3

(
1
3

)k/2

.

Thus

|R∗5,1| 6 2 + 4
(

1
2

)k/2

+ 2
(

1
3

)k/2

+ · · ·+ 2
(

1
46

)k/2

+
1008

√
6

5(k − 3)

(
1
2

)k/2

,(88)

|R∗5,2| 6 2 + 2
(

2
3

)k/2

+ 2
(

1
2

)k/2

+ · · ·+ 2
(

1
9

)k

+
378

√
6

k − 3

(
1
3

)k/2

.(89)

Recalling the “RSD Method” subsection, we want to show that |R∗5,1| < 2 and |R∗5,2| < 2. But the right-
hand sides of both bounds are greater than 2, so these bounds are not good. The cases (c, d) = ±(2, 1)
give us bound equal to 2 for |R∗5,1|, and the cases (c, d) = ±(1,−1) give us bound equal to 2 for |R∗5,2|.

5.6.2. Γ∗0(7). We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,7,1(θ) = 2 cos(kθ/2) + R∗7,1,(90)

F ∗k,7,2(θ) = 2 cos(kθ/2) + R∗7,2(91)

where R∗7,1 and R∗7,2 are the terms such that N > 1 of F ∗k,7,1 and F ∗k,7,2, respectively.
For F ∗k,7,1(θ),

|R∗7,1| 6
∑

(c,d)=1
7-c

N>1

|ceiθ/2 +
√

7de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2+
√

7de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 7d2 + 2

√
7cd cos θ

)k/2
, and vk(c, d, θ) =

vk(−c,−d, θ). Now we will consider the next cases, namely N = 2, 5, · · · , 29, and N > 34. Considering
−5/(2

√
7) 6 cos θ 6 0, we have the following:

When N = 2, vk(1, 1, θ) 6 (1/3)k/2, vk(1,−1, θ) 6 (1/8)k/2.

When N = 5, vk(1, 2, θ) 6 (1/19)k/2, vk(1,−2, θ) 6 (1/29)k/2,
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vk(2, 1, θ) 6 1, vk(2,−1, θ) 6 (1/11)k/2.

When N = 10, vk(1, 3, θ) 6 (1/7)k, vk(1,−3, θ) 6 (1/8)k,

vk(3, 1, θ) 6 1, vk(3,−1, θ) 6 (1/4)k.

When N = 13, vk(2, 3, θ) 6 (1/39)k/2, vk(2,−3, θ) 6 (1/69)k/2,

vk(3, 2, θ) 6 (1/7)k/2, vk(3,−2, θ) 6 (1/37)k/2.

When N = 17, vk(1, 4, θ) 6 (1/93)k/2, vk(1,−4, θ) 6 (1/113)k/2,

vk(4, 1, θ) 6 (1/3)k/2, vk(4,−1, θ) 6 (1/23)k/2.

When N = 25, vk(3, 4, θ) 6 (1/61)k/2, vk(3,−4, θ) 6 (1/11)k,

vk(4, 3, θ) 6 (1/19)k/2, vk(4,−3, θ) 6 (1/79)k/2.

When N = 26, vk(1, 5, θ) 6 (1/151)k/2, vk(1,−5, θ) 6 (1/176)k/2,

vk(5, 1, θ) 6 (1/7)k/2, vk(5,−1, θ) 6 (1/32)k/2.

When N = 29, vk(2, 5, θ) 6 (1/129)k/2, vk(2,−5, θ) 6 (1/179)k/2,

vk(5, 2, θ) 6 (1/3)k/2, vk(5,−2, θ) 6 (1/53)k/2.

When N > 34, |ceiθ/2 ±
√

7de−iθ/2|2 > N/11,

and the rest of the question is about the number of terms with c2 + d2 = N . Because 7 - c, the number
of |c| is not more than (6/7)N1/2 + 1. Thus the number of terms with c2 + d2 = N is not more than
4((6/7)N1/2 + 1) 6 (29/7)N1/2 for N > 34. Then

|R∗7,1|N>34 =
29
√

11
7

∞∑

N=34

(
1
11

N

)(1−k)/2

6 1914
√

33
7(k − 3)

(
1
3

)k/2

.

On the other hand, for F ∗k,7,2(θ),

|R∗7,2| 6
∑

(c,d)=1
7-c
2|cd
N>1

|ceiθ/2 + d
√

7e−iθ/2|−k + 2k
∑

(c,d)=1
7-c
2-cd

|ceiθ/2 + d
√

7e−iθ/2|−k.

Now we will consider the next cases, namely N = 2, 5, 10, 13, 17, and N > 25. Considering 0 6 cos θ 6
2/
√

7, we have the following:

When N = 2, 2k · vk(1, 1, θ) 6 (1/2)k/2, 2k · vk(1,−1, θ) 6 1.

When N = 5, vk(1, 2, θ) 6 (1/29)k/2, vk(1,−2, θ) 6 (1/21)k/2,

vk(2, 1, θ) 6 (1/11)k/2, vk(2,−1, θ) 6 (1/3)k/2.

When N = 10, 2k · vk(1, 3, θ) 6 (1/4)k, 2k · vk(1,−3, θ) 6 (1/13)k/2,

2k · vk(3, 1, θ) 6 (1/2)k, 2k · vk(3,−1, θ) 6 1.

When N = 13, vk(2, 3, θ) 6 (1/69)k/2, vk(2,−3, θ) 6 (1/45)k/2,

vk(3, 2, θ) 6 (1/37)k/2, vk(3,−2, θ) 6 (1/14)k/2.

When N = 17, vk(1, 4, θ) 6 (1/113)k/2, vk(1,−4, θ) 6 (1/97)k/2,

vk(4, 1, θ) 6 (1/23)k/2, vk(4,−1, θ) 6 (1/7)k/2.

When N > 25, |ceiθ/2 ±
√

7de−iθ/2|2 > N/3,

and the number of terms with c2 + d2 = N is not more than (29/7)N1/2 for N > 25. Then

|R∗7,2|N>25 =
58
√

3
7

∞∑

N=25

(
1
12

N

)(1−k)/2

6 2784
√

6
7(k − 3)

(
1
2

)k/2

.



46 JUNICHI SHIGEZUMI

Thus

|R∗7,1| 6 4 + 6
(

1
3

)k/2

+ 4
(

1
7

)k/2

+ · · ·+ 2
(

1
179

)k/2

+
1914

√
33

7(k − 3)

(
1
3

)k/2

,(92)

|R∗7,2| 6 4 + 2
(

1
2

)k/2

+ 2
(

1
3

)k/2

+ · · ·+ 2
(

1
113

)k/2

+
2784

√
6

7(k − 3)

(
1
2

)k/2

.(93)

We want to show that |R∗7,1| < 2 and |R∗7,2| < 2. But the right-hand sides of both bounds are much
greater than 2. The cases (c, d) = ±(2, 1) and ±(3, 1) give us bound equal to 4 for |R∗7,1|, and the cases
(c, d) = ±(1,−1) and ±(3,−1) give us bound equal to 4 for |R∗7,2|.

5.6.3. Γ∗0(11). We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,11,1(θ) = 2 cos(kθ/2) + R∗11,1,(94)

F ∗k,11,2(θ) = 2 cos(kθ/2) + R∗11,2(95)

where R∗11,1 and R∗11,2 are the terms such that N > 1 of F ∗k,11,1 and F ∗k,11,2, respectively.
For F ∗k,11,1(θ),

|R∗11,1| 6
∑

(c,d)=1
11-c
N>1

|ceiθ/2 +
√

11de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

11de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 11d2 + 2

√
11cd cos θ

)k/2
, and

vk(c, d, θ) = vk(−c,−d, θ).
Now we will consider the next cases, namely N = 2, 5, 10, 13, 17, 25, and N > 26. Considering

−19/(6
√

11) 6 cos θ 6 0, we have the following:

When N = 2, vk(1, 1, θ) 6 (3/17)k/2, vk(1,−1, θ) 6 (1/12)k/2.

When N = 5, vk(1, 2, θ) 6 (3/97)k/2, vk(1,−2, θ) 6 (1/45)k/2,

vk(2, 1, θ) 6 (3/7)k/2, vk(2,−1, θ) 6 (1/15)k/2.

When N = 10, vk(1, 3, θ) 6 (1/9)k, vk(1,−3, θ) 6 (1/10)k,

vk(3, 1, θ) 6 1, vk(3,−1, θ) 6 (1/20)k/2.

When N = 13, vk(2, 3, θ) 6 (1/65)k/2, vk(2,−3, θ) 6 (1/103)k/2,

vk(3, 2, θ) 6 (1/15)k/2, vk(3,−2, θ) 6 (1/53)k/2.

When N = 17, vk(1, 4, θ) 6 (3/455)k/2, vk(1,−4, θ) 6 (1/177)k/2,

vk(4, 1, θ) 6 (3/5)k/2, vk(4,−1, θ) 6 (1/27)k/2.

When N = 25, vk(3, 4, θ) 6 (1/109)k/2, vk(3,−4, θ) 6 (1/185)k/2,

vk(4, 3, θ) 6 (1/39)k/2, vk(4,−3, θ) 6 (1/115)k/2.

When N > 26, |ceiθ/2 ±
√

11de−iθ/2|2 > 2N/25,

and the rest of the question is about the number of terms with c2 + d2 = N . Because 11 - c, the number
of |c| is not more than (10/11)N1/2 + 1. Thus the number of terms with c2 + d2 = N is not more than
4((10/11)N1/2 + 1) 6 (48/11)N1/2 for N > 26. Then

|R∗11,1|N>26 =
120

√
2

11

∞∑

N=26

(
2
25

N

)(1−k)/2

6 12000
11(k − 3)

(
1
2

)k/2

.

On the other hand, for F ∗k,11,2(θ),

|R∗11,2| 6
∑

(c,d)=1
11-c
2|cd
N>1

|ceiθ/2 + d
√

11e−iθ/2|−k + 2k
∑

(c,d)=1
11-c
2-cd

|ceiθ/2 + d
√

11e−iθ/2|−k.
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Now we will consider the next cases, namely N = 2, 5, 10, 13, 17, and N > 25. Considering 0 6 cos θ 6
8/(3

√
11), we have the following:

When N = 2, 2k · vk(1, 1, θ) 6 (1/3)k/2, 2k · vk(1,−1, θ) 6 (3/5)k/2.

When N = 5, vk(1, 2, θ) 6 (1/45)k/2, vk(1,−2, θ) 6 (3/103)k/2,

vk(2, 1, θ) 6 (1/15)k/2, vk(2,−1, θ) 6 (3/13)k/2.

When N = 10, 2k · vk(1, 3, θ) 6 (1/5)k, 2k · vk(1,−3, θ) 6 (1/21)k/2,

2k · vk(3, 1, θ) 6 (1/5)k/2, 2k · vk(3,−1, θ) 6 1.

When N = 13, vk(2, 3, θ) 6 (1/103)k/2, vk(2,−3, θ) 6 (1/71)k/2,

vk(3, 2, θ) 6 (1/53)k/2, vk(3,−2, θ) 6 (1/21)k/2.

When N = 17, vk(1, 4, θ) 6 (1/177)k/2, vk(1,−4, θ) 6 (3/467)k/2,

vk(4, 1, θ) 6 (1/27)k/2, vk(4,−1, θ) 6 (3/17)k/2.

When N > 25, |ceiθ/2 ±
√

11de−iθ/2|2 > 1
3
N,

and the number of terms with c2 + d2 = N is not more than (48/11)N1/2 for N > 25. Then

|R∗11,2|N>25 =
96
√

3
11

∞∑

N=25

(
1
12

N

)(1−k)/2

6 4608
√

6
11(k − 3)

(
1
2

)k/2

.

Thus

|R∗11,1| 6 2 + 2
(

3
5

)k/2

+ 2
(

3
7

)k/2

+ · · ·+ 2
(

1
185

)k/2

+
12000

11(k − 3)

(
1
2

)k/2

,(96)

|R∗11,2| 6 2 + 2
(

3
5

)k/2

+ 2
(

1
3

)k/2

+ · · ·+ 2
(

1
177

)k/2

+
4608

√
6

11(k − 3)

(
1
2

)k/2

.(97)

We want to show that |R∗11,1| < 2 and |R∗11,2| < 2. But the right-hand sides of both bounds are greater
than 2. The cases (c, d) = ±(3, 1) give us bound equal to 2 for |R∗11,1|, and the cases (c, d) = ±(3,−1)
give us bound equal to 2 for |R∗11,2|.

5.6.4. Γ∗0(13). We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,13,1(θ) = 2 cos(kθ/2) + R∗13,1,(98)

F ∗k,13,2(θ) = 2 cos(kθ/2) + R∗13,2,(99)

F ∗k,13,3(θ) = 2 cos(kθ/2) + R∗13,3,(100)

where R∗13,1, R∗13,2, and R∗13,3 are the terms such that N > 1 of F ∗k,13,1, F ∗k,13,2, and F ∗k,13,3, respectively.
Firstly, for F ∗k,13,1(θ),

|R∗13,1| 6
∑

(c,d)=1
13-c
N>1

|ceiθ/2 +
√

13de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

13de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 13d2 + 2

√
13cd cos θ

)k/2
, and

vk(c, d, θ) = vk(−c,−d, θ). Now we will consider the next cases, namely N = 2, 5, · · · , 37, and N > 41.
Considering −7/(2

√
13) 6 cos θ 6 0, we have the following:

When N = 2, vk(1, 1, θ) 6 (1/7)k/2, vk(1,−1, θ) 6 (1/14)k/2.

When N = 5, vk(1, 2, θ) 6 (1/39)k/2, vk(1,−2, θ) 6 (1/53)k/2,

vk(2, 1, θ) 6 (1/3)k/2, vk(2,−1, θ) 6 (1/17)k/2.

When N = 10, vk(1, 3, θ) 6 (1/97)k/2, vk(1,−3, θ) 6 (1/118)k/2,
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vk(3, 1, θ) 6 1, vk(3,−1, θ) 6 (1/22)k/2.

When N = 13, vk(2, 3, θ) 6 (1/79)k/2, vk(2,−3, θ) 6 (1/11)k,

vk(3, 2, θ) 6 (1/19)k/2, vk(3,−2, θ) 6 (1/61)k/2.

When N = 17, vk(1, 4, θ) 6 (1/181)k/2, vk(1,−4, θ) 6 (1/209)k/2,

vk(4, 1, θ) 6 1, vk(4,−1, θ) 6 (1/29)k/2.

When N = 25, vk(3, 4, θ) 6 (1/133)k/2, vk(3,−4, θ) 6 (1/217)k/2,

vk(4, 3, θ) 6 (1/39)k/2, vk(4,−3, θ) 6 (1/123)k/2.

When N = 26, vk(1, 5, θ) 6 (1/291)k/2, vk(1,−5, θ) 6 (1/326)k/2,

vk(5, 1, θ) 6 (1/3)k/2, vk(5,−1, θ) 6 (1/38)k/2.

When N = 29, vk(2, 5, θ) 6 (1/255)k/2, vk(2,−5, θ) 6 (1/329)k/2,

vk(5, 2, θ) 6 (1/7)k/2, vk(5,−2, θ) 6 (1/77)k/2.

When N = 34, vk(3, 5, θ) 6 (1/229)k/2, vk(3,−5, θ) 6 (1/334)k/2,

vk(5, 3, θ) 6 (1/37)k/2, vk(5,−3, θ) 6 (1/142)k/2.

When N = 37, vk(1, 6, θ) 6 (1/426)k/2, vk(1,−6, θ) 6 (1/468)k/2,

vk(6, 1, θ) 6 (1/7)k/2, vk(6,−1, θ) 6 (1/7)k.

When N > 41, |ceiθ/2 ±
√

13de−iθ/2|2 > N/20,

and the rest of the question is about the number of terms with c2 + d2 = N . Because 13 - c, the number
of |c| is not more than (12/13)N1/2 + 1. Thus the number of terms with c2 + d2 = N is not more than
4((12/13)N1/2 + 1) 6 (30/7)N1/2 for N > 41. Then

|R∗13,1|N>41 =
60
√

5
7

∞∑

N=41

(
1
20

N

)(1−k)/2

6 4800
√

10
13(k − 3)

(
1
2

)k/2

.

Secondly, for F ∗k,13,2(θ),

|R∗13,2| 6
∑

(c,d)=1
13-c
2|cd
N>1

vk(c, d, θ) + 2k
∑

(c,d)=1
13-c
2-cd

vk(c, d, θ).

Now we will consider the next cases, namely N = 2, 5, · · · , 26, and N > 29. Considering 0 6 cos θ 6
3/
√

13, we have the following:

When N = 2, 2k · vk(1, 1, θ) 6 (2/7)k/2, 2k · vk(1,−1, θ) 6 (1/2)k/2.

When N = 5, vk(1, 2, θ) 6 (1/53)k/2, vk(1,−2, θ) 6 (1/41)k/2,

vk(2, 1, θ) 6 (1/17)k/2, vk(2,−1, θ) 6 (1/5)k/2.

When N = 10, 2k · vk(1, 3, θ) 6 (2/59)k/2, 2k · vk(1,−3, θ) 6 (1/5)k,

2k · vk(3, 1, θ) 6 (2/11)k/2, 2k · vk(3,−1, θ) 6 1.

When N = 13, vk(2, 3, θ) 6 (1/11)k, vk(2,−3, θ) 6 (1/85)k/2,

vk(3, 2, θ) 6 (1/61)k/2, vk(3,−2, θ) 6 (1/5)k.

When N = 17, vk(1, 4, θ) 6 (1/209)k/2, vk(1,−4, θ) 6 (1/285)k/2,

vk(4, 1, θ) 6 (1/29)k/2, vk(4,−1, θ) 6 (1/5)k/2.

When N = 25, vk(3, 4, θ) 6 (1/217)k/2, vk(3,−4, θ) 6 (1/145)k/2,

vk(4, 3, θ) 6 (1/123)k/2, vk(4,−3, θ) 6 (1/51)k/2.

When N = 26, 2k · vk(1, 5, θ) 6 (2/163)k/2, 2k · vk(1,−5, θ) 6 (1/74)k/2,
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2k · vk(5, 1, θ) 6 (2/19)k/2, 2k · vk(5,−1, θ) 6 (1/2)k/2.

When N > 29, |ceiθ/2 ±
√

13de−iθ/2|2 > 2N/7,

and the number of terms with c2 + d2 = N is not more than (22/5)N1/2 for N > 29. Then

|R∗13,2|N>29 =
22
√

14
5

∞∑

N=29

(
1
14

N

)(1−k)/2

6 2464
√

7
5(k − 3)

(
1
2

)k/2

.

Finally, for F ∗k,13,3(θ),

|R∗13,3| 6
∑

(c,d)=1
13-c
3|cd
N>1

vk(c, d, θ) +
∑

(c,d)=1
13-c
3-cd

c≡d (3)

vk(c, d, θ) + 3k
∑

(c,d)=1
13-c
3-cd

c≡−d (3)

vk(c, d, θ).

Now we will consider the next cases, namely N = 2, 5, · · · , 37, and N > 41. Considering −2/
√

13 6
cos θ 6 5/(2

√
13), we have the following:

When N = 2, vk(1, 1, θ) 6 (1/10)k/2, 3k · vk(1,−1, θ) 6 1.

When N = 5, 3k · vk(1, 2, θ) 6 (1/5)k/2, vk(1,−2, θ) 6 (1/43)k/2,

3k · vk(2, 1, θ) 6 1, vk(2,−1, θ) 6 (1/7)k/2.

When N = 10, vk(1, 3, θ) 6 (1/106)k/2, vk(1,−3, θ) 6 (1/103)k/2,

vk(3, 1, θ) 6 (1/10)k/2, vk(3,−1, θ) 6 (1/7)k/2.

When N = 13, vk(2, 3, θ) 6 (1/97)k/2, vk(2,−3, θ) 6 (1/91)k/2,

vk(3, 2, θ) 6 (1/37)k/2, vk(3,−2, θ) 6 (1/31)k/2.

When N = 17, vk(1, 4, θ) 6 (1/193)k/2, 3k · vk(1,−4, θ) 6 (1/21)k/2,

vk(4, 1, θ) 6 (1/13)k/2, 3k · vk(4,−1, θ) 6 1.

When N = 25, vk(3, 4, θ) 6 (1/13)k, vk(3,−4, θ) 6 (1/157)k/2,

vk(4, 3, θ) 6 (1/75)k/2, vk(4,−3, θ) 6 (1/63)k/2.

When N = 26, 3k · vk(1, 5, θ) 6 (1/34)k/2, vk(1,−5, θ) 6 (1/301)k/2,

3k · vk(5, 1, θ) 6 (1/2)k/2, vk(5,−1, θ) 6 (1/13)k/2.

When N = 29, vk(2, 5, θ) 6 (1/13)k, 3k · vk(2,−5, θ) 6 (1/31)k/2,

vk(5, 2, θ) 6 (1/37)k/2, 3k · vk(5,−2, θ) 6 (1/3)k/2.

When N = 34, vk(3, 5, θ) 6 (1/274)k/2, vk(3,−5, θ) 6 (1/259)k/2,

vk(5, 3, θ) 6 (1/82)k/2, vk(5,−3, θ) 6 (1/67)k/2.

When N = 37, vk(1, 6, θ) 6 (1/444)k/2, vk(1,−6, θ) 6 (1/438)k/2,

vk(6, 1, θ) 6 (1/5)k, vk(6,−1, θ) 6 (1/19)k/2.

When N > 41, |ceiθ/2 ±
√

13de−iθ/2|2 > 9N/20,

and the number of terms with c2 + d2 = N is not more than (30/7)N1/2 for N > 41. Then

|R∗13,3|N>41 =
60
√

5
7

∞∑

N=41

(
1
20

N

)(1−k)/2

6 4800
√

10
7(k − 3)

(
1
2

)k/2

.
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Thus

|R∗13,1| 6 4 + 4
(

1
3

)k/2

+ 6
(

1
7

)k/2

+ · · ·+ 2
(

1
468

)k/2

+
4800

√
10

7(k − 3)

(
1
2

)k/2

,(101)

|R∗13,2| 6 2 + 4
(

1
2

)k/2

+ 2
(

2
7

)k/2

+ · · ·+ 2
(

1
285

)k/2

+
2464

√
7

5(k − 3)

(
1
2

)k/2

,(102)

|R∗13,3| 6 6 + 2
(

1
2

)k/2

+ 2
(

1
3

)k/2

+ · · ·+ 2
(

1
444

)k/2

+
4800

√
10

7(k − 3)

(
1
2

)k/2

.(103)

We want to show that |R∗13,1| < 2, |R∗13,2| < 2, and |R∗13,3| < 2. But the right-hand side of every bound
is greater than 2. The cases (c, d) = ±(3, 1) and ±(4, 1) give us bound equal to 4 for |R∗13,1|, and the
cases (c, d) = ±(3,−1) give us bound equal to 2 for |R∗13,2|, and the cases (c, d) = ±(1,−1), ±(2, 1), and
±(4,−1) give us bound equal to 6 for |R∗13,3|.

5.6.5. Γ∗0(17). We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,17,1(θ) = 2 cos(kθ/2) + R∗17,1,(104)

F ∗k,17,2(θ) = 2 cos(kθ/2) + R∗17,2,(105)

F ∗k,17,4(θ) = 2 cos(kθ/2) + R∗17,4,(106)

where R∗17,1, R∗17,2, and R∗17,2, and R∗17,4 are the terms such that N > 1 of F ∗k,17,1, F ∗k,17,2, and F ∗k,17,4,
respectively.

Firstly, for F ∗k,17,1(θ),

|R∗17,1| 6
∑

(c,d)=1
17-c
N>1

|ceiθ/2 +
√

17de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

17de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 17d2 + 2

√
17cd cos θ

)k/2
, and

vk(c, d, θ) = vk(−c,−d, θ). Now we will consider the next cases, namely N = 2, 5, · · · , 34, and N > 37.
Considering −4/

√
17 6 cos θ 6 0, we have the following:

When N = 2, vk(1, 1, θ) 6 (1/10)k/2, vk(1,−1, θ) 6 (1/18)k/2.

When N = 5, vk(1, 2, θ) 6 (1/53)k/2, vk(1,−2, θ) 6 (1/69)k/2,

vk(2, 1, θ) 6 (1/5)k/2, vk(2,−1, θ) 6 (1/21)k/2.

When N = 10, vk(1, 3, θ) 6 (1/130)k/2, vk(1,−3, θ) 6 (1/154)k/2,

vk(3, 1, θ) 6 (1/2)k/2, vk(3,−1, θ) 6 (1/26)k/2.

When N = 13, vk(2, 3, θ) 6 (1/109)k/2, vk(2,−3, θ) 6 (1/157)k/2,

vk(3, 2, θ) 6 (1/29)k/2, vk(3,−2, θ) 6 (1/77)k/2.

When N = 17, vk(1, 4, θ) 6 (1/241)k/2, vk(1,−4, θ) 6 (1/273)k/2,

vk(4, 1, θ) 6 1, vk(4,−1, θ) 6 (1/33)k/2.

When N = 25, vk(3, 4, θ) 6 (1/185)k/2, vk(3,−4, θ) 6 (1/281)k/2,

vk(4, 3, θ) 6 (1/73)k/2, vk(4,−3, θ) 6 (1/13)k.

When N = 26, vk(1, 5, θ) 6 (1/386)k/2, vk(1,−5, θ) 6 (1/426)k/2,

vk(5, 1, θ) 6 (1/2)k/2, vk(5,−1, θ) 6 (1/42)k/2.

When N = 29, vk(2, 5, θ) 6 (1/349)k/2, vk(2,−5, θ) 6 (1/429)k/2,

vk(5, 2, θ) 6 (1/23)k/2, vk(5,−2, θ) 6 (1/103)k/2.

When N = 34, vk(3, 5, θ) 6 (1/314)k/2, vk(3,−5, θ) 6 (1/434)k/2,

vk(5, 3, θ) 6 (1/42)k/2, vk(5,−3, θ) 6 (1/162)k/2.
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When N > 37, |ceiθ/2 ±
√

17de−iθ/2|2 > N/18,

and the rest of the question is about the number of terms with c2 + d2 = N . Because 17 - c, the number
of |c| is not more than (16/17)N1/2 + 1. Thus the number of terms with c2 + d2 = N is not more than
4((16/17)N1/2 + 1) 6 (22/5)N1/2 for N > 37. Then

|R∗17,1|N>37 =
66
√

2
5

∞∑

N=37

(
1
18

N

)(1−k)/2

6 9504
5(k − 3)

(
1
2

)k/2

.

Secondly, for F ∗k,17,2(θ),

|R∗17,2| 6
∑

(c,d)=1
17-c
2|cd
N>1

vk(c, d, θ) + 2k
∑

(c,d)=1
17-c
2-cd

vk(c, d, θ).

Now we will consider the next cases, namely N = 2, 5, · · · , 34, and N > 37. Considering 0 6 cos θ 6
11/(3

√
17), we have the following:

When N = 2, 2k · vk(1, 1, θ) 6 (2/9)k/2, 2k · vk(1,−1, θ) 6 (3/8)k/2.

When N = 5, vk(1, 2, θ) 6 (1/69)k/2, vk(1,−2, θ) 6 (3/163)k/2,

vk(2, 1, θ) 6 (1/21)k/2, vk(2,−1, θ) 6 (1/19)k/2.

When N = 10, 2k · vk(1, 3, θ) 6 (2/77)k/2, 2k · vk(1,−3, θ) 6 (1/33)k/2,

2k · vk(3, 1, θ) 6 (2/13)k/2, 2k · vk(3,−1, θ) 6 1.

When N = 13, vk(2, 3, θ) 6 (1/157)k/2, vk(2,−3, θ) 6 (1/113)k/2,

vk(3, 2, θ) 6 (1/77)k/2, vk(3,−2, θ) 6 (1/33)k/2.

When N = 17, vk(1, 4, θ) 6 (1/273)k/2, vk(1,−4, θ) 6 (3/731)k/2,

vk(4, 1, θ) 6 (1/33)k/2, vk(4,−1, θ) 6 (3/11)k/2.

When N = 25, vk(3, 4, θ) 6 (1/281)k/2, vk(3,−4, θ) 6 (1/193)k/2,

vk(4, 3, θ) 6 (1/13)k, vk(4,−3, θ) 6 (1/9)k.

When N = 26, 2k · vk(1, 5, θ) 6 (2/213)k/2, 2k · vk(1,−5, θ) 6 (3/292)k/2,

2k · vk(5, 1, θ) 6 (2/21)k/2, 2k · vk(5,−1, θ) 6 (3/4)k/2.

When N = 29, vk(2, 5, θ) 6 (1/429)k/2, vk(2,−5, θ) 6 (3/1067)k/2,

vk(5, 2, θ) 6 (1/103)k/2, vk(5,−2, θ) 6 (3/89)k/2.

When N = 34, 2k · vk(3, 5, θ) 6 (2/217)k/2, 2k · vk(3,−5, θ) 6 (1/9)k,

2k · vk(5, 3, θ) 6 (2/81)k/2, 2k · vk(5,−3, θ) 6 (1/13)k/2.

When N > 37, |ceiθ/2 ±
√

17de−iθ/2|2 > 16N/81,

and the number of terms with c2 + d2 = N is not more than (22/5)N1/2 for N > 37. Then

|R∗17,2|N>37 =
99
5

∞∑

N=37

(
4
81

N

)(1−k)/2

6 9504
5(k − 3)

(
3
4

)k

.

Finally, for F ∗k,17,4(θ),

|R∗17,4| 6
∑

(c,d)=1
17-c
2|cd
N>1

vk(c, d, θ) + 2k
∑

(c,d)=1
17-c
2-cd

c≡d (4)

vk(c, d, θ) + 4k
∑

(c,d)=1
17-c
2-cd

c≡−d (4)

vk(c, d, θ).

Now we will consider the next cases, namely N = 2, 5, · · · , 34, and N > 37. Considering −5/(3
√

17) 6
cos θ 6 1/

√
17, we have the following:
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When N = 2, 2k · vk(1, 1, θ) 6 (3/11)k/2, 4k · vk(1,−1, θ) 6 1.

When N = 5, vk(1, 2, θ) 6 (3/187)k/2, vk(1,−2, θ) 6 (1/65)k/2,

vk(2, 1, θ) 6 (3/43)k/2, vk(2,−1, θ) 6 (1/17)k/2.

When N = 10, 4k · vk(1, 3, θ) 6 (1/3)k, 2k · vk(1,−3, θ) 6 (1/37)k/2,

4k · vk(3, 1, θ) 6 1, 2k · vk(3,−1, θ) 6 (1/5)k/2.

When N = 13, vk(2, 3, θ) 6 (1/137)k/2, vk(2,−3, θ) 6 (1/145)k/2,

vk(3, 2, θ) 6 (1/57)k/2, vk(3,−2, θ) 6 (1/65)k/2.

When N = 17, vk(1, 4, θ) 6 (3/779)k/2, vk(1,−4, θ) 6 (1/265)k/2,

vk(4, 1, θ) 6 (3/59)k/2, vk(4,−1, θ) 6 (1/5)k.

When N = 25, vk(3, 4, θ) 6 (1/241)k/2, vk(3,−4, θ) 6 (1/257)k/2,

vk(4, 3, θ) 6 (1/129)k/2, vk(4,−3, θ) 6 (1/145)k/2.

When N = 26, 2k · vk(1, 5, θ) 6 (3/307)k/2, 4k · vk(1,−5, θ) 6 (1/26)k/2,

2k · vk(5, 1, θ) 6 (3/19)k/2, 4k · vk(5,−1, θ) 6 (1/2)k/2.

When N = 29, vk(2, 5, θ) 6 (3/1187)k/2, vk(2,−5, θ) 6 (1/409)k/2,

vk(5, 2, θ) 6 (3/209)k/2, vk(5,−2, θ) 6 (1/83)k/2.

When N = 34, 4k · vk(3, 5, θ) 6 (1/24)k/2, 2k · vk(3,−5, θ) 6 (1/101)k/2,

4k · vk(5, 3, θ) 6 (1/7)k/2, 2k · vk(5,−3, θ) 6 (1/33)k/2.

When N > 37, |ceiθ/2 ±
√

17de−iθ/2|2 > 4N/5,

and the number of terms with c2 + d2 = N is not more than (22/5)N1/2 for N > 41. Then

|R∗17,4|N>37 =
44
√

5
5

∞∑

N=37

(
1
20

N

)(1−k)/2

6 9504
5(k − 3)

(
5
9

)k/2

.

Thus

|R∗17,1| 6 2 + 4
(

1
2

)k/2

+ 2
(

1
5

)k/2

+ · · ·+ 2
(

1
434

)k/2

+
9504

5(k − 3)

(
1
2

)k/2

,(107)

|R∗17,2| 6 2 + 2
(

3
4

)k/2

+ 2
(

3
8

)k/2

+ · · ·+ 2
(

1
429

)k/2

+
9504

5(k − 3)

(
3
4

)k

,(108)

|R∗17,4| 6 4 + 2
(

1
2

)k/2

+ 2
(

1
3

)k/2

+ · · ·+ 2
(

1
409

)k/2

+
9504

5(k − 3)

(
5
9

)k/2

.(109)

We want to show that |R∗17,1| < 2, |R∗17,2| < 2, and |R∗17,4| < 2. But the right-hand side of every
bound is greater than 2. The cases (c, d) = ±(4, 1) give us bound equal to 2 for |R∗17,1|, and the cases
(c, d) = ±(3,−1) give us bound equal to 2 for |R∗17,2|, and the cases (c, d) = ±(1,−1) and ±(3, 1) give us
bound equal to 4 for |R∗17,4|.

5.6.6. Γ∗0(19). We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,19,1(θ) = 2 cos(kθ/2) + R∗19,1,(110)

F ∗k,19,2(θ) = 2 cos(kθ/2) + R∗19,2,(111)

F ∗k,19,3(θ) = 2 cos(kθ/2) + R∗19,3,(112)

where R∗19,1, R∗19,2, and R∗19,3 are the terms such that N > 1 of F ∗k,19,1, F ∗k,19,2, and F ∗k,19,3, respectively.
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Firstly, for F ∗k,19,1(θ),

|R∗19,1| 6
∑

(c,d)=1
19-c
N>1

|ceiθ/2 +
√

19de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

19de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 19d2 + 2

√
19cd cos θ

)k/2
, and

vk(c, d, θ) = vk(−c,−d, θ). Now we will consider the next cases, namely N = 2, 5, · · · , 41, and N > 50.
Considering −17/(4

√
19) 6 cos θ 6 0, we have the following:

When N = 2, vk(1, 1, θ) 6 (2/23)k/2, vk(1,−1, θ) 6 (1/20)k/2.

When N = 5, vk(1, 2, θ) 6 (1/60)k/2, vk(1,−2, θ) 6 (1/77)k/2,

vk(2, 1, θ) 6 (1/6)k/2, vk(2,−1, θ) 6 (1/23)k/2.

When N = 10, vk(1, 3, θ) 6 (2/293)k/2, vk(1,−3, θ) 6 (1/172)k/2,

vk(3, 1, θ) 6 (2/5)k/2, vk(3,−1, θ) 6 (1/28)k/2.

When N = 13, vk(2, 3, θ) 6 (1/124))k/2, vk(2,−3, θ) 6 (1/175)k/2,

vk(3, 2, θ) 6 (1/34)k/2, vk(3,−2, θ) 6 (1/85)k/2.

When N = 17, vk(1, 4, θ) 6 (1/271)k/2, vk(1,−4, θ) 6 (1/305)k/2,

vk(4, 1, θ) 6 1, vk(4,−1, θ) 6 (1/35)k/2.

When N = 25, vk(3, 4, θ) 6 (1/211)k/2, vk(3,−4, θ) 6 (1/313)k/2,

vk(4, 3, θ) 6 (1/85)k/2, vk(4,−3, θ) 6 (1/187)k/2.

When N = 26, vk(1, 5, θ) 6 (2/867)k/2, vk(1,−5, θ) 6 (1/476)k/2,

vk(5, 1, θ) 6 (2/3)k/2, vk(5,−1, θ) 6 (1/44)k/2.

When N = 29, vk(2, 5, θ) 6 (1/394)k/2, vk(2,−5, θ) 6 (1/479)k/2,

vk(5, 2, θ) 6 (1/4)k, vk(5,−2, θ) 6 (1/101)k/2.

When N = 34, vk(3, 5, θ) 6 (2/715)k/2, vk(3,−5, θ) 6 (1/485)k/2,

vk(5, 3, θ) 6 (2/137)k/2, vk(5,−3, θ) 6 (1/13)k.

When N = 37, vk(1, 6, θ) 6 (1/634)k/2, vk(1,−6, θ) 6 (1/685)k/2,

vk(6, 1, θ) 6 (1/4)k/2, vk(6,−1, θ) 6 (1/55)k/2.

When N = 41, vk(4, 5, θ) 6 (1/321)k/2, vk(4,−5, θ) 6 (1/491)k/2,

vk(5, 4, θ) 6 (1/159)k/2, vk(5,−4, θ) 6 (1/329)k/2.

When N > 50, |ceiθ/2 ±
√

19de−iθ/2|2 > 1
22

N,

and the rest of the question is about the number of terms with c2 + d2 = N . Because 19 - c, the number
of |c| is not more than (18/19)N1/2 + 1. Thus the number of terms with c2 + d2 = N is not more than
4((18/19)N1/2 + 1) 6 (13/3)N1/2 for N > 50. Then

|R∗19,1|N>50 =
13
√

22
3

∞∑

N=50

(
1
22

N

)(1−k)/2

6 4459
√

462
33(k − 3)

(
22
49

)k/2

.

Secondly, for F ∗k,19,2(θ),

|R∗19,2| 6
∑

(c,d)=1
19-c
2|cd
N>1

vk(c, d, θ) + 2k
∑

(c,d)=1
19-c
2-cd

vk(c, d, θ).

Now we will consider the next cases, namely N = 2, 5, · · · , 41, and N > 50. Considering 0 6 cos θ 6
4/
√

19, we have the following:
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When N = 2, 2k · vk(1, 1, θ) 6 (1/5)k/2, 2k · vk(1,−1, θ) 6 (1/3)k/2.

When N = 5, vk(1, 2, θ) 6 (1/77)k/2, vk(1,−2, θ) 6 (1/61)k/2,

vk(2, 1, θ) 6 (1/23)k/2, vk(2,−1, θ) 6 (1/7)k/2.

When N = 10, 2k · vk(1, 3, θ) 6 (1/43)k/2, 2k · vk(1,−3, θ) 6 (1/37)k/2,

2k · vk(3, 1, θ) 6 (1/7)k/2, 2k · vk(3,−1, θ) 6 1.

When N = 13, vk(2, 3, θ) 6 (1/175)k/2, vk(2,−3, θ) 6 (1/127)k/2,

vk(3, 2, θ) 6 (1/85)k/2, vk(3,−2, θ) 6 (1/37)k/2.

When N = 17, vk(1, 4, θ) 6 (1/305)k/2, vk(1,−4, θ) 6 (1/273)k/2,

vk(4, 1, θ) 6 (1/35)k/2, vk(4,−1, θ) 6 (1/3)k/2.

When N = 25, vk(3, 4, θ) 6 (1/313)k/2, vk(3,−4, θ) 6 (1/217)k/2,

vk(4, 3, θ) 6 (1/187)k/2, vk(4,−3, θ) 6 (1/91)k/2.

When N = 26, 2k · vk(1, 5, θ) 6 (1/119)k/2, 2k · vk(1,−5, θ) 6 (1/109)k/2,

2k · vk(5, 1, θ) 6 (1/11)k/2, 2k · vk(5,−1, θ) 6 1.

When N = 29, vk(2, 5, θ) 6 (1/479)k/2, vk(2,−5, θ) 6 (1/399)k/2,

vk(5, 2, θ) 6 (1/101)k/2, vk(5,−2, θ) 6 (1/21)k/2.

When N = 34, 2k · vk(3, 5, θ) 6 (4/485)k/2, 2k · vk(3,−5, θ) 6 (4/405)k/2,

2k · vk(5, 3, θ) 6 (2/13)k, 2k · vk(5,−3, θ) 6 (1/29)k/2.

When N = 37, vk(1, 6, θ) 6 (1/685)k/2, vk(1,−6, θ) 6 (1/637)k/2,

vk(6, 1, θ) 6 (1/55)k/2, vk(6,−1, θ) 6 (1/7)k/2.

When N = 41, vk(4, 5, θ) 6 (1/491)k/2, vk(4,−5, θ) 6 (1/331)k/2,

vk(5, 4, θ) 6 (1/329)k/2, vk(5,−4, θ) 6 (1/13)k.

When N > 50, |ceiθ/2 ±
√

19de−iθ/2|2 > 3N/20,

and the number of terms with c2 + d2 = N is not more than (13/3)N1/2 for N > 50. Then

|R∗19,2|N>50 =
52
√

15
9

∞∑

N=50

(
3
80

N

)(1−k)/2

6 4459
3(k − 3)

(
80
147

)k/2

.

Finally, for F ∗k,19,3(θ),

|R∗19,3| 6
∑

(c,d)=1
19-c
3|cd
N>1

vk(c, d, θ) +
∑

(c,d)=1
19-c
3-cd

c≡d (3)

vk(c, d, θ) + 3k
∑

(c,d)=1
19-c
3-cd

c≡−d (3)

vk(c, d, θ).

Now we will consider the next cases, namely N = 2, 5, · · · , 41, and N > 50. Considering −7/(2
√

19) 6
cos θ 6 13/(4

√
19), we have the following:

When N = 2, vk(1, 1, θ) 6 (1/13)k/2, 3k · vk(1,−1, θ) 6 (2/3)k/2.

When N = 5, 3k · vk(1, 2, θ) 6 (1/7)k/2, vk(1,−2, θ) 6 (1/8)k,

3k · vk(2, 1, θ) 6 1, vk(2,−1, θ) 6 (1/10)k/2.

When N = 10, vk(1, 3, θ) 6 (1/151)k/2, vk(1,−3, θ) 6 (2/305)k/2,

vk(3, 1, θ) 6 (1/7)k/2, vk(3,−1, θ) 6 (2/17)k/2.

When N = 13, vk(2, 3, θ) 6 (1/133)k/2, vk(2,−3, θ) 6 (1/136)k/2,
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vk(3, 2, θ) 6 (1/43)k/2, vk(3,−2, θ) 6 (1/46)k/2.

When N = 17, vk(1, 4, θ) 6 (1/277)k/2, 3k · vk(1,−4, θ) 6 (1/31)k/2,

vk(4, 1, θ) 6 (1/7)k/2, 3k · vk(4,−1, θ) 6 1.

When N = 25, vk(3, 4, θ) 6 (1/229)k/2, vk(3,−4, θ) 6 (1/235)k/2,

vk(4, 3, θ) 6 (1/103)k/2, vk(4,−3, θ) 6 (1/109)k/2.

When N = 26, 3k · vk(1, 5, θ) 6 (1/7)k, vk(1,−5, θ) 6 (2/887)k/2,

3k · vk(5, 1, θ) 6 1, vk(5,−1, θ) 6 (2/23)k/2.

When N = 29, vk(2, 5, θ) 6 (1/409)k/2, 3k · vk(2,−5, θ) 6 (1/46)k/2,

vk(5, 2, θ) 6 (1/31)k/2, 3k · vk(5,−2, θ) 6 (1/2)k.

When N = 34, vk(3, 5, θ) 6 (1/380)k/2, vk(3,−5, θ) 6 (2/775)k/2,

vk(5, 3, θ) 6 (1/91)k/2, vk(5,−3, θ) 6 (2/197)k/2.

When N = 37, vk(1, 6, θ) 6 (1/643)k/2, vk(1,−6, θ) 6 (1/646)k/2,

vk(6, 1, θ) 6 (1/13)k/2, vk(6,−1, θ) 6 (1/4)k.

When N = 41, 3k · vk(4, 5, θ) 6 (1/39)k/2, vk(4,−5, θ) 6 (1/19)k,

3k · vk(5, 4, θ) 6 (1/21)k/2, vk(5,−4, θ) 6 (1/199)k/2.

When N > 50, |ceiθ/2 ±
√

19de−iθ/2|2 > 27N/80,

and the number of terms with c2 + d2 = N is not more than (13/3)N1/2 for N > 50. Then

|R∗19,3|N>50 =
52
√

15
9

∞∑

N=50

(
3
80

N

)(1−k)/2

6 4459
3(k − 3)

(
80
147

)k/2

.

Thus

|R∗19,1| 6 2 + 2
(

2
3

)k/2

+ 2
(

2
5

)k/2

+ · · ·+ 2
(

1
685

)k/2

+
4459

√
462

33(k − 3)

(
22
49

)k/2

,(113)

|R∗19,2| 6 4 + 4
(

1
3

)k/2

+ 2
(

1
5

)k/2

+ · · ·+ 2
(

1
685

)k/2

+
4459

3(k − 3)

(
80
147

)k/2

,(114)

|R∗19,3| 6 6 + 2
(

2
3

)k/2

+ 2
(

1
2

)k

+ · · ·+ 2
(

1
646

)k/2

+
4459

3(k − 3)

(
80
147

)k/2

.(115)

We want to show that |R∗19,1| < 2, |R∗19,2| < 2, and |R∗19,3| < 2. But the right-hand side of every
bound is greater than 2. The cases (c, d) = ±(4, 1) give us bound equal to 2 for |R∗19,1|, and the cases
(c, d) = ±(3,−1) and ±(5,−1) give us bound equal to 4 for |R∗19,2|, and the cases (c, d) = ±(2, 1),
±(4,−1), and ±(5, 1) give us bound equal to 6 for |R∗19,3|.
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5.7. Valence formula. In order to decide the locating of zeros of E∗
k,p(z), we need the valence formula

for Γ∗0(p):

5.7.1. Valence formula for Γ∗0(5).

Proposition 5.12. Let f be a modular function of weight k for Γ∗0(5), which is not identically zero. We
have

(116) v∞(f) +
1
2
vi/

√
5(f) +

1
2
vρ5,1(f) +

1
2
vρ5,2(f) +

∑

p∈Γ∗0(5)\H
p 6=i/

√
5,ρ5,1,ρ5,2

vp(f) =
k

4
,

where ρ5,1 := −1/2 + i/
(
2
√

5
)
, ρ5,2 := −2/5 + i/5.

-

1
����

2
0 1

����

2
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Proof. Let f be a nonzero modular function of weight k for Γ∗0(5), and let C be a contour of its funda-
mental domain F∗(5) represented in Figure 8, whose interior contains every zero and pole of f except for
i/
√

5, ρ5,1, and ρ5,2. By the Residue theorem, we have

1
2πi

∫

C

df

f
=

∑

p∈Γ∗0(5)\H
p 6=i/

√
5,ρ5,1,ρ5,2

vp(f).

Similar to Proposition 3.1, (See [SE])

(i) For the arc GA, we have

1
2πi

∫ A

G

df

f
= −v∞(f).

(ii) For the arcs BB′, CC ′, DD′, EE′, and FF ′, when the radii of each arc tends to 0, then we have

1
2πi

∫ B′

B

df

f
=

1
2πi

∫ F ′

F

df

f
→ −1

4
vρ5,1(f),

1
2πi

∫ C′

C

df

f
=

1
2πi

∫ E′

E

df

f
→ −1

4
vρ5,2(f),

1
2πi

∫ D′

D

df

f
→ −1

2
vi/

√
5(f).

(iii) For the arcs AB and F ′G, since f(Tz) = f(z) for T = ( 1 1
0 1 ),

1
2πi

∫ B

A

df

f
+

1
2πi

∫ G

F ′

df

f
= 0.
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(iv) For the arcs C ′D and D′E, since f(W5z) = (
√

5z)kf(z), we have

df(W5z)
f(W5z)

= k
dz

z
+

df(z)
f(z)

.

When the radii of the arcs CC ′, DD′, EE′ tend to 0, then

1
2πi

∫ D

C′

df(z)
f(z)

+
1

2πi

∫ E

D′

df(z)
f(z)

=
1

2πi

∫ D

C′

(
−k

dz

z

)
→ k

θ1

2π
,

where tan θ1 = 2.
Similarly, for the arcs B′C and E′F , since f

((−2 1
−5 2

)
W5z

)
= (2

√
5z +

√
5)kf(z), we have

df
((−2 1
−5 2

)
W5z

)

f
((−2 1
−5 2

)
W5z

) = k
dz

z + 1/2
+

df(z)
f(z)

.

When the radii of the arcs CC ′, DD′, EE′ tend to 0, then

1
2πi

∫ C

B′

df(z)
f(z)

+
1

2πi

∫ F

E′

df(z)
f(z)

=
1

2πi

∫ C

B′

(
−k

dz

z + 1/2

)
→ k

θ2

2π
,

where tan θ1 = 1/2.
Thus, since θ1 + θ2 = π/2,

k
θ1

2π
+ k

θ2

2π
=

k

4

¤

5.7.2. Valence formula for Γ∗0(7).

Proposition 5.13. Let f be a modular function of weight k for Γ∗0(7), which is not identically zero. We
have

(117) v∞(f) +
1
2
vi/

√
7(f) +

1
2
vρ7,1(f) +

1
3
vρ7,2(f) +

∑

p∈Γ∗0(7)\H
p 6=i/

√
7,ρ7,1,ρ7,2

vp(f) =
k

3
,

where ρ7,1 := −1/2 + i/
(
2
√

7
)
, ρ7,2 := −5/14 +

√
3i/14.

The proof of this proposition is similar to Proposition 3.1, 5.12.

5.7.3. Valence formula for Γ∗0(11).

Proposition 5.14. Let f be a modular function of weight k for Γ∗0(11), which is not identically zero.
We have

(118) v∞(f) +
1
2
vi/

√
11(f) +

1
2
vρ11,1(f) +

1
2
vρ11,2(f) +

1
2
vρ11,3(f)

+
∑

p∈Γ∗0(11)\H
p 6=i/

√
11,ρ11,1,ρ11,2,ρ11,3

vp(f) =
k

2
,

where ρ11,1 := −1/2 + i/
(
2
√

11
)
, ρ11,2 := −1/3 + i/

(
3
√

11
)
, and ρ11,3 := 1/3 + i/

(
3
√

11
)
.

Proof. Let f be a nonzero modular function of weight k for Γ∗0(11), and let C be a contour of its
fundamental domain F∗(11) (Figure 7), whose interior contains every zero and pole of f except for
i/
√

11, ρ11,1, ρ11,2, ρ11,3, and ρ11,4 := −25/66 +
√

35i/66 (cf. Figure 8). By the Residue theorem, we
have

1
2πi

∫

C

df

f
=

∑

p∈Γ∗0(11)\H
p 6=i/

√
11,ρ11,1,··· ,ρ11,4

vp(f).

(i) For the arc around ∞, we have −v∞(f).
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(ii) For the arcs around i/
√

11, ρ11,1, · · · , ρ11,4, when the radii of each arc tends to 0, then we have

−1
2
vi/

√
11(f), −1

2
vρ11,1(f), −1

2
vρ11,2(f), −1

2
vρ11,3(f),

−vρ11,4(f).

(iii) For the arcs on {z ; Re(z) = −1/2} and {z ; Re(z) = 1/2}, since f(Tz) = f(z) for T = ( 1 1
0 1 ), we have

0.
(iv) For the arcs on {z ; |z| = 1/

√
11}, since f(W11z) = (

√
11z)kf(z), we have kθ1/(2π), where tan θ1 =

19/
√

35. For the arcs on {z ; |z ± 1/2| = 1/(2
√

11)}, since f
(( −5 1
−11 2

)
W11z

)
= (2

√
11z +

√
11)kf(z), we

have kθ2/(2π), where tan θ2 = 8/
√

35.
Furthermore, for the arcs on {z ; |z+1/3| = 1/(3

√
11)}, since f

((−4 1
11 −3

)
W11z

)
= (3

√
11z+

√
11)kf(z),

we have
df

((−4 1
11 −3

)
W11z

)

f
((−4 1

11 −3

)
W11z

) = k
dz

z + 1/3
+

df(z)
f(z)

, and k
θ3

2π
,

where tan θ3 = 3/
√

35.
Similarly, for the arcs on {z ; |z − 1/3| = 1/(3

√
11)}, since f (( 4 1

11 3 )W11z) = (3
√

11z −√11)kf(z), we
have kθ3/(2π).

Thus, since θ1 + θ2 + 2θ3 = π,

k
θ1

2π
+ k

θ2

2π
+ 2 · k θ3

2π
=

k

2
.

¤
5.7.4. Valence formula for Γ∗0(13).

Proposition 5.15. Let f be a modular function of weight k for Γ∗0(13), which is not identically zero.
We have

(119) v∞(f) +
1
2
vi/

√
13(f) +

1
2
vρ13,1(f) +

1
2
vρ13,2(f) +

1
3
vρ13,3(f)

+
∑

p∈Γ∗0(13)\H
p 6=i/

√
13,ρ13,1,ρ13,2,ρ13,3

vp(f) =
7
12

k,

where ρ13,1 := −1/2 + i/
(
2
√

13
)
, ρ13,2 := −5/13 + i/13, and ρ13,3 := −7/26 +

√
3i/26.

Proof. Let f be a nonzero modular function of weight k for Γ∗0(13), and let C be a contour of its
fundamental domain F∗(13) (Figure 7), whose interior contains every zero and pole of f except for
i/
√

13, ρ13,1, ρ13,2, and ρ13,3 (cf. Figure 8). By the Residue theorem, we have
1

2πi

∫

C

df

f
=

∑

p∈Γ∗0(13)\H
p 6=i/

√
13,ρ13,1,ρ13,2,ρ13,3

vp(f).

(i) For the arc around ∞, we have −v∞(f).
(ii) For the arcs around i/

√
13, ρ13,1, ρ13,2, and ρ13,3, when the radii of each arc tends to 0, then we have

−1
2
vi/

√
13(f), −1

2
vρ13,1(f), −1

2
vρ13,2(f), −1

3
vρ13,3(f).

(iii) For the arcs on {z ; Re(z) = −1/2} and {z ; Re(z) = 1/2}, since f(Tz) = f(z) for T = ( 1 1
0 1 ), we have

0.
(iv) For the arcs on {z ; |z| = 1/

√
13}, since f(W13z) = (

√
13z)kf(z), we have kθ1/(2π), where tan θ1 =

7/
√

3. For the arcs on {z ; |z ± 1/2| = 1/(2
√

13)}, since f
(( −6 1
−13 2

)
W13z

)
= (2

√
13z +

√
13)kf(z), we

have kθ2/(2π), where tan θ2 = 3/2.
Furthermore, for the arcs on {z ; |z±1/3| = 1/(3

√
13)}, since f

(( −4 1
−13 3

)
W13z

)
= (3

√
13z+

√
13)kf(z),

we have k(θ3 + θ3
′)/(2π), where tan θ3 = 5/(3

√
3) and tan θ3

′ = 2/3.
Thus, since θ1 + θ2 + θ3 + θ3

′ = 7π/6,

k
θ1

2π
+ k

θ2

2π
+ k

θ3 + θ3
′

2π
=

7
12

k.

¤



ON THE ZEROS OF EISENSTEIN SERIES FOR Γ∗0(p) AND Γ0(p) OF LOW LEVELS 59

5.7.5. Valence formula for Γ∗0(17).

Proposition 5.16. Let f be a modular function of weight k for Γ∗0(17), which is not identically zero.
We have

(120) v∞(f) +
1
2
vi/

√
17(f) +

1
2
vρ17,1(f) +

1
2
vρ17,2(f) +

1
2
vρ17,3(f) +

1
2
vρ17,4(f)

+
∑

p∈Γ∗0(17)\H
p6=i/

√
17,ρ17,1,ρ17,2,ρ17,3,ρ17,4

vp(f) =
3
4
k,

where ρ17,1 := −1/2 + i/
(
2
√

17
)
, ρ17,2 := −1/3 + i/

(
3
√

17
)
, ρ17,3 := −4/17 + i/17, and ρ17,4 :=

1/3 + i/
(
3
√

17
)
.

Proof. Let f be a nonzero modular function of weight k for Γ∗0(17), and let C be a contour of its
fundamental domain F∗(17) (Figure 7), whose interior contains every zero and pole of f except for
i/
√

17, ρ17,1, · · · , ρ17,4, and ρ17,5 := −20/51 + 2
√

2i/51 (cf. Figure 8). By the Residue theorem, we have

1
2πi

∫

C

df

f
=

∑

p∈Γ∗0(17)\H
p 6=i/

√
17,ρ17,1,··· ,ρ17,5

vp(f).

(i) For the arc around ∞, we have −v∞(f).
(ii) For the arcs around i/

√
17, ρ17,1, · · · , ρ17,5, when the radii of each arc tends to 0, then we have

−1
2
vi/

√
17(f), −1

2
vρ17,1(f), −1

2
vρ17,2(f), −1

2
vρ17,3(f), −1

2
vρ17,4(f),

−vρ17,5(f).

(iii) For the arcs on {z ; Re(z) = −1/2} and {z ; Re(z) = 1/2}, since f(Tz) = f(z) for T = ( 1 1
0 1 ), we have

0.
(iv) For the arcs on {z ; |z| = 1/

√
17}, since f(W17z) = (

√
17z)kf(z), we have kθ1/(2π), where tan θ1 = 4.

For the arcs on {z ; |z ± 1/2| = 1/(2
√

17)}, since f
(( −8 1
−17 2

)
W17z

)
= (2

√
17z +

√
17)kf(z), we have

kθ2/(2π), where tan θ2 = 11/(4
√

2).
For the arcs on {z ; |z + 1/3| = 1/(3

√
17)}, since f

((−6 1
17 −3

)
W17z

)
= (3

√
17z +

√
17)kf(z), we

have kθ3/(2π), where tan θ3 = 3/(2
√

2). Similarly, for the arcs on {z ; |z − 1/3| = 1/(3
√

17)}, since
f (( 6 1

17 3 )W17z) = (3
√

17z −√17)kf(z), we have kθ3/(2π).
Furthermore, for the arcs on {z ; |z±1/4| = 1/(4

√
17)}, since f

(( −4 1
−17 4

)
W17z

)
= (4

√
17z+

√
17)kf(z),

we have
df

(( −4 1
−17 4

)
W17z

)

f
(( −4 1
−17 4

)
W17z

) = k
dz

z + 1/4
+

df(z)
f(z)

, and k
θ4 + θ4

′

2π
,

where tan θ4 = 1/4 and tan θ4
′ = 5/(8

√
2)..

Thus, since θ1 + θ2 + 2θ3 + θ4 + θ4
′ = 3π/2,

k
θ1

2π
+ k

θ2

2π
+ 2 · k θ3

2π
+ k

θ4 + θ4
′

2π
=

3
4
k.

¤

5.7.6. Valence formula for Γ∗0(19).

Proposition 5.17. Let f be a modular function of weight k for Γ∗0(19), which is not identically zero.
We have

(121) v∞(f) +
1
2
vi/

√
19(f) +

1
2
vρ19,1(f) +

1
3
vρ19,2(f) +

1
2
vρ19,3(f) +

1
2
vρ19,4(f)

+
∑

p∈Γ∗0(19)\H
p6=i/

√
19,ρ19,1,ρ19,2,ρ19,3,ρ19,4

vp(f) =
5
6
k,
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where ρ19,1 := −1/2 + i/
(
2
√

19
)
, ρ19,2 := −15/38 +

√
3i/38, ρ19,3 := −1/4 + i/

(
4
√

19
)
, and ρ19,4 :=

1/4 + i/
(
4
√

19
)
.

Proof. Let f be a nonzero modular function of weight k for Γ∗0(19), and let C be a contour of its
fundamental domain F∗(19) (Figure 7), whose interior contains every zero and pole of f except for
i/
√

19, ρ19,1, · · · , ρ19,4, and ρ19,5 := −21/76 +
√

15i/76 (cf. Figure 8). By the Residue theorem, we have
1

2πi

∫

C

df

f
=

∑

p∈Γ∗0(19)\H
p 6=i/

√
19,ρ19,1,··· ,ρ19,5

vp(f).

(i) For the arc around ∞, we have −v∞(f).
(ii) For the arcs around i/

√
19, ρ19,1, · · · , ρ19,5, when the radii of each arc tends to 0, then we have

−1
2
vi/

√
19(f), −1

2
vρ19,1(f), −1

3
vρ19,2(f), −1

2
vρ19,3(f), −1

2
vρ19,4(f),

−vρ19,5(f).

(iii) For the arcs on {z ; Re(z) = −1/2} and {z ; Re(z) = 1/2}, since f(Tz) = f(z) for T = ( 1 1
0 1 ), we have

0.
(iv) For the arcs on {z ; |z| = 1/

√
19}, since f(W19z) = (

√
19z)kf(z), we have kθ1/(2π), where tan θ1 =

17/
√

15. For the arcs on {z ; |z ± 1/2| = 1/(2
√

19)}, since f
(( −9 1
−19 2

)
W19z

)
= (2

√
19z +

√
19)kf(z), we

have kθ2/(2π), where tan θ2 = 4/
√

3. For the arcs on {z ; |z±1/3| = 1/(3
√

19)}, since f
(( −6 1
−19 3

)
W19z

)
=

(3
√

19z +
√

19)kf(z), we have k(θ3 + θ3
′)/(2π), where tan θ3 = 13/(3

√
15) and tan θ3

′ = 7/(3
√

3).
Furthermore, for the arcs on {z ; |z+1/4| = 1/(4

√
19)}, since f

((−5 1
19 −4

)
W19z

)
= (4

√
19z+

√
19)kf(z),

we have kθ4/(2π), where tan θ4 = 2/
√

15. Similarly, for the arcs on {z ; |z − 1/4| = 1/(4
√

19)}, since
f (( 5 1

19 4 )W19z) = (4
√

19z −√19)kf(z), we have kθ4/(2π).
Thus, since θ1 + θ2 + θ3 + θ3

′ + 2θ4 = 5π/3,

k
θ1

2π
+ k

θ2

2π
+ k

θ3 + θ3
′

2π
+ 2 · k θ4

2π
=

5
6
k.

¤
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5.8. Γ∗0(5).

5.8.1. Preliminaries. Let α5 ∈ [0, π/2] such that tan α5 = 2, then we denote

A∗5,1 := {z ; |z| = 1/
√

5, π/2 < Arg(z) < π/2 + α5},
A∗5,2 := {z ; |z + 1/2| = 1/(2

√
5), α5 < Arg(z) < π/2}.

Now we have

ρ5,2 = −2
5

+
i

5
=

ei(π/2+α5)

√
5

=
eiα5

2
√

5
− 1

2
,

and we have

F ∗k,5,1(π/2 + α5) = eik(π/2+α5)/2E∗
k,5(ρ5,2),

F ∗k,5,2(α5) = eikα5/2E∗
k,5(ρ5,2).

Now, we define

F ∗k,5(θ) =

{
F ∗k,5,1(θ) π/2 6 θ 6 π/2 + α5

F ∗k,5,2(θ − π/2) π/2 + α5 6 θ 6 π
.

Then F ∗k,5 is continuous in the interval [π/2, π]. Note that F ∗k,5,1(π/2 + α5) = ei(π/2)k/2F ∗k,5,2(α5).
Let f be a modular form for Γ∗0(5) of weight k, and let k ≡ 2 (mod 4). Then we have

f(i/
√

5) = f(W5 i/
√

5) = ikf(i/
√

5) = −f(i/
√

5),

f(ρ5,1) = f(
(

1 −1
0 1

) (−2 1
−5 2

)
W5 ρ5,1) = ikf(ρ5,1) = −f(ρ5,1),

f(ρ5,2) = f(
(−2 1
−5 2

)
ρ5,2) = ikf(ρ5,2) = −f(ρ5,2).

Thus f(i/
√

5) = f(ρ5,1) = f(ρ5,2) = 0, then we have vi/
√

5(f) > 1, vρ5,1(f) > 1, and vρ5,2(f) > 1.
Let k be an even integer such that k ≡ 0 (mod 4). Then we have

E∗
k,5

(
i√
5

)
=

2 · 5k/2

5k/2 + 1
Ek(

√
5i) 6= 0

E∗
k,5(ρ5,1) =

2 · 5k/2

5k/2 + 1
Ek

(
−1

2
+
√

5
2

i

)
6= 0

E∗
k,5(ρ5,2) =

1
5k/2 + 1

(5k/2 + (2 + i)k)Ek(i) 6= 0.

Thus vi/
√

5(E
∗
k,5) = vρ5,1(E

∗
k,5) = vρ5,2(E

∗
k,5) = 0.

5.8.2. E∗
k,5 of low weights.

F ∗k,5(π/2). Let k > 4 be an even integer divisible by 4. We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,5(π/2) = F ∗k,5,1(π/2) = 2 cos(kπ/4) + R∗5,π/2

where
|R∗5,π/2| 6

∑

(c,d)=1
5-d

N>1

|ceiπ/4 +
√

5de−iπ/4|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

5de−iθ/2|−k, then vk(c, d, π/2) = 1/(c2 + 5d2)k/2. Now we will consider
the next cases, namely N = 2, 5, 10, 13, 17, and N > 25. We have the following:

When N = 2, vk(1, 1, π/2) 6 (1/6)k/2.

When N = 5, vk(1, 2, π/2) 6 (1/21)k/2, vk(2, 1, π/2) 6 (1/3)k.

When N = 10, vk(1, 3, π/2) 6 (1/46)k/2, vk(3, 1, π/2) 6 (1/14)k/2.

When N = 13, vk(2, 3, π/2) 6 (1/7)k, vk(3, 2, π/2) 6 (1/29)k/2.

When N = 17, vk(1, 4, π/2) 6 (1/21)k/2, vk(4, 1, π/2) 6 (1/3)2k.
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When N > 25, c2 + 5d2 > N,

and the number of terms with c2 + d2 = N is not more than (96/25)N1/2 for N > 25. Then

|R∗5,π/2|N>25 6 192
25(k − 3)

(
1
24

)(k−3)/2

.

Furthermore,

|R∗5,π/2| 6 4
(

1
6

)k/2

+ 4
(

1
3

)k

+ · · ·+ 4
(

1
3

)2k

+
192

25(k − 3)

(
1
24

)(k−3)/2

,

6 1.77563... (k > 4)

In conclusion, we have following:

Lemma 5.7. For an even integer k > 4,

F ∗k,5(π/2)





> 0 k ≡ 0 (mod 8)
< 0 k ≡ 4 (mod 8)
= 0 k ≡ 2 (mod 4)

.

F ∗k,5(π/2 + α5). Let k > 4 be an even integer divisible by 4.

F ∗k,5(π/2 + α5) = eik(π/2+α5)/2E∗
k,5(ρ5,2)

=
eik(π/2+α5)/2

5k/2 + 1
(5k/2 + (2 + i)k)Ek(i).

Here

eik(π/2+α5)/2(5k/2 + (2 + i)k) = 5k/2eik(π/2+α5)/2(1 + e−ik(π/2+α5))

= 2 · 5k/2 cos(k(π/2 + α5)/2).

In conclusion, we have following:

Lemma 5.8. For an even integer k > 4,

F ∗k,5(π/2 + α5) =

{
2·5k/2

5k/2+1
cos(k(π/2 + α5)/2)Ek(i) k ≡ 0 (mod 4)

0 k ≡ 2 (mod 4)
.

Furthermore, by Proposition 3.3, we have Ek(i) > 0 for every k > 4 such that k ≡ 0 (mod 4).

F ∗k,5(π). Let k > 8 be an even integer divisible by 4. We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,5(π) = F ∗k,5,2(π/2) = 2 cos(kπ/4) + R∗5,π.

where
|R∗5,π| 6

∑

(c,d)=1
5-c
2|cd
N>1

|ceiπ/4 + d
√

5e−iπ/4|−k + 2k
∑

(c,d)=1
5-c
2-cd

|ceiπ/4 + d
√

5e−iπ/4|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

5de−iθ/2|−k, then vk(c, d, π/2) = 1/(c2 + 5d2)k/2. Now we will consider
the next cases, namely N = 2, 5, 10, 13, 17, and N > 25. We have the following:

When N = 2, vk(1, 1, π/2) 6 (2/3)k/2.

When N = 5, vk(1, 2, π/2) 6 (1/21)k/2, vk(2, 1, π/2) 6 (1/3)k.

When N = 10, vk(1, 3, π/2) 6 (2/23)k/2, vk(3, 1, π/2) 6 (2/7)k/2.

When N = 13, vk(2, 3, π/2) 6 (1/7)k, vk(3, 2, π/2) 6 (1/29)k/2.

When N = 17, vk(1, 4, π/2) 6 (1/21)k/2, vk(4, 1, π/2) 6 (1/3)2k.
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When N > 25, c2 + 5d2 > N,

and the number of terms with c2 + d2 = N is not more than (96/25)N1/2 for N > 25. Then

|R∗5,π|N>25 6 1536
25(k − 3)

(
1
6

)(k−3)/2

.

Furthermore,

|R∗5,π| 6 4
(

2
3

)k/2

+ · · ·+ 4
(

1
3

)2k

+
1536

25(k − 3)

(
1
6

)(k−3)/2

,

6 0.95701... (k > 8)

In conclusion, we have following:

Lemma 5.9. For an even integer k > 8,

F ∗k,5(π)





> 0 k ≡ 0 (mod 8)
< 0 k ≡ 4 (mod 8)
= 0 k ≡ 2 (mod 4)

.

F ∗k,5(θ) for π/2 6 θ 6 5π/6. Let k > 10 be an even integer. We note that N := c2 + d2.
Firstly, we consider the case N = 1. Since 5π/6 < π/2 + α5, we can write;

F ∗k,5(θ) = F ∗k,5,1(θ) = 2 cos(kθ/2) + R∗5,5π/6 for θ ∈ [π/2, 5π/6],

where
|R∗5,5π/6| 6

∑

(c,d)=1
5-d

N>1

|ceiθ/2 +
√

5de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

5de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 5d2 + 2

√
5cd cos θ

)k/2
. Now we will

consider the next cases, namely N = 2, 5, 10, and N > 13. Considering −√3/2 6 cos θ 6 0, we have the
following:

When N = 2, vk(1, 1, θ) 6 1/
(
6−

√
15

)k/2

, vk(1,−1, θ) 6 (1/6)k/2.

When N = 5, vk(1, 2, θ) 6 1/
(
21− 2

√
15

)k/2

, vk(1,−2, θ) 6 (1/21)k/2,

vk(2, 1, θ) 6 1/
(
9− 2

√
15

)k/2

, vk(2,−1, θ) 6 (1/3)k.

When N = 10, vk(1, 3, θ) 6 1/
(
46− 3

√
15

)k/2

, vk(1,−3, θ) 6 (1/46)k/2,

vk(3, 1, θ) 6 1/
(
14− 3

√
15

)k/2

, vk(3,−1, θ) 6 (1/14)k/2.

When N > 13, |ceiθ/2 ±
√

5de−iθ/2|2 > N/5,

and the number of terms with c2 + d2 = N is not more than (21/5)N1/2 for N > 13. Then

|R∗5,5π/6|N>13 6 1008
√

3
5(k − 3)

(
5
12

)(k−3)/2

.

Furthermore,

|R∗5,π/2| 6 2
(

1
9− 2

√
15

)k/2

+ · · ·+ 2
(

1
46

)k/2

+
1008

√
3

5(k − 3)

(
5
12

)(k−3)/2

,

6 1.34372... (k > 10)

In conclusion, we have following:
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Lemma 5.10. For an even integer k > 10,

F ∗k,5(θ) = 2 cos(kθ/2) + R∗5,5π/6 for θ ∈ [π/2, 5π/6],

where |R∗5,5π/6| < 2.

The locating zeros of E∗
4,5. We have F ∗4,5(π/2) < 0 by Lemma 5.7, and we have F ∗4,5(π/2 + α5) > 0 by

Lemma 5.8 because cos(2(π/2 + α5)) = 3/5 > 0. Thus E∗
4,5 has at least one zero in A∗5,1. Furthermore,

by the valence formula for Γ∗0(5) (Proposition 5.12), E∗
4,5 has no other zero. Thus we have following:

Lemma 5.11. E∗
4,5 has only one zero in A∗5,1, and we have vi/

√
5(E

∗
4,5) = vρ5,1(E

∗
4,5) = vρ5,2(E

∗
4,5) = 0.

The locating zeros of E∗
6,5. By previous subsubsection, we have vi/

√
5(E

∗
6,5) > 1, vρ5,1(E

∗
6,5) > 1, and

vρ5,2(E
∗
6,5) > 1. Furthermore, by the valence formula for Γ∗0(5), E∗

6,5 has no other zero. Thus we have
following:

Lemma 5.12. We have vi/
√

5(E
∗
6,5) = vρ5,1(E

∗
6,5) = vρ5,2(E

∗
6,5) = 1, and E∗

6,5 has no other zero.

The locating zeros of E∗
8,5. We have F ∗8,5(π/2) > 0 by Lemma 5.7, and we have F ∗8,5(π/2 + α5) > 0 by

Lemma 5.8 because cos(4(π/2 + α5)) = −7/25 < 0, and we have F ∗8,5(π) > 0 by Lemma 5.9. Thus E∗
8,5

has at least two zeros in each arc A∗5,1 and A∗5,2. Furthermore, by the valence formula for Γ∗0(5), E∗
8,5 has

no other zero. Thus we have following:

Lemma 5.13. E∗
8,5 has only two zeros in each arc A∗5,1 and A∗5,2, and we have vi/

√
5(E

∗
8,5) = vρ5,1(E

∗
8,5) =

vρ5,2(E
∗
8,5) = 0.

The locating zeros of E∗
10,5.

We have F ∗10,5(3π/5) < 0 and F ∗10,5(4π/5) > 0 by Lemma 5.10. Thus E∗
10,5 has at least one zero in A∗5,1.

In addition, by previous subsubsection, we have vi/
√

5(E
∗
10,5) > 1, vρ5,1(E

∗
10,5) > 1, and vρ5,2(E

∗
10,5) > 1.

Furthermore, by the valence formula for Γ∗0(5), E∗
10,5 has no other zero. Thus we have following:

Lemma 5.14. E∗
10,5 has only one zero in A∗5,1, and we have vi/

√
5(E

∗
10,5) = vρ5,1(E

∗
10,5) = vρ5,2(E

∗
10,5) =

1, and E∗
10,5 has no other zero.

5.8.3. The space of modular forms. Let M∗
k,5 be the space of modular forms for Γ∗0(5) of weight k, and let

M∗0
k,5 be the space of cusp forms for Γ∗0(5) of weight k. When we consider the map M∗

k,5 3 f 7→ f(∞) ∈ C,
the kernel of the map is M∗0

k,5. So dim(M∗
k,5/M

∗0
k,5) 6 1, and M∗

k,5 = CE∗
k,5 ⊕M∗0

k,5.
Recall that

∆5 = η4(z)η4(5z)
is a cusp form for Γ∗0(5) of weight 4 (Remark 4.2). We have following theorem:

Theorem 5.3. Let k be an even integer.
(1) For k < 0 and k = 2, M∗

k,5 = 0.
(2) For k = 0 and 6, we have M∗0

k,5 = 0, and dim(M∗
k,5) = 1 with a base E∗

k,5.
(3) M∗0

k,5 = ∆5M
∗
k−4,5.

The proof of this theorem is very similar to Theorem 3.1 and 5.1. Furthermore, for an even integer
k > 4, dim(M∗

k,5) = (k − 2)/4 if k ≡ 2 (mod 4), and dim(M∗
k,5) = k/4 + 1 if k ≡ 0 (mod 4).

Let k be an even integer k > 4. Write n := dim(M∗
k,5) − 1, then k − 4n = 0 or 6. Because E∗

k,5 −
E∗

k−4n,5(E
∗
4,5)

n ∈ M∗0
k,5, we have M∗

k,5 = CE∗
k−4n,5(E

∗
4,5)

n ⊕M∗0
k,5. Then

M∗
4n,5 = C(E∗

4,5)
n ⊕ C(E∗

4,5)
n−1∆5 ⊕ · · · ⊕ C∆n

5

M∗
4n+6,5 = E∗

6,5((E
∗
4,5)

n ⊕ C(E∗
4,5)

n−1∆5 ⊕ · · · ⊕ C∆n
5 )

Thus, for every p ∈ H and for every f ∈ M∗
k,5, vp(f) > vp(E∗

k−4n,5).
In conclusion, the next proposision follows:



ON THE ZEROS OF EISENSTEIN SERIES FOR Γ∗0(p) AND Γ0(p) OF LOW LEVELS 65

Proposition 5.18. Let k > 4 be an even integer. For every f ∈ M∗
k,5, we have

vi/
√

5(f) > sk, vρ5,1(f) > sk, vρ5,2(f) > sk

(sk = 0, 1 such that 2sk ≡ k (mod 4)).
(122)

Remark 5.5. Every modular form for Γ∗0(5) is generated by

E∗
4,5, E∗

6,5, and ∆5.

Now, we have following conjecture:

Conjecture 5.1. Let k > 4 be an even integer. E∗
k,5 has k/4 zeros in A∗5,1 and A∗5,2 if k ≡ 0 (mod 4),

and E∗
k,5 has (k − 6)/4 zeros in A∗5,1 and A∗5,2 if k ≡ 2 (mod 4). Furthermore, in Proposition 5.18, the

equality hold if f is equal to E∗
k,5 or its constant multiple.

5.8.4. Observation on Conjecture 5.1. To prove Conjecture 5.1 is much more difficult than the proof of
Theorem 1 and 2. The most difficult point is the argument Arg(ρ5,2), which is not a product of rational
number and π. When p = 2 and 3, for Γ∗0(p), the arguments of ρp are 3π/4 and 5π/6, respectively. Then,
in Lemma 5.2 and 5.5, we removed the angle π/2k and π/3k from the angles of A∗2 and A∗3, respectively.
However, for ρ5,2, we can not decide the angle corresponding to π/2k and π/3k. We need more radical
expansion to prove this conjecture.

As a prelude to prove Conjecture 5.1, we omit a few zeros. We consider the interval [π/2, π/2+α5−π/k]
and [π/2 + α5 + π/k, π] for F ∗k,5. Now, we will prove next lemmas in the next subsubsection:

Lemma 5.15. Let k > 12. For ∀θ ∈ [π/2, π/2 + α5 − x] (x = π/k), |R∗5,1| < 2.

Lemma 5.16. Let k > 12. For ∀θ ∈ [α5 + x, π/2] (x = π/k), |R∗5,2| < 2.

By above lemmas, we can easily show that E∗
k,5 has at least k/4 − 2 zeros in A∗5,1 and A∗5,2 if k ≡ 0

(mod 4), and E∗
k,5 has at least (k− 6)/4− 2 zeros in A∗5,1 and A∗5,2 if k ≡ 2 (mod 4). Thus, we can prove

Conjecture 5.1 except for at most 2 zeros.

5.8.5. Expansion of the RSD Method. Before proving the above lemmas, we need the following prelimi-
naries.

Proposition 5.19.
(1) If 0 6 x 6 π/2, then sin x > 1− cosx.
(2) If 0 6 x 6 π/12, then 1− cosx > 23

48x2.

The proofs of Lemma 5.9.4 and 5.9.4 are similar to that of Lemma 5.2. We use the previous proposition
for the following proofs:

Proof of Lemma 5.9.4. Let k > 12 and x = π/k, then 0 6 x 6 π/12.

|eiθ/2 +
√

5e−iθ/2|2 > 9 + 4
√

5 cos(π/2 + α5 − x) > 1 +
23
4

x2. (Prop.5.19)

|eiθ/2 +
√

5e−iθ/2|k > 1 +
69
2

x2 (k > 12).

2vk(1, 1, θ) 6 2− 6624π2

23π2 + 96
1
k2

.

In inequality(88), replace 2 with the bound 2− 6624π2

23π2+96
1
k2 . Then

|R∗5,1| 6 2− 6624π2

23π2 + 96
1
k2

+ 4
(

1
2

)k/2

+ · · ·+ 2
(

1
46

)k/2

+
1008

√
6

5(k − 3)

(
1
2

)k/2

.

Furthermore, (1/2)k/2 is more rapidly decreasing in k than 1/k2, and for k = 12, we have

|R∗5,1| 6 1.26593...

¤
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Proof of Lemma 5.9.4. Let k > 12 and x = π/k, then 0 6 x 6 π/12.
1
4
|eiθ/2 +

√
5e−iθ/2|2 > 1

4
(6 + 2

√
5 cos(α5 + x)) > 1 +

69
96

x2. (Prop.5.19)

1
2k
|eiθ/2 +

√
5e−iθ/2|k > 1 +

69
16

x2 (k > 12).

2k · 2vk(1, 1, θ) 6 2− 6624π2

23π2 + 768
1
k2

.

In inequality(89), replace 2 with the bound 2− 6624π2

23π2+768
1
k2 . Then

|R∗5,2| 6 2− 6624π2

23π2 + 768
1
k2

+ 2
(

2
3

)k/2

+ · · ·+ 2
(

1
9

)k

+
378

√
6

k − 3

(
1
3

)k/2

.

Furthermore, (2/3)k/2 is more rapidly decreasing in k than 1/k2, and for k = 12, we have

|R∗5,2| 6 1.89789...

¤
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5.9. Γ∗0(7).

5.9.1. Preliminaries. Let α7 ∈ [0, π/2] such that tan α7 = 2, then we denote

A∗7,1 := {z ; |z| = 1/
√

7, π/2 < Arg(z) < π/2 + α7},
A∗7,2 := {z ; |z + 1/2| = 1/(2

√
7), α7 − π/6 < Arg(z) < π/2}.

Now we have

ρ7,2 = − 5
14

+
√

3i

14
=

ei(π/2+α7)

√
7

=
ei(α7−π/6)

2
√

7
− 1

2
,

and we have

F ∗k,7,1(π/2 + α7) = eik(π/2+α7)/2E∗
k,7(ρ7,2),

F ∗k,7,2(α7 − π/6) = eik(α7−π/6)/2E∗
k,7(ρ7,2).

Now, we define

F ∗k,7(θ) =

{
F ∗k,7,1(θ) π/2 6 θ 6 π/2 + α7

F ∗k,7,2(θ − 2π/3) π/2 + α7 6 θ 6 7π/6
.

Then F ∗k,7 is continuous in the interval [π/2, 7π/6]. Note that F ∗k,7,1(π/2+α7) = ei(2π/3)k/2F ∗k,7,2(α7−π/6).
Let f be a modular form for Γ∗0(7) of weight k, and let k ≡ 2 (mod 4). Then we have

f(i/
√

7) = f(W7 i/
√

7) = ikf(i/
√

7) = −f(i/
√

7),

f(ρ7,1) = f(( 1 1
0 1 )

(−3 −1
7 2

)
W7 ρ7,1) = ikf(ρ7,1) = −f(ρ7,1).

Thus f(i/
√

7) = f(ρ7,1) = 0, then we have vi/
√

7(f) > 1 and vρ7,1(f) > 1. On the other hand, let k 6≡ 0
(mod 6). Then we have

f(ρ7,2) = f(
(−3 −1

7 2

)
ρ7,2) = (ei2π/3)kf(ρ7,2).

Thus f(ρ7,2) = 0, then we have vρ7,2(f) > 1.
Let k be an even integer such that k ≡ 0 (mod 4). Then we have

E∗
k,7

(
i√
7

)
=

2 · 7k/2

7k/2 + 1
Ek(

√
7i) 6= 0,

E∗
k,7(ρ7,1) =

2 · 7k/2

7k/2 + 1
Ek

(
−1

2
+
√

7
2

i

)
6= 0.

Thus vi/
√

7(E
∗
k,7) = vρ7,1(E

∗
k,7) = 0. On the other hand, let k be an even integer such that k ≡ 0 (mod 6).

Then we have

E∗
k,7(ρ7,2) =

1
7k/2 + 1


7k/2 +

(
5 +

√
3i

2

)k

Ek(ρ) 6= 0.

Thus vρ7,2(E
∗
k,7) = 0.

5.9.2. E∗
k,7 of low weights.

F ∗k,7(π/2). Let k > 4 be an even integer divisible by 4. We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,7(π/2) = F ∗k,7,1(π/2) = 2 cos(kπ/4) + R∗7,π/2

where
|R∗7,π/2| 6

∑

(c,d)=1
7-d

N>1

|ceiπ/4 +
√

7de−iπ/4|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

7de−iθ/2|−k, then vk(c, d, π/2) = 1/(c2 + 7d2)k/2. Now we will consider
the next cases, namely N = 2, 5, 10, 13, 17, and N > 25. We have the following:

When N = 2, vk(1, 1, π/2) 6 (1/8)k/2.
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When N = 5, vk(1, 2, π/2) 6 (1/29)k/2, vk(2, 1, π/2) 6 (1/11)k/2.

When N = 10, vk(1, 3, π/2) 6 (1/8)k, vk(3, 1, π/2) 6 (1/4)k.

When N = 13, vk(2, 3, π/2) 6 (1/69)k/2, vk(3, 2, π/2) 6 (1/37)k/2.

When N = 17, vk(1, 4, π/2) 6 (1/113)k/2, vk(4, 1, π/2) 6 (1/23)k/2.

When N > 25, c2 + 7d2 > N,

and the number of terms with c2 + d2 = N is not more than (144/35)N1/2 for N > 25. Then

|R∗7,π/2|N>25 6 288
35(k − 3)

(
1
24

)(k−3)/2

.

Furthermore,

|R∗7,π/2| 6 4
(

1
8

)k/2

+ 4
(

1
11

)k/2

+ · · ·+ 4
(

1
113

)k/2

+
288

35(k − 3)

(
1
24

)(k−3)/2

,

6 1.80820... (k > 4)

In conclusion, we have following:

Lemma 5.17. For an even integer k > 4,

F ∗k,7(π/2)





> 0 k ≡ 0 (mod 8)
< 0 k ≡ 4 (mod 8)
= 0 k ≡ 2 (mod 4)

.

F ∗4,7(5π/6). To decide the zeros of E∗
4,7, we need the value of F ∗4,7(5π/6). We note that N := c2 + d2.

Firstly, we consider the case N = 1. Then we can write;

F ∗4,7(5π/6) = 2 cos(10π/3) + R∗7,4 = 1 + R∗7,4

where
R∗7,4 6 1

2

∑

(c,d)=1
7-d

N>1

(cei5π/12 +
√

7de−i5π/12)−4 +
1
2

∑

(c,d)=1
7-d

N>1

(ce−i5π/12 +
√

7dei5π/12)−4.

We want to prove F ∗4,7(5π/6) > 0, but it is too difficult to prove that |R∗7,4| < 1. However, we have
only to prove R∗7,4 > −1.

Let u0(c, d) := (cei5π/12 +
√

7de−i5π/12)−4 + (ce−i5π/12 +
√

7dei5π/12)−4, and let u(c, d) := u0(c, d) +
u0(c,−d) + u0(d, c) + u0(d,−c). Now we will consider the next cases, namely N = 2, 5, · · · , 197, and
N > 202. We have the following:

When N = 2, u0(1, 1) + u0(1,−1) >− 0.08151.

When N = 5, u(1, 2) > −0.19373. When N = 10, u(1, 3) > 0.24147.

When N = 13, u(2, 3) > −0.02162. When N = 17, u(1, 4) > −0.07736.

When N = 25, u(3, 4) > −0.00313. When N = 26, u(1, 5) > −0.02262.

When N = 29, u(2, 5) > 0.03569. When N = 34, u(3, 5) > −0.00503.

When N = 37, u(1, 6) > −0.00586. When N = 41, u(4, 5) > −0.00083.

When N = 50, u(1, 7) > −0.00168. When N = 53, u(2, 7) > −0.00400.

When N = 58, u(3, 7) > 0.00491. When N = 61, u(5, 6) > −0.00033.

When N = 65, u(1, 8) + u(4, 7) >− 0.00211.

When N = 73, u(3, 8) > 0.00692. When N = 74, u(5, 7) > −0.00048.

When N = 82, u(1, 9) > −0.00014.

When N = 85, u(2, 9) + u(6, 7) >− 0.00295.

When N = 89, u(5, 8) > −0.00064. When N = 97, u(4, 9) > 0.00099.
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When N = 101, u(1, 10) > −0.00003. When N = 106, u(5, 9) > −0.00064.

When N = 109, u(3, 10) > −0.00014. When N = 113, u(7, 8) > −0.00009.

When N = 122, u(1, 11) > 0.00002. When N = 125, u(2, 11) > −0.00073.

When N = 130, u(3, 11) + u(7, 9) >− 0.00116.

When N = 137, u(4, 11) > 0.00195.

When N = 145, u(1, 12) + u(8, 9) >− 0.00003.

When N = 146, u(5, 11) > 0.00025. When N = 149, u(7, 10) > −0.00015.

When N = 157, u(6, 11) > −0.00030. When N = 169, u(1, 2) > 0.00077.

When N = 170, u(1, 13) + u(7, 11) >− 0.00016.

When N = 173, u(2, 13) > −0.00021. When N = 178, u(3, 13) > −0.00068.

When N = 181, u(9, 10) > −0.00004.

When N = 185, u(4, 13) + u(8, 11) >0.00003.

When N = 193, u(7, 12) > −0.00019. When N = 194, u(5, 13) > 0.00093.

When N = 197, u(1, 14) > 0.00002.

When N > 202, for the case cd < 0, we put X + Y i = (cei5π/12 +
√

7de−i5π/12)2 = −(
√

3/2)(c2 +
7d2) + 2

√
7cd + (1/2)(c2 − 7d2)i. Then |Y | − |X| < −

√
3−1
2 c2 −

√
3−1
2 d2 + 2

√
7cd < 0. Thus (cei5π/12 +√

7de−i5π/12)−4 + (ce−i5π/12 +
√

7dei5π/12)−4 > 0.
For the case cd > 0, we have c2 + 7d2−√21|cd| > (2/9)N , and the number of terms with c2 + d2 = N

is not more than (13/7)N1/2 for N > 144. However, this bound is too large. We must consider some
cases.

For the case |c| < |d|, we have c2 + 7d2 −√21|cd| > (3/2)N and |c| < (1/
√

2)N1/2, 1/
√

2 > 7/10. For
the case |d| 6 |c| < (6/

√
21)|d|, we have c2 + 7d2 −√21|cd| > N and |c| < (6/

√
57)N1/2, 6/

√
57 > 7/9.

For the case and (6/
√

21)|d| 6 |c| <
√

7/3|d|, we have c2+7d2−√21|cd| > (1/2)N and |c| <
√

7/10N1/2,√
7/10 > 5/6. For the case cd > 0 and

√
7/3|d| 6 |c| < (22/3

√
21)|d|, we have c2+7d2−√21|cd| > (1/3)N

and |c| < (22/
√

673)N1/2, 22/
√

673 > 22/25.
In conclusion, we have

R∗7,4

∣∣∣
N>202,cd>0

> −13
7

( 7
10

N1/2
∑

N>202

(
3
2
N

)−k/2

+
7
90

N1/2
∑

N>202

N−k/2 +
1
18

N1/2
∑

N>202

(
1
2
N

)−k/2

+
7

150
N1/2

∑

N>202

(
1
3
N

)−k/2

+
3
25

N1/2
∑

N>202

(
2
9
N

)−k/2 )

= −13
7

(
7
10
· 4
9

+
7
90
· 1 +

1
18
· 4 +

7
150

· 9 +
3
25
· 81

4

) ∑

N>202

N (1−k)/2

= − 7579
630

√
201

Furthermore,

R∗7,4 > −0.08152− 0.19373 + · · ·+ 0.00002− 7579
630

√
201

= −0.98316... (k > 4)

In conclusion, we have following:

Lemma 5.18.
F ∗4,7(5π/6) > 0.
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F ∗k,7(θ) for π/2 6 θ 6 2π/3. Let k > 6 be an even integer. We note that N := c2 + d2.
Firstly, we consider the case N = 1. Since 2π/3 < π/2 + α7, we can write;

F ∗k,7(θ) = F ∗k,7,1(θ) = 2 cos(kθ/2) + R∗7,2π/3 for θ ∈ [π/2, 2π/3],

where
|R∗7,2π/3| 6

∑

(c,d)=1
7-d

N>1

|ceiθ/2 +
√

7de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

7de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 7d2 + 2

√
7cd cos θ

)k/2
. Now we will

consider the next cases, namely N = 2 and N > 5. Considering −1/2 6 cos θ 6 0, we have the following:

When N = 2, vk(1, 1, π/2) 6 (1/(8−
√

7))k/2, vk(1,−1, π/2) 6 (1/8)k/2.

When N > 5, |ceiθ/2 ±
√

7de−iθ/2|2 > 5N/7,

and the number of terms with c2 + d2 = N is not more than (36/7)N1/2 for N > 5. Then

|R∗7,2π/3|N>5 6 576
7(k − 3)

(
7
20

)(k−3)/2

.

Furthermore,

|R∗7,2π/3| 6 2
(

1
8−√7

)k/2

+ 2
(

1
8

)k/2

+
576

7(k − 3)

(
7
20

)(k−3)/2

,

6 1.19293... (k > 6)

In conclusion, we have following:

Lemma 5.19. For an even integer k > 6,

F ∗k,7(θ) = 2 cos(kθ/2) + R∗7,2π/3 for θ ∈ [π/2, 2π/3],

where |R∗7,2π/3| < 2.

F ∗k,7(θ) for π 6 θ 6 7π/6. Let k > 6 be an even integer. We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write;

F ∗k,7(θ) = F ∗k,7,2(θ − 2π/3) = 2 cos(k(θ − 2π/3)/2) + R∗7,π for θ ∈ [π, 7π/6],

where
|R∗7,π| 6

∑

(c,d)=1
7-c
2|cd
N>1

|ceiθ/2 + d
√

7e−iθ/2|−k + 2k
∑

(c,d)=1
7-c
2-cd

|ceiθ/2 + d
√

7e−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

7de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 7d2 + 2

√
7cd cos θ

)k/2
. Now we will

consider the next cases, namely N = 2, 5, · · · , 82, and N > 85. Considering 0 6 cos θ 6 1/2, we have the
following:

When N = 2, 2k · vk(1, 1, θ) 6 (1/2)k/2, 2k · vk(1,−1, θ) 6
(
4/

(
8−

√
7
))k/2

.

When N = 5, vk(1, 2, θ) 6 (1/29)k/2, vk(1,−2, θ) 6 1/
(
29− 2

√
7
)k/2

,

vk(2, 1, θ) 6 (1/11)k/2, vk(2,−1, θ) 6 1/
(
11− 2

√
7
)k/2

.

When N = 10, 2k · vk(1, 3, θ) 6 (1/4)k, 2k · vk(1,−3, θ) 6
(
4/

(
64− 3

√
7
))k/2

,

2k · vk(3, 1, θ) 6 (1/2)k, 2k · vk(3,−1, θ) 6
(
4/

(
16− 3

√
7
))k/2

.

When N = 13, vk(2, 3, θ) 6 (1/69)k/2, vk(2,−3, θ) 6 1/
(
69− 6

√
7
)k/2

,
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vk(3, 2, θ) 6 (1/37)k/2, vk(3,−2, θ) 6 1/
(
37− 6

√
7
)k/2

.

When N = 17, vk(1, 4, θ) 6 (1/113)k/2, vk(1,−4, θ) 6 1/
(
113− 4

√
7
)k/2

,

vk(4, 1, θ) 6 (1/23)k/2, vk(4,−1, θ) 6 1/
(
23− 4

√
7
)k/2

.

When N = 25, vk(3, 4, θ) 6 (1/11)k, vk(3,−4, θ) 6 1/
(
121− 12

√
7
)k/2

,

vk(4, 3, θ) 6 (1/79)k/2, vk(4,−3, θ) 6 1/
(
79− 12

√
7
)k/2

.

When N = 26, 2k · vk(1, 5, θ) 6 (1/44)k/2, 2k · vk(1,−5, θ) 6
(
4/

(
176− 5

√
7
))k/2

,

2k · vk(5, 1, θ) 6 (1/8)k/2, 2k · vk(5,−1, θ) 6
(
4/

(
32− 5

√
7
))k/2

.

When N = 29, vk(2, 5, θ) 6 (1/179)k/2, vk(2,−5, θ) 6 1/
(
179− 10

√
7
)k/2

,

vk(5, 2, θ) 6 (1/53)k/2, vk(5,−2, θ) 6 1/
(
53− 10

√
7
)k/2

.

When N = 34, 2k · vk(3, 5, θ) 6 (1/46)k/2, 2k · vk(3,−5, θ) 6
(
4/

(
184− 15

√
7
))k/2

,

2k · vk(5, 3, θ) 6 (1/22)k, 2k · vk(5,−3, θ) 6
(
4/

(
88− 15

√
7
))k/2

.

When N = 37, vk(1, 6, θ) 6 (1/253)k/2, vk(1,−6, θ) 6 1/
(
253− 6

√
7
)k/2

,

vk(6, 1, θ) 6 (1/43)k/2, vk(6,−1, θ) 6 1/
(
43− 6

√
7
)k/2

.

When N = 41, vk(4, 5, θ) 6 (1/191)k/2, vk(4,−5, θ) 6 1/
(
191− 20

√
7
)k/2

,

vk(5, 4, θ) 6 (1/137)k/2, vk(5,−4, θ) 6 1/
(
137− 20

√
7
)k/2

.

When N = 50, 2k · vk(1, 7, θ) 6 (1/86)k/2, 2k · vk(1,−7, θ) 6
(
4/

(
344− 7

√
7
))k/2

,

2k · vk(7, 1, θ) 6 (1/14)k/2, 2k · vk(7,−1, θ) 6
(
4/

(
56− 7

√
7
))k/2

.

When N = 53, vk(2, 7, θ) 6 (1/347)k/2, vk(2,−7, θ) 6 1/
(
347− 14

√
7
)k/2

,

vk(7, 2, θ) 6 (1/77)k/2, vk(7,−2, θ) 6 1/
(
77− 14

√
7
)k/2

.

When N = 58, 2k · vk(3, 7, θ) 6 (1/88)k/2, 2k · vk(3,−7, θ) 6
(
4/

(
352− 21

√
7
))k/2

,

2k · vk(7, 3, θ) 6 (1/28)k, 2k · vk(7,−3, θ) 6
(
4/

(
112− 21

√
7
))k/2

.

When N = 61, vk(5, 6, θ) 6 (1/277)k/2, vk(5,−6, θ) 6 1/
(
277− 30

√
7
)k/2

,

vk(6, 5, θ) 6 (1/211)k/2, vk(6,−5, θ) 6 1/
(
211− 30

√
7
)k/2

.

When N = 65, vk(1, 8, θ) 6 (1/449)k/2, vk(1,−8, θ) 6 1/
(
449− 8

√
7
)k/2

,

vk(8, 1, θ) 6 (1/71)k/2, vk(8,−1, θ) 6 1/
(
71− 8

√
7
)k/2

,

vk(4, 7, θ) 6 (1/359)k/2, vk(4,−7, θ) 6 1/
(
359− 28

√
7
)k/2

,

vk(7, 4, θ) 6 (1/245)k/2, vk(7,−4, θ) 6 1/
(
245− 28

√
7
)k/2

.
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When N = 73, vk(3, 8, θ) 6 (1/457)k/2, vk(3,−8, θ) 6 1/
(
457− 24

√
7
)k/2

,

vk(8, 3, θ) 6 (1/127)k/2, vk(8,−3, θ) 6 1/
(
127− 24

√
7
)k/2

.

When N = 74, 2k · vk(5, 7, θ) 6 (1/92)k/2, 2k · vk(5,−7, θ) 6
(
4/

(
368− 35

√
7
))k/2

,

2k · vk(7, 5, θ) 6 (1/56)k/2, 2k · vk(7,−5, θ) 6
(
4/

(
224− 35

√
7
))k/2

.

When N = 82, 2k · vk(1, 9, θ) 6 (1/142)k/2, 2k · vk(1,−9, θ) 6
(
4/

(
568− 9

√
7
))k/2

,

2k · vk(9, 1, θ) 6 (1/22)k/2, 2k · vk(9,−1, θ) 6
(
4/

(
88− 9

√
7
))k/2

.

When N > 85, |ceiθ/2 ±
√

7de−iθ/2|2 > 5N/7,

and the number of terms with c2 + d2 = N is not more than (27/7)N1/2 for N > 64. Then

|R∗7,π|N>85 6 1296
√

21
k − 3

(
1
15

)(k−3)/2

.

Furthermore,

|R∗7,π| 6 2
(

4
8−√7

)k/2

+ · · ·+ 2
(

1
457

)k/2

+
1296

√
21

k − 3

(
1
15

)(k−3)/2

,

6 1.98849... (k > 6)

In conclusion, we have following:

Lemma 5.20. For an even integer k > 6,

F ∗k,7(θ) = 2 cos(kθ/2) + R∗7,π for θ ∈ [π, 7π/6],

where |R∗7,π| < 2.

F ∗k,7(θ) for π/2 6 θ 6 5π/6. Let k > 8 be an even integer. We note that N := c2 + d2.
Firstly, we consider the case N = 1. Since 5π/6 < π/2 + α5, we can write;

F ∗k,7(θ) = F ∗k,7,1(θ) = 2 cos(kθ/2) + R∗7,5π/6 for θ ∈ [π/2, 5π/6],

where
|R∗7,5π/6| 6

∑

(c,d)=1
7-d

N>1

|ceiθ/2 +
√

7de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 +
√

7de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 7d2 + 2

√
7cd cos θ

)k/2
. Now we will

consider the next cases, namely N = 2, 5, 10, and N > 13. Considering −√3/2 6 cos θ 6 0, we have the
following:

When N = 2, vk(1, 1, θ) 6 1/
(
8−

√
21

)k/2

, vk(1,−1, θ) 6 (1/8)k/2.

When N = 5, vk(1, 2, θ) 6 1/
(
29− 2

√
21

)k/2

, vk(1,−2, θ) 6 (1/29)k/2,

vk(2, 1, θ) 6 1/
(
11− 2

√
21

)k/2

, vk(2,−1, θ) 6 (1/11)k/2.

When N = 10, vk(1, 3, θ) 6 1/
(
64− 3

√
21

)k/2

, vk(1,−3, θ) 6 (1/8)k,

vk(3, 1, θ) 6 1/
(
16− 3

√
21

)k/2

, vk(3,−1, θ) 6 (1/4)k.

When N > 13, |ceiθ/2 ±
√

7de−iθ/2|2 > 2N/9,
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and the number of terms with c2 + d2 = N is not more than (36/7)N1/2 for N > 13. Then

|R∗7,5π/6|N>13 6 1728
√

3
7(k − 3)

(
3
8

)(k−3)/2

.

Furthermore,

|R∗7,π/2| 6 2
(

1
11− 2

√
21

)k/2

+ · · ·+ 2
(

1
8

)k

+
1728

√
3

7(k − 3)

(
3
8

)(k−3)/2

,

6 1.96057... (k > 8)

In conclusion, we have following:

Lemma 5.21. For an even integer k > 8,

F ∗k,7(θ) = 2 cos(kθ/2) + R∗7,5π/6 for θ ∈ [π/2, 5π/6],

where |R∗7,5π/6| < 2.

The locating zeros of E∗
4,7. We have F ∗4,7(π/2) < 0 by Lemma 5.17, and we have F ∗4,7(5π/6) > 0 by

Lemma 5.18. Thus E∗
4,7 has at least one zero in A∗7,1. In addition, by the previous subsubsections, we

have vρ7,2(E
∗
4,7) > 1. Furthermore, by the valence formula for Γ∗0(7) (Proposition 5.13), E∗

4,7 has no other
zero. Thus we have following:

Lemma 5.22. E∗
4,7 has only one zero in A∗7,1, and we have vi/

√
7(E

∗
4,7) = vρ7,1(E

∗
4,7) = 0 and vρ7,2(E

∗
4,7) =

1.

The locating zeros of E∗
6,7. We have F ∗6,7(2π/3) > 0 by Lemma 5.19, and we have F ∗6,7(π) < 0 by Lemma

5.20, thus E∗
6,7 has at least one zero in A∗7,1 ∪ A∗7,2. By previous subsubsection, we have vi/

√
7(E

∗
6,7) > 1

and vρ7,1(E
∗
6,7) > 1. Furthermore, by the valence formula for Γ∗0(7), E∗

6,7 has no other zero. Thus we
have following:

Lemma 5.23. E∗
6,7 has only one zero in A∗7,1 ∪ A∗7,2, and we have vi/

√
7(E

∗
6,7) = vρ7,1(E

∗
6,7) = 1 and

vρ7,2(E
∗
4,7) = 0.

The locating zeros of E∗
12,7. We have F ∗12,7(π/2) < 0, F ∗12,7(2π/3) > 0, F ∗12,7(5π/6) < 0 by Lemma

5.21, and we have F ∗12,7(π) > 0, F ∗12,7(7π/6) < 0 by Lemma 5.20. Thus E∗
12,7 has at least four zeros

in A∗7,1 ∪ A∗7,2. Furthermore, by the valence formula for Γ∗0(7), E∗
12,7 has no other zero. Thus we have

following:

Lemma 5.24. E∗
12,7 has just four zeros in A∗7,1 ∪ A∗7,2, and we have vi/

√
7(E

∗
12,7) = vρ7,1(E

∗
12,7) =

vρ7,2(E
∗
12,7) = 0.

5.9.3. The space of modular forms. Let M∗
k,7 be the space of modular forms for Γ∗0(7) of weight k, and let

M∗0
k,7 be the space of cusp forms for Γ∗0(7) of weight k. When we consider the map M∗

k,7 3 f 7→ f(∞) ∈ C,
the kernel of the map is M∗0

k,7. So dim(M∗
k,7/M

∗0
k,7) 6 1, and M∗

k,7 = CE∗
k,7 ⊕M∗0

k,7.
Recall that

∆7 = η6(z)η6(7z)
is a cusp form for Γ0(7) of weight 6, and (∆7)2 is a cusp form for Γ∗0(7) of weight 12 (Remark 4.2).

We also have
E2,7

′(z) =
1
6
(7E2(7z)− E2(z)),

which is a modular form for Γ0(7) with vρ7,2(E2,7
′) = 2 and vp(E2,7

′) = 0 for every p 6= ρ7,2. Furthermore,
because we have E2,7

′(W7z) = −(
√

7z)2E2,7
′(z), (E2,7

′)2 is a modular form for Γ∗0(7) of weight 4. (See
Section 6)

We have following theorem:

Theorem 5.4. Let k be an even integer, and let ∆7,4 := (5/16)((E2,7
′)2 − E∗

4,7),
∆0

7,10 := (559/690)((41065/137592)(E∗
4,7E

∗
6,7 − E∗

10,7)− E∗
6,7∆7,4).
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(1) For k < 0 and k = 2, M∗
k,7 = 0. We have M∗

0,7 = C.
(2) We have M∗0

4,7 = C∆7,4.
(3) Let ∆7,6 := ∆0

7,10/∆7,4. We have M∗0
6,7 = C∆7,6.

(4) Let ∆0
7,8 := (∆7,4)2 and ∆1

7,8 := E∗
4,7∆7,4. We have M∗0

8,7 = C∆0
7,8 ⊕ C∆1

7,8.
(5) Let ∆1

7,10 := E∗
6,7∆7,4. We have M∗0

10,7 = C∆0
7,10 ⊕ C∆1

7,10.
(6) Let ∆0

7,12 := (∆7)2, ∆1
7,12 := (∆7,4)3, ∆2

7,12 := E∗
4,7(∆7,4)2, and ∆3

7,12 := (E∗
4,7)

2∆7,4. We have
M∗0

12,7 = C∆0
7,12 ⊕ C∆1

7,12 ⊕ C∆2
7,12 ⊕ C∆3

7,12.
(7) Let ∆0

7,14 := ∆7,4∆0
7,10, ∆1

7,14 := E∗
6,7(∆7,4)2, and ∆2

7,14 := E∗
4,7E

∗
6,7∆7,4. We have M∗0

14,7 =
C∆0

7,14 ⊕ C∆1
7,14 ⊕ C∆2

7,14.
(8) M∗0

k,7 = M∗0
12,7M

∗
k−12,7.

Let k be an even integer k > 4. Define m7(k) :=
⌊

k
3 − t

2

⌋
, where t = 0, 2 is chosen so that t ≡ k

(mod 4), and bnc is the largest integer not more than n. Define f0(k) := (E∗
4,7)

k/4 if k ≡ 0 (mod 4), and
f0(k) := E∗

6,7(E
∗
4,7)

(k−6)/4 if k ≡ 2 (mod 4).
The proof of this theorem is similar to Theorem 5.2. For every f ∈ M∗0

k,7, it is easy to show that there
exist some a1, a2, a3 such that f + a1∆1

7,12 + a2∆2
7,12 + a3∆3

7,12 = b4q
4 + · · · . Then (f + a1∆1

7,12 +
a2∆2

7,12 + a3∆3
7,12)/∆0

7,12 ∈ M∗
k−12,7. This proves (8).

The table of orders of zeros of basis for M∗
k,7 is following:

k f v∞ vi/
√

7 vρ7,1 vρ7,2 |zeros on A∗7|
4 E∗

4,7 0 0 0 1 1
(E2,7

′)2 0 0 0 4 0
∆7,4 1 0 0 1 0

6 E∗
6,7 0 1 1 0 1

∆7,6 1 1 1 0 0
8 (E∗

4,7)
2 0 0 0 2 2

∆0
7,8 2 0 0 2 0

∆1
7,8 1 0 0 2 1

10 E∗
4,7E

∗
6,7 0 1 1 1 2

∆0
7,10 2 1 1 1 0

∆1
7,10 1 1 1 1 1

12 E∗
12,7 0 0 0 0 4

∆0
7,12 4 0 0 0 0

∆1
7,12 3 0 0 3 0

∆2
7,12 2 0 0 3 1

∆3
7,12 1 0 0 3 2

14 (E∗
4,7)

2E∗
6,7 0 1 1 2 3

∆0
7,14 3 1 1 2 0

∆1
7,14 2 1 1 2 1

∆2
7,14 1 1 1 2 2

k f v∞ vi/
√

7 vρ7,1 vρ7,2 |zeros on A∗7|
Then we have dim(M∗0

k,7) = m7(k) and dim(M∗
k,7) = m7(k) + 1.

Write n = m7(k), then k− 12n = 0, 4, 6, 8, 10 or 14. Because Ek,7−E∗
k−12n,7(E

∗
4,7)

n ∈ M∗0
k,7, we have

M∗
k,7 = CE∗

k−4n,7(E
∗
4,7)

3n ⊕M∗0
k,7. Then

M∗
k,7 = E∗

k−12n,7

{
C(E∗

4,7)
3n ⊕ (E∗

4,7)
3(n−1)M∗0

12,7 ⊕ (E∗
4,7)

3(n−2)(M∗0
12,7)

2 ⊕ · · · ⊕ (M∗0
12,7)

n
}

⊕M∗0
k−12n,7(M

∗0
12,7)

n

Thus, for every p ∈ H and for every f ∈ M∗
k,7, vp(f) > vp(E∗

k−12n,7).
In conclusion, the next proposision follows:

Proposition 5.20. Let k > 4 be an even integer. For every f ∈ M∗
k,7, we have

vi/
√

7(f) > sk, vρ7,1(f) > sk (sk = 0, 1 such that 2sk ≡ k (mod 4)),

vρ7,2(f) > tk (sk = 0, 1, 2 such that − 2tk ≡ k (mod 6)).
(123)
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In addition, we have (∆7)2 = (38/45)
(
(5/114)

(
E∗

4,7(∆7,4)2 − (∆7,6)2
)− (∆7,4)3

)
. Then

Remark 5.6. Every modular form for Γ∗0(7) is generated by

E∗
4,7, E∗

6,7, ∆7,4, and ∆7,6.

Now, we have following conjecture:

Conjecture 5.2. Let k > 4 be an even integer. E∗
k,7 has m7(k) zeros in A∗7,1 and A∗7,2. Furthermore, in

Proposition 5.20, the equality hold if f is equal to E∗
k,7 or its constant multiple.

5.9.4. Observation on Conjecture 5.2. Similar to Γ∗0(5), to prove Conjecture 5.2 is very difficult. The most
difficult point is also the argument Arg(ρ7,2). We need more radical expansion to prove this conjecture.

By the Lemma 5.20 and 5.21, E∗
k,7 has at least m7(k) − 2 zeros in A∗7,1 and A∗7,2 for k 6 24. Then,

imilarly to Lemma and , we will prove next lemmas in the next subsubsection:

Lemma 5.25. Let k > 26. For ∀θ ∈ [π/2, π/2 + α7 − x] (x = π/k), |R∗7,1| < 2.

Lemma 5.26. Let k > 26. For ∀θ ∈ [α7 − π/6 + x, π/2] (x = π/k), |R∗7,2| < 2.

By above lemmas, we can easily show that E∗
k,7 has at least m7(k)− 2 zeros in A∗7,1 and A∗7,2. Thus,

we can prove Conjecture 5.2 except for at most 2 zeros.

5.9.5. Expansion of the RSD Method. The proofs of Lemma 5.25 and 5.26 are similar to that of Lemma
5.5. We need following preliminaries.

Proposition 5.21 (for Lemma 5.25).

(1) For k > 26,
(

5
3

)2/k 6 1 +
(
2 log 5

3

)
1
k + 1

2

(
2 log 5

3

)2 (
5
3

)2/k 1
k2 ,

10 + 4
√

7 cos
(

π
2 + α7 − π

k

)
> 2

√
3π 1

k .

(2) For k > 26,
(

5
2

)2/k 6 1 +
(
2 log 5

2

)
1
k + 1

2

(
2 log 5

2

)2 (
5
2

)2/k 1
k2 ,

15 + 3
√

7 cos
(

π
2 + α7 − π

k

)
> 3

√
3π 1

k .

Proposition 5.22 (for Lemma 5.26).

(1) For k > 26,
(

4
3

)2/k 6 1 +
(
2 log 4

3

)
1
k + 1

2

(
2 log 4

3

)2 (
4
3

)2/k 1
k2 ,

1 +
√

7
2 cos

(
α7 − π

6 − π
k

)
> π 1

k .
(2) For k > 26, 42/k 6 1 + (4 log 2) 1

k + 1
2 (4 log 2)2 42/k 1

k2 ,
3 + 3

√
7

2 cos
(
α7 − π

6 − π
k

)
> 3π 1

k .

Proof of Lemma 5.25. Let k > and x = π/k, then 0 6 x 6 π/26.

11+4
√

7 cos
(π

2
+ α7 − π

k

)
−

(
5
3

)2/k (
1 +

12
5k

x2

)

> 1
k

{
2
√

3π − 2 log
5
3
− 1

2

(
2 log

5
3

)2 (
5
3

)2/k 1
k
− 12π2

5

(
5
3

)2/k 1
k2

}

> 1
k
× 9.81047... (k > 26)

By Proposition 5.21,

|2eiθ/2 +
√

7e−iθ/2|2 >
(

5
3

)2/k (
1 +

12
5k

x2

)

⇒ |2eiθ/2 +
√

7e−iθ/2|k > 5
3

+ 2x2

⇒ vk(2, 1, θ) 6 3
5
− 3

5
x2.

Similarly,

16 + 6
√

7 cos
(π

2
+ α7 − π

k

)
−

(
5
2

)2/k (
1 +

12
5k

x2

)
> 1

k
× 14.39532... (k > 26)
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|3eiθ/2 +
√

7e−iθ/2|2 >
(

5
2

)2/k (
1 +

12
5k

x2

)

⇒ |2eiθ/2 +
√

7e−iθ/2|k > 5
2

+ 3x2

⇒ vk(3, 1, θ) 6 2
5
− 2

5
x2.

Furthermore,

6
(

1
3

)k/2

+ 4
(

1
7

)k/2

+ · · ·+ 2
(

1
179

)k/2

+
1914

√
33

7(k − 3)

(
1
3

)k/2

6 25
(

1
3

)k/2

Thus

|R∗7,1| 6 2− 2π2

k2
+ 25

(
1
3

)k/2

Now, (1/3)k/2 is more rapidly decreasing in k than 1/k2, and for k = 26, we have

|R∗7,1| 6 1.97081...

¤
Proof of Lemma 5.26. Let k > and x = π/k, then 0 6 x 6 π/26.

2−
√

7
2

cos
(
α7 − π

6
− π

k

)
−

(
4
3

)2/k (
1 +

9
5k

x2

)
> 1

k
× 2.47345... (k > 26)

By Proposition 5.22,

2−2 · |eiθ/2 −
√

7e−iθ/2|2 >
(

4
3

)2/k (
1 +

9
4k

x2

)

⇒ 2−k · |eiθ/2 −
√

7e−iθ/2|k > 4
3

+
3
2
x2

⇒ 2k · vk(1,−1, θ) 6 3
4
− 3

4
x2.

Similarly,

4− 3
√

7
2

cos
(
α7 − π

6
− π

k

)
− 42/k

(
1 +

12
5k

x2

)
> 1

k
× 14.39532... (k > 26)

2−2 · |3eiθ/2 −
√

7e−iθ/2|2 > 42/k

(
1 +

9
4k

x2

)

⇒ 2−k · |3eiθ/2 −
√

7e−iθ/2|k > 4 +
9
2
x2

⇒ 2k · vk(3,−1, θ) 6 1
4
− 1

4
x2.

Furthermore,

2
(

1
2

)k/2

+ 2
(

1
3

)k/2

+ · · ·+ 2
(

1
113

)k/2

+
2784

√
6

7(k − 3)

(
1
2

)k/2

6 41
(

1
2

)k/2

Thus

|R∗7,2| 6 2− 2π2

k2
+ 41

(
1
2

)k/2

Now, (1/2)k/2 is more rapidly decreasing in k than 1/k2, and for k = 26, we have

|R∗7,2| 6 1.97580...

¤
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5.10. Conclusion of Γ∗0(p). Let k > 4 be an even integer.
In section 3, we have following result:

k (mod 12) vi(Ek) vρ(Ek) |zeros on A|
0 0 0 k/12
2 1 2 (k − 14)/12
4 0 1 (k − 4)/12
6 1 0 (k − 6)/12
8 0 2 (k − 8)/12
10 1 1 (k − 10)/12

Table for Ek : SL2(Z)

Also, by the theorem 1, 2, we have following:

k (mod 8) vi/
√

2(E
∗
k,2) vρ2(E

∗
k,2) |zeros on A∗2|

0 0 0 k/8
2 1 3 (k − 10)/8
4 0 2 (k − 4)/8
6 1 1 (k − 6)/8

Table for E∗
k,2 : Γ∗0(2)

k (mod 12) vi/
√

3(E
∗
k,3) vρ3(E

∗
k,3) |zeros on A∗3|

0 0 0 k/6
2 1 5 (k − 8)/6
4 0 4 (k − 4)/6
6 1 3 (k − 6)/6
8 0 2 (k − 2)/6
10 1 1 (k − 4)/6

Table for E∗
k,3 : Γ∗0(3)

Above results are proved in this section.

For a prime p > 5, let A∗p := ∂F∗(p) \ {z ; Re(z) = −1/2}, where F∗(p) is the fundamental domain of
Γ∗0(p) represented in Figure 7.

In addition, in Conjecture 5.1, we expect following:
k (mod 4) vi/

√
5 vρ5,1 vρ5,2 |zeros on A∗5|

0 0 0 0 k/4
2 1 1 1 (k − 6)/4

Table for E∗
k,5 : Γ∗0(5)

We proved except for at most 2 zeros.

Also, in Conjecture 5.2, we expect following:
k (mod 12) vi/

√
7 vρ7,1 vρ7,2 |zeros on A∗7|

0 0 0 0 k/3
2 1 1 2 (k − 5)/3
4 0 0 1 (k − 1)/3
6 1 1 0 (k − 3)/3
8 0 0 2 (k − 2)/3
10 1 1 1 (k − 4)/3

Table for E∗
k,7

We proved except for at most 2 zeros.

Finally, we expect followings:
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Conjecture 5.3 (Γ∗0(11)). Let k > 4 be an even integer.

k (mod 4) vi/
√

11 vρ11,1 vρ11,2 vρ11,3 |zeros on A∗11|
0 0 0 0 0 k/2
2 1 1 1 1 (k − 4)/2

Table for E∗
k,11

Conjecture 5.4 (Γ∗0(13)). Let k > 4 be an even integer.

k (mod 12) vi/
√

13 vρ13,1 vρ13,2 vρ13,3 |zeros on A∗13|
0 0 0 0 0 7k/12
2 1 1 1 2 (7k − 26)/12
4 0 0 0 1 (7k − 4)/12
6 1 1 1 0 (7k − 18)/12
8 0 0 0 2 (7k − 8)/12
10 1 1 1 1 (7k − 22)/12

Table for E∗
k,13

Conjecture 5.5 (Γ∗0(17)). Let k > 4 be an even integer.

k (mod 4) vi/
√

17 vρ17,1 vρ17,2 vρ17,3 vρ17,4 |zeros on A∗17|
0 0 0 0 0 0 3k/4
2 1 1 1 1 1 (3k − 10)/4

Table for E∗
k,17

Conjecture 5.6 (Γ∗0(19)). Let k > 4 be an even integer.

k (mod 12) vi/
√

19 vρ19,1 vρ19,2 vρ19,3 vρ19,4 |zeros on A∗19|
0 0 0 0 0 0 5k/6
2 1 1 2 1 1 (5k − 16)/6
4 0 0 1 0 0 (5k − 2)/6
6 1 1 0 1 1 (5k − 12)/6
8 0 0 2 0 0 (5k − 4)/6
10 1 1 1 1 1 (5k − 14)/6

Table for E∗
k,19

By the application of the RSD Method, we have many zeros on some arcs in A∗p. But we have some
arcs in A∗p, in which we do not know whether E∗

k,p has zeros or not.
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6. Congruence subgroup Γ0(p)

6.1. Γ0(2).
We have the following transformation:

(−1 0
2 −1

)
:

eiθ + 1
2

7→ ei(π−θ) − 1
2

.

6.1.1. Valence formula. In order to decide the locating of all zeros of E∞
k,2(z) and E0

k,2(z), we need the
valence formula for Γ0(2):

Proposition 6.1. Let f be a modular function of weight k for Γ0(2), which is not identically zero. We
have

(124) v∞(f) + v0(f) +
1
2
vρ2(f) +

∑

p∈Γ0(2)\H
p6=ρ2

vp(f) =
k

4
,

where ρ2 := −1/2 + i/2. (See [KO] and [SE])

-

1
����

2
0 1

����

2

PSfrag replaements
A
B B0 C C0 D D0

E

1
Figure 9

Proof. Let f be a nonzero modular function of weight k for Γ0(2), and let C be a contour of F(2) which
is a fundamental domain of Γ0(2) represented in Figure 9, whose interior contains every zero and pole of
f except for ρ2. By the Residue theorem, we have

1
2πi

∫

C

df

f
=

∑

p∈F(2)\{ρ2}
vp(f).

Similar to Proposition 3.1,

(i) For the arc EA, we have

1
2πi

∫ A

E

df

f
= −v∞(f).

(ii) For the arc CC ′, without loss of generallity, we can define arc CC ′ so that it equals the image of EA

by the transformation W2. Define f0(z) := (
√

2z)−kf(W2z), then we can write

f0(z) =
∑

n∈N
a0,nqn, where q = e2πiz. (See equation (16))

Furthermore, we have f0(W−1
2 z) = (

√
2z)kf(z) and

df0(W−1
2 z)

f0(W−1
2 z)

=
df(z)
f(z)

+ k
dz

z
.

Thus
1

2πi

∫ C′

C

df(z)
f(z)

=
1

2πi

∫ A

E

df0(z)
f0(z)

− 1
2πi

∫ C′

C

k
dz

z
.



80 JUNICHI SHIGEZUMI

Now, when the arcs CC ′ tend to 0, we have

1
2πi

∫ C′

C

k
dz

z
→ 0.

In addition,
1

2πi

∫ A

E

df0

f0
= −v∞(f0) = −v0(f).

In conclusion, we have
1

2πi

∫ C′

C

df

f
→ −v0(f).

(iii) For the arcs BB′ and DD′, when the radii of the each arc tends to 0, then we have

1
2πi

∫ B′

B

df

f
=

1
2πi

∫ D′

D

df

f
→ −1

4
vρ2(f).

(iv) For the arcs AB and D′E, since f(Tz) = f(z) for T = ( 1 1
0 1 ),

1
2πi

∫ B

A

df

f
+

1
2πi

∫ E

D′

df

f
= 0.

(v) For the arcs B′C and C ′D, since f(S2z) = (2z + 1)kf(z) for S2 := ( 1 0
2 1 ), we have

df(S2z)
f(S2z)

= k
dz

z + 1/2
+

df(z)
f(z)

.

When the radii of the arcs BB′, CC ′, DD′ tend to 0, the angle of the arc B′C tend to π/2. Thus we
have

1
2πi

∫ C

B′

df

f
+

1
2πi

∫ D

C′

df

f
=

1
2πi

∫ C

B′

(
−k

dz

z + 1/2

)
→ k

4
.

¤
6.1.2. Modular forms of weight 2. We define

(125) E2,2
′(z) := 2E2(2z)− E2(z).

Note that E2,2
′ is generated by Eisensitein series for SL2(Z), but it is not Eisenstein series for SL2(Z)

nor Γ0(2).
It is easy to show that E2,2

′ satisfies transformation rule (14):

E2,2
′ (( 1 1

0 1 ) z) = E2,2
′(z + 1) = E2,2

′(z).

Since ( 1 0
2 1 ) = W2 ( 1 1

0 1 )−1
W−1

2 , and

E2

(
2

(
− 1

2z

))
= z2E2(z) +

12
2πi

· z,

E2

(
− 1

2z

)
= 4z2E2(2z) +

12
2πi

· 2z,

we have

(126) E2,2
′(W2z) = E2,2

′
(
− 1

2z

)
= 2z2E2(z)− 4z2E2(2z) = −(

√
2z)2E2,2

′(z),

then
E2,2

′ (( 1 0
2 1 ) z) = (2z + 1)2E2,2

′(z).
Recall that ( 1 1

0 1 ) and ( 1 0
2 1 ) generate Γ0(2) (in Section 4), then we can show that E2,2

′ satisfies transfor-
mation rule for Γ0(2).

Furthermore, by the definition, it is easy to show that E2,2
′ is holomorphic on H and at ∞. In addition,

by the equation (126), we have
(
√

2z)−2E2,2
′(W2z) = −E2,2

′(z).
Thus E2,2

′ is holomorphic at cusp 0. (See equation (16)) Now, we prove E2,2
′ is a modular form for Γ0(2)

of weight 2.
How about the locating zeros of E2,2

′? By the valence formula for Γ0(2) (Proposition 6.1), we have

vρ2(E2,2
′) = 1, vp(E2,2

′) = 0 for every p 6= ρ2.
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Incidentally, let f be a modular form for Γ0(2) of weight 2. Then, By the valence formula for Γ0(2),
we also have

vρ2(f) = 1, vp(f) = 0 for every p 6= ρ2.

Thus f/E2,2
′ is a modular form of weight 0, then f/E2,2

′ ∈ C. In conclusion, f is a constant multiple of
E2,2

′.

6.1.3. Preliminaries. Let f be a modular form for Γ0(2) of weight k, and let k ≡ 2 (mod 4). Then we
have

f(ρ2) = f(
(−1 −1

2 1

)
ρ2) = ikf(ρ2) = −f(ρ2).

Thus f(ρ2) = 0 and vρ2(f) > 1.
Let k be an even integer such that k ≡ 0 (mod 4). Then we have

E∞
k,2(ρ2) =

1
1− 2k

((1 + i)k − 2k)Ek(i) 6= 0,

E0
k,2(ρ2) =

1
1− 2−k

((1 + i)k − 1)Ek(i) 6= 0.

Thus vρ2(E
∞
k,2) = vρ2(E

0
k,2) = 0.

Recall that v0(E∞
k,2) = v∞(E0

k,2) = 1 and v∞(E∞
k,2) = v0(E0

k,2) = 0. (Section 4)
Finally, we study the locating zeros of E∞

k,2 and E0
k,2 of weight 4 and 6.

For k = 4, we have v0(E∞
4,2) = v∞(E0

4,2) = 1. By the valence formula, E∞
4,2 and E0

4,2 do not have any
other zeros.

For k = 6, we have v0(E∞
6,2) = v∞(E0

6,2) = 1, vρ2(E
∞
6,2) > 1, and vρ2(E

0
6,2) > 1. By the valence formula,

we have vρ2(E
∞
6,2) = vρ2(E

0
6,2) = 1, and they do not have any other zeros.

6.1.4. The space of modular forms. Let Mk,2 be the space of modular forms for Γ0(2) of weight k,
and let M0

k,2 be the space of cusp forms for Γ0(2) of weight k. When we consider the map Mk,2 3
f 7→ (f(∞), f(0)) ∈ C × C, the kernel of the map is M0

k,2. So dim(Mk,2/M
0
k,2) 6 2, and Mk,2 =

CE∞
k,2 ⊕ CE0

k,2 ⊕M0
k,2. Recall that ∆2 = η8(z)η8(2z). We have following theorem:

Theorem 6.1. Let k be an even integer.

(1) For k < 0, Mk,2 = 0.
(2) For k = 0, 2, 4, and 6, we have M0

k,2 = 0. Furthemore, we have M0,2 = C, M2,2 = CE2,2
′, and

Mk,2 = CE∞
k,2 ⊕ CE0

k,2 for k = 4 and 6.
(3) M0

k,2 = ∆2Mk−8,2.

Proof. Let f be a nonzero function of Mk,2, then vp(f) > 0 for every p ∈ H. By the valence formula for
Γ0(2)(Proposition6.1), we have k > 0. This proves (1).

In Section 4, we have v∞(∆2) = v0(∆2) = 1 and vp(∆2) = 0 for every p ∈ H. Then, for every f ∈ M0
k,2,

we have vp(f/∆2) > 0 for every p ∈ H ∪ {∞, 0}. Thus f/∆2 ∈ Mk−8,2. This proves (3).
By (3) and Mk,2 = 0 for k < 0, we have M0

k,2 = 0 for k = 0, 2, 4, and 6. By previous subsubsections,
we can prove (2). ¤

Furthermore, we have dim(Mk,2) = bk/4c+ 1 for k > 0, and dim(M0
k,2) = bk/4c − 1 for k > 8.

Let k be an even integer such that k > 4 and k ≡ 2 (mod 4). For f ∈ Mk,2, by previous subsubsections,
we have vp(f/E2,2

′) > 0 for every p ∈ H ∪ {∞, 0}. Then f/E2,2
′ ∈ Mk−2,2. Thus Mk,2 = E2,2

′Mk−2,2,
and k − 2 ≡ 0 (mod 4).

On the other hand, let k be an even integer such that k > 4 and k ≡ 0 (mod 4). Write n :=
bk/8c, then k − 8n = 0 or 4. Now, we have v0(E∞

k,2) = 1 and v∞(E∞
k,2 − E∞

k−8n,2(E
∞
4,2)

2n) > 1. Thus
E∞

k,2−E∞
k−8n,2(E

∞
4,2)

2n ∈ M0
k,2. Similarly, we have E0

k,2−E0
k−8n,2(E

0
4,2)

2n ∈ M0
k,2. In conclusion, we have
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Mk,2 = CE∞
k−8n,2(E

∞
4,2)

2n ⊕ CE0
k−8n,2(E

0
4,2)

2n ⊕M0
k,2. Then

Mk,2 = CE∞
k−8n,2(E

∞
4,2)

2n ⊕ CE0
k−8n,2(E

0
4,2)

2n ⊕∆2Mk−8,2

· · ·
= E∞

k−8n,2(C(E∞
4,2)

2n ⊕ C(E∞
4,2)

2(n−1)∆2 ⊕ · · · ⊕ C∆n
2 )

⊕ E0
k−8n,2(C(E0

4,2)
2n ⊕ C(E0

4,2)
2(n−1)∆2 ⊕ · · · ⊕ C∆n

2 )

Thus, the next proposision follows:

Proposition 6.2. Let k > 4 be an even integer. For every f ∈ Mk,2, we have

(127) vρ2(f) > tk (tk = 0, 1 such that 2tk ≡ k (mod 4)).

In addition, we have E0
4,2 = 4((E2,2

′)2 − E∞
4,2) and ∆2 = E∞

4,2 · E0
4,2/256. Then

Remark 6.1. Every modular form for Γ0(2) is generated by

E2,2
′ and E∞

4,2.

Finally, define

A2 := {z ; |z + 1/2| = 1/2, 0 < Arg(z) < π/2},(128)

A0
2 := {z ; Re(z) = −1/2, Im(z) > 1/2}.(129)

Then we have following:

Conjecture 6.1. Let k > 4 be an even integer. E∞
k,2 has bk/4c − 1 zeros in A2, and E0

k,2 has bk/4c − 1
zeros in A0

2. Furthermore, in Proposition 6.2, the equality hold if f is equal to E∞
k,2 or E0

k,2.

Now, we have the following transformation:

(130)
(

1 −1
0 1

)
W2 :

eiθ − 1
2

7→ −1
2

+
i

2
1

tan θ/2
.

This transform A2 to A0
2. Moreover,

E0
k,2

((
1 −1
0 1

)
W2 z

)
= (2z)kE∞

k,2(z) for every z ∈ A2.

Then

Remark 6.2. If E∞
k,2 has bk/4c − 1 zeros in A2, then E0

k,2 has bk/4c − 1 zeros in A0
2.

6.1.5. The function Fk,2. We give the next definition;

(131) Fk,2(θ) := eikθ/2E∞
k,2(e

iθ/2− 1/2).

Again, E∞
k,2 is denoted by

E∞
k,2(z) =

1
2

∑

(c,d)=1
2|c

(cz + d)−k.

Since 2 | c, we can write c = 2c′ for ∃c′ ∈ Z, and have 2 - d.

Fk,2(θ) =
eikθ/2

2

∑

(c,d)=1
2|c

(
c
eiθ − 1

2
+ d

)−k

=
eikθ/2

2

∑

(c,d)=1
2-d

(c′eiθ + (−c′ + d))−k

=
1
2

∑

(c,d)=1
2-d

(c′eiθ/2 + (−c′ + d)e−iθ/2)−k.

Then we have (c′,−c′ + d) = 1, 2 | c′(−c′ + d). Thus we can write as following:

Fk,2(θ) =
1
2

∑

(c,d)=1
2|cd

(ceiθ/2 + de−iθ/2)−k.
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Note that for any pair (c, d), (ceiθ/2 + deiθ/2)−k and (deiθ/2 + ce−iθ/2)−k are conjugates of each other.
The next proposition follows.

Proposition 6.3. Fk,2(θ) is real for every θ ∈ R.

6.1.6. Application of the RSD Method (0). We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write:

(132) Fk,2(θ) = 2 cos(kθ/2) + R2,

where

R2 =
1
2

∑

(c,d)=1
2|cd
N>1

(ceiθ/2 + de−iθ/2)−k.

Now, we have

|R2| 6 1
2

∑

(c,d)=1
2|cd
N>1

|ceiθ/2 + de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 + de−iθ/2|−k, then vk(c, d, θ) = 1/(c2 + d2 + 2cd cos θ)k/2 and vk(c, d, θ) =
vk(−c,−d, θ) = vk(±d,±c, θ).

However, for every n ∈ N, we have (2n,−2n− 1) = 1, 2 | 2n(−2n− 1), and

vk(2n,−2n− 1, θ) 6 1 for 0 6 θ 6 π/2.

Here, the number of the pairs (2n,−2n− 1) is infinite. Thus we have the bound

|R2| 6 ∞,

which does not make sense.
For 0 6 θ 6 π/2, we have 0 6 kθ/2 6 kπ/4. Here the interval [0, k/4] has bk/4c+ 1 integers, but we

need at most bk/4c integers for bk/4c− 1 zeros. Now, |R2| tends to ∞ when θ tend to 0. Thus we expect
to remove the integer 0 from the interval [0, k/4]. Then we need

(133) |R2| < 2 for every θ ∈ [2π/k, π/2].

However, it is still difficult to prove above bound.
For the first step, we will prove following in the next subsubsections:

|R2| < 2 for every θ ∈ [π/6, π/2].(134)

|R2| < 2 for every θ ∈ [π/12, π/2].(135)

|R2| < 2 for every θ ∈ [π/20, π/2].(136)

6.1.7. Application of the RSD Method (1) : [π/6, π/2]. In this subsubsection, we prove the bound (134).
In privious subsubsections, E∞

k,2 and E0
k,2 of weight k < 8 has no zeros other than ∞, 0, and ρ2. Thus

we may assume k > 8.
Now we will consider the next cases, namely N = 5, 13, 17, and N > 25. Considering 0 6 cos θ 6 7/8

for the interval [π/6, π/2], we have the following:

When N = 5, vk(1, 2, θ) 6 (1/5)k/2, vk(1,−2, θ) 6 (2/3)k/2.

When N = 13, vk(2, 3, θ) 6 (1/13)k/2, vk(2,−3, θ) 6 (2/5)k/2.

When N = 17, vk(1, 4, θ) 6 (1/17)k/2, vk(1,−4, θ) 6 (1/10)k/2.

When N > 25, |ceiθ/2 ± de−iθ/2|2 > N/8,
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and the rest of the question is about the number of terms with c2+d2 = N . The number of |c| is not more
than N1/2, and we consider four terms (±(c, d), ±(c,−d)) and the number 1/2 which is the coefficient of
the summation. Thus the number of terms is not more than 2N1/2. Then

|R2|N>25 = 4
√

2
∞∑

N=25

(
1
8
N

)(1−k)/2

6 252
√

6
k − 3

(
1
3

)k/2

.

Thus

|R2| 6 2
(

2
3

)k/2

+ 2
(

2
5

)k/2

+ · · ·+ 2
(

1
17

)k/2

+
252

√
6

k − 3

(
1
3

)k/2

,(137)

6 1.61099... (k > 8)

In conclusion,

Remark 6.3. We proved Conjecture 6.1 for 4 6 k 6 12.

6.1.8. Application of the RSD Method (2) : [π/12, π/2]. In this subsubsection, we prove the bound (135).
In privious subsubsections, we proved for k 6 12. Thus we may assume k > 14.

Now we will consider the next cases, namely N = 5, 13, · · · , 61, and N > 65. Considering 0 6 cos θ 6
29/30 for the interval [π/12, π/2], we have the following:

When N = 5, vk(1, 2, θ) 6 (1/5)k/2, vk(1,−2, θ) 6 (15/17)k/2.

When N = 13, vk(2, 3, θ) 6 (1/13)k/2, vk(2,−3, θ) 6 (5/7)k/2.

When N = 17, vk(1, 4, θ) 6 (1/17)k/2, vk(1,−4, θ) 6 (15/139)k/2.

When N = 25, vk(3, 4, θ) 6 (1/5)k, vk(3,−4, θ) 6 (5/9)k/2.

When N = 29, vk(2, 5, θ) 6 (1/29)k/2, vk(2,−5, θ) 6 (3/29)k/2.

When N = 37, vk(1, 6, θ) 6 (1/37)k/2, vk(1,−6, θ) 6 (5/127)k/2.

When N = 41, vk(4, 5, θ) 6 (1/41)k/2, vk(4,−5, θ) 6 (3/7)k/2.

When N = 53, vk(2, 7, θ) 6 (1/53)k/2, vk(2,−7, θ) 6 (15/389)k/2.

When N = 61, vk(5, 6, θ) 6 (1/61)k/2, vk(5,−6, θ) 6 (1/3)k/2.

When N > 65, |ceiθ/2 ± de−iθ/2|2 > N/30,

and the number of terms with c2 + d2 = N is not more than 2N1/2. Then

|R2|N>65 = 2
√

30
∞∑

N=65

(
1
30

N

)(1−k)/2

6 2048
k − 3

(
15
32

)k/2

.

Thus

|R2| 6 2
(

5
7

)k/2

+ 2
(

5
9

)k/2

+ · · ·+ 2
(

1
61

)k/2

+
2048
k − 3

(
15
32

)k/2

,(138)

6 1.98724... (k > 14)

In conclusion,

Remark 6.4. We proved Conjecture 6.1 for 14 6 k 6 24.

6.1.9. Application of the RSD Method (3) : [π/20, π/2]. In this subsubsection, we prove the bound (136).
In privious subsubsections, we proved for k 6 24. Thus we may assume k > 26.

Now we will consider the next cases, namely N = 5, 13, · · · , 125, and N > 137. Considering 0 6
cos θ 6 81/82 for the interval [π/20, π/2], we have the following:

When N = 5, vk(1, 2, θ) 6 (1/5)k/2, vk(1,−2, θ) 6 (41/43)k/2.

When N = 13, vk(2, 3, θ) 6 (1/13)k/2, vk(2,−3, θ) 6 (41/47)k/2.



ON THE ZEROS OF EISENSTEIN SERIES FOR Γ∗0(p) AND Γ0(p) OF LOW LEVELS 85

When N = 17, vk(1, 4, θ) 6 (1/17)k/2, vk(1,−4, θ) 6 (41/373)k/2.

When N = 25, vk(3, 4, θ) 6 (1/5)k, vk(3,−4, θ) 6 (41/53)k/2.

When N = 29, vk(2, 5, θ) 6 (1/29)k/2, vk(2,−5, θ) 6 (41/379)k/2.

When N = 37, vk(1, 6, θ) 6 (1/37)k/2, vk(1,−6, θ) 6 (41/1031)k/2.

When N = 41, vk(4, 5, θ) 6 (1/41)k/2, vk(4,−5, θ) 6 (41/61)k/2.

When N = 53, vk(2, 7, θ) 6 (1/53)k/2, vk(2,−7, θ) 6 (41/1039)k/2.

When N = 61, vk(5, 6, θ) 6 (1/61)k/2, vk(5,−6, θ) 6 (41/71)k/2.

When N = 65, vk(1, 8, θ) 6 (1/65)k/2, vk(1,−8, θ) 6 (41/2017)k/2,

vk(4, 7, θ) 6 (1/65)k/2, vk(4,−7, θ) 6 (41/397)k/2.

When N = 73, vk(3, 8, θ) 6 (1/73)k/2, vk(3,−8, θ) 6 (41/1049)k/2.

When N = 85, vk(2, 9, θ) 6 (1/85)k/2, vk(2,−9, θ) 6 (41/2027)k/2,

vk(6, 7, θ) 6 (1/85)k/2, vk(6,−7, θ) 6 (41/83)k/2.

When N = 89, vk(5, 8, θ) 6 (1/89)k/2, vk(5,−8, θ) 6 (41/409)k/2.

When N = 97, vk(4, 9, θ) 6 (1/97)k/2, vk(4,−9, θ) 6 (41/1061)k/2.

When N = 101, vk(1, 10, θ) 6 (1/101)k/2, vk(1,−10, θ) 6 (41/3331)k/2.

When N = 109, vk(3, 10, θ) 6 (1/109)k/2, vk(3,−10, θ) 6 (41/2039)k/2.

When N = 113, vk(7, 8, θ) 6 (1/113)k/2, vk(7,−8, θ) 6 (41/97)k/2.

When N = 125, vk(2, 11, θ) 6 (1/125)k/2, vk(2,−11, θ) 6 (41/3343)k/2.

When N > 137, |ceiθ/2 ± de−iθ/2|2 > N/82,

and the number of terms with c2 + d2 = N is not more than 2N1/2. Then

|R2|N>137 = 2
√

82
∞∑

N=137

(
1
82

N

)(1−k)/2

6 1088
√

34
k − 3

(
41
68

)k/2

.

Thus

|R2| 6 2
(

41
43

)k/2

+ 2
(

41
47

)k/2

+ · · ·+ 2
(

1
125

)k/2

+
1088

√
34

k − 3

(
41
68

)k/2

,(139)

6 1.88380... (k > 26)

In conclusion,

Remark 6.5. We proved Conjecture 6.1 for 26 6 k 6 40.

Now, by Remark 6.3, 6.4, and 6.5, we prove Conjecture 6.1 for 4 6 k 6 40. However, for greater k, we
prove only about 90% of Conjecture 6.1 by the sense of the interval [π/20, π/2].

However, for greater k, it seems that we can not prove for all zeros with the same method. For example,
for k = 100, we consider 0 6 cos θ 6 506/507 for the interval [π/50, π/2], we have

|R2| 6 2vk(1,−2, θ) + 2vk(2,−3, θ) + 2vk(3,−4, θ)

6 2
(

507
511

)k/2

+ 2
(

169
173

)k/2

+ 2
(

169
177

)k/2

= 2.16912... (k = 100)

Thus we can not prove for k > 100 with this method. We will need some expansion.
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6.2. Γ0(3).

We have the following transformation:
(−1 0

3 −1

)
:

eiθ + 1
3

7→ ei(π−θ) − 1
3

.

Then we have VΓ0(3) = {−1/2 +
√

3i/6} (cf. Theorem2.1).

-1
-

2
����

3
-

1
����

2
-

1
����

3
1
����

3
1
����

2
2
����

3
1

1
�������������

2 �!!!!3

1

-1
-

2
����

3
-

1
����

2
-

1
����

3
1
����

3
1
����

2
2
����

3
1

1
�������������

2 �!!!!3

1

6.2.1. Valence formula. In order to decide the locating of all zeros of E∞
k,3(z) and E0

k,3(z), we need the
valence formula for Γ0(3):

Proposition 6.4. Let f be a modular function of weight k for Γ0(3), which is not identically zero. We
have

(140) v∞(f) + v0(f) +
1
3
vρ3(f) +

∑

p∈Γ0(3)\H
p6=ρ3

vp(f) =
k

3
,

where ρ3 := −1/2 +
√

3i/6.

The proof of this proposition is similar to Proposition 6.1 because the figure of fundamental domain
of Γ0(3) is similar to that of Γ0(2) (cf. Figure 4). The angle of the arc around ρ3 (BB′ in Figure9.)
tends to π/6 when radius of it tends to 0, thus the coefficient of vρ3(f) is 1/3. Furthermore, since
f(S3z) = (−3z − 1)kf(z) for S3 := − ( 1 0

3 1 ), the right-hand side is k/3.

6.2.2. Modular forms of weight 2. We define

(141) E2,3
′(z) :=

1
2
(3E2(3z)− E2(z)).

Note that E2,3
′ is generated by Eisensitein series for SL2(Z), but it is not Eisenstein series for SL2(Z)

nor Γ0(3).
Similarly to E2,2

′, we have

E2,3
′ (( 1 1

0 1 ) z) = E2,3
′(z),

E2,3
′ (− ( 1 0

3 1 ) z) = (−3z − 1)2E2,3
′(z).

Furthermore, because

(142) E2,3
′(W3z) = −(

√
3z)2E2,3

′(z),

E2,3
′ is holomorphic at cusp 0. Now, we prove E2,3

′ is a modular form for Γ0(3) of weight 2.
By the valence formula for Γ0(3) (Proposition 6.4), we have

vρ3(E2,3
′) = 2, vp(E2,3

′) = 0 for every p 6= ρ3.

Incidentally, let f be a modular form for Γ0(3) of weight 2. Then, By the valence formula for Γ0(3),
we also have vρ3(f) = 2 and vp(f) = 0 for every p 6= ρ3. Thus f/E2,3

′ is a modular form of weight 0,
then f/E2,3

′ ∈ C. In conclusion, f is a constant multiple of E2,3
′.
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6.2.3. Preliminaries. Let f be a modular form for Γ0(3) of weight k, and let k 6≡ 0 (mod 3). Then we
have

f(ρ3) = f(
(−2 −1

3 1

)
ρ3) = (ei2π/3)kf(ρ3).

Thus f(ρ3) = 0 and vρ3(f) > 1.
Let k be an even integer such that k ≡ 0 (mod 3). Then we have

E∞
k,3(ρ3) =

1
1− 3k

(3k/2(eiπ/6)k − 3k)Ek(ρ) 6= 0,

E0
k,3(ρ3) =

1
1− 3−k

(3k/2(eiπ/6)k − 1)Ek(ρ) 6= 0.

(cf. Proposition 3.3) Thus vρ3(E
∞
k,3) = vρ3(E

0
k,3) = 0.

Recall that v0(E∞
k,3) = v∞(E0

k,3) = 1 and v∞(E∞
k,3) = v0(E0

k,3) = 0. (Section 4)
In paticular, we have v0(E∞

4,3) = v∞(E0
4,3) = 1, vρ3(E

∞
4,3) > 1, and vρ3(E

0
4,3) > 1. By the valence

formula, we have vρ3(E
∞
4,3) = vρ3(E

0
4,3) = 1, and they do not have any other zeros.

Finally, define

A3 := {z ; |z + 1/3| = 1/3, 0 < Arg(z) < 2π/3},(143)

A0
3 := {z ; Re(z) = −1/2, Im(z) >

√
3/6}.(144)

Now, we have the following transformation:

(145)
(

1 −1
0 1

)
W3 :

eiθ − 1
3

7→ −1
2

+
i

2
1

tan θ/2
.

This transform A3 to A0
3. Moreover,

E0
k,3

((
1 −1
0 1

)
W3 z

)
= (3z)kE∞

k,3(z) for every z ∈ A3.

Then

Remark 6.6. The number of zeros of E∞
k,3 in A3 is equal to that of zeros of E0

k,3 in A0
3.

6.2.4. The function Fk,3. We give the next definition;

(146) Fk,3(θ) := eikθ/2E∞
k,3(e

iθ/3− 1/3).

Again, E∞
k,3 is denoted by

E∞
k,3(z) =

1
2

∑

(c,d)=1
3|c

(cz + d)−k.

Since 3 | c, we can write c = 3c′ for ∃c′ ∈ Z, and have 3 - d.

Fk,3(θ) =
eikθ/2

2

∑

(c,d)=1
3|c

(
c
eiθ − 1

3
+ d

)−k

=
1
2

∑

(c,d)=1
3-d

(c′eiθ/2 + (−c′ + d)e−iθ/2)−k.

Then we have (c′,−c′ + d) = 1. If 3 - c′(−c′ + d), then c′ 6≡ 0, c′ 6≡ d (mod 3), and we have c′ ≡ −c′ + d
(mod 3). Thus we can write as following:

Fk,3(θ) =
1
2

∑

(c,d)=1
3|cd

(ceiθ/2 + de−iθ/2)−k +
1
2

∑

(c,d)=1
3-cd

c≡d(3)

(ceiθ/2 + de−iθ/2)−k.

Note that for any pair (c, d), (ceiθ/2 + deiθ/2)−k and (deiθ/2 + ce−iθ/2)−k are conjugates of each other.
The next proposition follows.

Proposition 6.5. Fk,3(θ) is real for every θ ∈ R.
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6.2.5. Application of the RSD Method (0). We note that N := c2 + d2.
Firstly, we consider the case N = 1. Then we can write:

(147) Fk,3(θ) = 2 cos(kθ/2) + R3,

where

R3 =
1
2

∑

(c,d)=1
3|cd
N>1

(ceiθ/2 + de−iθ/2)−k +
1
2

∑

(c,d)=1
3-cd

c≡d(3)

(ceiθ/2 + de−iθ/2)−k.

Now, we have

|R3| 6 1
2

∑

(c,d)=1
3|cd
N>1

|ceiθ/2 + de−iθ/2|−k +
1
2

∑

(c,d)=1
3-cd

c≡d(3)
N>1

|ceiθ/2 + de−iθ/2|−k.

Let vk(c, d, θ) := |ceiθ/2 + de−iθ/2|−k, then vk(c, d, θ) = 1/(c2 + d2 + 2cd cos θ)k/2 and vk(c, d, θ) =
vk(−c,−d, θ) = vk(±d,±c, θ).

However, for every n ∈ N, we have (3n,−3n− 1) = 1, 3 | 3n(−3n− 1), and

vk(3n,−3n− 1, θ) 6 1 for 0 6 θ 6 2π/3.

Here, the number of the pairs (3n,−3n− 1) is infinite. Thus we have the bound

|R3| 6 ∞,

which does not make sense.

6.2.6. Application of the RSD Method (1) : [π/4, 2π/3]. In privious subsubsections, E∞
k,3 and E0

k,3 of
weight k < 6 has no zeros other than ∞, 0, and ρ3. Thus we may assume k > 6. We consider two cases,
namely [π/2, 2π/3] and [π/4, π/2].

For the interval [π/2, 2π/3], we will consider the next cases, namely N = 2, 5, and N > 10. Considering
−1/2 6 cos θ 6 0 for the interval [π/2, 2π/3], we have the following:

When N = 2, vk(1, 1, θ) 6 1.

When N = 5, vk(1,−2, θ) 6 (1/5)k/2.

When N > 10, |ceiθ/2 ± de−iθ/2|2 > N/2,

and the number of terms is not more than 2N1/2. Then

|R3|N>10 = 2
√

2
∞∑

N=10

(
1
2
N

)(1−k)/2

6 108
k − 3

(
2
9

)k/2

.

Thus

(148) |R3| 6 1 + 2
(

1
5

)k/2

+
108

k − 3

(
2
9

)k/2

6 1.41106... (k > 6)

On the other hand, for the interval [π/4, π/2], we will consider the next cases, namely N = 2, 5, 10, 13,
and N > 17. Considering 0 6 cos θ 6 3/4 for the interval [π/4, π/2], we have the following:

When N = 2, vk(1, 1, θ) 6 (1/2)k/2.

When N = 5, vk(1, 2, θ) 6 (1/2)k/2.

When N = 10, vk(1, 3, θ) 6 (1/10)k/2, vk(1,−3, θ) 6 (2/11)k/2.

When N = 13, vk(2, 3, θ) 6 (1/13)k/2, vk(2,−3, θ) 6 (1/2)k.

When N > 17, |ceiθ/2 ± de−iθ/2|2 > N/4,
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and the number of terms is not more than 2N1/2. Then

|R3|N>17 = 4
∞∑

N=17

(
1
4
N

)(1−k)/2

6 256
k − 3

(
1
2

)k

.

Thus

|R3| 6 3
(

1
2

)k/2

+ 2
(

1
2

)k

+ · · ·+ 2
(

1
13

)k/2

+
256

k − 3

(
1
2

)k

,(149)

6 1.75451... (k > 6)

By above bounds, E∞
6,3 and E∞

8,3 have at least 1 zeros in A3. Then by Remark 6.6, E0
6,3 and E0

8,3 have
at least 1 zeros in A0

3.
Recall that v0(E∞

6,3) = v∞(E0
6,3) = 1. By the valence formula, E∞

6,3 and E0
6,3 have just 1 zero in A3

and A0
3, respectively. Furthermore, they have no other zeros.

Recall that v0(E∞
8,3) = v∞(E0

8,3) = 1, vρ3(E
∞
8,3) > 1, and vρ3(E

0
8,3) > 1. By the valence formula, E∞

8,3

and E0
8,3 have just 1 zero in A3 and A0

3, respectively. Furthermore, we have vρ3(E
∞
8,3) = vρ3(E

0
8,3) = 2,

and they have no other zeros.

6.2.7. The space of modular forms. Let Mk,3 be the space of modular forms for Γ0(3) of weight k, and
let M0

k,3 be the space of cusp forms for Γ0(3) of weight k. Because dim(Mk,3/M
0
k,3) 6 2, we have

Mk,3 = CE∞
k,3 ⊕ CE0

k,3 ⊕M0
k,3. Recall that ∆3 = η6(z)η6(3z). We have following theorem:

Theorem 6.2. Let k be an even integer.
(1) For k < 0, Mk,3 = 0.
(2) For k = 0, 2, and 4, we have M0

k,3 = 0. Furthemore, we have M0,2 = C, M2,3 = CE2,3
′, and

M4,3 = CE∞
4,3 ⊕ CE0

4,3.
(3) M0

k,3 = ∆3Mk−6,3.

The proof of this theorem is similar to that of Theorem 6.1. Furthermore, we have dim(Mk,3) =
bk/3c+ 1 for k > 0, and dim(M0

k,3) = bk/3c − 1 for k > 6.
Let k be an even integer such that k > 4 and k ≡ 2 (mod 6), then we have Mk,3 = E2,3

′Mk−2,3, and
k − 2 ≡ 0 (mod 6).

On the other hand, let k be an even integer such that k > 4 and k ≡ 0, 4 (mod 6). Write n := bk/6c,
then k − 6n = 0 or 4. Now, we have E∞

k,3 − E∞
k−6n,3(E

∞
6,3)

n ∈ M0
k,3 and E0

k,3 − E0
k−6n,3(E

0
6,3)

n ∈ M0
k,3.

Thus we have Mk,3 = CE∞
k−6n,3(E

∞
6,3)

n ⊕ CE0
k−6n,3(E

0
6,3)

n ⊕M0
k,3. Then

Mk,3 = E∞
k−6n,3(C(E∞

6,3)
n ⊕ C(E∞

6,3)
n−1∆3 ⊕ · · · ⊕ C∆n

3 )

⊕ E0
k−6n,3(C(E0

6,3)
n ⊕ C(E0

6,3)
n−1∆3 ⊕ · · · ⊕ C∆n

3 )

Thus, the next proposision follows:

Proposition 6.6. Let k > 4 be an even integer. For every f ∈ Mk,3, we have

(150) vρ3(f) > tk (tk = 0, 1, 2 such that − 2tk ≡ k (mod 6)).

In addition, we have E0
4,3 = 9((E2,3

′)2−E∞
4,3), E∞

6,3 = E2,3
′E∞

4,3−(108/13)∆3, and E0
6,3 = (49/729)E2,3

′E0
4,3−

(50/3)∆3. Then

Remark 6.7. Every modular form for Γ0(3) is generated by

E2,3
′, E∞

4,3, and ∆3.

Then we have following:

Conjecture 6.2. Let k > 4 be an even integer. E∞
k,3 has bk/3c − 1 zeros in A3, and E0

k,3 has bk/3c − 1
zeros in A0

3. Furthermore, in Proposition 6.6, the equality hold if f is equal to E∞
k,3 or E0

k,3.

Then we improve Remark 6.6 as following:

Remark 6.8. If E∞
k,3 has bk/3c − 1 zeros in A3, then E0

k,3 has bk/3c − 1 zeros in A0
3.
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For 0 6 θ 6 2π/3, we have 0 6 kθ/2 6 kπ/3. Here we need at most bk/3c integers for bk/3c− 1 zeros.
We may remove the integer 0 from the interval [0, k/3]. We have already proved the bound |R3| < 2 for
the interval [π/2, 2π/3] in the previous section. Thus we need

(151) |R3| < 2 for every θ ∈ [2π/k, π/2].

For the first step, we will prove following in the next subsubsection:

|R3| < 2 for every θ ∈ [π/8, π/2].(152)

|R3| < 2 for every θ ∈ [π/15, π/2].(153)

|R3| < 2 for every θ ∈ [π/20, π/2].(154)

6.2.8. Application of the RSD Method (2) : [π/8, π/2]. In this subsubsection, we prove the bound (152).
In privious subsubsections, we proved for k 6 8. Thus we may assume k > 10.

Now we will consider the next cases, namely N = 2, 5, · · · , 34, and N > 37. Considering 0 6 cos θ 6
13/14 for the interval [π/8, π/2], we have the following:

When N = 2, vk(1, 1, θ) 6 (1/2)k/2.

When N = 5, vk(1,−2, θ) 6 (7/9)k/2.

When N = 10, vk(1, 3, θ) 6 (1/10)k/2, vk(1,−3, θ) 6 (7/31)k/2.

When N = 13, vk(2, 3, θ) 6 (1/13)k/2, vk(2,−3, θ) 6 (7/13)k/2.

When N = 17, vk(1, 4, θ) 6 (1/17)k/2.

When N = 25, vk(3, 4, θ) 6 (1/5)k, vk(3,−4, θ) 6 (7/19)k/2.

When N = 29, vk(2, 5, θ) 6 (1/29)k/2.

When N = 34, vk(3, 5, θ) 6 (1/34)k/2, vk(3,−5, θ) 6 (7/43)k/2.

When N > 37, |ceiθ/2 ± de−iθ/2|2 > N/30,

and the number of terms with c2 + d2 = N is not more than 2N1/2. Then

|R3|N>37 = 2
√

14
∞∑

N=37

(
1
14

N

)(1−k)/2

6 864
k − 3

(
7
18

)k/2

.

Thus

|R3| 6 2
(

7
13

)k/2

+
(

1
2

)k/2

+ · · ·+ 2
(

1
34

)k/2

+
864

k − 3

(
7
18

)k/2

,(155)

6 1.80389... (k > 10)

In conclusion,

Remark 6.9. We proved Conjecture 6.2 for 4 6 k 6 16.

6.2.9. Application of the RSD Method (3) : [π/15, π/2]. In this subsubsection, we prove the bound (153).
In privious subsubsections, we proved for k 6 16. Thus we may assume k > 18.

Now we will consider the next cases, namely N = 2, 5, · · · , 85, and N > 89. Considering 0 6 cos θ 6
45/46 for the interval [π/15, π/2], we have the following:

When N = 2, vk(1, 1, θ) 6 (1/2)k/2.

When N = 5, vk(1,−2, θ) 6 (23/25)k/2.

When N = 10, vk(1, 3, θ) 6 (1/10)k/2, vk(1,−3, θ) 6 (23/95)k/2.

When N = 13, vk(2, 3, θ) 6 (1/13)k/2, vk(2,−3, θ) 6 (23/29)k/2.

When N = 17, vk(1, 4, θ) 6 (1/17)k/2.
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When N = 25, vk(3, 4, θ) 6 (1/5)k, vk(3,−4, θ) 6 (23/35)k/2.

When N = 26, vk(1,−5, θ) 6 (23/373)k/2.

When N = 29, vk(2, 5, θ) 6 (1/29)k/2.

When N = 34, vk(3, 5, θ) 6 (1/34)k/2, vk(3,−5, θ) 6 (23/107)k/2.

When N = 37, vk(1, 6, θ) 6 (1/37)k/2, vk(1,−6, θ) 6 (23/581)k/2.

When N = 41, vk(4,−5, θ) 6 (23/43)k/2.

When N = 37, vk(1, 7, θ) 6 (1/50)k/2.

When N = 53, vk(2,−7, θ) 6 (23/589)k/2.

When N = 58, vk(3, 7, θ) 6 (1/58)k/2, vk(3,−7, θ) 6 (23/389)k/2.

When N = 61, vk(5, 6, θ) 6 (1/61)k/2, vk(5,−6, θ) 6 (23/53)k/2.

When N = 65, vk(1,−8, θ) 6 (23/1135)k/2, vk(4, 7, θ) 6 (1/65)k/2.

When N = 73, vk(3, 8, θ) 6 (1/73)k/2, vk(3,−8, θ) 6 (23/599)k/2.

When N = 74, vk(5,−7, θ) 6 (23/126)k/2.

When N = 82, vk(1, 9, θ) 6 (1/82)k/2, vk(1,−9, θ) 6 (23/1481)k/2.

When N = 85, vk(2, 9, θ) 6 (1/85)k/2, vk(2,−9, θ) 6 (23/1145)k/2,

vk(6, 7, θ) 6 (1/85)k/2, vk(6,−7, θ) 6 (23/65)k/2.

When N > 89, |ceiθ/2 ± de−iθ/2|2 > N/46,

and the number of terms with c2 + d2 = N is not more than 2N1/2. Then

|R3|N>89 = 2
√

46
∞∑

N=89

(
1
46

N

)(1−k)/2

6 704
√

22
k − 3

(
23
44

)k/2

.

Thus

|R3| 6 2
(

23
25

)k/2

+ 2
(

23
29

)k/2

+ · · ·+ 4
(

1
85

)k/2

+
704

√
22

k − 3

(
23
44

)k/2

,(156)

6 1.89019... (k > 18)

In conclusion,

Remark 6.10. We proved Conjecture 6.2 for 18 6 k 6 30.

6.2.10. Application of the RSD Method (4) : [π/20, π/2]. In this subsubsection, we prove the bound (154).
In privious subsubsections, we proved for k 6 30. Thus we may assume k > 32.

Now we will consider the next cases, namely N = 2, 5, · · · , 113, and N > 125. Considering 0 6 cos θ 6
81/82 for the interval [π/20, π/2], we have the following:

When N = 2, vk(1, 1, θ) 6 (1/2)k/2.

When N = 5, vk(1,−2, θ) 6 (41/43)k/2.

When N = 10, vk(1, 3, θ) 6 (1/10)k/2, vk(1,−3, θ) 6 (41/167)k/2.

When N = 13, vk(2, 3, θ) 6 (1/13)k/2, vk(2,−3, θ) 6 (41/47)k/2.

When N = 17, vk(1, 4, θ) 6 (1/17)k/2.

When N = 25, vk(3, 4, θ) 6 (1/5)k, vk(3,−4, θ) 6 (41/53)k/2.

When N = 26, vk(1,−5, θ) 6 (41/661)k/2.

When N = 29, vk(2, 5, θ) 6 (1/29)k/2.

When N = 34, vk(3, 5, θ) 6 (1/34)k/2, vk(3,−5, θ) 6 (41/179)k/2.
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When N = 37, vk(1, 6, θ) 6 (1/37)k/2, vk(1,−6, θ) 6 (41/1031)k/2.

When N = 41, vk(4,−5, θ) 6 (41/61)k/2.

When N = 50, vk(1, 7, θ) 6 (1/50)k/2.

When N = 53, vk(2,−7, θ) 6 (41/1039)k/2.

When N = 58, vk(3, 7, θ) 6 (1/58)k/2, vk(3,−7, θ) 6 (41/677)k/2.

When N = 61, vk(5, 6, θ) 6 (1/61)k/2, vk(5,−6, θ) 6 (41/71)k/2.

When N = 65, vk(1,−8, θ) 6 (41/2017)k/2, vk(4, 7, θ) 6 (1/65)k/2.

When N = 73, vk(3, 8, θ) 6 (1/73)k/2, vk(3,−8, θ) 6 (41/1049)k/2.

When N = 74, vk(5,−7, θ) 6 (41/199)k/2.

When N = 82, vk(3, 8, θ) 6 (1/82)k/2, vk(3,−8, θ) 6 (41/2633)k/2.

When N = 85, vk(2, 9, θ) 6 (1/85)k/2, vk(2,−9, θ) 6 (41/2027)k/2,

vk(6, 7, θ) 6 (1/85)k/2, vk(6,−7, θ) 6 (41/83)k/2.

When N = 89, vk(5, 8, θ) 6 (1/89)k/2.

When N = 97, vk(4, 9, θ) 6 (1/97)k/2, vk(4,−9, θ) 6 (41/1061)k/2.

When N = 101, vk(1, 10, θ) 6 (1/101)k/2.

When N = 106, vk(5, 9, θ) 6 (1/106)k/2, vk(5,−9, θ) 6 (41/701)k/2.

When N = 109, vk(3, 10, θ) 6 (1/109)k/2, vk(3,−10, θ) 6 (41/2039)k/2.

When N = 113, vk(7,−8, θ) 6 (41/97)k/2.

When N > 125, |ceiθ/2 ± de−iθ/2|2 > N/82,

and the number of terms with c2 + d2 = N is not more than 2N1/2. Then

|R3|N>125 = 2
√

82
∞∑

N=125

(
1
82

N

)(1−k)/2

6 992
√

31
k − 3

(
41
62

)k/2

.

Thus

|R3| 6 2
(

41
43

)k/2

+ 2
(

41
47

)k/2

+ · · ·+ 2
(

1
109

)k/2

+
992

√
31

k − 3

(
41
62

)k/2

,(157)

6 1.69883... (k > 30)

In conclusion,

Remark 6.11. We proved Conjecture 6.2 for 32 6 k 6 40.

Now, by Remark 6.9, 6.10, and 6.11, we prove Conjecture 6.2 for 4 6 k 6 40. However, for greater k,
we prove only about 92.5% of Conjecture 6.2 by the sense of the interval [π/20, π/2].

However, for greater k, it seems that we can not prove for all zeros with the same method.
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6.3. Γ0(5).

We have the following transformation:
(−1 0

5 −1

)
:

eiθ + 1
5

7→ ei(π−θ) − 1
5

,

(
2 −1
5 −2

)
:

eiθ − 2
5

7→ ei(π−θ) − 2
5

,

(−2 −1
5 2

)
:

eiθ + 2
5

7→ ei(π−θ) + 2
5

.

Then we have VΓ0(5) = {−3/10 +
√

3i/10} (cf. Theorem2.1).

-1
-

1
����

2
1
����

2
1

1

-1
-

1
����

2
1
����

2
1

1

6.3.1. Valence formula.

Proposition 6.7. Let f be a modular function of weight k for Γ0(5), which is not identically zero. We
have

(158) v∞(f) + v0(f) +
1
2
vρ5,2(f) +

1
2
vρ5,3(f) +

∑

p∈Γ0(5)\H
p6=ρ5,2,ρ5,3

vp(f) =
k

2
,

where ρ5,2 = −2/5 + i/5 and ρ5,3 := 2/5 + i/5.

Proof. Let f be a nonzero modular function of weight k for Γ0(5), and let C be a contour of its fundamental
domain F(5) (Figure 4), whose interior contains every zero and pole of f except for ρ5,2, ρ5,3, and
ρ5,4 := −3/10 +

√
3i/10 (cf. Figure 9). By the Residue theorem, we have

1
2πi

∫

C

df

f
=

∑

p∈Γ0(5)\H
p 6=ρ5,2,ρ5,3,ρ5,4

vp(f).

(i) For the arc around ∞, we have −v∞(f).
(ii) For the arc around 0, we have −v0(f).
(iii) For the arcs around ρ5,2, ρ5,3, ρ5,4, when the radii of each arc tends to 0, then we have

−1
2
vρ5,2(f), −1

2
vρ5,3(f), and − vρ5,4(f).

(iv) For the arcs on {z ; Re(z) = −1/2} and {z ; Re(z) = 1/2}, since f(Tz) = f(z) for T = ( 1 1
0 1 ), we have

0.
(v) For the arcs on {z ; |z ± 1/5| = 1/5}, since f(S5z) = (5z + 5)kf(z) for S5 := ( 1 0

5 1 ), we have k/3.
Furthermore, for the arcs on {z ; |z + 2/5| = 1/5}, since f

((−2 −1
5 2

)
z
)

= (5z + 2)kf(z), we have

df
((−2 −1

5 2

)
z
)

f
((−2 −1

5 2

)
z
) = k

dz

z + 2/5
+

df(z)
f(z)

, and
k

12
.

Similarly, for the arcs on {z ; |z − 2/5| = 1/5}, since f
((

2 −1
5 −2

)
z
)

= (5z − 2)kf(z), we have k/12.
Thus k/3 + 2 · k/12 = k/2.

¤
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6.3.2. Modular forms of weight 2. We define

(159) E2,5
′(z) :=

1
4
(5E2(5z)− E2(z)).

Note that E2,5
′ is generated by Eisensitein series for SL2(Z), but it is not Eisenstein series for SL2(Z)

nor Γ0(5).
Similarly to E2,2

′ and E2,3
′, we have

E2,5
′ (( 1 1

0 1 ) z) = E2,5
′(z),

E2,5
′ (( 1 0

5 1 ) z) = (5z + 1)2E2,5
′(z).

In addition, we have ( 3 1
5 2 ) = TST 2ST−2S−1 for T := ( 1 1

0 1 ) and S :=
(

0 −1
1 0

)
. (See [RD]) Similarly,

we have 5 · ( 3 1
5 2 ) z = ( 3 5

1 2 ) 5z and ( 3 5
1 2 ) = T 2S−1T−1ST . Recall that we have following: (Section 3)

(160) E2(Tz) = E2(z), E2(Sz) = z2E2(z) +
12
2πi

z.

Then we have

E2(TST 2ST−2S−1z) = E2(ST 2ST−2S−1z)

=
(

5z + 2
2z + 1

)2

E2(T 2ST−2S−1z) +
12
2πi

5z + 2
2z + 1

=
(

5z + 2
2z + 1

)2

E2(ST−2S−1z) +
12
2πi

5z + 2
2z + 1

=
(

5z + 2
2z + 1

)2
((

2z + 1
z

)2

E2(T−2S−1z)− 12
2πi

2z + 1
z

)
+

12
2πi

5z + 2
2z + 1

=
(5z + 2)2

z2
E2(S−1z)− 12

2πi

2(5z + 2)
z

=
(5z + 2)2

z2

(
z2E2(z) +

12
2πi

z

)
− 12

2πi

2(5z + 2)
z

= (5z + 2)2E2(z) +
12
2πi

5(5z + 2).

Similarly,

E2(T 2S−1T−1ST 5z) =
(

5z + 2
2z + 1

)2

E2(ST 5z)− 12
2πi

5z + 2
5z + 1

= (5z + 2)2E2(5z) +
12
2πi

(5z + 2).

Thus
E2,5

′ (( 3 1
5 2 ) z) = (5z + 2)2E2,5

′(z).

Recall that ( 1 1
0 1 ), ( 1 0

5 1 ), and ( 3 1
5 2 ) generate Γ0(5) (in Section 4), then we can show that E2,5

′ satisfies
transformation rule for Γ0(5).

Furthermore, because

(161) E2,5
′(W5z) = −(

√
5z)2E2,5

′(z),

E2,5
′ is holomorphic at cusp 0. Now, we prove E2,5

′ is a modular form for Γ0(5) of weight 2.

6.3.3. Preliminaries. Let f be a modular form for Γ0(5) of weight k, and let k ≡ 2 (mod 4). Then we
have

f(ρ5,2) = f(
(−2 −1

5 2

)
ρ5,2) = ikf(ρ5,2) = −f(ρ5,2).

f(ρ5,3) = f(
(

2 −1
5 −2

)
ρ5,3) = ikf(ρ5,3) = −f(ρ5,3).

Thus f(ρ5,2) = f(ρ5,3) = 0, vρ5,2(f) > 1, and vρ5,3(f) > 1.
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Let k be an even integer such that k ≡ 0 (mod 4). Then we have

E∞
k,5(ρ5,2) =

1
1− 5k

((2 + i)k − 5k)Ek(i) 6= 0,

E0
k,5(ρ5,2) =

1
1− 5−k

((2 + i)k − 1)Ek(i) 6= 0.

E∞
k,5(ρ5,3) =

1
1− 5k

((−2 + i)k − 5k)Ek(i) 6= 0,

E0
k,5(ρ5,3) =

1
1− 5−k

((−2 + i)k − 1)Ek(i) 6= 0.

Thus vρ5,2(E
∞
k,5) = vρ5,2(E

0
k,5) = 0, vρ5,3(E

∞
k,5) = vρ5,3(E

0
k,5) = 0.

Recall that v0(E∞
k,5) = v∞(E0

k,5) = 1 and v∞(E∞
k,5) = v0(E0

k,5) = 0. (Section 4)
Finally, for E2,5

′, we have vρ5,2(E2,5
′) > 1 and vρ5,3(E2,5

′) > 1. By the valence formula for Γ0(5)
(Proposition 6.7), we have

vρ5,2(E2,5
′) = vρ5,3(E2,5

′) = 1, vp(E2,5
′) = 0 for every p 6= ρ5,2, ρ5,3.

Incidentally, let f be a modular form for Γ0(5) of weight 2. Then, By the valence formula for Γ0(5),
we also have

vρ5,2(f) = vρ5,3(f) = 1, vp(f) = 0 for every p 6= ρ5,2, ρ5,3.

Thus f/E2,5
′ is a modular form of weight 0, then f/E2,5

′ ∈ C. In conclusion, f is a constant multiple of
E2,5

′.

6.3.4. The space of modular forms. Let Mk,5 be the space of modular forms for Γ0(5) of weight k,
and let M0

k,5 be the space of cusp forms for Γ0(5) of weight k. Since dim(Mk,5/M
0
k,5) 6 2, we have

Mk,5 = CE∞
k,5 ⊕ CE0

k,5 ⊕M0
k,5. Recall that ∆5 = η4(z)η4(5z). We have following theorem:

Theorem 6.3. Let k be an even integer.

(1) For k < 0, Mk,5 = 0.
(2) For k = 0 and 2, we have M0

k,5 = 0. Furthemore, we have M0,5 = C, M2,5 = CE2,5
′.

(3) M0
k,5 = ∆5Mk−4,5.

The proof of this theorem is similar to that of Theorem 6.3. Furthermore, we have dim(Mk,5) =
2bk/4c+ 1 for k > 0, and dim(M0

k,5) = 2bk/4c − 1 for k > 4.
Let k be an even integer such that k > 4 and k ≡ 2 (mod 4). For f ∈ Mk,5, by previous subsubsections,

we have vp(f/E2,5
′) > 0 for every p ∈ H ∪ {∞, 0}. Then f/E2,5

′ ∈ Mk−2,5. Thus Mk,5 = E2,5
′Mk−2,5,

and k − 2 ≡ 0 (mod 4).
On the other hand, let k be an even integer such that k > 4 and k ≡ 0 (mod 4). Write n := k/4.

Now, we have E∞
k,5 − (E∞

4,5)
n ∈ M0

k,5 and E0
k,5 − (E0

4,5)
n ∈ M0

k,5. In conclusion, we have Mk,5 =
C(E∞

4,5)
n ⊕ C(E0

4,5)
n ⊕M0

k,5. Then

Mk,5 = (C(E∞
4,5)

n ⊕ C(E∞
4,5)

n−1∆5 ⊕ · · · ⊕ C∆n
5 )

⊕ (C(E0
4,5)

n ⊕ C(E0
4,5)

n−1∆5 ⊕ · · · ⊕ C∆n
5 )

Thus, the next proposision follows:

Proposition 6.8. Let k > 4 be an even integer. For every f ∈ Mk,5, we have

(162) vρ5,2(f) > tk, vρ5,3(f) > tk (tk = 0, 1 such that 2tk ≡ k (mod 4)).

In addition, we have E0
4,5 = 25((E2,5

′)2 − E∞
4,5)− (900/13)∆5. Then

Remark 6.12. Every modular form for Γ0(5) is generated by

E2,5
′, E∞

4,5, and ∆5.
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Finally, define

A5,1 := {z ; |z + 1/5| = 1/5, 0 < Arg(z) 6 2π/3},(163)

A0
5,1 := {z ; Re(z) = −1/2, Im(z) 6

√
3/6},(164)

A5,2 := {z ; |z + 2/5| = 1/5, π/3 6 Arg(z) < π/2},(165)

A0
5,2 := {z ; |z + 2/3| = 1/3, α < Arg(z) 6 π/3},(166)

A+
5,2 := {z ; |z − 2/5| = 1/5, π/2 < Arg(z) 6 2π/3},(167)

A+ 0
5,2 := {z ; |z − 2/3| = 1/3, 2π/3 6 Arg(z) < π − α},(168)

where α ∈ [0, π/2] such that tan α = 3/4. Furthermore, we define A5 := A5,1 ∪ A5,2 ∪ A+
5,2 and A0

5 :=
A0

5,1 ∪A0
5,2 ∪A+ 0

5,2 . Then we have following:

Conjecture 6.3. Let k > 4 be an even integer. E∞
k,5 has 2bk/4c−1 zeros in A5, and E0

k,5 has 2bk/4c−1
zeros in A0

5. Furthermore, in Proposition 6.8, the equality hold if f is equal to E∞
k,5 or E0

k,5.

Now, we have the following transformations:(
1 −1
0 1

)
W5 : A5,1 3 eiθ − 1

5
7→ −1

2
+

i

2
1

tan θ/2
∈ A0

5,1,(169)

W5 : A5,2 3 eiθ − 2
5

7→ 2− cos θ + i sin θ

5− 4 cos θ
∈ A0

5,2,(170)

W5 : A+
5,2 3

eiθ + 2
5

7→ −2− cos θ + i sin θ

5 + 4 cos θ
∈ A+ 0

5,2 .(171)

Furthermore,

E0
k,5

((
1 −1
0 1

)
W5 z

)
= (5z)kE∞

k,5(z) for every z ∈ A5,1,

E0
k,5(W5 z) = (5z)kE∞

k,5(z) for every z ∈ A5,2, A+
5,2.

Then

Remark 6.13. If E∞
k,5 has 2bk/4c − 1 zeros in A5, then E0

k,5 has 2bk/4c − 1 zeros in A0
5.

6.3.5. The function Fk,5,1(θ), Fk,5,2(θ), and F+
k,5,2(θ). We give the next definition;

Fk,5,1(θ) := eikθ/2E∞
k,5(e

iθ/5− 1/5),(172)

Fk,5,2(θ) := eikθ/2E∞
k,5(e

iθ/5− 2/5),(173)

F+
k,5,2(θ) := eikθ/2E∞

k,5(e
iθ/5 + 2/5).(174)

Again, E∞
k,5 is denoted by

E∞
k,5(z) =

1
2

∑

(c,d)=1
5|c

(cz + d)−k

= Bk,5(z) =
∑

n∈N
Dk,5(5nz). (See Section 2)

Then

E∞
k,3

(
eiθ − 1

5

)
=

∑

n∈N
Dk,5(5n−1(eiθ − 1))

= Dk,5(eiθ − 1) +
∑

n∈N
Dk,5(5neiθ − 5n)

=
4∑

n=1

Dn
k,5(e

iθ − 1) +
∑

n∈N
Dk,5(5neiθ)

= Bk,5(eiθ) + Ck,5(eiθ) +
3∑

n=1

Dn
k,5(e

iθ).
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Thus

Fk,5,1(θ) =
1
2

∑

(c,d)=1
5|c

(ceiθ/2 + de−iθ/2)−k +
1
2

∑

(c,d)=1
5|c

(ce−iθ/2 + deiθ/2)−k

+
1
2

∑

(c,d)=1
5-cd

c≡d (5)

(ceiθ/2 + de−iθ/2)−k

+
1
2

∑

(c,d)=1
5-cd

d≡2c (5)

(ceiθ/2 + de−iθ/2)−k +
1
2

∑

(c,d)=1
5-cd

d≡2c (5)

(ce−iθ/2 + deiθ/2)−k.

Similarly,

E∞
k,3

(
eiθ − 2

5

)
= Bk,5(eiθ) + Ck,5(eiθ) +

∑
n=1,2,4

Dn
k,5(e

iθ),

E∞
k,3

(
eiθ + 2

5

)
= Bk,5(eiθ) + Ck,5(eiθ) +

∑
n=1,3,4

Dn
k,5(e

iθ).

Thus

Fk,5,2(θ) =
1
2

∑

(c,d)=1
5|c

(ceiθ/2 + de−iθ/2)−k +
1
2

∑

(c,d)=1
5|c

(ce−iθ/2 + deiθ/2)−k

+
1
2

∑

(c,d)=1
5-cd

c≡d (5)

(ceiθ/2 + de−iθ/2)−k +
1
2

∑

(c,d)=1
5-cd

c≡−d (5)

(ceiθ/2 + de−iθ/2)−k

+
1
2

∑

(c,d)=1
5-cd

d≡2c (5)

(ceiθ/2 + de−iθ/2)−k.

F+
k,5,2(θ) =

1
2

∑

(c,d)=1
5|c

(ceiθ/2 + de−iθ/2)−k +
1
2

∑

(c,d)=1
5|c

(ce−iθ/2 + deiθ/2)−k

+
1
2

∑

(c,d)=1
5-cd

c≡d (5)

(ceiθ/2 + de−iθ/2)−k +
1
2

∑

(c,d)=1
5-cd

c≡−d (5)

(ceiθ/2 + de−iθ/2)−k

+
1
2

∑

(c,d)=1
5-cd

d≡2c (5)

(ce−iθ/2 + deiθ/2)−k.

Note that (ceiθ/2 + deiθ/2)−k and (deiθ/2 + ce−iθ/2)−k are conjugates of each other for any pair (c, d)
such that c ≡ ±d (mod 5), and (ceiθ/2 + deiθ/2)−k and (ce−iθ/2 + deiθ/2)−k are conjugates of each other
for any pair (c, d) such that c 6≡ d (mod 5).

The next proposition follows.

Proposition 6.9. Fk,5,1(θ) is real for every θ ∈ R. On the other hand, Fk,5,2(θ) and Fk,5,2(θ) are
conjugates of each other for every θ ∈ R.

6.3.6. Application of the RSD Method. We note that N := c2 +d2. Let vk(c, d, θ) := |ceiθ/2 +de−iθ/2|−k,
then vk(c, d, θ) = 1/(c2 + d2 + 2cd cos θ)k/2 and vk(c, d, θ) = vk(−c,−d, θ) = vk(±d,±c, θ).
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In this subsubsection, we consider an application of the RSD Method to Fk,5,1(θ). Firstly, we consider
the case N = 1. Then we can write:

(175) Fk,5,1(θ) = 2 cos(kθ/2) + R5,1,

where
|R5,1| =

∑

(c,d)=1
5|c

N>1

vk(c, d, θ) +
1
2

∑

(c,d)=1
5-cd

c≡d (5)

vk(c, d, θ) +
∑

(c,d)=1
5-cd

d≡2c (5)

vk(c, d, θ).

We consider two cases, namely [π/2, 2π/3] and [π/4, π/2].
For the interval [π/2, 2π/3], we will consider the next cases, namely N = 2, 5, and N > 10. Considering

−1/2 6 cos θ 6 0 for the interval [π/2, 2π/3], we have the following:

When N = 2, vk(1, 1, θ) 6 1.

When N = 5, vk(1, 2, θ) 6 (1/3)k/2, vk(2,−1, θ) 6 (1/5)k/2.

When N > 10, |ceiθ/2 ± de−iθ/2|2 > N/2,

and the number of terms is not more than 2N1/2. Then

|R5,1|N>10 = 2
√

2
∞∑

N=10

(
1
2
N

)(1−k)/2

6 108
k − 3

(
2
9

)k/2

.

Thus

|R5,1| 6 1 + 2
(

1
3

)k/2

+ 2
(

1
5

)k/2

+
108

k − 3

(
2
9

)k/2

(176)

6 1.41106... (k > 6)

On the other hand, for the interval [π/6, π/2], we will consider the next cases, namely N = 2, 5, 10, 13, 17,
and N > 25. Considering 0 6 cos θ 6 7/8 for the interval [π/6, π/2], we have the following:

When N = 2, vk(1, 1, θ) 6 (1/2)k/2.

When N = 5, vk(1, 2, θ) 6 (1/5)k/2, vk(2,−1, θ) 6 (2/3)k/2.

When N = 10, vk(3, 1, θ) 6 (1/10)k/2, vk(1,−3, θ) 6 (4/19)k/2.

When N = 13, vk(2,−3, θ) 6 (2/5)k.

When N = 17, vk(1,−4, θ) 6 (1/10)k.

When N > 25, |ceiθ/2 ± de−iθ/2|2 > N/8,

and the number of terms is not more than 2N1/2. Then

|R5,1|N>25 = 4
√

2
∞∑

N=25

(
1
8
N

)(1−k)/2

6 192
√

6
k − 3

(
1
3

)k/2

.

Thus

|R5,1| 6 2
(

2
3

)k/2

+
(

1
2

)k/2

+ · · ·+ 2
(

1
10

)k/2

+
192

√
6

k − 3

(
1
3

)k/2

(177)

6 1.67753... (k > 8)

By the above bounds, we know that E∞
k,5 has many zeros in A5,1. However, for the arcs A5,2 and A+

5,2,
it is not clear.
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6.4. Γ0(7).

We have the following transformation:
(−1 0

7 −1

)
:

eiθ + 1
7

7→ ei(π−θ) − 1
7

,

(−3 −1
7 2

)
:

eiθ − 2
7

7→ ei(π−θ) − 3
7

,

(
2 −1
7 −3

)
:

eiθ + 3
7

7→ ei(π−θ) + 2
7

.

Then we have VΓ0(7) = {−3/14 +
√

3i/10, −5/14 +
√

3i/10}.

-1
-

1
����

2
1
����

2
1

1

-1
-

1
����

2
1
����

2
1

1

6.4.1. Valence formula.

Proposition 6.10. Let f be a modular function of weight k for Γ0(7), which is not identically zero. We
have

(178) v∞(f) + v0(f) +
1
3
vρ7,2(f) +

1
3
vρ7,3(f) +

∑

p∈Γ0(7)\H
p6=ρ7,2,ρ7,3

vp(f) =
k

2
,

where ρ7,2 = −5/14 +
√

3i/14 and ρ7,3 := 5/14 +
√

3i/14.

Proof. Let f be a nonzero modular function of weight k for Γ0(7), and let C be a contour of its fundamental
domain F(7) (Figure 4), whose interior contains every zero and pole of f except for ρ7,2, ρ7,3, and
ρ7,4 := −3/14 +

√
3i/14 (cf. Figure 9). By the Residue theorem, we have

1
2πi

∫

C

df

f
=

∑

p∈Γ0(7)\H
p 6=ρ7,2,ρ7,3,ρ7,4

vp(f).

(i) For the arc around ∞, we have −v∞(f).
(ii) For the arc around 0, we have −v0(f).
(iii) For the arcs around ρ7,2, ρ7,3, ρ7,4, when the radii of each arc tends to 0, then we have

−1
3
vρ7,2(f), −1

3
vρ7,3(f), and − vρ7,4(f).

(iv) For the arcs on {z ; Re(z) = −1/2} and {z ; Re(z) = 1/2}, since f(Tz) = f(z) for T = ( 1 1
0 1 ), we have

0.
(v) For the arcs on {z ; |z ± 1/7| = 1/7}, since f(S7z) = (7z + 1)kf(z) for S7 := ( 1 0

7 1 ), we have k/3.
Furthermore, for the arcs on {z ; |z + 2/7| = 1/7} and {z ; |z + 3/7| = 1/7}, since f

((−2 −1
7 3

)
z
)

=
(7z + 3)kf(z), we have k/6. Similarly, for the arcs on {z ; |z − 2/7| = 1/7} and {z ; |z − 3/7| = 1/7},
since f

((
3 −1
7 −2

)
z
)

= (7z − 2)kf(z), we have k/6.
Thus k/3 + 2 · k/6 = 2k/3.

¤

6.4.2. Modular forms of weight 2. We define

(179) E2,7
′(z) :=

1
6
(7E2(7z)− E2(z)).

Note that E2,7
′ is generated by Eisensitein series for SL2(Z), but it is not Eisenstein series for SL2(Z)

nor Γ0(7).
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Similarly to E2,2
′ and E2,3

′, we have

E2,7
′ (( 1 1

0 1 ) z) = E2,7
′(z), E2,7

′ (− ( 1 0
7 1 ) z) = (−7z − 1)2E2,7

′(z).

In addition, we have ( 4 1
7 2 ) = TST 2ST−3S−1 for T = ( 1 1

0 1 ) and S =
(

0 −1
1 0

)
. (See [RD]) Similarly,

we have 7 · ( 4 1
7 2 ) z = ( 4 7

1 2 ) 7z and ( 4 7
1 2 ) = T 3S−1T−1ST . Recall that E2(Tz) = E2(z), E2(Sz) =

z2E2(z) + (12/2πi)z. Similarly to E2,5
′

E2(TST 2ST−3S−1z) =
(

7z + 2
3z + 1

)2

E2(ST−3S−1z) +
12
2πi

7z + 2
3z + 1

=
(7z + 2)2

z2
E2(S−1z)− 12

2πi

2(7z + 2)
z

= (7z + 2)2E2(z) +
12
2πi

5(7z + 2),

E2(T 3S−1T−1ST 5z) =
(

7z + 2
7z + 1

)2

E2(ST 7z)− 12
2πi

7z + 2
7z + 1

= (7z + 2)2E2(7z) +
12
2πi

(7z + 2).

Thus
E2,7

′ (( 4 1
7 2 ) z) = (7z + 2)2E2,7

′(z).

Recall that ( 1 1
0 1 ), − ( 1 0

7 1 ), and ( 4 1
7 2 ) generate Γ0(7) (in Section 4), then we can show that E2,7

′ satisfies
transformation rule for Γ0(7).

Furthermore, because

(180) E2,7
′(W7z) = −(

√
7z)2E2,7

′(z),

E2,7
′ is holomorphic at cusp 0. Now, we prove E2,7

′ is a modular form for Γ0(7) of weight 2.

6.4.3. Preliminaries. Let f be a modular form for Γ0(7) of weight k, and let k 6≡ 0 (mod 6). Then we
have

f(ρ7,2) = f(
(−3 −1

7 2

)
ρ7,2) = (ei2π/3)kf(ρ7,2).

f(ρ7,3) = f(
(

2 −1
7 −3

)
ρ7,3) = (ei2π/3)kf(ρ7,3).

Thus f(ρ7,2) = f(ρ7,3) = 0, vρ7,2(f) > 1, and vρ7,3(f) > 1.
Let k be an even integer such that k ≡ 0 (mod 6). Then we have

E∞
k,7(ρ7,2) =

1
1− 7k

(((
5 +

√
3i

)
/2

)k

− 7k

)
Ek(ρ) 6= 0,

E0
k,7(ρ7,2) =

1
1− 7−k

(((
5 +

√
3i

)
/2

)k

− 1
)

Ek(ρ) 6= 0.

E∞
k,7(ρ7,3) =

1
1− 7k

(((
−5 +

√
3i

)
/2

)k

− 7k

)
Ek(ρ) 6= 0,

E0
k,7(ρ7,3) =

1
1− 7−k

(((
−5 +

√
3i

)
/2

)k

− 1
)

Ek(ρ) 6= 0.

Thus vρ7,2(E
∞
k,7) = vρ7,2(E

0
k,7) = 0, vρ7,3(E

∞
k,7) = vρ7,3(E

0
k,7) = 0.

Recall that v0(E∞
k,7) = v∞(E0

k,7) = 1 and v∞(E∞
k,7) = v0(E0

k,7) = 0. (Section 4)
Finally, for E2,7

′, we have vρ7,2(E2,7
′) > 1 and vρ7,3(E2,7

′) > 1. By the valence formula for Γ0(7)
(Proposition 6.10) and Corollary 2.1.2, we have

vρ7,2(E2,7
′) = vρ7,3(E2,7

′) = 2, vp(E2,7
′) = 0 for every p 6= ρ7,2, ρ7,3.

Incidentally, let f be a modular form for Γ0(7) of weight 2. Then, By the valence formula for Γ0(7),
we also have vρ7,2(f) + vρ7,3(f) = 4. Then, if vρ7,2(f) 6= 2, we have f = a0 + a1q + · · · for some a0 6= 0,
f−a0E2,7

′ = (a1−4a0)q+· · · , and v∞(f−a0E2,7
′) > 1. This contradicts vp(f) = 0 for every p 6= ρ7,2, ρ7,3.

Now
vρ7,2(f) = vρ7,3(f) = 2, vp(f) = 0 for every p 6= ρ7,2, ρ7,3.
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Thus f/E2,7
′ is a modular form of weight 0, then f/E2,7

′ ∈ C. In conclusion, f is a constant multiple of
E2,7

′.

6.4.4. The space of modular forms. Let Mk,7 be the space of modular forms for Γ0(7) of weight k,
and let M0

k,7 be the space of cusp forms for Γ0(7) of weight k. Since dim(Mk,7/M
0
k,7) 6 2, we have

Mk,7 = CE∞
k,7⊕CE0

k,7⊕M0
k,7. Recall that ∆7 = η6(z)η6(7z), and ∆7,4, ∆7,6 are the cusp forms for Γ∗0(7)

of weight 4, 6, respectively. We have following theorem:

Theorem 6.4. Let k be an even integer.
(1) For k < 0, Mk,7 = 0.
(2) For k = 0 and 2, we have M0

k,7 = 0. Furthemore, we have M0,7 = C, M2,7 = CE2,7
′.

(3) M0
4,7 = C∆7,4.

(4) Let ∆−
7,6 := (1/13)(E2,7

′∆7,4 − ∆7,6) and ∆+
7,6 := −(1/13)(E2,7

′∆7,4 + ∆7,6). M0
6,7 = C∆7 ⊕

C∆−
7,6 ⊕ C∆7,6.

(5) M0
k,7 = M0

6,7Mk−6,7.

Let k be an even integer k > 4. Define f0(k) := (E∗
4,7)

k/4 if k ≡ 0 (mod 4), and f0(k) := E∗
6,7(E

∗
4,7)

(k−6)/4

if k ≡ 2 (mod 4). Then we have (
√

7z)kf0(k)
∣∣
z=W7z

= f0(k) because f0(k) is a modular form for Γ∗0(7).
The proof of this theorem is similar to that of Theorem 5.2. We have ∆−

7,6 = (
√

7z)k∆+
7,6 and

∆+
7,6 = (

√
7z)k∆−

7,6. Because ∆−
7,6 = q2+· · · and ∆+

7,6 = −(2/13)q+· · · , we have v∞(∆−
7,6) = v0(∆+

7,6) = 2
and v∞(∆+

7,6) = v0(∆−
7,6) = 1.

For every f ∈ M0
k,7, we can write f(z) = a1q + · · · and (

√
7z)−kf(W7z) = b1q + · · · . Now, put

g := f − (a1∆7,6 − (13/2)(b1 − a1)∆−
7,6)f0(k − 6), then it is easy to show that v∞(g) > 2 and v0(g) > 2.

Thus g/∆7 ∈ Mk−6,7. This proves (5).
The table of orders of zeros of basis for M∗

k,7 is following:

k f v∞ v0 vρ7,2 vρ7,3 |other zeros|
2 E2,7

′ 0 0 2 2 0
4 E∞

4,7 0 1 1 1 1
E0

4,7 1 0 1 1 1
∆7,4 1 1 1 1 0

6 E∞
6,7 0 1 0 0 3

E0
6,7 1 0 0 0 3

∆7 2 2 0 0 0
∆−

7,6 2 1 0 0 1
∆+

7,6 1 2 0 0 1
∆7,6 1 1 0 0 2

Furthermore, we have dim(Mk,7) = b2k/3c+ 1 for k > 0, and dim(M0
k,7) = b2k/3c − 1 for k > 4.

Let k > 8. Write n := bk/6c. If k ≡ 0, 4 (mod 6), then we have E∞
k,7 − E∞

k−6n,7(E
∞
6,7)

n ∈ M0
k,7 and

E0
k,7−E0

k−6n,7(E
0
6,7)

n ∈ M0
k,7. In conclusion, we have Mk,7 = CE∞

k−6n,7(E
∞
6,7)

n⊕CE0
k−6n,7(E

0
6,7)

n⊕M0
k,7.

Similarly, if k ≡ 2 (mod 6), then we have Mk,7 = CE2,7
′(E∞

6,7)
n ⊕ CE2,7

′(E0
6,7)

n ⊕M0
k,7. Thus we have

following:
If k ≡ 0, 4 (mod 6),

Mk,7 = E∞
k−6n,7(C(E∞

6,7)
n ⊕ C(E∞

6,7)
n−1M0

6,7 ⊕ · · · ⊕ C(M0
6,7)

n)

⊕ E0
k−6n,7(C(E0

6,7)
n ⊕ C(E0

6,7)
n−1M0

6,7 ⊕ · · · ⊕ C(M0
6,7)

n)

⊕M0
k−6n,7.

If k ≡ 2 (mod 6),

Mk,7 = E2,7
′
(
(C(E∞

6,7)
n ⊕ C(E∞

6,7)
n−1M0

6,7 ⊕ · · · ⊕ C(M0
6,7)

n)

⊕ (C(E0
6,7)

n ⊕ C(E0
6,7)

n−1M0
6,7 ⊕ · · · ⊕ C(M0

6,7)
n)

)
.

Now, the next proposision follows:
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Proposition 6.11. Let k > 4 be an even integer. For every f ∈ Mk,7, we have

(181) vρ7,2(f) > tk, vρ7,3(f) > tk (tk = 0, 1, 2 such that − 2tk ≡ k (mod 6)).

In addition, we have E0
4,7 = 49((E2,7

′)2 − E∞
4,7) − (784/5)∆7,4, E∞

6,7 = E2,7
′(E∞

4,7 − (348/95)∆7,4) −
(36/19)∆7 − (10/43)∆7,6, and E0

6,7 = E2,7
′(343(E∞

4,7 − (E2,7
′)2) + (223636/95)∆7,4) + (12348/19)∆7 −

(3430/43)∆7,6. Then

Remark 6.14. Every modular form for Γ0(7) is generated by

E2,7
′, E∞

4,7, ∆7,4, ∆7,6, and ∆7.
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APPENDIX.
On the zeros of Eisenstein Series for Γ0(4) and Γ∗0(4)

In this paper, we consider Eisenstein Series for Γ∗0(p) and Γ0(p) for primes p. In general, Γ∗0(N) and
Γ0(N) for a nonprime integer N have more cusps than Γ∗0(p) and Γ0(p) for a prime p. Then, it gets much
more difficult to decide the locating of zeros.

In this appendix, we consider about Γ∗0(4) and Γ0(4). Note that Γ0(4) is a subgroup of Γ0(2). In-
terestingly, if we can decide all the zeros of Eisenstein Series for Γ0(2), then we can decide all the zeros
of Eisenstein Series for Γ∗0(4) and Γ0(4). Thus, by the results of this paper, we decide all the zeros of
Eisenstein Series of low weights 0 6 k 6 40 for Γ∗0(4) and Γ0(4). We may say it is natural, though it is
not clear for me.

Again,

Γ0(4) =
{(

a b
c d

) ∈ SL2(Z) ; c ≡ 0 (mod 4)
}

,

Γ∗0(4) = Γ0(4) ∪ Γ0(4) W4, W4 =
(

0 −1/2
2 0

)
.

Appendix A. Preliminaries

A.1. Fundamental Domains. For Γ0(4), similarly to Γ0(p) for prime p, we consider the following
condition:

(C0) |z ± 1/4| > 1/4, −1/2 < Re(z) < 1/2.

Then, by corollary2.1.1, we have

(182) Γ0(4) = 〈−I, ( 1 1
0 1 ) , ( 1 0

4 1 )〉.
On the other hand, for Γ0(4)W4, we need to consider the following condition for every positive number

m:

(C4,m) |z − n/m| > 1/2m
√

p, −1/2 < Re(z) < 1/2 for ∀n ∈ N such that (m,n) = 1.

For every z ∈ H such that |z − n/m| = 1/2m, we have (2n − 1)/2m 6 Re(z) 6 (2n + 1)/2m. If
(2n− 1)/2m < 1/2, then we have (2n− 1) < m, (2n + 1)/2m 6 1/2. Also, if (2n + 1)/2m > −1/2, then
we have (2n− 1)/2m > −1/2. In addition, By W4, we have the condition |z| > 1/2. Note that we have
the condition −1/2 < Re(z) < 1/2, then we have following sufficient condition:

(C4) |z| > 1/2, −1/2 < Re(z) < 1/2.

Moreover, (C4) is a sufficient condition for (C0).
Furthermore, we have the following transformations:

For Γ0(4), (
1 0
4 1

)
:

eiθ − 1
4

7→ ei(π−θ) + 1
4

.

For Γ∗0(4),

W4 :
eiθ

2
7→ ei(π−θ)

2
.

Γ0(4) -

1
����

2
1
����

2

1

-

1
����

2
1
����

2

1

Γ∗0(4) -

1
����

2
1
����

2

1
����

2

1

-

1
����

2
1
����

2

1
����

2

1

Figure 10. Γ0(4) and Γ∗0(4)
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A.2. Ek(z + 1/2). Let k > 2 be a even integer. In this subsection, we consider about Ek(z + 1/2). We
will denote Ek(z + 1/2) by Ek(z), Ek(2z), and Ek(4z).

Firstly, we have

Ek(z + 1/2) =
1
2

∑

(c,d)=1

(c(z + 1/2) + d)−k.

If c is odd, then (c(z + 1/2) + d)−k = 2k(2cz + (c + 2d))−k, and (2c, c + 2d) = 1. If c is divisible by 4,
then we can write c = 4c′ for some integer c′, and we have (c(z + 1/2) + d)−k = (4c′z + (2c′ + d))−k,
(4c′, 2c′ + d) = 1. And if c is even and not divisible by 4, then we can write c = 2c′′ for some integer c′′,
and we have (c(z + 1/2) + d)−k = (1/2k)(c′′z + (c′′ + d)/2)−k, (c′′, (c′′ + d)/2) = 1. Here, we have

Ek(z + 1/2) =
1
2

∑

(c,d)=1
4|c

(cz + d)−k + 2k · 1
2

∑

(c,d)=1
c:even,4-c

(cz + d)−k +
1
2k
· 1
2

∑

(c,d)=1
c:odd

(cz + d)−k.

Now, let us denote A, B, C as follows:

A :=
1
2

∑

(c,d)=1
4|c

(cz + d)−k, B :=
1
2

∑

(c,d)=1
c:even,4-c

(cz + d)−k, C :=
1
2

∑

(c,d)=1
c:odd

(cz + d)−k.

Then

Ek(z + 1/2) = A + 2k ·B +
1
2k
· C.

Similarly,

Ek(z) = A + B + C.

Ek(2z) = A + B +
1
2k
· C.

Ek(4z) = A +
1
2k
·B +

1
4k
· C.

In conclusion,

(183) Ek(z + 1/2) = −Ek(z) + (2k + 2)Ek(2z)− 2kEk(4z).

A.3. Eisenstein Series. Let k > 4 be an even integer. Recall Section 2, and we have

Γκ := {γ ∈ Γ0(4) ; γκ = κ}, Γ∗κ := {γ ∈ Γ∗0(4) ; γκ = κ}
for a cusp κ. Furthermore, γκ, γ∗κ ∈ SL2(R) satisfy γκ∞ = γ∗κ∞ = κ and

Γκ = γκΓ∞γ−1
κ , Γ∗κ = γ∗κΓ∗∞(γ∗κ)−1.

In addition, we denote the Eisenstein series associated with Γ0(4) and Γ∗0(4) for a cusp κ by Eκ
k,4 and

E∗ κ
k,4 , respectively.
Now, Γ0(4) has three cusps ∞, 0, and −1/2. On the other hand, Γ∗0(4) has two cusps ∞ and −1/2.

A.3.1. For the cusp ∞. We have Γ∞ = Γ∗∞ = {± ( 1 n
0 1 ) ; n ∈ Z}. Thus, similarly to Ek, E∗

k,p, and E∞
k,p,

E∞
k,4(z) = e

∑

γ∈Γ∞\Γ0(4)

j(γ, z)−k =
1
2

∑

(c,d)=1
4|c

(cz + d)−k,(184)

E∗ ∞
k,4 (z) = e

∑

γ∈Γ∗∞\Γ0(4)

j(γ, z)−k + e
∑

γ∈Γ∗∞\Γ0(4)W4

j(γ, z)−k

=
1
2

∑

(c,d)=1
4|c

(cz + d)−k +
2−k

2

∑

(c,d)=1
c:odd

(cz + d)−k.(185)
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Also, we have

E∞
k,4(z) = Bk,2(2z) =

1
1− 2k

(
Ek(2z)− 2kEk(4z)

)
,(186)

E∗ ∞
k,4 (z) = Bk,2(2z) + 2−k(Ek(z)−Bk,2(z))

=
1

1− 2k

(−Ek(z) + 2Ek(2z)− 2kEk(4z)
)
.(187)

A.3.2. For the cusp 0 (only for Γ0(4)). Similarly to E0
k,p, we have Γ0 = {± ( 1 0

4n 1 ) ; n ∈ Z} and γ0 = W4.
Thus

(188) E0
k,4(z) = e

∑

γ∈Γ0\Γ0(4)

j(γ−1
0 γ, z)−k =

1
2

∑

(c,d)=1
c:odd

(cz + d)−k.

Also,

(189) E0
k,4(z) = Ek(z)−Bk,2(z) =

1
1− 2−k

(Ek(z)− Ek(2z)) .

In addition, we have following:

Remark A.1. Let k > 4 be an even integer. We have

(190) E0
k,4(z) = E0

k,2(z) for every z ∈ H.

A.3.3. For the cusp −1/2. Firstly, we decide Γ−1/2 and Γ∗−1/2.
For a γ =

(
a b
c d

) ∈ Γ0(4), if γ(−1/2) = −1/2, then we have c = 2a + 4b + 2d. By ad− bc = 1, we have
a = 2b± 1, d = 2b± 1, and c = −4b. Thus we have

Γ−1/2 =
{± (

2n+1 n
−4n −2n+1

)
; n ∈ Z}

.

Furthermore, if γW4(−1/2) = −1/2, then we have c = −2a − 4b − 2d. Similarly, we have Γ∗−1/2 ⊃{
±

(
2n n−1/2

−4n+2 −2n+2

)
; n ∈ Z

}
. Thus we have

Γ∗−1/2 =
{
±

(
n+1 n/2
−2n −n+1

)
; n ∈ Z

}
.

Secondly, we decide γ−1/2 and γ∗−1/2.
For a γ =

(
a b
c d

) ∈ Γ0(4), if γ∞ = −1/2, then we have c = −2a and d = 1/a− 2b. Then we have

γΓ∞γ−1 =
{
±

(
2na2+1 na2

−4na2 −2na2+1

)
; n ∈ Z

}
.

For Γ0(4), we need a2 = 1, thus we can define as following:

γ−1/2 :=
(

1 0
−2 1

)
.

On the other hand, for Γ∗0(4), we need a2 = 1/2, thus we can define

γ∗−1/2 :=
(

1√
2

1
2
√

2

−√2 1√
2

)
.

Finally, we decide E
−1/2
k,4 and E

∗ −1/2
k,4 .

For a γ =
(

a b
c d

) ∈ Γ0(4), we have j((γ−1/2)−1γ, z) = ((2a + c)z + (2b + d)), and Γ−1/2 stabilize the
pair (2a + c, 2b + d). Thus we have

(191) E
−1/2
k,4 (z) =

1
2

∑

(c,d)=1
c:even,4-c

(cz + d)−k.
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Similarly, we have j((γ−1/2)−1γW4, z) = (1/
√

2)((4b + 2d)z + (a + c/2)), and Γ∗−1/2 stabilize the pair
(2a + c, 2b + d) and (4b + 2d, a + c/2). Thus we have

E
∗ −1/2
k,4 (z) = e

∑

(c,d)=1
c:even,4-c

(cz + d)−k + 2k/2e
∑

(c,d)=1
c:even,4-c

(cz + d)−k

=
1
2

∑

(c,d)=1
c:even,4-c

(cz + d)−k.(192)

Then

Remark A.2. Let k > 4 be an even integer. We have

(193) E
∗ −1/2
k,4 (z) = E

−1/2
k,4 (z) for every z ∈ H.

Also,

E
−1/2
k,4 (z) = E

∗ −1/2
k,4 (z) = Bk,2(z)−Bk,2(2z)

=
1

1− 2k

(
Ek(z)− (2k + 1)Ek(2z) + 2kEk(4z)

)
.(194)

A.3.4. The orders at cusps. For Γ0(4), we have followings:

E∞
k,4(γ0z) =

1
1− 2k

(
Ek

(
− 1

2z

)
− 2kEk

(
−1

z

))

= zk 1
1− 2−k

(Ek(z)− Ek(2z)) = zkE0
k,4(z),

then
E0

k,4(γ0z) = 4kzkE∞
k,4(z).

E∞
k,4(γ−1/2z) =

1
1− 2k

(
Ek

(
2z

−2z + 1

)
− 2kEk

(
4z

−2z + 1

))

=
1

1− 2k

(
Ek

((
1 0
−1 1

)
2z

)− 2kEk

(
− 1

1/2− 1/4z

))

= (−2z + 1)k 1
1− 2k

(
Ek(z)− (2k + 1)Ek(2z) + 2kEk(4z)

)

= (−2z + 1)kE
−1/2
k,4 (z).

Similarly,
E
−1/2
k,4 (γ−1/2z) = (−2z + 1)kE∞

k,4(z).

By E0
k,4 = E0

k,2 and γ−1/2 ∈ Γ0(2),

E0
k,4(γ0z) = (−2z + 1)kE0

k,4(z).

E
−1/2
k,4 (γ0z) =

1
1− 2k

(
Ek

(
− 1

4z

)
− (2k + 1)Ek

(
− 1

2z

)
+ 2kEk

(
−1

z

))

= (2z)k 1
1− 2k

(
Ek(z)− (2k + 1)Ek(2z) + 2kEk(4z)

)

= (2z)kE
−1/2
k,4 (z).

Thus the orders at cusps are folloing:
v∞ v0 v−1/2

E∞
k,4 0 1 1

E0
k,4 1 0 1

E
−1/2
k,4 1 1 0

Table for the orders at cusps
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For Γ∗0(4), since

E∗ ∞
k,4 (z) =

1
1− 2k

(
Ek(z ± 1/2)− 2kEk(2z)

)
,

we have

E∗ ∞
k,4 (γ∗−1/2z) = E∗ ∞

k,4

(
2z + 1
−4z + 2

)

=
1

1− 2k

(
Ek

(
− 1

2z − 1

)
− 2kEk

(
−1− 1

z − 1/2

))

= (−2z + 1)k 1
1− 2k

(
Ek(z)− (2k + 1)Ek(2z) + 2kEk(4z)

)

= (−2z + 1)kE
∗ −1/2
k,4 (z).

Similarly,

E
∗ −1/2
k,4 (γ∗−1/2z) =

(−2z + 1)k

2k
E∗ ∞

k,4 (z).

Thus we have

v∞(E∗ ∞
k,4 ) = v−1/2(E

∗ −1/2
k,4 ) = 0,

v−1/2(E∗ ∞
k,4 ) = v∞(E∗ −1/2

k,4 ) = 1.

Appendix B. Modular forms for Γ0(4) and Γ∗0(4)

B.1. Valence formula for Γ0(4). In order to decide the locating of zeros of Eisenstein series, we need
the valence formula for Γ0(4):

Proposition B.1. Let f be a modular function of weight k for Γ0(4), which is not identically zero. We
have

(195) v∞(f) + v0(f) + v−1/2(f) +
∑

p∈Γ0(4)\H
vp(f) =

k

2
,

-

1
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2
1
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2
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Figure 11

Proof. Let f be a nonzero modular function of weight k for Γ0(4), and let C be a contour of F(4) which
is a fundamental domain of Γ0(4) represented in Figure 11, whose interior contains every zero and pole
of f . By the Residue theorem, we have

1
2πi

∫

C

df

f
=

∑

p∈F(4)
vp(f).

Similar to Proposition 6.1,
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(i) For the arc EA, we have

1
2πi

∫ A

E

df

f
= −v∞(f).

(ii) For the arc CC ′, define f0(z) := (
√

4z)−kf(γ0z), then we have f0(γ−1
0 z) = (

√
4z)kf(z) and

df0(γ−1
0 z)

f0(γ−1
0 z)

=
df(z)
f(z)

+ k
dz

z
.

Thus
1

2πi

∫ C′

C

df(z)
f(z)

=
1

2πi

∫ A

E

df0(z)
f0(z)

− 1
2πi

∫ C′

C

k
dz

z
.

Now, when the arc CC ′ tend to 0, we have

1
2πi

∫ C′

C

df

f
→ −v0(f).

(iii) For the arcs BB′ and DD′, without loss of generallity, we can define arcs BB′ and DD′ so that
it equals the image of EF and FA by the transformation γ−1/2 and Tγ−1/2T , respectively. Define
f−1/2(z) := (−2z + 1)−kf(γ−1/2z), then we have f−1/2(γ−1

0 z) = (2z + 1)kf(z) and

df−1/2(γ−1
−1/2z)

f−1/2(γ−1
−1/2z)

=
df(z)
f(z)

+ k
dz

z + 1/2
.

Here, f−1/2 is holomorphic at ∞. On the Fourier expansion, we have q|z=z+1 = e2πi(z+1) = e2πiz = q.
Thus we have f−1/2(Tz) = f−1/2(z) for T = ( 1 1

0 1 ).
Now, when the arcs BB′ and DD′ tend to 0, we have

1
2πi

∫ B′

B

df(z)
f(z)

=
1

2πi

∫ E

F

df−1/2(z)
f−1/2(z)

− 1
2πi

∫ B′

B

k
dz

z + 1/2
→ −1

2
v−1/2(f).

1
2πi

∫ D′

D

df(z)
f(z)

=
1

2πi

∫ T−1D′

T−1D

df(z)
f(z)

=
1

2πi

∫ TA

TF

df−1/2(z)
f−1/2(z)

− 1
2πi

∫ T−1D′

T−1D

k
dz

z + 1/2

→ 1
2πi

∫ A

F

df−1/2(z)
f−1/2(z)

= −1
2
v−1/2(f).

Thus

−1
2
v−1/2(f)− 1

2
v−1/2(f) = −v−1/2(f).

(iv) For the arcs AB and D′E, since f(Tz) = f(z),

1
2πi

∫ B

A

df

f
+

1
2πi

∫ E

D′

df

f
= 0.

(v) For the arcs B′C and C ′D, since f(S4z) = (4z + 1)kf(z) for S4 := ( 1 0
4 1 ), we have

df(S4z)
f(S4z)

= k
dz

z + 1/4
+

df(z)
f(z)

and
k

2
.

¤

B.2. Valence formula for Γ∗0(4). In order to decide the locating of zeros of Eisenstein series, we need
the valence formula for Γ∗0(4):

Proposition B.2. Let f be a modular function of weight k for Γ∗0(4), which is not identically zero. We
have

(196) v∞(f) + v−1/2(f) +
1
2
vi/2(f) +

∑

p∈Γ∗0(4)\H
p6=i/2

vp(f) =
k

4
,
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Proof. Let f be a nonzero modular function of weight k for Γ∗0(4), and let C be a contour of F∗(4) which
is a fundamental domain of Γ∗0(4) represented in Figure 12, whose interior contains every zero and pole
of f except for i/2. By the Residue theorem, we have

1
2πi

∫

C

df

f
=

∑

p∈F∗(4)
p6=i/2

vp(f).

Similar to Proposition B.1,

(i) For the arc EA, we have

1
2πi

∫ A

E

df

f
= −v∞(f).

(ii) For the arcs BB′ and DD′, define f∗−1/2(z) := (−√2z +
√

2)−kf(γ−1/2z), then we have f∗−1/2(γ
−1
0 z) =

(
√

2z + 1/
√

2)kf(z) and
df∗−1/2((γ

∗
−1/2)

−1z)

f∗−1/2((γ
∗
−1/2)

−1z)
=

df(z)
f(z)

+ k
dz

z + 1/2
.

Now, when the arcs BB′ and DD′ tend to 0, we have

1
2πi

∫ B′

B

df(z)
f(z)

=
1

2πi

∫ E

F

df∗−1/2(z)

f∗−1/2(z)
− 1

2πi

∫ B′

B

k
dz

z + 1/2
→ −1

2
v−1/2(f).

1
2πi

∫ D′

D

df(z)
f(z)

=
1

2πi

∫ T−1D′

T−1D

df(z)
f(z)

=
1

2πi

∫ TA

TF

df∗−1/2(z)

f∗−1/2(z)
− 1

2πi

∫ T−1D′

T−1D

k
dz

z + 1/2

→ 1
2πi

∫ A

F

df∗−1/2(z)

f∗−1/2(z)
= −1

2
v−1/2(f).

Thus
−1

2
v−1/2(f)− 1

2
v−1/2(f) = −v−1/2(f).

(iii) For the arc CC ′, when the radius of the arc tends to 0, then we have

1
2πi

∫ C′

C

df

f
→ −1

2
vi/2(f).

(iv) For the arcs AB and D′E, since f(Tz) = f(z) for T = ( 1 1
0 1 ),

1
2πi

∫ B

A

df

f
+

1
2πi

∫ E

D′

df

f
= 0.

(v) For the arcs B′C and C ′D, since f(W4z) = (
√

2z)kf(z), we have

df(W4z)
f(W4z)

= k
dz

z
+

df(z)
f(z)

and
k

4
.
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¤
Let f be a modular form for Γ0(4) of weight k, and let k ≡ 2 (mod 4). Then we have

f(i/2) = f(W4 i/2) = ikf(i/2) = −f(i/2).

Thus f(i/2) = 0 and vi/2(f) > 1.
Let k be an even integer such that k ≡ 0 (mod 4). Then we have

E∗ ∞
k,4 (i/2) =

1
1− 2k

(
Ek(i/2− 1/2)− 2kEk(2(i/2− 1/2))

)
= E∞

k,2(−1/2 + i/2) 6= 0,

E
∗ −1/2
k,4 (i/2) =

1
1− 2k

(Ek(2(i/2− 1/2))− Ek(i/2− 1/2)) = 2−kE0
k,2(−1/2 + i/2) 6= 0.

Thus vi/2(E∗ ∞
k,4 ) = vi/2(E

∗ −1/2
k,4 ) = 0.

B.3. Modlular forms of weight 2. As a preliminaries, we have following:

E2(γ0z) = 16z2E2(4z) + (12/(2πi)) · 4z,

E2(2 · γ0z) = 4z2E2(2z) + (12/(2πi)) · 2z,

E2(4 · γ0z) = z2E2(z) + (12/(2πi)) · z,

E2(γ−1/2z) = E2

(
− 1

2− 1/z

)
= (−2z + 1)2E2(z) +

12
2πi

· 2(−2z + 1),

E2(2 · γ−1/2z) = E2

(
− 1

1− 1/2z

)
= (−2z + 1)2E2(2z) +

12
2πi

· (−2z + 1),

E2(4 · γ−1/2z) = E2

(
− 1

1/2− 1/4z

)

=
(−2z + 1)2

4
(−E2(z) + 6E2(2z)− 4E2(4z)) +

12
2πi

· −2z + 1
2

.

Recall that

(197) E2,2
′(z) = 2E2(2z)− E2(z)

be a modular form for Γ0(2). Since Γ0(4) ⊂ Γ0(2), E2,2
′ satisfies transformation rule for Γ0(4) and is

holomorphic in H and at ∞. In addition, we have

E2,2
′(γ0z) = −2(2z)2E2,2

′(2z),

E2,2
′(γ−1/2z) = (−2z + 1)2E2,2

′(z).

Thus E2,2
′ is a modular form for Γ0(4), and we have

v−1/2+i/2(E2,2
′) = 1, vp(E2,2

′) = 0 for every p 6= −1/2 + i/2.

Similarly, we define

(198) E2,4
′(z) := (4E2(4z)− E2(z))/3,

then we have

E2,4
′(( 1 1

0 1 ) z) = E2,4
′(z),

E2,4
′(( 1 0

4 1 ) z) = (4z + 1)2E2,4
′(z),

E2,4
′(γ0z) = −(2z)2E2,4

′(z),

E2,4
′(γ−1/2z) = (−2z + 1)2(E2,2

′(z)− E2,4
′(z)).

Thus E2,4
′ is a modular form for Γ0(4), and we have

v−1/2(E2,4
′) = 1, vp(E2,4

′) = 0 for every p 6= −1/2.

For every α, β ∈ C, αE2,4
′ + βE2,2

′ is a modular form for Γ0(4). For example:

v∞(−(E2,4
′ − E2,2

′)/16) = 1, vp(−(E2,4
′ − E2,2

′)/16) = 0 for every p 6= ∞,

v0(2E2,4
′ − E2,2

′) = 1, vp(2E2,4
′ − E2,2

′) = 0 for every p 6= 0,

v−1/4+i/4((3E2,4
′ − E2,2

′)/2) = 1, vp((3E2,4
′ − E2,2

′)/2) = 0 for every p 6= −1/4 + i/4.
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Furthermore, let f be a modular form for Γ0(4) of weight 2. If v∞(f) = 1, then f is a constant
multiple of −(E2,4

′ − E2,2
′)/16. Also, if v−1/2(f) = 1, then f is a constant multiple of E2,4

′. Otherwise,
v∞(f − f(∞)E2,4

′) = 1, and f − f(∞)E2,4
′ is a constant multiple of −(E2,4

′ − E2,2
′)/16. Thus every

modular form for Γ0(4) of weight 2 is written as a linear combination of E2,2
′ and E2,4

′.
For Γ∗0(4), since

αE2,4
′(W2z) + βE2,2

′(W2z) = (2z)2{(−α− 3β)E2,4
′(z) + βE2,2

′(z)},

we need 2α = −3β. Now, we define

(199) E2,4
′∗(z) := 3E2,4

′(z)− 2E2,2
′(z).

We also have

(200) E2,4
′∗(z) = E2(z)− 4E2(2z) + 4E2(4z) = 2E2(2z)−E2(z + 1/2).

Then

E2,4
′∗(γ∗−1/2z) = 2E2

(
2z + 1
−2z + 1

)
− E2

(
1

−2z + 1

)

= 2E2

(
−1− 1

z − 1/2

)
− E2

(
− 1

2z − 1

)

= −(−
√

2z + 1/
√

2)2E2,4
′∗(z).

Thus E2,4
′∗ is a modular form for Γ∗0(4), and we have

vi/2(E2,4
′∗) = 1, vp(E2,4

′∗) = 0 for every p 6= i/2.

Furthermore, let f be a modular form for Γ∗0(4) of weight 2. By the valence formula for Γ∗0(4), we have

vi/2(f) = 1, vp(f) = 0 for every p 6= i/2.

Thus f is a constant multiple of E2,4
′∗.

B.4. The space of modular forms for Γ0(4). Let Mk,4 be the space of modular forms for Γ0(4) of
weight k, and let M0

k,4 be the space of cusp forms for Γ0(4) of weight k. When we consider the map
Mk,4 3 f 7→ (f(∞), f(0), f(−1/2)) ∈ C×C×C, the kernel of the map is M0

k,4. So dim(Mk,4/M
0
k,4) 6 3,

and Mk,4 = CE∞
k,4 ⊕ CE0

k,4 ⊕ CE
−1/2
k,4 ⊕M0

k,4. Define

(201) ∆4 := − 1
16

E2,4
′(E2,4

′ − E2,2
′)(2E2,4

′ − E2,2
′).

We have following theorem:

Theorem B.1. Let k be an even integer.

(1) For k < 0, Mk,4 = 0.
(2) For k = 0, 2, and 4, we have M0

k,4 = 0. Furthemore, we have M0,2 = C, M2,2 = CE2,2
′ ⊕CE2,4

′,

and M4,4 = CE∞
4,4 ⊕ CE0

4,4 ⊕ CE
−1/2
4,4 .

(3) M0
k,4 = ∆4Mk−6,2.

The proof of this theorem is similar to that of Theorem 6.1. The table of orders of zeros of basis for
Mk,4 is following:
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k f v∞ v0 v−1/2 |other zeros|
2 E2,2

′ 0 0 0 1
E2,4

′ 0 0 1 0
E2,4

′ − E2,2
′ 1 0 0 0

2E2,4
′ − E2,2

′ 0 1 0 0
4 E∞

4,4 0 1 1 0
E0

4,4 1 0 1 0
E
−1/2
4,4 1 1 0 0

6 E∞
6,4 0 1 1 0

E0
6,4 1 0 1 0

E
−1/2
6,4 1 1 0 0
∆4 1 1 1 0

8 ∆2 1 2 1 0

Furthermore, we have dim(Mk,3) = k/2+1 for k > 0, and dim(M0
k,3) = k/2−2 for k > 6. Similarly to

Mk,2 and Mk,3, if k ≡ 2 (mod 6), we have Mk,4 = M2,4Mk−2,4. On the other hand, if k ≡ 0, 4 (mod 6),
then let n := bk/6c, and we have

Mk,4 = E∞
k−6n,4(C(E∞

6,4)
n ⊕ C(E∞

6,4)
n−1∆4 ⊕ · · · ⊕ C∆n

4 )

⊕ E0
k−6n,4(C(E0

6,4)
n ⊕ C(E0

6,4)
n−1∆4 ⊕ · · · ⊕ C∆n

4 )

⊕ E
−1/2
k−6n,4(C(E−1/2

6,4 )n ⊕ C(E−1/2
6,4 )n−1∆4 ⊕ · · · ⊕ C∆n

4 ).

In addition we have followings:

E∞
4,4 = E2,4

′(2E2,4
′ − E2,2

′),

E0
4,4 = (−1/16)E2,4

′(E2,4
′ − E2,2

′),

E
−1/2
4,4 = (E2,4

′ − E2,2
′)(2E2,4

′ − E2,2
′).

E∞
4,6 = (1/2)E2,4

′(2E2,4
′ − E2,2

′)(3E2,4
′ − 2E2,2

′),

E0
4,6 = 32E2,4

′E2,2
′(2E2,4

′ − E2,2
′),

E
−1/2
4,6 = (−1/2)(E2,4

′ − E2,2
′)(2E2,4

′ − E2,2
′)(3E2,4

′ − 2E2,2
′).

Then

Remark B.1. Every modular form for Γ0(4) is generated by

E2,2
′ and E2,4

′.

B.5. The space of modular forms for Γ∗0(4). Let M∗
k,4 be the space of modular forms for Γ∗0(4) of

weight k, and let M∗0
k,4 be the space of cusp forms for Γ∗0(4) of weight k. When we consider the map

M∗
k,4 3 f 7→ (f(∞), f(−1/2)) ∈ C × C, the kernel of the map is M∗0

k,4. So dim(M∗
k,4/M

∗0
k,4) 6 2, and

M∗
k,4 = CE∗ ∞

k,4 ⊕ CE
∗ −1/2
k,4 ⊕M∗0

k,4. Define

(202) ∆∗
4 := − 1

16
E∗ ∞

4,4 E
∗ −1/2
4,4 .

We have following theorem:

Theorem B.2. Let k be an even integer.
(1) For k < 0, M∗

k,4 = 0.
(2) For k = 0, 2, 4, and 6, we have M∗0

k,4 = 0. Furthemore, we have M0,2 = C, M2,2 = CE2,4
′∗, and

M∗
k,4 = CE∗ ∞

k,4 ⊕ CE
∗ −1/2
4,4 for k = 4 and 6.

(3) M∗0
k,4 = ∆∗

4Mk−8,2.

The proof of this theorem is similar to that of Theorem B.1. The table of orders of zeros of basis for
M∗

k,4 is following:
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k f v∞ v−1/2 vi/2 |other zeros|
2 E2,4

′∗ 0 0 1 0
4 E∗ ∞

4,4 0 1 0 0
E
∗ −1/2
4,4 1 0 0 0

6 E∗ ∞
6,4 0 1 1 0

E
∗ −1/2
6,4 1 0 1 0

8 E∗ ∞
8,4 0 1 0 1

E
∗ −1/2
8,4 1 0 0 1
∆∗

4 1 1 0 0

Furthermore, we have dim(Mk,3) = bk/4c+1 for k > 0, and dim(M∗0
k,3) = bk/4c−1 for k > 8. Similarly

to Mk,4, if k ≡ 2 (mod 8), we have M∗
k,4 = E2,4

′∗M∗
k−2,4. On the other hand, if k 6≡ 2 (mod 8), then let

n := bk/8c, and we have

M∗
k,4 = E∗ ∞

k−8n,4(C(E∗ ∞
8,4 )n ⊕ C(E∗ ∞

8,4 )n−1∆∗
4 ⊕ · · · ⊕ C(∆∗

4)
n)

⊕ E
∗ −1/2
k−8n,4(C(E∗ −1/2

8,4 )n ⊕ C(E∗ −1/2
8,4 )n−1∆∗

4 ⊕ · · · ⊕ C(∆∗
4)

n).

Thus, the next proposision follows:

Proposition B.3. Let k > 4 be an even integer. For every f ∈ M∗
k,4, we have

(203) vi/2(f) > tk (tk = 0, 1 such that 2tk ≡ k (mod 4)).

In addition we have E
∗ −1/2
4,4 = (1/4)((E2,4

′∗)2−E∗ ∞
4,4 ), E∗ ∞

4,6 = E2,4
′∗E∗ ∞

4,4 , E
∗ −1/2
4,6 = (−1/2)E2,4

′∗E∗ −1/2
4,4 .

Then

Remark B.2. Every modular form for Γ0(4) is generated by

E2,4
′∗ and E∗ ∞

4,4 .

Appendix C. Locating the zeros of Eisenstein Series

C.1. On Γ0(4). Define

A4 := {z ; |z + 1/4| = 1/4, 0 < Arg(z) < π},(204)

A0
4 := {z ; Re(z) = −1/2, Im(z) > 0},(205)

A
−1/2
4 := {z ; Re(z) = 0, Im(z) > 0}.(206)

Then we have following:

Conjecture C.1. Let k > 4 be an even integer. E∞
k,4 has k/2− 1 zeros in A4, E0

k,4 has k/2− 1 zeros in

A0
4, and E

−1/2
k,4 has k/2− 1 zeros in A

−1/2
4 .

Now, we have the following transformations:
(

1 −1
0 1

)
(γ0)−1 :

eiθ − 1
4

7→ −1
2

+
tan(θ/2)

2
i,(207)

(γ−1/2)−1 :
eiθ − 1

4
7→ tan(θ/2)

2
i.(208)

This transform A4 to A0
4 and A

−1/2
4 , respectively. Moreover, for every z ∈ A4,

E∞
k,4 (γ0 ( 1 1

0 1 ) z) = (z + 1)kE0
k,4(z),

E∞
k,4

(
γ−1/2 z

)
= (−2z + 1)kE

−1/2
k,4 (z).

Then

Remark C.1. The number of the zeros of E∞
k,4 in A4 equals to that of E0

k,4 in A0
4 and that of E

−1/2
k,4 in

A
−1/2
4 .
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Now, recall that Remark A.1, where we have E0
k,4 = E0

k,2. Moreover, we have A0
2 = {z ; Re(z) =

−1/2, Im(z) > 1/2} and write A0
2
′ := A0

4\A0
2∪{−1/2+i/2}. Then we have the following transformation:

(209)
(−1 −1

2 1

)
: −1

2
+

y

2
i 7→ −1

2
+

1
2y

i.

This transform A0
2 to A0

2
′. Moreover,

E0
k,4

((−1 −1
2 1

)
W2 z

)
= (2z + 1)kE0

k,4(z) for every z ∈ A0
2.

Then

Remark C.2. If E0
k,2 = E0

k,4 has bk/4c − 1 zeros in A0
2, then E0

k,4 has also bk/4c − 1 zeros in A0
2
′.

In addition, recall that v−1/2+i/2(E0
k,2) > 1 for k ≡ 2 (mod 4).

In conclusion, we have following:

Remark C.3. If Conjecture 6.1 is proved, then we can prove Conjecture C.1.

C.2. On Γ∗0(4). Define

A∗4 := {z ; |z| = 1/2, π/2 < Arg(z) < π},(210)

A
∗ −1/2
4 := {z ; Re(z) = 0, Im(z) > 1/2}.(211)

Then we have following:

Conjecture C.2. Let k > 4 be an even integer. E∗ ∞
k,4 has bk/4c − 1 zeros in A∗4, and E

∗ −1/2
k,4 has

bk/4c − 1 zeros in A
∗ −1/2
4 . Furthermore, in Proposition B.3, the equality hold if f is equal to E∗ ∞

k,4 or

E
∗ −1/2
k,4 .

Now, we have the following transformation:

(212) (γ∗−1/2)
−1 :

eiθ

2
7→ tan(θ/2)

2
i.

This transform A∗4 to A
∗ −1/2
4 . Moreover,

E∗ ∞
k,4 (γ∗−1/2 z) = (−2z + 1)kE

∗ −1/2
k,4 (z) for every z ∈ A

∗ −1/2
4 .

Then

Remark C.4. E∗ ∞
k,4 has bk/4c − 1 zeros in A∗4, if and only if E

∗ −1/2
k,4 has bk/4c − 1 zeros in A

∗ −1/2
4 .

Now, recall that Remark A.2, where we have E
∗ −1/2
k,4 = E

−1/2
k,4 . Moreover, we write A

∗ −1/2
4

′
:=

A
−1/2
4 \A

∗ −1/2
4 ∪ {i/2}. Then we have the following transformation:

(213) W4 :
y

2
i 7→ 1

2y
i.

This transform A
∗ −1/2
4 to A

∗ −1/2
4

′
. Moreover,

E
−1/2
k,4 (W4 z) = (2z)kE

−1/2
k,4 (z) for every z ∈ A

∗ −1/2
4 .

Then

Remark C.5. If E
∗ −1/2
k,4 = E

−1/2
k,4 has bk/4c − 1 zeros in A

∗ −1/2
4 , then E

−1/2
k,4 has also bk/4c − 1 zeros

in A
∗ −1/2
4

′
.

In addition, note that vi/2(E
−1/2
k,4 ) > 1 for k ≡ 2 (mod 4). Furthermore, recall Remark C.3.

In conclusion, we have following:

Remark C.6. If Conjecture 6.1 is proved, then we can prove Conjecture C.2.

Remark C.7. Note that E∗ ∞
k,4 (z ± 1/2) = E∞

k,2(z) and E
∗ −1/2
k,4 (z ± 1/2) = E0

k,2(z). The Remark C.6 is
natural result.
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Appendix D. Another consideration : Isomorphism

Let Mpr
2 be the space of modular forms for Γ(2), and M4 be that for Γ0(4). By collorary 2.1.1, we

have
Γ(2) = 〈−I, ( 1 2

0 1 ) , ( 1 0
2 1 )〉, Γ0(4) := 〈−I, ( 1 1

0 1 ) , ( 1 0
4 1 )〉.

Define V2 :=
(

1/
√

2 0

0
√

2

)
. Then

V2 Γ0(4) V −1
2 = Γ(2).

In addition, by the map ϕ : Mpr
2 3 f(z) 7→ f(2z) ∈ M4, we have following:

Theorem D.1. Mpr
2 is isomorphic to M4.

Proof. For every f ∈ M4 and every γ =
(

a b
c d

) ∈ Γ(2), we put γ′ := V2γV −1
2 =

(
a 2b

c/2 d

)
, then

f(2 · γz) = f(2(V −1
2 γ′V2z)) = f(γ′(2z)) = (cz + d)kf(2z).

¤

Similarly, let M2 be the space of modular forms for Γ0(2), and M∗
4 be that for Γ∗0(4). By collorary

2.1.1, we have
Γ0(2) = 〈( 1 1

0 1 ) , ( 1 0
2 1 )〉, Γ∗0(4) = 〈( 1 1

0 1 ) ,
(

0 −1/2
2 0

)〉.
Thus (

1 −1/2
0 1

)
Γ∗0(4)

(
1 1/2
0 1

)
= Γ0(2).

In addition, by the map ϕ : M2 3 f(z) 7→ f(z + 1/2) ∈ M∗
4 , we have following:

Theorem D.2. M2 is isomorphic to M∗
4 .
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