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ON THE ZEROS OF EISENSTEIN SERIES
FOR TI};(p) AND I'y(p) OF LOW LEVELS

JUNICHI SHIGEZUMI

ABSTRACT. We decide the locating of all the zeros of Eisenstein series associated with the Fricke groups
I'5(2) and I'G(3) in their fundamental domains with applying the method of F. K. C. Rankin and H. P.
F. Swinnerton-Dyer [RSD]. Also, we give some more consideration on I'j(p) and I'g(p) of low levels.

1. INTRODUCTION

The motive of this research is to decide the locating the zeros of modular forms from codes and lattices.
Then Eisenstein series seems to be one of the most important modular forms. For example, SLy(Z) is
generated by F4 and Eg, which are Eisenstein series associated with SLy(Z).

In [RSD], F. K. C. Rankin and H. P. F. Swinnerton-Dyer considered the locating the zeros of Eisenstein
series for SLy(Z). They proved, in 1970, that for k = 12n + s (s = 4,6,8,10,0, and 14), then n zeros in
their fundamental domain are on

A:={z€C;|z| =1, /2 < Arg(z) < 2r/3}.

We calculated the locating of the zeros of some modular forms from codes in computers. For some
codes, all the zeros seems to be on A. However, for the other codes, it does not hold.

In last May, we (Tsuyoshi Miezaki, Hiroshi Nozaki, and I) were introduced Fricke group I'fj(2) and
T'3(3) by Professor Eiichi Bannai. Then he adviced us to try to consider the locating the zeros of them.
We applied the method of F. K. C. Rankin and H. P. F. Swinnerton-Dyer (RSD Method) to the Eisenstein
series B} associated with I'§(p) for p = 2, 3. Define

Ay ={2€C; |2| =1/V?2, 7/2 < Arg(z) < 3m/4},

Ay ={2€C; |2 =1/V3, /2 < Arg(z) < 57/6}.

Then we have A5 = A5 U {i/v/2,e3™/4/y/2}, and A5 = A% U {i/V/3,e°7/6 /\/3}.
We proved the next theorems.

Theorem 1. Let k > 4 be an even integer. Ej 5(z) has all zeros on As.

Theorem 2. Let k > 4 be an even integer. Ly 5(z) has all zeros on As.

After that we tried for I'f(p) of upper levels and for I'y(p) of low levels. I succeeded to decide almost
all the zeros (exactly, all the zeros except for at most 2 zeros) of Eisenstein series for I'j(5) and I'§(7),
and decided all zeros of Eisensitein series of low weights (such that 4 < k < 40) for I'g(2) and I'g(3).

In section 2, we recall definitions concerning modular group and some groups, then in section 3, we
recall classical methods for modular group. Section 4 gives definitions concerning I'g(p) as a preliminaries
for T'§(p). In section 5, we give the proof of the above theorems, and consider about I'{(p) of low levels.
Finally, section 6 gives the results for To(p) of low levels, where we decide the locating of many zeros.
However, it is far from “complete”, which means to decide locating of all zeros.

Date: January 16, 2005.



2 JUNICHI SHIGEZUMI

2. GENERAL THEORY
2.1. The modular group and some groups.

2.1.1. The modular group. (See §[VIL.1] [SE], [I-1] [SI], and §[IIL.1] [KO])
We have a special linear group defined by following;:

(1) SL(R) ;:{(‘C‘ Z) ;Va,b,c,deRs.t.ad—bc:l}.

Write H := {z € C; Im(z) > 0}, which is complex upper half-plane. We consider a action of SLs(R)
on HU {oo} in the following way:

For every ~v = ( ) € SLy(R) and every z € H, we put

az+b
cz+d

(2) vz =

Now we have —yz = vz for every z € H. So we may consider PSLy(R) = SLy(R)/{£I} instead of
SL2(R), where I := —(}9). But we discuss SLy(R) in this note.
Futhermore, note that

(3) Im(yz) = Im(2)/|cz + d|*.

In this note, we consider some discrete subgroups of SLa(R).
For example, we have

(4) ST (Z) = {(‘; Z) € SLo(R) ; Ya,b,c,d € z} ,

which is called the (full) modular group. (Sometimes, PSLy(Z) = SL2(Z)/{+£I} is called the modular
group instead.) This group is a classical Fuchsian group of the first kind.

2.1.2. Congruence subgroup. (See §[III.1] [KO])
For another example of discrete subgroups of SLy(R), for a positive integer N, we have

(5) N):={(2%) €SLe(Z);a=d=1,b=c=0 (mod N)}.

This group is a subgroup of the modular group SLs(Z), and it is called the principal congruence subgroup
of level N.

Also, if T is a subgroup of SLy(Z) such that TV D T'(N), then I is called a congruence subgroup of
level N. Here are some examples:

(6) To(N):={(%4) €SLs(Z); c=0 (mod N)},
(7) Li(N):={(2%)€SLy(Z);a=d=1,¢=0 (modN)}.

These groups are the most important examples of congruence subgroups.

2.1.3. Fricke group. (See [KR], [Q])
For a positive integer N, we consider the Fricke group T'{(N). We define the following;

(8) T5(N) :=To(N)UTo(N) Wy, Wy := (\/ON 1/0\/JV>.

This group is not subgroup of the modular group SLa(Z), but it is discrete subgroup of SLo(R) and
commensurable with SLy(Z). This is as an important and interesting group as the modular group and
congruence subgroups.
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2.2. Fundamental domain. (See §[VIL.1] [SE], §[I-1.4] [ST])
We refer to [SI] for definitions, and refer to [SE] for proofs of propositions.
Let T be a discrete subgroup of SLa(R).

Definition 2.1. Fr is a fundamental domain if and only if it satisfies following conditions:

(FD1) For every z € H, there exists v € I such that vz € Fr.
(FD2) For every two distinct points z1, zo € Fr, there does not exist v € I' such that vz, = 2.

Define T'(z) := ({ %) (€ SL2(R)) and P := {£T(z); = € R}. In many cases, at least for the subgroups
in this paper, we have

(9) LNP\ (£} # 6.

We assume that the above inequality holds.
Put u := min{z > 0; T(x) € '}, then we define

(10) For:={z € H; —u/2 < Re(z) <u/2, |cz+d| > 1forVy = (24) €T\ P}.
Also, we have
For ={z € H; —u/2 < Re(z) <u/2, |cz+d| > 1forVy = (24) €T\ P}.

(See Theorem 1.7 and 1.15, §[I-1.4 & 5] [SI])
Now, we have the following fact:

Proposition 2.1.

(i) For satisfies the condition (FD1).
(ii) For satisfies the condition (FD2).

Proof. (cf. proof of Theorem 1, §[VIL.1] [SE])

(i) Let z € H be a fixed point. Recall that Im(yz) = Im(z)/|cz + d|* for every v = (¢ 5) € T (See
formula (3)).

Considering that T is a discrete group, numbers |cz + d| have a lower bound greater than 0.
Thus there exists v € I' which maximizes I'm(yz). Furthermore, there exists v € uZ such that
—u/2 < Re(T'(v)yz) < u/2 (i.e. v=—u|Re(yz)/u+1/2]).

Suppose T'(v)yz ¢ Fo r, then there exists 7/ = (‘Z,/ Zl,) € I such that [¢'T'(v)yz+d'| < 1. Now,
Im(y'T(v)yz) = Im(T(v)yz)/|¢T(v)yz + d'|? > Im(T(v)yz) = Im(yz). This contradicts the
way of choosing . Thus T'(v)yz € For.

(ii) By the deffinition of Fo r, for every z € Fo r and every v = (2 Y) € I', Im(yz) = Im(z)/|cz+d|? <
Im(z). Let 21, 22 be distinct points of T'.

Suppose that there exists v = (2 %) € I' such that yz1 = 29, then Im(z3) = Im(y21) < Im(z1).
Note that v~ 123 = z; and v~ € T, then I'm(z1) = Im(y~'22) < Im(22). These facts contradict
each other. Thus there does not exist v € I' such that vz; = z5.

O

Here, Fo r does not satisfy the condition (FD2). We can, however, remove points from Fy p to satisfy
(FD2). Define

ez +d| > 1 if Re(z) < —d/c,
lcz+d| >1 if Re(z) > —d/c

a b

(11) FLF =< zeH,;
for Vy = (c d) e\ P

—g < Re(2) <%,

Then we have For C i r C Fo,r. Moreover, we have following;

Lemma 2.1. Let z € OFgr. (i.e. [cz+d| =21 forVy=(24) €'\ P)
(i) If lez + d| = 1 for some 7o = (%) € '\ P, then there exist v = (2¢Y) € T'\ P such that
vz € OFg r uniquely.
(ii) For every v = (‘Z: Zl/) €'\ P such that |z +d'| > 1,42 ¢For.

Proof.
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(i) Write z = (e — d)/c for 6 € [0, 7], then we have vz = (/"9 4+ a)/c for v = (¢}) € '\ P.
Let n = —|Re(vz)/u + 1/2], then —u/2 < Re(T(nu)yz) < u/2. Here, we have T(nu)y =

a+cnu b+dnu @, 9

¢ g Thus we can choose “a” such that —u/2 < Re(yz) < u/2. We may assume
—u/2 < Re(vz) < u/2.
Also, write 2’ = yz(= (/™% +a)/c). We have | —cz’ +a| =1/|cz +d| = 1,50 2’ ¢ For.
Suppose 2’ ¢ OFgr (i.e. 2/ ¢ For), then |2 + d'| < 1 for some v = (‘Z,/ Zl,) € '\ P. For
1 ( aa’+bc a’b+b'd
Y= (ac/-‘rcd’ be' +dd’ )’
/ d’ 0 _
|(ac’ + cd')z + (b’ + dd')| = (ac +ed)e” —c
c
e™=9 4 (ac’ + cd')
c
=2 +d| <1.

1
o—i0

This inequality contradicts z € For. Thus 2’ € OF r.

Now, the rest of the question is uniqueness of y. Suppose v"z € 9F 1 for some v/ = (“CN b{;/ )€

[\ P, then /'y~ ! = (é ab";“”b) € T'. Furthermore, ab” — a”’b = n’u for some n’ € Z. So we
have vz = 2/ +n'u. If n’ # 0, then Re(y'z) ¢ [~u/2,u/2], and then v’z ¢ For. Thus n’ = 0. In
conclusion, we have v/ = 7.
(ii) Let ' = (g,/ Zi) € '\ P satisfy |’z + d'| > 1, and write 2/ = 7/2z. Then we have Im(z") =
Im(y'2) = Im(2)/|c'z + d'|? < Im(2).
Suppose v'z € For, then | — ¢2” +a/| > 1. Also, we have I'm(z) = Im(y'~"2") = Im(2") /] —
2" +a'|* < Im(z"). These facts contradict each other.

]

Let z,2" € OFgr. By Lemma2.1, if vz = 2/ for some v = (¢ %) € '\ P, then |cz 4+ d| = 1. Also, we
have z = (e —d)/c and 2’ = (e!"=% +a)/c. So we can remove the points with 8 € [0,7/2) from OF r.
Thus we have following;

Proposition 2.2. F; r satisfies the condition (FD2).

However, if

lcrz 4+ di| =1, Re(z) < —dy /ey for somey; = (& bl) e'\P, and

c1 dy

lcoz +da| =1, Re(z) > —da/co  for some o = (22 b2) e\ P,

Cc2 d2
then we can write z = (¢t —dy)/c; = (€92 — dy)/ca. Because Re(z) < —dy/e1, we have 0 € [1/2, 7], so
we should not remove z from 9Fy r. On the other hand, because Re(z) > —da/co, we have 6 € [0,7/2),
so we should remove z. These contradict each other. We need another consideration on these points.
We define

lcrz 4+ di| =1, Re(2) < —di /ey for 3y = (& bl)GF\P}
Vo :=<32€0Fgr; ’ c1 dy
(12) 0 { 0T ez 4+ do| =1, Re(z) > —dy/cy  for Iy, = (5 Zi) el’'\P

U{z € dFgr; Re(z) = —1/2}.
Furthermore, we can remove points from Vj to satisfy the condition (FD2). Let Vr be the subset of V;
which satisfies (FD2). Then we have following theorem:
Theorem 2.1. Fy 1 UVt is a fundamental domain of T'.
Let T'! be a set of representatives of I'/(I' N P), then I' = T'Y(I' N P), and define
I:={y=(2%) el ez +d|=1for Iz € Fy r}.

Now, let G be the subgroup of I' generated by I'° U {T'(u)}, then F; r UV is a fundamental domain of
G. For every v € I and a fixed point z € Fo r, there exist some ' € G such that 7'vz € F1 . Because
7'y € I, we have v/yz = z. Put 7'y = (2Y), then |cz +d| = 1. Thus v = v lor—y'e@ In
conclusion, the next corollary follows:

Corollary 2.1.1. IfT' > —I, then T°U{T (u), —I} generates T'. On the other hand, if U # —I, TOU{T'(u)}
generates T.
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2.3. Modular forms.

2.3.1. Preliminaries. (See §[II1.2, 3] [KO] and §[VIL.1] [SE])
Let T be a discrete subgroup of SLy(R). For a cusp « of T', we define

Iy:={yeTl; vk =k}
In the previous section, we assume that T' NP\ {£I} # ¢. Then oo is one of the cusps of T', and we have
I'c = 'N P. Furthermore, there exist some 7, € SLy(R) such that vy,00 = k and
e = 7loovi '
Let f be a function on H. The relation
(13) f(y2) = (cz+d)* f(z) for every z € Hand everyy = (¢4) €T

is called the transformation rule for T.
Incidentally, since SLo(Z) = ((1§), (9 3')) (See (37)), transformation rule for SLy(Z) is equivalent
to the following two equations:

(14) flz+1) = f(2),
1
(15) 1(-3) =
We also have the following Fourier expansion for every cusp « of I':
(16) (cz+d) " *flyez) = Z anng” forv,=(2%), whereq=e>"".
neZ
We say f is meromorphic at k if a, p is zero for n small enough. Also, we call f holomorphic at at x if

ax,n is zero for every negative integer n.

Definition 2.2. Let f be a meromorphic function on H. f is called a modular function for T if f is
meromorphic at every cusp and satisfies transformation rule for T.

When f is holomorphic at a cusp &, f(x) = 0 if and only if a, ¢ = 0.

Definition 2.3. Let f be a modular function for T' which is holomorphic on H. f is called modular form
for T if f is holomorphic at its evry cusp. In addition, if f is equal to O at its every cusp, we call f cusp
form for T.

For a function f, let v,(f) be the order of f at p € H. In addition, we also define the order of f at a
cusp kK:

Ve (f) :=min{n € Z; ayn # 0}.
Finally, we have following facts:

Proposition 2.3. Let f be a modular form for I' such that every coefficient of Fourier expansion is real.
Then we have

(17) f(=2) = f(2).

Proof. (See [G]) Let f be a modular form for I', and let
f(Z) _ Z ane27rinz
n=0
be a Fourier expansion of f with real coefficients a,,. Put z = z + yi, then we have

f(2) = 3 anetm v,

n>=0

f(_z) _ Z ane27rn(—y—o:i).

n=0
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Corollary 2.1.2. Let f be a modular form for T' such that every coefficient of Fourier expansion is real.
Then we have

(18) vp(f) = valf).

Proof. Let f be a modular form for I' such that every coefficient of Fourier expansion is real, and let r
be a positive number such that {z; 0 < |z — p| < r} has no zeros of f. Then

) | dfz) _ 1 dr(=2)
) =5 fz=pl=ry F(2) 210 Jye(pyi=ry f(=2)
1 df (2)

" 27 Sy T(2) =) = vl

2.3.2. Eisenstein series. (See [SU])
Let T be a discrete subgroup of SLa(R).

Definition 2.4. For z € H,
(19) Ep.:=e Z j('yglfy,z)fk (e : fized number)
~yET AT
is the Eisenstein series associated with I' for a cusp k, where j(v,z) := cz +d for v = (‘; Z) el. eis

often selected so that the constant term of Ej, ,; is 1.

Note that Eisenstein series Ej, ,, is modular function for I' of weight k.

For the cusp oo, any elements of T', stabilize (¢, d) of v = (‘Z Z) € I'. Thus we have only to consider
about the pairs (¢, d) as representatives of ' \ T'.

For example, let I' = SLy(Z), then we have only oo as the cusp of SLa(Z). Now, for an even integer
k > 4, we have

(20) Ep(z) = % > (cz+d)7*

(¢,d)=1

as the Eisenstein series associated with SLy(Z).

2.3.3. Some notations. For a prime p, we define

1 —k
(21) Dip(x) =5 Y. (x4 )7,
(c,d)=1
pted
1 1
(22) Bip(z)i=5 > (z+d)7" Cipz)i=5 D (z+d)™
(e;d)=1 (e,d)=1
ple pld

Then we have

By, p(z Z Z (pez+d)” ZDk,ppz

neN((' d)=1 neN
pted
il =15 5 (e = S ().
nEN(cd) 1 neN
pted

Furthermore

Ei(2) = Dip(2) + Crp(2) + Bip(2)

kn 2
= Diy()+ Y Dip"e) + Y p Dy, (p) |

neN neN
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Conversely, let us consider to write By, and CY , with Ej.

— n —k(n z
Bi(pz) = p *Dip(2) + > Dip("2) + > p "Dy, <pn> :
neN neN

Then Ej(z) — p"Er(pz) = (1 — p*) 3 en Diep(p™2) = (1 — p¥) B p(2). In conclusion,

(23) Bip() = 1= (Bu(2) — o Bulp)
Similarly,
(24) Chp(2) = ﬁ <Ek(z) - B, (;)) .

Furthermore, similar to equations(14) and (15),

Dy (2 +p) = Dy p(2) Dy p(—1/2) = szk,p(z),

(25) Bk,p(z +1)= Bk,p(z) Bk,p(_l/z) = ZkBk,p(Z)a
Crp(z4p) = Crp(z)  Crp(=1/2) = 2"Crp(2).
In the last part of this subsection, for 0 < n < p — 1, we define
n 1 —k
(26) Djip(2) =5 > (ez+a)h

(¢,d)=1
pted
d=nc (mod p)
Then we have D) (2) = Ckp(2), X1 <pep1 Dip(2) = Dip(2), and

(27) Po(z+1) = Dpti(z),

2.3.4. Eta function. (See §[II1.2] [KO)])
We put
(28) AG) = o ()~ (Es(2))?)
1728
A is a cusp form for SLy(Z) of weight 12. Now, we have

Theorem 2.2 (Jacobi’s product formula).
(29) Alz) =q H(l —¢")?* where q = ¥,

Also, we have

(30) n(z) =g [[(1-q"),

n=1
which is called the Dedekind n-function. Then we have

a3 1
(31) et 1) =¥ and n(-1) =2 (see [kO),
where /- denote a square root which has nonnegative real part. Furthermore, we have
az+b cz+d

(32 n(cz+d> —° i n(z) for (¢4) € SLa(2),

where € is one of the 24th-roots of 1 which depends on a, b, ¢, and d.
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3. MODULAR GROUP SLs(Z)

3.1. Eisenstein series. Let £ be an even integer greater than 4. We have Eisenstein series associated
with SLo(Z):

(¢, d)=1
We also have its Fourier Expansion:

2k N
(33) Ey(z)=1- B, ;Jk_l(n)q ,

where ¢ := €% o1 (n) := Zd‘n d* which is called divisor function, and By, are Bernoulli number which

are defined by
0 k
x x
er—1 ];)Bkﬁ

For example:
E4(2) = 14 240q + 2160¢° + 6720¢> + 17520¢" + -
FEg(z) = 1 — 504q — 16632¢> — 1229764 — 532728¢* —

It is easy to show that Ej(z) is modular form (not cusp form) for SLy(Z) for every k > 4
For k = 2, we can define Fy(2) as Ex(z) for k > 4.

1 (oo}
Es(2) == E (cz+d)™2 =1-24 g o1(n)
(34) 2 (e,d)=1 n=1 !

=1—24q — 72¢* — 96¢® — 168¢* — - --
However, E5(z) is not modular form for SLy(Z). Es(z) satisfies transformation rule (14), but it does not

satisfy (15). We have

(35) E, <—1> = 22Fy(2) + 21—222:

3.2. Fundamental domain. For deciding a fundamental domain, we consider the following condition:
() lcz+d| >1, =1/2 < Re(z) < 1/2 forVy = (2Y) € SL2(Z) \ P.
By (Y 7') € SL2(Z), we have the condition |z| > 1. In addition, by —1/2 < Re(z) < 1/2, we have

Im(z) > V/3/2. If || > 2 or d # 0, then we have I'm(z) < v/3/2 for z € H such that |cz +d| = 1 and
—1/2 < Re(z) < 1/2. Thus the condition

(Co) |z] > 1, —1/2 < Re(z) < 1/2

is a sufficient condition for (C'). Now, we have a fundamental domain for SLy(Z) as follows:
1 1

(36) F:= {|z >1, ~5 < Re(z) < O}U {|z| >1,0< Re(z) < 2}

FIGURE 1. SLy(Z)
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2
We have (? o ) = —I. Thus, by corollary2.1.1, we have

(37) SL2(Z) = ((15), (Y 5'))-

3.3. RSD Method. (See [RSD])
At the beginning of the proof of [RSD], they considered the following;

(38) Fi.(0) := e™*/2 ("),
which is real for V0 € R. Considering the four terms with ¢? 4 d? = 1, they proved
(39) Fy(0) = 2cos(kf/2) + Ry,

where Rj is the rest of the series (i.e. ¢ + d? > 1). Moreover they showed

1\ */2 N2 202 (3-k)/2
4 <14 (= 4z .
(40) | Ry | +<2) + (5> +k_3( >

They computed the value of the right-hand side of (40) at k£ = 12 whose value is 1.03562. At this point,
it is obviously monotonically decreasing in k. Thus they could show |Ry| < 2 for Vk > 12.

For 7/2 < 6 < 2m/3, we obtain &7 < k6/2 < £, So for any integer m € [%, £], if m is even or odd,
then cos(k6/2) is +1 or —1, respectlvely, and Fj, (2m7r/k:) is positive or negative, respectively.

How many integers are there in [%, g}‘? If k is indivisible by 4, i.e. k = 4l + 2 (3] € N), then
[%, %} = [l ; 4l+2] Then it has L—’ — J + 1 integers. On the other hand, if k is divisible by 4, then
by the same consideration, it has L J +1 integer points. Write m(k) := {%
that ¢ = k (mod 4). Then k = 12m(k) +s(s=4,6,8,10,0, and 14).

In conclusion, they proved that m(k) zeros were in A.

- ﬂ, where t = 0 or 2, such

13
even or odd, then Fy(2mm/k) is positive or negative, respectively.

Remark 3.1. (i) Fy(0) is real. (ii) [%, %] has m(k) integers. (iii) For any integer m € [%, %], if m is

They said in the last part of their paper [RSD], “This method can equally well be applied to Eisenstein
series associated with subgroup of the modular group.” However, it seems unclear how widely this claim
holds.

3.4. Valence formula. In order to decide the locating of all zeros of Ej(z), we need the valence formula:

Proposition 3.1 (valence formula). Let f be a modular function of weight k for SLa(Z), which is not
identically zero. We have

(a1) vool ) H o) F 30N+ X wlh =)

pESL2(Z)\H
PFEi, p

where v,(f) is the order of f at p, and p := e*™/3. (See [SE])

Proof. Let f be a nonzero modular function of weight & for SLo(Z), and let € be a contour of F represented
in Figure 2., whose interior contains every zero and pole of f except for ¢ and p. By the Residue theorem,

we have ) of
i)y T Z vp(f)-
pEF\{i,p}
(i) For the arc FA, we have
1 d (u+ Ki) 1 !
Ry e DAy S PR
27 J i 2m _1 flu+ Ki) 270 ) y=g|g|=e—2x} f(q)

(ii) For the arcs BB’ which is a part of the circle around p, when the radius of the arc tends to 0, the
angle of it tends to w/3. Then we have
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'
INES
N

FIGURE 2

Similarly, when the radii of the arcs CC’ and DD’ tend to

0, the angles of them tend to 7 and m/3,
respectively. We have

1 [ af 1 1 [P ar 1
— [ 5y d — 2 —Zu(f).
omi Jo F - aul) and oo T = —guelf)
(iii) For the arcs AB and D'E, since f(Tz) = f(z) for T = (} 1),

1o Pap 1 Paf 1 (Pap 1 [rdf

omi Jo f  2mi)p f  2mifa f 2wy f
(iv) For the arcs B'C and C'D, since f(Sz) = 2" f(z) for S = (9 '), we have

0.

df(Sz) _ Sk=lr(, def(z) df(SZ)_ dz | df(2)
dz =k 1)+ dz = f(S2) K z + f(2)°

When the radii of the arcs BB’, CC’, DD’ tend to 0, the angle of the arc B’C' tend to w/6. Thus we
have

1 [9df(zx) | 1 [Pdf(z) 1 [9df(z) | 1 [P df(S2)

omi Jp f(z) " 2miJor f(2)  2mi)p f(z) | 2miJo f(S2)
(2) _df(SZ)>

_ 1 C(d
S 2mi Jp \ () f(S2)

_ L[l k
2 g 2 127

(v) Finally, when f has a zero or pole on 9F \ {i, p}, we can transform % as Figure 3. Then we can show
in a similar way to Figure 2.

(]
By previous subsection (RSD Method), Ex(z) has m(k) zeros on A, so

E vp(Ex) = m(k).
pESL2(Z)\H
p#i, p

If k =4,6,8,10, and 0 (mod 12), then k/12 —m(k) < 1, so any other zero does not exist except for i
and p. Thus all zeros of Ey(z) is on AU {i, p}.

But if K =2 (mod 12), we need another consideration because we have k/12 — m(k) > 1.

Recall that Ey(z) is a modular form of weight k for SLo(Z). By the equation (15), substituting ¢ for z,

we have Fy (i) = i* Ej(i). Because k # 0 (mod 4), E.(i) = 0. Thus i is a zero of Ex(z), i.e. v;(Ex) > 1,
then we have k/12 — m(k) — v;(Ey)/2 < 1.
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FIGURE 3

In conclusion, for every even integer k > 4, all zeros of Ej(z) are on A U {i, p}.

3.5. The space of modular forms. Let M}, be the space of modular forms for SLy(Z) of weight k, and
let M? be the space of cusp forms for SLy(Z) of weight k. Because dim(My/M}) < 1, My, = CE), & M}.
As a classical result, we have the following theorem(See [SE]):
Theorem 3.1. Let k be an even integer, and let A := < (E3 — E3).

(1) Fork <0 and k=2, M =0.

(2) For k=0,4,6,8,10, and 14, we have M =0, and dim(My) = 1 with a base E,.

(3) MpP = AMj_12.

Furthermore, for a non-negative integer k, dim(My) = |k/12] if &k = 2 (mod 12), and dim(My) =
|k/12) +1if k # 2 (mod 12).

Let k be an even integer k > 4. Write n := dim(My) — 1, then k — 12n = 0,4, 6, 8, 10, or 14. Because
E, — Ey_19n,F10, € MIS’ we have My = CE,_19,F12, ® M.IE:) Then

My, = Ep—120(CE12, ® CE15(,—1)A @ --- ® CA™)

Thus, for every p € H and for every f € My, vp(f) = vp(Ek—12n)-

In the previous subsection, we have voo(Er) = D pesr,z)\uvp(Er) = 0 for k = 0,4,6,8,10, or 14.

PF#i, p

Thus, by the valence formula, v;(f)/2 + v,(f)/3 = k/12. In conclusion, the next proposision follows:

Proposition 3.2. Let k > 4 be an even integer. For every f € My, we have
" vi(f) = sk (s = 0,1 such that 2s, = k (mod 4)),
(42) vo(f) =tk (tk =0,1,2 such that — 2t =k (mod 6)).

In paticular, if f is a constant multiple of Ey, then the equalities hold.

Remark 3.2. Every modular form for SLy(Z) is generated by
Ey and FEg.

3.6. On Ey(i) and Ex(p). We consider the bound for |R;| again. Let k > 4 be an even integer.

Define vy (¢, d, ) = |ce?®/? + de="/2|=% then vi(c,d,0) = 1/(c* + d® + 2cd cos 0)*/? and vi(c,d, 0) =
vg(—c, —d, 6).

Now we will consider the next three cases, namely N = 2,5, and N > 10. Considering 6 € [7/2,27/3],
we have the following:
When N = 2,

) k)2 ) k)2 1\ K72
vr(1,1,6) = (2—1—26089) <bhoowl,-10) = (2—26059) S <2) '
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When N =5,

1 k/2 1 k/2 1 k/2 1 k/2
1L2,0) =7 ) <(z) » w@-20=(—7) <|z) -
vi(1,2,) (5+4c039) (3) okl ) <5_4C059> <5)
When N > 10,

|Cei9/2 + d€7i0/2|2 2 02 —+ d2 — 2|Cd” COS 9|

1
= 5 (le| = [d)* + |ed] (1 — 2| cos 6]) + (@ +d)

N = N

1
> ﬁ+¥)=§M

and the rest of the question is about the number of terms with ¢?+d? = N. The number of |c| is not more
than N'/2, and we consider four terms (+(c, d), +(c, —d)) and the number 1/2 which is the coefficient of
the summation. Thus the number of terms is not more than 2N'/2. Then

) e (1 —k/2 /s o rq N (1R)/2
= 2N -N < 2V2 —
e 02 (1) " ena [ (1)

N=10

Cosv2 2\ 108 2\M?
 k—31\9  k—31\9 ‘

k/2 k/2 k/2 k/2
1 1 1 108 (/2
<1+ (= 2(= 2( = — (z
& - (2> " (3) - <5> = (9)

< 1.61013... (k> 6)

Thus

Similarly, for # = 7/2, we have the following:

When N =2,
k/2

vp(1,1,7/2) = v (1, -1, 7/2) = (é)
When N =5,
)

vp(1,2,7/2) = v (1, -2,7/2) = <

1\ k72
5
When N > 10,

‘cei(ﬂ/Q)/Z :l:defi(ﬂ/Q)/Z‘Q 2L PR =N

9

and the number of terms is not more than 2N'/2. Then

- k/2
108 2

R 9 NORZC— (2] .

|R1|n>10, 9=r /2 ]\;0 E—3\9

Thus

k/2 k/2 k
1 1 108 (1
2 <2( 5 - — (5] <1.99333.. (k>
R lo=r/2 2(2> +4(5> +k_3(3> 1.99333... (k> 4)

Now, we have
Fup(m/2) = €™ By (i) = 2 cos(km) + Ry,
Fsr(27/3) = "™ Egi(p) = 2 cos(2kn) + R;.
For both equations, we have the bound |R;| < 2. Thus we have following proposition:
Proposition 3.3. Let k > 4 be an even integer. We have

>0 k=0
E’“(l){:o k=2

mod 4
mod 4

)

( )

( )

>0 k=0 (mod 6)
E‘“(p){o k£0 (mod 6)
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4. PRELIMINARIES FOR CONGRUENCE SUBGROUPS I'y(p)
4.1. Fandamental domain. Let p be a prime. We consider the following condition for every m € N:
(Cw) |z —n/mp| > 1/mp, —1/2 < Re(z) < 1/2 for Vn € Nsuch that (mp,n) = 1.

It is easy to show that |z —n/mp| > 1/mp is a necessary condition for |z — [n/m]/p| > 1/p. Thus the
condition

(Cv) |z —=n/p| >1/p, —1/2 < Re(z) < 1/2 forVn € Nsuch that 1 < |n| < p/2.

is sufficient condition for (C,) for every m € N.

Lo(5) © 1 T
FIGURE 4. Congruence subgroups I'g(p)

By corollary2.1.1, we have

(43) To(p) = (=1, (§1), (5 1) €To(p)/(To(p) N P); 1 < |n| < p/2).
For example: (these are for subsection4.3, ¢f. [RD])
Fo(2) =((61), (2%))
Lo@3)=((G1), —(59))
To(5) =((§1), (51), (32))
Lo(M) =((61), —(39), (72))
FO(H):«(I)?I% 1119)a (141:1’,)a (131411»
Lo(13) = ((§1), (59), (53), (5 57), (323))
Lo(17) =((51), (7 9), (%3), (&3), (%6)
Lo(19) =((51): — (16 9), (182), ({5 1)s (155))
Io(23) =((g1), —(55%), (333), (554), (556), (55s))
Calculation.
For p =2, we have (§7') (49) = (3' 7). (' 1) = ~Land (39) " = (5 9).
For p = 3, we have (— (39)) (§71) = (533), (533)" = —Loand (- (39)) " = (3" )
For p =5, we have (§ 71) (35) = (33). (73) = -L (D7 = (51),
and (33 (59) = (41,
For p =7, we have (= (}9)) (41)7" = (Z23), (F33)° = -1, (- (39) " = (%9),
(217 = () and (F) (41 = (5 4.
For p =11, we have (4 4) (3 5) " = (4 25), (45 (A D = (73,
((1J_11 (151 3)(‘(1%?))(?12 _51) =1, (_(111(1)))71 = (111 —01)’
(112_51)71:(—511 5) (1513)_1:(:121%)7(131411)71:(—%1 731)’311‘1(141%)71:(—31111)



14 JUNICHI SHIGEZUMI

For p = 13, Wehave(1?‘52)2:—],(113?)_1:(_113(1) ,

(B2 (B () =(52) (1) (HH=(F3) (3) = (T ),
(1532)((1)711)(12%):(}13—13)7(153:§)(173%)(7113(1)):(:143;,)’
and(ifszpls)il:(fgj_c}i)'

For p =17, wehave(167§)(197§)_1((1)%)(137(13)_12(147:}1),(147_1)22—1,
(117?)_1:(317?)7(167%)_1(197%)(317?)(1373;):(I?lliv
(67 (%) (A 9) = (075 (19, %) (65 = (£ %),
(137é)_1:(f317_£’>1>’(67%))_1:(7317_61)’

(5711)(197%)(167;,)71:(177—25 (23 () (B8 = (55 22),
and (£177 fg)_l = (£157 j—Fg)

For p =19, we have ((1)_11)(%8%)(159};)71(149%):(—819—37)’ (—819—37)3:_1’
(_(119(1)))71:(191 %), (195 (10 —01)(149%)(159&71:(:1891%7(f189$7) 1_(%;3)’
(153) (19 1) = (15 =2): (57 (163) = (39 51), (39 52) = (T o),
(159}1)(149%)71:(169:‘%)7(149%)71(159}1):(7(1933)7(ﬁgﬂ)_ :(5139%1)7
(537 = (e and (517 = (1 5)

For p = 23, we have
EHEH T SEOEDTBHEGHEM T EHGEH T (EDHE@YH T =-1,
() = (5 ) (B ) (BH (B = (820, (B4 =5
(B B) () = () (BH((HD) (51 =(182),
(233é)_1:(—823_31>,(%gé)(—(zlg(l)))_l(zsgé):—(283§)»
(243é)71:(_62311)7(263411)71:(—4;3761)’

BHHH =B (BH G =(%%). (hE) =)
(233%;)_1(%%)(263411)_1:(E%))Of?)’and(%OJE’?Y = (25 o)

4.2. Eisenstein series. Let p be a prime, and let I' = T'y(p). To(p) has two cusps oo and 0.

For the cusp oo, we have only to consider about the pairs (¢, d) of v = (‘; g) € I'y(p) as representatives

of T, \ T'o(p). Then we have

) 1 —k
(44) Epy(2) = 5 > (ez+4d)
(c,d)=1
ple

as the Eisenstein series associated with I'g(p) for the cusp co. Incidentally, we have ER° (2) = By p(2).

Then we can write

(45) ng;(z) = ﬁ (Ek(z) — pkEk<pZ)) .

For the cusp 0, let v = (‘é 2) € To(p). If v € Ty, then we have b = 0, and then we have

To={(,p7) sne€Z} =Wl W, "
Thus o = W), then j(Wp’l'y, z) = —/p(az + b). Because any elements of I'y stabilize the pair (a,b), we
have only to consider about the pairs (a,b) as representatives of I'g \ I'g(p). Then we have
1
0 — —k
(46) ERy(2) = 5 > (ez+d)
(c,d)=1

pfe

as the Eisenstein series associated with To(p) for the cusp 0. Incidentally, we have E°,(2) 4+ E} ,(2) =

Ei(z). Then we can write

1
1—pk

(47) EQp(2) = (Ek(2) — Ex(p2)) -
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It is easy to show that Ep° (z) and E}) (2) are holomorphic on H and at oo by equations (45), (47).
For vy = W), we have

(VD2) F B, (Wyz) = (072 B}, (2),
(VD2) T E} ,(Wp2) = (0*/%) B, (2).
Thus both of them are holomorphic at cusp 0, i.e. E°,(2) and Ej) (z) are modular form for Tg(p).

Furthermore, we have E° (0) = E}) (00) = 0, E°,(c00) # 0 and E}) (0) # 0. Then, EY°,(z) and
E27p(z) are not cusp form for Iy (p).

= (
= (

4.3. Eta function. Let p be a prime, and let k£ be a minimum positive even integer such that 24 | k(p+1)
(i.e. k=24/(p+1,12)). We put

(48) Ay(2) = n*(2)n" (p2),

then for T'= (1}) by the equations(31), we have T': z — z + 1 and

(49) Ap(T2) = 1" (z + D' (pz +p) = 7D )k (p2) = Ay (2).
Also, for W, = (\% _1(/)\/5), we have VVP,VVP’1 :z+— —1/pz and

(50) Ap(Wp2) =1 (—pi) " (—i) = (\/iz)kﬂp(z)-

Then for S, := (,,7), because S, = W,T~'W, ! and k is even, we have

(51) Ap(Spz) = (pz + 1) Ay (2).

Furthermore, we have next proposition:
Proposition 4.1. Let v = (‘é 3) be a element of To(p). If ¢ = bp, then we have
(52) Ap(v2) = (cz + d)F Ay (2).

Proof. For v = (%) € I'o(p), if ¢ = bp, then YW, = (b\/ﬁ 7a/\/5), and put 7 := yW,. In addition,

dyp —b\/p
we put 7 = (Z :g;) and v = (bf :‘;), then we have 71,72 € SLa(Z), vz = 71(pz), p- ¥z = Yez.
Moreover, because y1y2 = —1I, 1w = z for w := y9z. By the equation(31), for some €1, €5 : 24th-roots of
1, we have
dz — bp dz—b
n(n2) = e\ ———n(2), n(122) = e2\[ ——n(2)
Now,
dw — bp dw—"bp [dz—b
() = nonae) = ey ) = epea [T D
Furthermore,

1 —(dz-d)
dz—b  |dz—b2’

\/dw—bp\/dz—b_ dz—b dz—b _,
i i ildz —b| )\ i|dz —b]

Thus we have 7(z) = e1€2n(2), and €165 = 1.
In conclusion,

0o '2) = e (p2)02) = evemy) L2
_ PR

7

dw —bp =

dz—0b
—1)

- (2)n(p=2)

pz),

and
Az = WP WDE

]
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Thus
_ 1
80 = 8,/ W) =, (7 (- )
/byt (1Y (CdfE by ()
. OB (L) d VP A )
i pz i i
= (cz + )" Ay (2).
([l
Proposition 4.2. Let v = (‘é 3) be a element of To(p). If d = —a, then we have
(53) Ap(v2) = (2 + ) By(2).
Proof. k=0 (mod 4) (i.e. ¥ = —I) This proof is similar to that of Proposition4.1.

For v = (2Y) € To(p), asume that d = —a, and write ¢ = ¢/p for some ¢ € Z. Then we have
= (c?‘p _ba) and |y| = —a? — bc’p = 1. Here, we have a? = —1 (mod p), i.e. —1 is a quadratic residue
modulo p. Then, by the Euler’s criterion, we have p =1 (mod 4). Thus £k =0 (mod 4).

We put 7/ := <§, f’;), then we have 7/ € SLa(Z), p-vz = 7/(pz). Moreover, because v? = —I, yw = z

for w := 7yz. By the equation(31), for some €1, €5 : 24th-roots of 1, we have

dpz—a dz—a
n(vz) = e[ ———n(z), 1(y'z) = e —(z)

dpw—a [dpz—a
ot [P T

and c'pw —a = —1/('pz — a), \/(pw — a)/i\/(¢'pz —a)/i = 1. Thus we have €2 = 1. Also, because
v'? = —I, we have €2 = 1.

In conclusion, *(v2)n* (p-vz) = eted ((pz — a)/i)* n*(2)n* (pz) = (cz+d)*n*(z)n* (pz). Thus, because
k=0 (mod 4),

Now, we have

Ap(12) = (e + d) A, (2).
O

Remark 4.1. For definition of the integer k for prime p, we need the condition 24 | k(p + 1) for the
transformation rule for T'. The other condition k : even is for —I, which is a element of I'y(p).

In the subsection4.1, we have the basis of Tg(p) for 2 < p < 23. We have ¢ = bp or d = —a for
all the bases except for T" and £S5, which is the condition for the Proposition4.1 or 4.2, respectively.
Thus A, satisfies the transformation rule for I'o(p). In addition, because (A,(2))P™ = A(2)A(pz) or
(A(2)A(pz))?, it is easy to show that A, is a cusp form for T'g(p) for 2 < p < 23.

Finally, we have the following proposition:

Proposition 4.3. (See [KO])
For p=2,3,5, and 11, every nonzero cusp form for T'o(p) of weight k is a constant multiple of A,.

Proof. For p =2,3,5, and 11, let f be a nonzero cusp form for I'g(p) of weight k. Because (A,(z))P*! =
A(z)A(pz), and because v,(A) = 0 for every z € H, we have v,(A,) = 0 for every z € H. In addition, by
the definition of Ay, veo(Ap) = v9(A,) = 1. Thus f/A, is a modular form of weight 0, then it is clear
that f/A, € C. O

Remark 4.2. By the equation(50), if p =2 and p = 1 (mod 4), then k =0 (mod 4) and A, is a cusp
form of T§(p). On the other hand, if p = 3 (mod 4), then k = 2 (mod 4) and (A,)? is a cusp form of
I5(p)-

Furthermore, similar to Proposition4.3, for p =2 and 5, every nonzero cusp form for T§(p) of weight
k is a constant multiple of Ap.
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5. FRICKE GROUP I'{(p)
5.1. Preliminaries.

5.1.1. Fandamental domain. Let p be a prime. Similarly to I'g(p), we consider the following condition:

(Co) |z —n/p| >1/p, —1/2 < Re(z) < 1/2 forVn € Nsuch that 1 < |n| < p/2.
In addition, we need to consider the following condition for every m € N such that (m,p) = 1 for T'o(p) Wp:
(Cpm) |z —n/m|>1/my/p, —1/2 < Re(z) < 1/2 forVn € Nsuch that (m,n) = 1.

By W,, we have the condition |z| > 1/,/p. In addition, by (Cy), we have I'm(z) > v/3/2p. Thus we need
(Cp,m) only for m < /4p/3. In conclusion, we have following condition:

|z —n/m| > 1/my/p, —1/2 < Re(z) < 1/2
(Cp) for Ym € Nsuch that m < /4p/3
Vn € Zsuch that (m,n) =1, |n| <m/2+1//p.

It seems that (C)) is a sufficient condition for (Cp), but it is not clear.

5.1.2. Eisenstein series. Let p be a prime. T'§(p) has only oo as a cusp. For v = (“ b) € To(p),

cd
YW, = (Z\\/ﬁ;; Z;\\/ﬁlj) Thus we have only to consider about the pairs (c,d) and (d\/p,c/\/p). Then we
have
) 1 . phr .
(54) Bip(2)i=5 Y (cztd)™+=— 3 (c(p2) +d)
(C,d):l (C,d):1
ple pld

as the Eisenstein series associated with I'(p) for the cusp co. Furhtermore, we have Ej () = By p(2) +
p*/2Cy ,(pz). By the equations (23) and (24), we have

1 k)2

REE (p Ex(pz) + Ek(z)) .
We can use each of the expression as a deffinition.

(55) B p(2)
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5.2. T§(2) (Proof of Theoreml).

5.2.1. Preliminaries. In the previous subsection, we have two conditions for a fundamental domain for
I'5(2):

(Co) |z +1/2| > 1/2, —1/2 < Re(z) < 1/2.
(Cy) |z —n| >1/v2, =1/2 < Re(z) <1/2 forn =0, +1.

By the condition |z| > 1/v/2 and —1/2 < Re(z) < 1/2, we have Im(z) > 1/2. For z € H such that
lz£1/2| =1/2 or [z £ 1| = 1/v/2, and —1/2 < Re(z) < 1/2, we have Im(z) < 1/2. Thus

|z > 1/V/2, =1/2 < Re(z) < 1/2
is a sufficient condition for (Cy) and (C,). Furthermore, we have the following transformation:
Wa: e )\/2 o 79 1\ /2
Then we have Vs (2) = {€37/4/v/2} (Theorem2.1).

Now, we have a fundamental domain for I'§(2) as follows:

(56) F*(2) := {|z| >1/V2, —% < Re(2) < O}U {|z| > 1/V2, 0 < Re(2) < ;}

=8
ol

FIGURE 5. T{(2)

5.2.2. The function Fy ,(0). We give the next definition;
(57) Fo0) = 2By, (e7/12))

Before proving Theoreml, we consider an expansion of Fy ,(0).
In the definition of Ej ,(2) (cf. (54)), when 2 | ¢, then we can write ¢ = 2¢ for 3¢’ € Z, and have 2 { d.
Also, when 2 | d, then we have 2t ¢ and d = 2d’ for 3d’ € Z. Then

oik0/2 _ ok/2 4ik0/2 '
Fyio(2) = S (V2 d) T+ T > (c(2e”/V2) +d)F
(c,d)=1 (¢, d)=1
2|c 2|d
k62 ‘ ok/2,ik6/2 A
_ e Z (\/50/610 4 d)sz 4 L Z (\/50619 + 2d/)7k
(e,d)=1 (e,d)=1
2fd 2fc
1 . . 1 . )
_ 5 Z (d€719/2 + \/56/619/2)7’6 + 5 Z (Cez0/2 + \/§d/6719/2)7k
(c,d)=1 (c,d)=1
2fd 2fc

Thus we can write as follows;

1 . . 1 : .
(58) Fo(0) =5 D (e 4 V2de 02 TR 5 D (e 4 V2de?) 7,
(e, d)=1 (¢,d)=1
c:odd c:odd

Hence we use this expression as a definition.

In the last part of this section, we compare the two series in this expression. Note that for any pair
(c,d), (ce’®/? +/2de="/2)=* and (ce="/? + \/2de?®/?)~F are conjugates of each other. The next lemma
follows.
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Lemma 5.1. Fy ,(0) is real, for V0 € R.

)
Define ma (k) := |£ — L], where ¢t = 0,2 is chosen so that ¢t = k (mod 4), and |n] is the largest integer
not more than n.

integers. Furthermore, for any integer m € [E %], if m is even or odd, then F,;‘Q(

Remark 5.1. By Lemma5.1, F}; ,(0) is real. Also, it can easily be shown that [%,35] has ma(k) + 1
2m
18

m/k) is positive or
negative, respectively. (cf. Remark3.1)

5.2.3. Application of the RSD Method. We will apply the method of F. K. C. Rankin and H. P. F.
Swinnerton-Dyer (RSD Method) to the Eisenstein series associated with I'(2). We note that N := ¢?+d>.

Firstly, we consider the case N = 1. Because ¢ is odd, there are two cases, (¢,d) = (1,0) and
(¢,d) = (—1,0). Then
1, . . , ,
5 ((619/2)—k + (_610/2)—k + (6—19/2)—k + (_6—19/2)—k> — 2008(/@‘9/2).
So we can write;
(59) Fy5(0) = 2cos(k0/2) + R3,
where
1 . ) 1 . )
R; — 5 Z (6619/2+\/§de—19/2)—k+§ Z (ce—za/2+\/§deu9/2)—k
(c,d)=1 (e,d)=1
e e
Now,
1 . . 1 . , .
|R§| < 5 Z |Cez9/2_’_\/ide—zé?ﬂ'—k_’_5 Z |Ce—19/2+\/§d610/2|—k
(C’.d)djl (C’.d)d:dl
eSS 6
— Z ‘cei9/2+\/§de—i9/2‘—k
(e, d)=1
c:odd
N>1

Let v (c,d,0) := |ce’?/? 4+ \/2de"/2| 7% then

. , k/2
vg(e,d, 8) = (|cele/2 + \@deﬂoer)

1 k)2
- (c2+2d2+2\/§cd0059> ’

and vg (e, d,0) = vi(—c, —d, 0).
Now we will consider the next three cases, namely N = 2,5, and N > 10. Considering 6 € [r/2, 37 /4],
we have the following:

k/2
x(1,—2,0)

When N =2,
k)2
k(1,1,0) <1,
(3+2ﬁcos9)
k/2 k/2
1
<32\/§cost9> (3> '
When N =5,
k)2 k/2
r(1,2,0) < 7
<9+4ﬁ0080) ( )

W= ot =

)’7

9 — 4\/50089
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When N > 10,
|cei9/2 + \/§de—w/2|2 >+ 2d° — 2\/§|cd|\ cos 0|

= % (\/E\d - \/5\d|)2 + 2|cd| (\/E/fi -2 COSH|) + %(02 + )
1

1
> —(*+d*) =-N
5 (¢ +d%) 3V,

and the rest of the question is about the number of terms with ¢ 4+ d?> = N. Because c is odd, |¢| =
1,3,..,2N’ — 1 < N'/2, 50 the number of |¢| is not more than (N*/2 +1)/2. Thus the number of terms
with ¢ + d? = N is not more than 2(N1/2 +1) < 3NY/2 for N > 5. Then

) ) 0 1 —k/2 o s\ (1-R)/2
S fec o Vaae = Y v (an) e [T ()
9

(c,d)=1 N=10
c:odd
N>10
_18\/3 1 (k—3)/2_ 162 1 k/2
k-3 \3  k-3\3 '
Thus
k/2 k/2 k k/2
1 1 1 162 (/1
60 Ry <2+2( = 2( = 2| = — [ = .
) mi<zra(3) +2(35) +2(5) +225(5)

Recalling the previous section (RSD Method), we want to show that |R5| < 2. But the right-hand
side is greater than 2, so this bound is not good. The case when (¢, d) = +(1,1) gives us bound equal to
2. We will consider the expansion of the method in the following sections.

5.2.4. Ezxpansion of the RSD Method (1). In the previous subsection, we could not get a good bound for
|R3|. The point was the case (¢,d) = £(1,1). Notice that “vg(1,1,6) = 1 & 6 = 37/4”. Furthermore,
“v(1,1,0) <1< 0 < 3w/4”. So we can easily expect that we get a good bound for § € [7/2,37/4 — 2]
for small > 0. But if k¥ = 8n, we need |R}| < 2 for # = 37 /4 in this method. We will consider the case
when k = 8n,60 = 37 /4 in the next section.

Let k =8n+ s (n=ma(k), s =4,6,0, and 10). We may assume that k > 8.

The first problem is how small z should be. We consider each of the cases s =4, 6,0, and 10.

When s = 4, for 7/2 < 0 < 3n/4, 2n+ )7 < k0/2 (= (4n + 2)0) < (3n+ 1)m + 7/2. So the last
integer point(i.e. +1)is k0/2 = (3n+ 1)7, then 6 = ZZI%?T = 3w/4 —m/k. Similarly, when s = 6, and 10,
the last integer points are § = 37/4 — 7w /2k, 3w /4 — 3w /2k, respectively. When s = 0, the second to the
last integer point is § = 3w /4 — 7 /k.

Thus we need z < 7/2k.

Lemma 5.2. Let k > 8. For V0 € [n/2,3n/4 — x| (x = 7/2k), |R3| < 2.
Before proving the above lemma, we need the following preliminaries.

Proposition 5.1.
(1) If 0 <« < w/2, then sinx > 1 — cosx.
(2) If 0 <z < 7/16, then 1 — cosz > 3La?.

This proposition is easily proved. The number % in Proposition 5.1 (2) is near to and less than

% cos(m/16). We use the previous proposition for the following proof:
Proof of Lemma 5.2. Let k > 8 and « = 7/2k, then 0 < = < 7/16.

€19/ 4 \/2e7 /22 = 34 2v/2cos0 > 3+ 22 cos(3n/4 — x)
=1+2(1 —cosx
>1+4+4(1 —cosz

31

>1+ Em? (Prop.5.1(2))

+ 2sinx
(Prop.5.1(1))

— —
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i0/2 —i0)2k 31 ,\"*
€72 4 \/2e 21+ =2

16
k 31 2 k)2 A
e (3) ) o+
k 31
>1+-2a? 214>
+ 5167 2 + x (k>
1 (31/4)22
L,1,0) < ——— =1-— —"1 77
oL 10) S Ty 1+ (31/4)22
1o (31/4) 2. 31x26
+ (31/4)(7/16)2 3172 + 1024
Thus
31 x 512 31 x 512 /w2
20,(1,1,0) <2 — —— =42 :2_7<7)
vk(1,1,6) 3172 +1024° 3172 + 1024 \2k
B 31x 12872 1 _, 2651
B 3172 + 1024 k2 9 k2
In inequality(60), replace 2 with the bound 2 — %,}z. Then
k/2 k/2 k k/2
265 1 1 1 1 162 (1
Ry <2- =2 2(= 2 (= 2(= = .
mi<e-2Pa(5) w2 (5) 2(5) 225 5)
Furthermore,

5 (2 ’“/2+2 1 ’f/2+2 1 k+ 162 (1\"?
3 5 3 k—3\3
3\ */2 1\ */2 162 1\ */2 1\ #/2
—[(24+2(2 2( = (= <35(= k> 8).
(e2(3) " +2(3) %) (5) <m(z) o

1\*? 2651 32 9
35(3) < o= ¥>%k,
then the bound is less than 2. Then the proof will be complete.

Put f(x) := (1/35)3%/% — 2 5657 22, then f'(z) = (log3/70)3%/2 — 2R f"(z) = ((log 3)?/140)3%/2 — J& .
Firstly, f is monotonically increasing for z > 8, and f”(8) = 063038 .> 0,80 f" >0 for x > 8.
Secondly, f’ is monotonically increasing for z > 8, and f'(8) = 0.72785... > 0, so f' > 0 for z > 8.
Finally, f is monotonically increasing for z > 8, and f(8) = 0.14070... > 0, so f > 0 for « > 8. O

Now if we can show that

5.2.5. Expansion of the RSD Method (2). For the case “k = 8n,0 = 3w/4”, we need the next lemma.

Lemma 5.3. Let k be an integer such that k = 8n for 3n € N. If n is even, then Fy ,(3m/4) > 0. On
the other hand if n is odd, then Iy ,(3m/4) < 0.

If we can show this lemma, then we consequently show that for any integer m € [%, %], if m is even
or odd, then Fy ,(2mm/k) is positive or negative, respectively. (Remark 5.1)
Proof of Lemma 5.3. Let k = 8n (n > 1). By the definition of £ ,(2), Fj; 5(2) (cf. (54),(57)), we have
ik0/2

Fo(0) = gfmﬁ (228, (V2e'') + By (¢/v2) ).

ei3(k/8)ﬂ' ) -1+
Fo(3m/4) = ST (2’f/2Ek(—1 +1i) + By ( )) .

2
By using the equations (14) and (15),

Ey(=1+1) = Ex(2),
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By (1 + Z) = E, <11+Z> = (14 )" Ep(1 +14) = 282 E,.(3).

2
Then
) 2k/2
* _ o,13(k/8)7 .
Fyo(3m/4) = 2e TIER 1Ek(Z)
_ 9ilk/8)m 2h/2 ih(r/2)/2 (ei(ﬂ'/2)>
2k/2 1 1 k
= aeitemr 2 g (or.9)
= 2k/2 1 k . .
When k = 8n,
* inT 24”
(61) F8n,2(37r/4) = 2e™ WF&L(W/Q)-

Here 242:% > 0. By proposition 3.3, we have Fg,(7/2) = €"*"" Eg, (i) > 0. So the sign(4) of Fyo(3m/4)
is that of e™™. Thus the proof is complete. O

5.2.6. Valence formula for I'5(2). By previous subsections, Ej ,(z) has mz(k) zeros on A3. In order to
decide the locating of all zeros of Ej; 5(2), we need the valence formula for I'§(2):

Proposition 5.2. Let f be a modular function of weight k for T'§(2), which is not identically zero. We

have
1 1 k
(62) Vool f) + 5viyya (D) + 0 (N + D0 wlf) =3
PET; (2\H
p#i/ V2, p2

where pg 1= 637T/4/\/§,

The proof of this proposition is similar to Proposition 3.1 because the figure of fundamental domain
of T'§(2) is similar to that of SL2(Z) (¢f. Figure 1. and 5., and see [SE]). The angle of the arc around
p2 (BB’ in Figure2.) tends to /4 when radius of it tends to 0, thus the coefficient of v, (f) is 1/4.
Furthermore, because the angle of the arc A% is /4, the right-hand side is k/8.

If k=4,6, and 0 (mod 8), then k/8 — ma(k) < 1. Thus all zeros of Ej ,(z) are on A3 U {i/V/2, p2}.

But if K =2 (mod 8), we need another consideration because we have k/8 — ma(k) > 1.

Recall that £} ,(z) is the modular form of weight k for I'5(2). Any weight & modular form for I'¢(2)
satisfies

(63) (25) = @+t

for every z € H, and (24) € T3(2). When z = i/v2 and (24) = Wa, we have Ej,(i/V2) =
zkE;2(z/\/§) Because k # 0 (mod 4), EZ2(2/\/§) = 0. Thus we have k/8 — ma(k) — v, 5(E} 5)/2 < 1.
In conclusion, for every even integer k > 4, all zeros of Ej ,(2) is on A3 U {i/V/2, pa}.

5.2.7. The space of modular forms. Let M , be the space of modular forms for I' (2) of weight k, and let
MY be the space of cusp forms for I'f(2) of weight k. When we consider the map M 5> fr f(oo0) €C,
the kernel of the map is M5 So dim(Mj ,/M;%) < 1, and My, = CE};, & M;%. Recall that Ay =
n8(2)n®(22). We have following theorem:

Theorem 5.1. Let k be an even integer.
(1) Fork <0 and k=2, My, =0.
(2) For k=0,4,6, and 10, we have M,’:OQ =0, and dim(Mj; ,) = 1 with a base Ej ,.
(3) MI:OQ = AQMI:—S,T



ON THE ZEROS OF EISENSTEIN SERIES FOR I'{(p) AND I'o(p) OF LOW LEVELS 23

Proof. Let f be a nonzero function of My ,, then vp(f) > 0 for every p € H. By the valence formula for
I'5(2)(Proposition5.2), we have k > 0.

For every f € M,’;%, we have v,(f/Az) > 0 for every p € H. Thus f/As € M _g,. This proves (3).

By (3) and M}, =0 for k < 0, we have M;% = 0 for k = 0,2,4, and 6. We also have dim(M; ,) =1
for k=0,4,6 with a base E} 5. , 7

Let f be a nonzero function of Mj,. By the valence formula, we have v,,(f) = 1 and v,(f) = 0 for
every p # pa. Because f* € Mg,, f* = cEf, for some ¢ € C. So f3(i/V2) = cE§4(i/v2) = 0. This
contradicts v; , 5(f) = 0. Thus M3, = 0. This proves (1).

Moreover, by (3), M{g, = 0 and dim(M7;,) = 1 with a base Ej,,. This makes the proof of this
theorem complete. O

Furthermore, for a non-negative integer k, dim(My ,) = [k/8] if k = 2 (mod 8), and dim(M;,) =
|k/8] +1if k# 2 (mod 8).
Let k& be an even integer such that & > 4. Write n := dim(M,j’z) — 1, then £ — 8n = 0,4,6, or 10.
Because Ej , — Ef_g, o(Ei2)*" € M5, we have My , = CE}_g, 5(Ej5)*" © M;%. Then
My o = CEZ—Sn,Q(EZ,2)2n ® Ao M g5

= CEZ—STL,Q(EZ,Q)Q” @ (CEZ—sn,Q(EZ,Q)Q(nil)A2 D Ang:—l&Q

= EZ?SH’Q(C(EZ’Q)% D C(EZ,Q)Q("‘”Az DD CAS)
Thus, for every p € H and for every f € M ,, v,(f) = vp(E} _g,.0)-

By the valence formla and equation(63), we have v;, 5(Ej ) = 0, vp, (Ej ) = 2, and v, 5(E§ ) =
Upy (Egz) = 1. For k = 10, we have Ej,E5, € Miy, = CE}y,. Thus Efy, = Ej,FEg,, and
Ui/\/i(Efo,z) =1, v, (Efo,z) =3.

In conclusion, the next proposision follows:

Proposition 5.3. Let k > 4 be an even integer. For every f € My ,, we have
v;,3(f) Z sk (sk = 0,1 such that 25y =k (mod 4)),
U, (f) 2t (t =0,1,2,3 such that —2t, =k (mod 8)).

In paticular, if f is a constant multiple of Ey, 5, then the equalities hold.

(64)

Remark 5.2. Every modular form for T'{(2) is generated by
(65) Ejo  Egs, and A,
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5.3. T§(3) (Proof of Theorem?2).
5.3.1. Preliminaries. In the subsection5.1, we have two conditions for a fundamental domain for I'fj(3):
(Co) |2 +1/3| > 1/3, —1/2 < Re(z) < 1/2.
(Cy) |z —n| >1/V3, =1/2 < Re(z) < 1/2 forn =0, 1.
It is easy to show that

2| > 1/v/3, =1/2 < Re(z) < 1/2
is a sufficient condition for (Cy) and (C}). Furthermore, we have the following transformation:

Wy : e /31— "= /3

Then we have Vrz(s) = {€°/¢/v/3} (Theorem2.1).

Now, we have a fundamental domain for I'§(3) as follows:

(66) F*(3) := {|z| >1/V3, —% < Re(z) < 0}U{|Z| > 1/V3, 0 < Re(z) < ;}

FIGURE 6. T§(3)

5.3.2. The function Fy; 3(f). We give the next definition;
(67) Fia(6) = ™2 E; , (¢/V3).

Before proving Theoreml, we consider an expansion of Fy (6.
In the definition of E} 3(2) (cf. (54)), when 3 | ¢, then we can write ¢ = 3¢’ for 3¢’ € Z, and have 3 { d.
Also, when 3 | d, then we have 31 ¢ and d = 33d’ for 3d’ € Z. Then

etk0/2 . 3k/2ik6/2 '
Fia(m) = —5— D (e"/VBd)ht ——— > (c3/V3) + )7
(e.d)=1 (cd)=1
3lc 3|d
1 : : 1 . _
=5 D (e B TR g 2 ST (e VBl )k
(e.d)=1 (c,d)=1
3td 3fc
Thus we can write as follows;
o Fial0) =5 3 (e VB 5 37 (ee™ 0 /B
(e,d)=1 (c,d)=1
3tc 3fc

Hence we use this expression as a definition.
Note that for any pair (¢, d), (ce’®/? +/3de="/2)=* and (ce="/? 4-\/3de?®/?)~* are conjugates of each
other. The next lemma follows.

Lemma 5.4. Fy 3(0) is real, for V0 € R.
Define mg(k) := [ £ — % |, where t = 0,2 is chosen so that ¢t = k (mod 4).

6 4
Remark 5.3. By Lemmab.4, Iy 5(0) is real. Also, it can easily be shown that [%, %] has ms(k) + 1
integers. Furthermore, for any integer m € [%, %], if m is even or odd, then F,:‘)3(2m7r/k) is positive or

negative, respectively. (cf. Remark3.1)
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5.3.3. Application of the RSD Method. We note that N := c? + d2.
Firstly, we consider the case N = 1. Then we can write;

(69) Fy 3(0) = 2cos(k0/2) + R3,
where
1 i0/2 —i0/2\—k , L —i0/2 i0/2\—k
R3—§ Z(ce + V/3de ) t3 Z(ce + V/3de'?/?)
(e, d)=1 (e,d)=1
3fc 3tc
N>1 N>1
Now,
|R;| < Z |ce®®/2 4 \/3de™10/2| 7k,
(¢,d)=1
3tc
N>1
i0/2 —i0/2)—k 1 k/2
Let vi(c,d,0) := |ce®®/? 4+ \/3de™"/2|7% then vi(c,d,0) = (m) , and vg(c, d,0) =
ve(—c,—d, ).

Now we will consider the next cases, namely N = 2,5,10,13,17, and N > 25. Considering 0 €
[7/2,57/6], we have the following:

When N = 2,
1 k/2
o(1,1,0) = (——— ) <1,
a ) <4+2\/§COSG)
k/2 k
1 1
ol -1.0)=(———— ) < (=) .
g ) (4—2\/§C089) (2)
When N =5,
k)2 1\ /2
0= (ites) <)
13+4\/§c089 7 ’
k/2 1\ k72
= < —
(13 4\/30089) = (13) ’
k/2
1(2,1,0) <1,
(7+4\/§c039>
k)2 k)2
1
< | = .
(7 4\/§COSG> (7>
When N = 10,
] k)2 1\ k72
(1,3,0) = | ———— <= ,
a ) (28+6\/§cost9> (19)
1 k)2 k)2
o, -3,0)=(—— ) <(=) .
a ) (28—6\/30059) 28
When N = 13,

1 k)2 1\ F/2
(2,30 = —— ) < (=)
kl ) <31+12\/§c059> (13>

1 k/2 1\ k72
or(2,—3,0) = () < () .
A 31 — 12v/3cos b 31
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When N = 17,
k/2 1\ k72
o(1,4,6) ( ) ( ,
49+8\/§COS€ 37
k/2
40 (5vmama) <(3)
49 — 8\/50059 7
k/2 1\ /2
10~ (5rsviems) <(7)
19+8\/§cos0 7
k/2 k/2
110~ (55v5ms) < ()
19 — 8\/3(:050 19
When N > 25,

lce™®/2 £ \/3de™ /2|2 > 2 4 3d2 — 2v/3|cd]| cos 6]
(\/3|C\*\E7|d|) + 2cd) (\ﬁ/(jf\f\cosﬂ) ( 2 4 d?)

—N,
6

and the rest of the question is about the number of terms with ¢* + d*> = N. Because 3 1 ¢, |c| =
1,2,4,5,7,... < NY/2 so the number of |c| is not more than (2/3)N'/2 + 1. Thus the number of terms
with ¢ + d? = N is not more than 4((2/3)N'/2 4 1) < (11/3)N'/2, for N > 16. Then

S —k/2 o (1-k)/2
. , 11 1 11v6 1
§ 0/2 4 \/3de=0/2|7F = § —NY2(ZN =1 -N
|ce™/? + V/3de | 3 (6 3 2 \G

(e,d)=1 N=25

3tc
11V6 [ /1 \R/2 352v/6 (1\"
< ——— -z dr = =
3 Ju \6 E—3 \2
Thus

N>25
1 k 1 k/2 1 k/2 1 k/2
*| < - -
(70) |R3\4+2(2> +6<7> +4(13) +4<19)

k/2 k/2 k/2 k
1 1 1 352v/6
e(x) o) 2 26) 20

Recalling the “RSD Method” subsection, we want to show that |R%| < 2. But the right-hand side is
much greater than 2, so this bound is not good. The cases (¢,d) = +(1,1), £(2,1) give us bound equal
to 4. We will consider the expansion of the method in the following sections.

5.3.4. Ezxpansion of the RSD Method (1). In the previous subsection, we could not get a good bound for
|R3|. The points were the cases (¢,d) = £(1,1), £(2,1). Notice that “vx(1,1,6) < 1 < 6 < 57/6”, and
“v(2,1,0) <14 0 < 57/6”. So we can easily expect that we get a good bound for 8 € [7/2,57/6 — z]
for small z > 0. But if ¥ = 12n, we need |R%| < 2 for § = 57/6. We will consider the case when
k =12n, 0 = 57/6 in the next subsection.

How small should = be? Let k = 12mgs(k) + s (s = 4,6,8,10,0, and 14). We may assume that k > 8.
When s = 4,6,8,10 and 14, the last integer points are § = 57/6 — 4x/3k, 57/6 — 7w /k, bn /6 — 27 /3k,
57/6 — w/3k, and 57/6 — 57w /3k, respectively. When s = 0, the second to the last integer point is
0 = 57/6 — 2w /k. Thus we need x < 7/3k.

Lemma 5.5. Let k > 8. For V0 € [n/2,57/6 — z] (x = 7/3k), |R5| < 2.

Proof. Let k > 8 and « = w/3k, then 0 < z < 7/24.
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We try to prove Lemma 5.5 in a similar way to the proof of Lemma 5.2. Firstly, we have
k k/2 k/2 k/2
1 1 1 1
2| = - 4 4
(5) =) (@) ()

k/2 k/2 k/2 k k

1 1 1 1 352v/6 (1

2 2 — 2 — 2| = =

~(x) @) @) 6 w30

1k
<176<2). (k > 8)

Here, we want to prove

k
1
5 <2 1 2
|R5] 9k2+ 76(2> <

for some positive integer a;. Then we have to show

k
1 a2 1 2k 9 .,
176 ( = —_—— — k* forVk > 8
<>< 9 12 or 176>a12 or
Put f(z):= (1/176)2" — —2; 22, then f'(z) = (log2/176)2% — o 18z, f(z) = ((log 2)?/176)2" a1781'2
If we can show f(z) > 0 for z > 8, then we can prove the above bound. f” is monotonically increasing
for x > 8, and

99
f@® >0sa; >— -4,

2
99 1

/ —_ [
f(8)>0@a1>7r2 log2’
99 1

8) >0« —_—.

1®) “> " 8(log 2)2

Thus we need a; > 99 -4, then we can define a; := 321 . Now, we have only to prove

ve(1,1,0) +vr(2,1,0) <1 — %mQ forVe0 € [n/2,57/6 — x| (x = 7/3k).

In addition, because we have vgx(1,1,0) = (1 + (3 + 2v/3cos0))"*/2 and v(2,1,0) = (1 +2(3 +
2v/3 cos0))~*/2, we expect the following bounds:

2 107
1,1,0) < S — —a?
( y Ly ) 3 ] )
1 107
’Uk(2,179> 5 — EI2

To prove the former bound, we consider the following sufﬁcient conditions:
(4 +2V/3cos 0)k/? > 2—|—a2:13

4+ 2v3cos b > a3 + a2’

For the number as, we want to show

1 2 107 ,
S ey
3/24 agx? " 3 8
Then
2 1 day 2 107 ,
Z > Z — )
37 3/2+ aa? ~ 33+ 2ay(n/3k)2)" T 8
9.107
as > for k > 8.

32—6-107 - (/24)2

Thus we can define as : %.

For the numbers a3 and a4, we want to show

25 5 3 84X Tx13 ,
(a3+a49@)2>2+ T
Then . e
k k_
(a3 +asx )§>a32+§-a§ 1'a412>§+%x2.
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Thus we can define a3 := (%)Q/k and ay = 20XTXL8 (%)2/1@‘

3x127k
In conclusion, we have

3 x 127k

3 64xT7x13
= (4+2V3cos)"/? > = 4 %;ﬁ

2 107
:>Uk(1,1,0) g_ ?‘TQ

2/k
4+2v/3cos 0 > @) (1 + W’xz)

[\

Similarly, we have

256 x 7 x 13
4 PR STAN [ A
7+4V3 cos 6 > 3 + 3 % 127k T

128><7><13 9
0

= (7T+4v3cos0)*/? > 197

0
1107,
3

= Uk(z, 1,9) 16

Finally, we need the following preliminaries.

Proposition 5.4.
(1) Fork>8, (3)”" <1+ (2log3) § + 4 (21083)" (3)" .
(2) Fork >8, 34 2V3cos (3F — Lk) > %%

Proof.
(1) For k > 8,
3\ i (2log3/2)" 1
2 N n! km
(o)

1 (2log3/2)" 1
21 27 -
+(2log3/ k+nz2 nl kn

+ (2log3/2)— i

—_

(2log3/2)" T2 1
(n+2)!  krnt2

W

1 g1 w— (21og3/2)" 1
21og3/2)~ + =(2log3/2)* = —
T (2log3/2)7 4 5(2log3/2)" 55 zz: nt 1) n+2) n!

1 b 1 & 2log3/2"1
2log3/2)— + 21 2)% =

+(210g3/2) 7 + 5(210g3/2)* 1 ; o

2/
31 1 3
—1+<2log2)k 2(210@; ) (2>
(2) Let k > 8, and put

T s T 1
g(k) := 3 +2v3cos (6 - ?)k) Ak

Then ¢'(k) = %k% (1 —2sin (3% — Z)) < 0 (by k > 8). Thus g(k) is monotonically decreasing, and

Proposition 5.5.
2/k 1
(1) Fork>8,3%F <1+ (210g3)k)—|—

(2) Fork >8, 6 + 4v/3 cos (%’T— %

[\

(2log 3)23%/* L.

1
2 1
> 2l

S

kn

O
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The proof of above proposition is similar to that of Proposition 5.4.

Then, write

2/k
J1(k) =4+ 2v/3cos (_> <2) ( 256><7><13><7r21>.

27 x 127 k3
If k = 8, then f1(8) = 0.00012876... > 0. Next, if k > 10, then
3\ 2/k
fl(k:):1+<3+2\/§cos(6—>> (2>
256 x 7 x 13 x 7% (3\** 1
27 x 127 2 3
1 3\ 1 1 3\2 /3\¥* 1
>14+ 2= 14+ (2102 ) =+ = (21 2) =
T Ak { +< Og2)k+2< °g2> (2) 2

256 x 7 x 13 x 7% (3\¥* 1
27 x 127 2

g3 L (510 3) (3L 26X Tx 13 xw? (31 1
TRl T %2 2\0%2) \2) % 27 x 127 2) &2
U m 31 (0,3 23\ 6axTx13xa’ (3)"°
“E\V3 S22\ " %) \2 27 % 25 x 127\ 2

1

> 2 x 024004 (k>10) >0

Similarly, we write

5T m 256 x 7x 13 x w2 1
fa(k) == 7+ 4v/3 cos (6 ) 32/k < + k3> .
>

3k 27 x 127
If k = 8, then f»(8) = 0.015057... > 0. Next, if k

fak) =1+ (6+4\/§cos (5” . ﬂ)) g

10, then

6 3k
256 X Tx 13 x 7% o 1
27 x 127 k3
1 (= 1 1 256 x7x 13 x 72 1
27 9] — 2(21 2q92/k - 2/k _~
k{\/§ 0g3 — 5(21og3)73% ¢ 97 x 127 K2
> % x 0.29437... > 0.

(|
5.3.5. Ezxpansion of the RSD Method (2). For the case “k = 12n,0 = 57/6”, we need the next lemma.

Lemma 5.6. Let k be the integer such that k = 12n for In € N. If n is even, then Fy 3(57/6) > 0. On
the other hand, if n is odd, then Fy (57 /6) < 0.

k 5k

If we can show this lemma, then we consequently show that for any integer m € [17 3

or odd, then Fy 3(2mm/k) is positive or negative, respectively. (Remark 5.3)

]7 if m is even

Proof of Lemma 5.6. Let k =12n (n > 1). By the definition of E}, 3(2), I} 3(2) (cf. (54),(67)), we have

Fis(0) = 35’;9—/51 (3k/2Ek (\/geie) + Ej, (eia/\/g)) )

i} eib(k/12)m 34+ \/gl _\/§ +4
Fk’3(57f—/6) = 3k/27_|_1 3k/2Ek # + Ek W .
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By using the equations (14) and (15),

-3+ V/3i —1+/3i
P (2) - b <2> ’

—V3+i 1 34v3i\" 3+ /3i ke —1+/3i
(15 () (55w (252) oron (252).

Then
; 3k/2 —1+3i
* — 9,5(k/12)7
F;(5m/6) = 2e 3k/2+1Ek ( 5
= 2¢'(K/ 12)”£Fk(277/3) (cf.(38))
3k/2 41 '
When k = 12n,
) 6n
F5, 3(5m/6) = 2™ 36 1 1F12n(27T/3)7
where % > 0, Flo,(27/3) = "™ E15,(p) > 0 (Proposition 3.3). So the sign(=+) of F}.(57/6) is that
Te 3on 1 k,3
of ™. Thus the proof is complete. O

5.3.6. Valence formula for I'5(3). By previous subsections, Ej ;(z) has m3(k) zeros on A3. In order to
decide the locating of all zeros of Ej, 3(2), we need the valence formula for I'j(3):

Proposition 5.6. Let f be a modular function of weight k for T'§(3), which is not identically zero. We

have
1 1 k
(71) voe(F) + 50N+ gD+ D w() =1
PED; (3\H
pii/\/‘gh p3

where p3 := 657T/6/\/§.

The proof of this proposition is similar to Proposition 3.1, 5.2. (See [SE])

If k =4,8,10 and 0 (mod 12), then k/6 —m3(k) < 1. Thus all zeros of Ej; ;(z) are on A3 U{i/V/3, p3}.

But if £k =2, 6 (mod 12), we need another consideration because we have k/6 — mg(k) > 1. Because
By 3(2) is the modular form of weight k for I'G(3), we have EZ3(@/\/§) = 2’“E23(z/\/§) Because k # 0
(mod 4), E;3(z/\/§) = 0. Thus we have k/6 — m3(k) — v, 5(E} 5)/2 < 1.

In conclusion, for every even integer k > 4, all zeros of Ej ;(2) is on A3U {i/V/3, p3}.

5.3.7. The space of modular forms. Let M 5 be the space of modular forms for I' (3) of weight k, and let
M,:% be the space of cusp forms for I'§ (3) of weight k. Because dim(M;73/M,’€k%) <L M= (CE;:,,EBM;;%.
Reall that Az = n%(2)n°®(32). We have following theorem:

Theorem 5.2. Let k be an even integer.

(1) Fork <0 and k=2, M}, =0.

(2) For k=0,4,6, we have M,j% =0, and dim(Mj; ;) = 1 with a base Ej 5.

(3) Let Agg:= %((Ezgf — E§3). We have Mg% = CAszg.

(4) Let Azqo:= 355 (B 3B 5 — Efy3)- We have M;d 3 = CAg 1.

(5) Let Af 15 := (A3)?, and A3 15 := A3gE} 3. We have M9 3 = CAY 1, ® CAj .
(6) Let A3714 = A3710EZ,3. We have MTE,B = (CA3714.

(7) Ml:% = M1*20,3M1:—12,3'
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Before proving above theorem, we decide the order of E}, 5 at i/+/3 and p3 for k = 0,4,6,8, and 10.
By section??, we have vy, (Ej ;) = 0 for every p # i/+/3 and p3 and for k = 0,4,6,8, or 10. Thus, by
the valence formula for I'§(3) (Proposition5.6), v, 5(Ej 3)/2 + vp, (E}, 5)/6 = k/6.

Recall that any weight & modular form for I'{(3) satisfies f (%) = (cz + d)¥ f(2) for every z € H

and every (2¢4) € T5(3). When z = i/v/3 and (254) = W, we have Ej 5(i/V/3) = i*E}; 5(i/v/3). Then
v, y3(Ef ) 2 1if k # 0 (mod 4). Also, when 2z = p3 and (ab) = (1 ') Wa, we have Ej ,(p3) =
("SR E; 5(ps). Then vy, (Ef 5) > 1if k# 0 (mod 12).
Moreover, by the definition of Ej ;(z) (c¢f. (54)), we have E;:?)(z/\/g) = S,C/QH (3%/2B1,(V/3i) +
Ei(i/+/3)). And by the equation(15), if & = 0 (mod 4), then Ey(i/v/3) = 3¥/2E.(\/3i). Thus, for
. g /2
k=0 (mod 4), E} 4(i/V3) = 257 Ex(V3i) # 0, i.e. v, 5(Ef 3) = 0.
In conclusion, we have the following table:
kv s(BRs) vps(Efs)
0

0

14 1
4 0
1

0

6
8
10 1

We can not decide the orders of Ef, 3 without above theorem. We decide it after the proof of the theorem.

=N W R OO

proof of Theorem 5.2.

(1), (2) Let f be a nonzero function of M;; 5, then v,(f) > 0 for every p € H. By the valence formula for
I'§(3)(Proposition5.6), we have k > 0.

Let f be a nonzero function of Mg%7 then voo(f) = 1. By the valence formula, we have M,’:3 = 0 for
k =0,2,4. We also have dim(M;; ;) = 1 for k = 0,4 with a base Ej ;.

As 10 is a cusp form of weight 10 with vl/\[(A&m) 1 and v, (Ag_’lo) = 1 by the definition, and we
have vo(As,10) = Ui/\/g(Ag,lo) = v, (As,10) = 1 and vp(As,10) = 0 for every p # i/v/3, p3, 00 by the
valence formula.

Let Aj be a nonzero cusp form of weight 6, then by vy, (Asz) > 1 and the valence formula, vs(A3z) =1
and vp(Az) = 0 for every p # co. Then we have v,(A3z10/A3) > 0 for every p € H, thus Agq19/A3 €
Mj s = CEj 3, and A9 € CE} 3A3. However, we have v, 5(Asz10) = 1, v;,5(E] 3A3) = 0. These are
contradict each other. In conclusion, we have Mé‘% =0, and dim(Mg 3) = 1 with a base Ef ;.

Let f be a nonzero function of M 3. By the valence formula, we have v,,(f) = 2 and v,(f) = 0 for
every p # ps. Because 3 € Mg, f3 = cEj4 for some ¢ € C. So f3(i/V/3) = cEj5(i/V3) = 0. It
contradicts f(i/v/3) # 0. Thus M3 = 0.

(3) Asg is a cusp form of weight 8 with v,,(Ass) = 2 by the definition, and we have v (Azs) =1 and
vp(Aszg) = 0 for every p # p3,00 by the valence formula. Let f be a nonzero function of Mg%, then
we also have v, (f) = 2, voo(f) = 1, and v,(f) = 0 for every p # ps, 00 by the valence formula. Thus
f/Agﬁg € MS:3 =C, and f € CA378. Note that

v, 3(As8) = v, 5(Eg3) =0,
VUps (A3,8) = Upg (Eg,?)) =2

4) Let f be a nonzero function of M/ ,, then we also have v = 1 and v,(f) = 0 for every
10,3 P
p # i/\/3,p3,00 by the valence formula. However, for the other others, we can consider two cases,
(1) vy 5(f) = vps (f) = 1, and (ii) v;, 5(f) = 0 and v, (f) = 4.
For the first case(i), we have f/Agz 10 € M§ 3 = C. For the second case(ii), define g := f/E} ;. Then
we have v (g) = 1 and v,(g) = 0 for every p # oo. Thus g € Mg%. However, Mg% = 0. It contracicts
that f is nonzero function. In conclusion, we have vi/\/g(f) =v,,(f) =1, and f € CAgz19. Note that

v;,3(A3,10) = v;,/5(ETo3) =1,
Vp5(A3.10) = Ups(Eiko,s) =1
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(5) A§,, is a cusp form of weight 12 with
voo(Ag,u) =2, Up(Ag,m) =0 for every p # 00
by the definition, and A3, is a cusp form of weight 12 with

Uoo(A:%,m) =1, vy (Aé,m) =6, Up(A:%),lz) =0 for every p # p3, 00
by the definition. Because dim(M{3 5) < 2, we have M9 3 = CA§ 1, ® CAj 5.

(6) A3714 iS a cusp fOI'IIl ofwelght 14 Wlth UOO(A3714) = ’Ui/\/g(A3714) = 1, Ups (A3714) = 5, and ’L}p(A3714) = O
for every p # i/v/3, p3, 00 by the definition. Let f be a nonzero function of Mffyg. If voo(f) = 2, then
Voo (f) = 2, v, (f) = 2, and vp(f) = 0 for every p # p3, 00 by the valence formula. Define g := f/As3g,
then v (g) = 1 and v,(f) = 0 for every p # oco. Thus g € Mg% = 0. It contradicts that f is nonzero
function. Now, we have v (f) = 1. Then we can write f = ajq + a2q® + ---. Also, we can write
A3714 =q + b2q2 + e rI‘hU.S7 f — 0,1A3)14 = (ag — albg)qQ +--- € Ml*ég,?)‘ Because Uoo(f — G1A3,14) # 2,
we have f —a3Ag 14 = 0. Furthermore, f € CA3z 14. Thus M;} 3 = CAg14.

Furthermore, because Ef, 3 — Efo3Ejf 3 € M7 3, we have Ef, 3 € M}, 3 = CE}3E; 3 ® CAg 4. In
conclusion, we have
Ui/\/E(A?,,M) = Ui/\/g(Eﬂ,?,) =1,
Vpy (A3,14) = vpg (ET4,3) =5.

(7) Let f be a nonzero function of M;%. When veo(f) > 2, voo(f/AS15) = veo(f) —2 > 0 and
vp(f/A812) = vp(f) = 0 for every p # oo. Thus f/A§,, € M} 154, and f € A§,M} 1,5 On
the other hand, when v (f) = 1, we can write f = a1q + azq® + - -+ for some a; # 0. Also, we can write
Ef 1550415 = q+bag?+- . Then f-a1Ej_15 348 15 = (a2—a1ba)g?+ -, and veo (f~a1 Ef_15 348 15) >
2. Thus f — 1B} 1530519 € A p My 154, and f € CE;_ 15 3A5 15 ® A 15Mj,_123. In conclusion,
M;% C CE}_ 1 gAY 15 ® A oMy 195 C M9 M, 5. This makes the proof of this theorem complete.

O
Furthermore, for a non-negative integer k, dim(Mj ;) = [k/6] if k =2,6 (mod 12), and dim(M} ;) =
|k/6) +1if k # 2,6 (mod 12).
Let k be an even integer k > 16. Write n := |k/12] - 1 if k = 2 (mod 12), and n := |k/12] if k # 2
(mod 12). Then n > 1 and k — 12n = 0,4,6,8, 10, or 14. Because Ej 3 — E,’C‘712n73(EI’3)3" € M,j%, we
have

My 5 = CE;—lzn,g(EZ,s)Sn D Mfg,lej—u,s
= Bi 1203 { C(B3)™" @ (Bja) " VMg, @ (BL)" D (Mig)? @ -+ & (Migy)" }
M2, 5(Mi35)"
If k—12n = 4,6,0, then M;Sun,?, = 0. On the other hand, If ¥ — 12n = §,10, 14, then M,:Eun’?, =

CA3 k—12n. Furthermore, we have v, 5(Ask—120) = v;, 53(E}_12,,3) and Upy (Az k—12n) = Vpy (Ef_12,,3)-

Thus, for p = i/+/3, p3 and for every f € M 3, vp(f) = vp(Ef_12,.3)-
In conclusion, we have next proposision:

Proposition 5.7. Let k > 4 be an even integer. For every f € My 5, we have
v, y3(f) = sk (sk = 0,1 such that 2sy, =k  (mod 4)),
Vps (f) 2t (tr =0,1,2,3,4,5 such that — 2t =k (mod 12)).

In paticular, if f is a constant multiple of E}; 5, then the equalities hold.

(72)

Remark 5.4. Every modular form for T'{(3) is generated by
(73) E;s, Eis, Ass, Agi, and (As)’
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5.4. Fundamental domains. In the subsection5.1, we have two conditions for a fundamental domain
for T (p):

(Cv) |z —n/p| >1/p, —1/2 < Re(z) < 1/2 forVn € Nsuch that 1 < |n| < p/2.
|z —n/m| > 1/my/p, —1/2 < Re(z) < 1/2

(Cp) for Ym € Nsuch that m < /4p/3
Vn € Zsuch that (m,n) =1, |n|] <m/2+1//p.

5.4.1. T{(5). We have the folloing conditions for a fundamental domain for T'§(5):

(Co) |z+1/5] >1/5, |z£2/5| >1/5, —1/2< Re(z) <1/2.
(Cs) |z > 1/v/5, |z £1/2] > 1/2V/5, —1/2 < Re(z) < 1/2.
Now,

|z| > 1/V5 = |z2£1/5]>1/5,

|2l >1/V5 and [241/2|>1/2V5 = |2+2/5>1/5.

Thus (C5) is a sufficient condition for (Cp). Furthermore, we have the following transformation:

ei9 ei(7r—9)
Wi : — ,
° V5 NG
-2 -1 el 1 elm0
Wi : + - - ——.
( 5 2 ) o 2 a2

Then we have Vrs(s) = {i/2v/5, —=2/5+1i/5} (¢f. Theorem2.1).
A fundamental domain for I'fj(5) is represented as Figure 7.

5.4.2. T§(7). We have the folloing conditions for a fundamental domain for I'§(7):

(Co) |z +£1/7| > 1/7, |z £2/7) > 1/7, |=+£3/7| > 1/7, —1/2 < Re(z) < 1/2.
(C7) lz| > 1/V7, [z £1/2| > 1/2V7, |z +1/3| > 1/3V7, —1/2 < Re(z) < 1/2.
Now,

|| >1/V7 and |2+1/2|>1/2V7 = |z2+1/3] > 1/3V7,

|z > 1/V7 = |z£1/7>1/7,

|2 > 1/V7 and |2£1/2|>1/2V7 = |2£n/7|>1/T (n=2,3).
Thus
(C7.0) 12| > 1/V7, |2+ 1/2| > 1/2V7, —1/2 < Re(z) < 1/2

is a sufficient condition for (Cy) and (C7). Furthermore, we have the following transformation:

ei9 ei(w—ﬁ)
Wr: — ,
’ V7 V7
1 ei(w—@)

\]
3
DN =

-3 -1 et?
Wiy - -

Then we have Vs (7) = {i/2V/7, —5/14 + V/3i/14}. (Figure 7)
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5.4.3. T§(11). We have the folloing conditions for a fundamental domain for T'§(11):

(Co) |z+n/11] >1/11 (1<n<5), —1/2< Re(z)<1/2.
(Ch1) 2] > 1/V11, |z £1/2 > 1/2V11, |z £ 1/3| > 1/3V11, —1/2 < Re(z) < 1/2.
Now,
2| > 1/V11 = |zxn/11>1/11 (n=1,2),
|z +1/2] > 1/2V11 = |z=£5/11| > 1/11,
|z >1/V11 and |z41/2| > 1/2V11 = |z£3/11] > 1/11,

|z +1/2] >1/2V11 and |2£1/3|>1/3V11 = |z£4/11] > 1/11.

Thus (C41) is a sufficient condition for (Cp). Furthermore, we have the following transformation:

ei9 ei(ﬂ—é)
Wit e — ,
H Vil Vil

-5 -1 et? 1 elm=0 1
Wiy e +-— - -,
(11 2 ) HUooyIn 2 oy1 2
(4 1) W et? N 1 im0 N 1
: e =,
11 3) "M 311 3 3VIl 3
(—4 1 ) et? 1 elm=0 1
Wi: —=—< -3
11 -3 3Vl 3 3y11 3

Then we have Vrs 11y = {i/2v/11, —25/66 + /35i/66}. (Figure 7)

5.4.4. T'§(13). We have the folloing conditions for a fundamental domain for I'§(13):

(Co) |z+n/13] >1/13 (1<n<6), —1/2<Re(z)<1/2.
(C13) |z| > 1/V13, |z+1/m|>1/mV13 (2<m <4), —1/2< Re(z)<1/2.
Now

2| >1/v13 and |z+1/3] >1/3V13 = |z+1/4] > 1/4V13,
2| > 1/V13 = |z£n/13|>1/13 (n=1,2),
|z +1/2| > 1/2V13 = |z+6/13|>1/13,
2| >1/v/13 and |z+1/3] >1/3V13 = |z+n/13]| >1/13 (n=3,4),
|z4+1/2| >1/2V/13 and [2£1/3] >1/3V13 = |z45/13] > 1/13.

Thus
(Chs.0) l2| > 1/V13, |2 £ 1/2| > 1/2V13, |2 £ 1/3| > 1/3V13, —1/2 < Re(z) < 1/2
is a sufficient condition for (Cp) and (Ci3). Furthermore, we have the following transformation:
et ei(rr—G)
Wis : — ,
13 Vs Vi3
-6 -1 61'9 1 ei(ﬂ—e) 1
Wis : + = = - =,
(13 2 ) Pz T2 2/ 2
(4 1) W et N 1 eilm=0 1
=t o —— ==
13 3)70 3/3 3 3/13 3

Then we have Vrs13) = {i/2V/13, —=7/26 +V/3i/26, —5/13 +i/13}. (Figure 7)
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5.4.5. T§(17). We have the folloing conditions for a fundamental domain for T'§(17):

(Co) |2 +£n/17] > 1/17 (1<n<8), —1/2< Re(z) < 1/2.
(C17) |z] > 1/V17, |z£1/m|>1/mV17 (2<m<4), —1/2< Re(z)<1/2.
Now,

2| > 1/V17 |z +n/17] > 1/17 (n=1,2,3),

|24+ 1/2| > 1/2V/17 |z +8/17| > 1/17,
|z 4+ 1/3| > 1/3V17 |z +6/17| > 1/17,
|z > 1/V17 and |z 41/4| > 1/4V/17 = |z£4/17| > 1/17,
lz+1/4] > 1/4V17 and |z2£1/3] > 1/3V17 = |z +5/17| > 1/17.
lz4£1/3]>1/3V17 and |2+1/2| >1/2V17 = |2£7/17] > 1/17.

LR

Thus (Cy7) is a sufficient condition for (Cp). Furthermore, we have the following transformation:

- 61'9 ei(ﬂ—e)
. —
17 \/ﬁ /;17 )
-8 -1 et 1 im0 1
Wiz + - - =,
(17 2 ) Yooy T2 oyIT 2
6 1 et 1 im0 1
|U% + = + =,
(17 3) 3T 37 3var 3
(—6 1 et 1 elm=0 1
Wiz i - =
17 -3 317 3 3WV17T 3
_ _ 6 i(m—0)
(4 1>W17 e e
17 4 4W/17 4 41T 4

Then we have Vrs 17y = {i/2V17, =20/51 +2v/2i/51, —4/17+i/17}. (Figure 7)

5.4.6. T'5(19). We have the folloing conditions for a fundamental domain for I'§(19):

(Co) |z£n/19] >1/19 (1<n<8), —1/2< Re(z)<1/2.
Cio) 2] > 1/V19, |z4+1/m|>1/mV19(2<m <5), |z+2/5]>1/5V19
—1/2 < Re(z) < 1/2.
Now,
|z >1/V19 and |z +1/4] > 1/4V/19 = |z£1/5 > 1/5V19,
lz+1/3] >1/3V19 and |z+£1/2| >1/2V19 = |z+2/5| > 1/5V19.
2| > 1/v/19 = |z+n/19|>1/19 (n=1,2,3),
|z +1/2| > 1/2V19 = |2£9/19| > 1/19,
|z +1/3] > 1/3V19 = |z2+6/19 > 1/19,
|z > 1/V19 and |z +1/4] > 1/4V/19 = |z+4/19| > 1/19,
|z4£1/4]>1/4V19 and |2 +1/3| >1/3V19 = |2£5/19] > 1/19.
|z +1/3] >1/3V19 and |2+£1/2|>1/2V19 = |2£n/19]>1/19 (n=71,8).
Thus

(C1o.0) lz] > 1/V19, |z£1/m|>1/mV19 (2<m<4), —1/2< Re(z) <1/2.
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is a sufficient condition for (Cj) and (Cig). Furthermore, we have the following transformation:
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Wi : @
V19
0 _ i0
(o %) mor 5o ea
_ _ i0
(1253 31)W19 35;E+é'_>
i0
159 411)W19 4$E+EH
10
(o M)W 155

ei(ﬂ'—e)

?

3

@
%
ES
3
|
5
N

@
ES
3
|
<
N

- N
ﬁ‘
©

a

% o
3
| =
= ©
== R = W= N

+

4v19

Then we have Vr: (19) = {i/2v/19, —15/38 + v/3i/38, —21/76 + v/15i/76}.

r;(5) 33 t} T;(7)
(1) I'5(13)
I'5(17) ;(19)

FIGURE 7. T'{(p)
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5.5. The function F,jypvm(H). Let p be a prime. If p > 5, then the figure of a fundamental domain of
It (p) is more complex than I'§(2), T'§(3), and SLy(Z). We expect all the zeros are on the arcs €'/, /p,
e’ /2/p+1/2,€Y/3/p£1/3, -, which form the boundary of the fundamental domain defined in the
sense of Theorem 2.1 (Figure 7). We will begin with consider the function F; (6).

Again, Eisenstein series associated with I'{(p) is denoted by

* :1 —k Iﬁ —k
Eiy(2) = 5 > (ez+d)F+ 5 > (elpz) +d) 7"

(c,d)=1 (C,d):l
ple pld

5.5.1. For the arc e’ /,/p. We give the next definition;

(74) F 1 (0) = e™2E; (e")\/p).

We consider an expansion of £ (6). Similarly to Fy/,(6), we have

¢ik0/2 » . ph/2eik0/2 » .
Fypa(2) = S0 (e Vhrd) T e ST (elpe® /) + )
(e,d)=1 (e,d)=1
ple pld
1 , , 1 . A
_ 5 Z (d6729/2 + \/f)clew/2)7k + 5 Z (6619/2 + \/ﬁd/esz/Q)fk.
(c,d)=1 (e,d)=1
ptd pfe
Thus we can write as follows;
1 . X 1 . )
(75) Fipa(6) =3 D (e 4 pde02) TR 4 3 D (ce™2 4 /pde??)7E,
(c,d)=1 (¢, d)=1
pte pte

Hence we use this expression as a definition. Note that for any pair (c,d), (ce’®/? + \/f)d.e_w/Q)_’C and
(ce_ie/ 24 \/ﬁdew/ 2)=F are conjugates of each other. The next proposition follows.

Proposition 5.8. Fy () is real, for V0 € R.

5.5.2. For the arcs ei9/2\/;5:|: 1/2. Let p be a prime such that p > 5. Then we can write p = 2n + 1 for
dn € Z, and we have the following transformation:

-n -1 W et + 1 ellm=0 1
D=t - - -
p 2)°" 2yp 2 2yp 2

Because we have the condition —1/2 < Re(z) < 1/2, we have only €*/2,/p — 1/2 in our fundamental
domain. Then we give the next definition:

(76) F o 0(0) = ™R (e/2p—1/2).
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We consider an expansion of F,j7p’2(9). When p | ¢, then we can write ¢ = ¢'p for 3¢’ € Z, and have
p1d. Also, when p | d, then we have p{c and d = d'p for 3d’ € Z. Thus

cik0/2 o0 1 k pF/2¢ik0/2 0 1 —k
o= S (o ) wd) I S (1))
2 (et 2p 2 2 (e 2,p 2

ple pld
ik0/2 / \/ﬁeie » —k pF/2¢ik0/2 e /P —k
= — ) +d L L AR
= 2 ) ) e 2 (e (T ) )
(e, d)=1 (e,d)=1
ptd pte
eik0/2 ¢ o 2d— p —k eik0/2 ¢ i 20d — ¢ —k
- ¥ (55 S B (5 2 w)
(¢, d)=1 (e, d)=1
ptd ptc
1 2d—=cp 90 ¢~ ig)e o ¢ e 2d —c _ g -+
=3 O (e gvnet) g B (G )
(c,d)=1 (e,d)=1
ptd pte

Now, we split terms in two cases, namely 2 | ¢ or 21 ¢. Note that the parities of ¢ and ¢ are same.
For the case 2 | ¢, we can write ¢’ = 2¢” and ¢ = 2¢" for 3¢, " € Z. Then

1 2d—cp g < o2 o c iz 24 = ¢ o _igp -
3 5 (M5 et Symt) w3 (e 2 v
(c,d)=1 (e,d)=1
ptd pfe
2|c’ 2lc
1 : 02\ 7" 1 / o0/2) 7"
25 Z ((d - c//p)6710/2 + c”\/f)e’g/2) + 5 Z (611/610/2 + (d/ _ c///)ﬁ€710/2) ]
(e,d)=1 (e;d)=1
ptd pte

Then we have (d —c’p, ") =1, ptd—c"p, 2| (d— "), and (¢",d' — ") =1,pt ", 2| " (d — ).
Thus we can write above terms as follows:

L ; ; -k 1 , , —k
5 Z (06—19/2+d\/23629/2) +§ Z (Cel9/2+d\/ﬁe—19/2) )
(e,d)=1 (e.d)=1
pfc pte
2led 2|ed

For the other case 2 1 ¢,

1 2d—c'p 9 ¢ i0/2 B! C 2 2d —c —i0/2 o
=3 (2e + 5 Ve t5 D (5" Ve

(c,d)=1 (c,d)=1
ptd pte
2tc’ 2tc
ok ) ) -k 9k . , —k
:? Z ((2d _ c/p)e—ze/Z + c/\/ﬁezO/Q) + ? Z (0610/2 + (2d/ _ c)\/ﬁe_w/2) ]
(c,d)=1 (e,d)=1
ptd ptc

Then we have (2d — ¢'p,d’) =1, pt2d —'p, 21 (2d — '), and (¢,2d' —¢) =1, pte, 2t ce(d — ¢). Thus

we can write above terms as follows:

2* —i i —k 2k i —i k
1 Z (ce 9/2+d\/1360/2) —l—? Z (ceg/Q—Fd\/f)e 9/2) .
(¢, d)=1 (c,d)=1
pfc pte

2fed 2fed



ON THE ZEROS OF EISENSTEIN SERIES FOR I'{(p) AND I'o(p) OF LOW LEVELS 39

In conclusion, we can write as follows;

1 . . —k 1 ) ) —k
F]:;:p72(9) — § Z (ceze/Z + d\/f)e—w/2> + 5 Z (06—19/2 +d\/]3610/2)
(e,d)=1 (¢,d)=1
Jea e
(77) 2k ) ) —k 9k ) ) —k
+ ? Z (6619/2 +d\/ﬁ€720/2> + ? Z <06720/2 +d\/]3610/2) )
(07de):1 (07;?:1
ézj(cd 2ted

Hence we use this expression as a definition. Note that for any pair (c,d), (ce’®/? + \/f)de_w/Q)_k and
(ce_ie/ 24 \/ﬁdew/ 2)=F are conjugates of each other. The next proposition follows.

Proposition 5.9. Fy ,(0) is real, for V0 € R.

5.5.3. For the arcs ei9/3\/;5:|: 1/3. Let p be a prime such that p > 11.
If p=1 (mod 3), then we can write p = 3n + 1 for In € Z, and we have the following transformation:

—n -1 - 67,'0 N 1 ei(ﬂ'f@) 1
P ——+ o - -
P 3 P 3v/p 3 3\/p 3
Thus we have only ¢ /3,/p — 1/3 in our fundamental domain.

On the other hand, if p = —1 (mod 3), then we can write p = 3n — 1 for In € Z, and we have the
following transformation:

n 1 W e'? n 1 el =0) n 1

: 5 5

p 3)°" 3/p 3 3vp 3

-n 1 W ett _1 ei(‘n’—@) _1

p =3)°"" 3/p 3 3vp 3

Thus we have both e’ /3,/p £ 1/3 in our fundamental domain.
Now, we give the next definition:

(78) Fipa(6) = eM2EL (/3 - 1/3),
(79) Fity(0) == e*2E; (/3P +1/3) .

We consider an expansion of F,:"p73(9). When p | ¢, then we can write ¢ = ¢/p for 3¢’ € Z, and have
ptd. Also, when p | d, then we have p{c and d = d'p for 3d' € Z. Similar to Fy  ,(0),

ik0/2 o0 1 —k pF/2¢ik0/2 o0 1 —k
B~ S ([ DY) O (1Y)
2 (Dt 3yp 3 2 (It 3yp 3

ple pld
—k —k
_ % Z <3d_3clpe—ia/2 n ;’\/13619/2> n % Z <§ei0/2 n wlg_c\/ﬁe—m/z) .
(e,d)=1 (e,d)=1
ptd pte

Now, we split terms in two cases, namely 3 | ¢ or 3t ¢. Note that the parities of ¢ and ¢’ are same.
For the case 3 | ¢, we can write ¢/ = 3¢” and ¢ = 3¢ for A¢”, " € Z. Then

1 3d—cp g < o - c iz 34 —¢ o _igp N
3 2 (P gunet) g B (e M e

(c,d)=1 (¢,d)=1
ptd pfc
3|’ 3le
1 N, —i0/2 1 i6/2 —k 1 m i /2 ' —i0/2 —k
=3 Z (d—d"pe +c"/pe —|—2 Z "= 4 (d — ") /pe .
(c,d)=1 (c,d)=1

pid pte
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Then we have (d — ¢'p, ") =1, ptd—"p,d—"p# —p -’ (mod 3), and (¢, d' — ") =1, pt ",
" # —(d' — ") (mod 3). Thus we can write above terms as follows:

1 —i6/2 o\ R 1 i0)2 —igy2\ "
3 Z (ce + dy/pe ) + 3 Z (ce + dv/pe ) .
(c,d)=1 (¢,d)=1

pfe pte
cZ—pd (3) c£—d (3)

For the other case 3 1 c,

1 3d—dp g2, ¢ o2 o ¢ oz 34 —C o _igs -
5 2 (36 Ve Ty 2 (gt TV

(c,d)=1 (¢,d)=1
ptd pte
31c’ 3tc
_i Z ((Sd—c’ )e—i0/2+c/\fe¢9/2>’k n i Z (cew/Q—|—(3d’—c)fe_w/2)7k
) p p 9 p .
(c,d)=1 (e,d)=1
ptd pfe
Then we have (3d — ¢'p,d’) =1, pt3d—c'p, 3d—c'p=—p-c Z0 (mod 3), and (¢,3d' —¢) =1, p1ec,
¢=—(3d" —¢) 20 (mod 3). Thus we can write above terms as follows:
S—k Z (ce*w/2 + d\/ﬁewm) - + i Z (cew/2 + d\/ﬁe*wm) - .
2 2
(c,d)=1 (¢,d)=1
pfe pfc
c=—pd#0 (3) c=—d#0 (3)

In conclusion, we can write as follows;

Fs®=1 T (e eamon) el T (e agmon)”

(e, d)=1 (e,d)=1
?—p)fdc(fi) # pfz (3)
(80) 3k / 2\ 7k 3kp / 2\ 7k
i6/2 —i0/2 —i6/2 i6/2
+ > Z (ce +dy/pe ) + 5 Z (ce + dy/pe ) .
(¢, d)=1 (e, d)=1
ptc pfc
c=—d#0 (3) c=—pd#0 (3)

Again, if p = 1 (mod 3), then the condition “c Z —pd (mod 3)” is equivalent to “c Z —d (mod 3)”,
and “c = —pd £ 0 (mod 3)” is equivalant to “c = —d # 0 (mod 3)”. In addition, for any pair (c,d),
(ce™/? 4 \/pde=%/2)F and (ce™"/2 4 | /pde®/?)~F are conjugates of cach other. Thus F};  4(6) is real.

On the other hand, if p = —1 (mod 3), then the condition “c # —pd (mod 3)” is equivalent to “c # d
(mod 3)”, and “c = —pd # 0 (mod 3)” is equivalant to “c = d # 0 (mod 3)”. Thus we need more
consideration.

Similarly to Fy , 3(0), we have another expansion, which is for F,:)’;?) (0):

F]::;:g(e) = % Z (cew/2 + (13\/256_2'9/2)7]g + % Z (ce_w/2 + d\/ﬁew/z)ik

(c,d)=1 (c,d)=1

‘ipjc(i%) $p26(3)
(81) 4 o 3’; / »

o i0/2 —i6/2 o —i0/2 i0/2
+ 5 Z (ce + d+/pe ) + 5 Z (ce + d+/pe ) .
(c,d)=1 (e,d)=1
pfc pfc
c=d#0 (3) c=pd#0 (3)

Because p = —1 (mod 3), we have F,:’;rg(ﬁ) = Fy;, 5(0).
Thus next proposition follows:

Proposition 5.10. [fp =1 (mod 3), then Fy  3(0) is real. On the other hand, if p= —1 (mod 3), then
we have F,:;s(e) = Iy, 5(0).
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5.5.4. For the arcs 619/4\/]3i 1/4. Let p be a prime such that p > 17, then p is odd.
If p=1 (mod 4), then we can write p = 4n + 1 for In € Z, and we have the following transformation:

n -1 - et? N 1 ei(ﬂ'—@) 1
P —F - - -
p 4)7" 4ap 4 A 4
Thus we have only e? /4,/p — 1/4 in our fundamental domain.

On the other hand, if p = —1 (mod 4), then we can write p = 4n — 1 for In € Z, and we have the
following transformation:

n 1 W et n 1 el(m=0) n 1
T — - =
p 4)" Ap 4 4p A
i9
-n 1 W, : e 1 — 1
p —4 4/p 4 4
Thus we have both ¢/ 4,/p £ 1/4 in our fundamental domain.
Now, we give the next definition:
(82) F4(0) == e™2E; (e /4y/p—1/4),
(83) Fiit,(0) :=e™PE; (e /4y/p +1/4) .

We consider an expansion of F,:"pA(Q). When p | ¢, then we can write ¢ = ¢'p for 3¢’ € Z, and have
ptd. Also, when p | d, then we have p{c and d = d'p for 3d" € Z. Similar to Fy  ,(0),

0ik0/2 it 1 —k pF/2eik0/2 o0 1 —k
P = S 5 (oY a) B (£ 1))
2 (D 4p 4 2 4/p 4

(¢,d)=1
ple pld
1 Ad—dp _iga <~ o2 o c oz  Ad —c g -
“y 2 (T e g X ()
(c,d)=1 (c.d)=1
pfd ple

Now, we split terms in three cases, namely “4 | ¢” or “4tc and 2| ¢” or “21¢”. Note that the parities
of ¢ and ¢ are same.

For the case “4 | ¢”, we can write ¢’ = 4¢; and ¢ = 4¢] for Jey, ¢f € Z. Then

1 4d—6/p —i0/2 c i0/2 —* 1 c i0/2 4d' —c —i60/2 *
7 2 (46 TV ) g D (g e

(e,d)=1 (ed)=1
pld pte
4|c’ dle
1 —i i k1 i i —k
=3 2 (@=eme™™ rerpe®) g B (e e @ = d)vpe )
(e,d)=1 (e,d)=1
ptd e

Then we have (d — cip,c1) =1, ptd—cip, 2| (d—c1p) - e1, and (¢, d — ) =1, ptc), 2| ¢, - (d —c)).
Thus we can write above terms as follows:

1 . ) -k 1 . . —k
3 2 (e e dvpe?) T g 30 (e dype )
(c,d)=1 (e, d)=1

pfe pfc

2|cd 2|ed

For another case “4 { ¢ and 2 | ¢, we can write ¢/ = 2¢y and ¢ = 2¢}, for Jea, ¢ € Z, which are odd
integers. Then

1 dd—cp g < e o c oz  Ad —c . _ig -

(e,d)=1 (ed)=1
ptd ol
ae’, 20’ 4fc, 2|c
2 ‘ ' -k 2 ; , —k
:? Z ((2d - Czp)e—zG/Q + 62\/13619/2) + ? Z (612610/2 + (Qd/ _ 612)\/]36—19/2> ]
(¢, d)=1 (ed)=1

pid pfc
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Then we have (2d — cap,c2) = 1, pt2d—cop, 2d—cop = p-co = £1 (mod 4), and (ch,2d' —ch) =1, p 1 cb,
ch=2d — b, =+1 (mod 4) because 2t d, 2d =2 (mod 4). Thus we can write above terms as follows:

ok ) . -k 9k . _ —k
Y Z (ce*“g/2 + d\/ﬁew/z) + > Z (ce“’/2 + d\/];6719/2> .
(e, d)=1 (e,d)=1
pfc ptec
2ted 2ted
c=pd (4) c=d (4)

For the other case “2t¢”,

1 Add—cp g, ¢ o2 o c iz A = o g -
3 (S ) oL (e

(c,d)=1 (¢,d)=1
ptd pte
4)(0/ 4tc
4 / i / i —k4F i ’ i -k
=3 Z ((4d—cp)e 9/2+c\/§ee/2> +? Z (666/2+(4d —¢)y/pe 9/2) .
(e,d)=1 (e, d)=1
pid pte

Then we have (4d — ¢'p,d’) = 1, pt 4d — 'p, 24 (4d — p)d, 4d — c'p = —p - ¢ #£ 0 (mod 4), and
(c,4d' —c¢)=1,ptec, 21 cdd —c), c = —(4d' — ¢) # 0 (mod 4). Thus we can write above terms as
follows:

4k , , —k 4k , , —k
? E (06—19/2 +d\/§eza/2) + § (0619/2 +d\/]3€_19/2) )
(e,d)=1 (e,d)=1
pfe pte
2fcd 2ted
c=—pd (4) c=—d (4)

In conclusion, we can write as follows;

i@ =1 3 (w0 ra s a5 (o ager)

(C’df)ﬂ (c,;j():l
Qﬁcd 2led
+ﬁ S (2 + dypes? ‘k+ﬁ S (e 2 4 dype -k
2 b 2 pe
(e,d)=1 (e,d)=1
(84) c c
4 L
c=d (4) c=pd (4)
Jr{ S (e 4 dypes? _k+f ST (ee 2 4 dype -k
5 D 5 Ve .
(¢,d)=1 (¢,d)=1
S Hea
c=—d (4) c=—pd (4)

Again, if p = 1 (mod 4), then the condition “c = pd (mod 4)” is equivalent to “c = d (mod 4)”,
and “c = —pd (mod 4)” is equivalant to “c = —d (mod 4)”. In addition, for any pair (c,d), (ce?®/? +
/pde”0/2)=k and (ce™1/2 + | /pdei?/?)~F are conjugates of each other. Thus Fy, 4(0) is real.

On the other hand, if p = —1 (mod 4), then the condition “c = pd (mod 4)” is equivalent to “c = —d

(mod 4)”, and “c = —pd (mod 4)” is equivalant to “c =d (mod 4)”. Thus we need more consideration.
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Similaly to Fy, ,(0), we have another expansion, which is for F,j’;;(e):

" 1
Fk,}a+,4(9) = )

pte

2|ed

Z <C€i9/2+d\/]56i9/2>_k+% Z (ce*i9/2+d\/ﬁe*i9/2>_k

(¢, d)=1

ok ) , —k 9k ) ) —k
+? Z (ce”/2+d\/ﬁe’9/g) +? Z (06—19/2_~_d\/§e—19/2)
(85)
c=—pd (4)
Jrf S (ee’2 4 dype? _k+f S (e 4 dypeiol? -k
2 P 2 Ve '
(c,d)[):l (c,d)():l
Qijcd 21))[011
c=d (4) c=pd (4)

Because p = —1 (mod 4), we have F,;k”;f4(0) = Fy, 4(0).

Thus next proposition follows:
Proposition 5.11. Ifp = —1 (mod 4), then Fy;  ,(0) is real. On the other hand, if p = —1 (mod 4),
then we have F,;k;4(9) = Fy,4(0).

5.6. Application of the RSD Method.

5.6.1. T5(5). We note that N := % + d?.

Firstly, we consider the case N = 1. Then we can write;
(86) Fii51(0) = 2cos(k0/2) + Rs 1,
(87) FY 5 5(0) = 2cos(k0/2) + R3 5
where R ; and Rj , are the terms such that N > 1 of F 5, and Fy; ,, respectively.

For Fy 5 ,(0),

|R;71| < Z |Cei0/2 + \/5d6—19/2|—k.
(e,d)=1

5fc
N>1

Let vg(c, d, ) == |ce®/2+/5de="/2|7% then vk(c,d,0) = 1/ (c? + 5d* + 2v/5ed cos G)k/z, and v (c, d, 0) =
vg(—c,—d,d). Now we will consider the next cases, namely N = 2,510, and N > 13. Considering
—2/v/5 < cos@ < 0, we have the following:

When N = 2, ve(1,1,0) < (1/2)%/2, vp(1,—1,0) < (1/6)F/2

When N = 5, ve(1,2,0) < (1/13)%/2 ve(1,-2,60) < (1/21)%/2,
ve(2,1,0) < 1, vp(2,—1,0) < (1/3)".

When N = 10, v(1,3,0) < (1/34)%/2, vp(1,—3,0) < (1/46)%/2,
ve(3,1,0) < (1/2)F/2, ve(3,—1,0) < (1/14)F/2

When N > 13, |ce®/? £ \/5de™9/22 > N/6,

and the rest of the question is about the number of terms with ¢? + d> = N. Because 5 { ¢, the number
of |¢| is not more than (4/5)N'/2 4 1. Thus the number of terms with ¢ + d?> = N is not more than
4((4/5)N1/2 +1) < (21/5)NY/2 for N > 13. Then

) (1—-k)/2 k/2
216 Z (1N> < 1008v/6 (1) .

5 6 5(k —3)

[R5 1IN>13 = 3

N=13
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On the other hand, for Fy 5 »(6),
|Rg)2‘ < Z |cei0/2+d\/ge—i0/2|—k+2k Z |C€i9/2+d\/5€_i9/2|_k.

(c,d)():l (C’d,f)zl

51c 51c
2|ed 2fed
N>1

Now we will consider the next cases, namely N = 2,5,10,13,17, and N > 25. Considering 0 < cosf <
1/4/5, we have the following:

When N = 2, 2k 0 (1,1,0) < (2/3)F/2, Flok(1,-1,0) < 1.

When N =5, ur(1,2,0) < (1/21)%/2, ve(1, —2 9) < (1/17)k/2,
uk(2,1,0) < (1/3)F, (2, -1,0) < (1/5)F/2.

When N = 10, 2w (1,3,0) < (2/23)F/2, 2k u(1,-3 9) < (1/10)k/2,

2F 0 (3,1,0) < (2/7)F/2, 2k 0k (3,—1,0) < (1/2)%/2

When N = 13, ve(2,3,0) < (1/7)F, vp(2,-3,0) < (1/37)%/2,
ve(3,2,0) < (1/29)F/2, ve(3,—2,0) < (1/17)%/2.

When N = 17, ve(1,4,0) < (1/9)F, vp(1, —4,0) < (1/73)%/2,
v(4,1,0) < (1/21)%/2, vr(4,—1,0) < (1/13)/2,

When N > 25, |ce'®/? £ \/5de /22 > N/2,

and the number of terms with ¢2 + d2 = N is not more than 4N!/2 for N > 25. Then

) (1—k)/2 k/2
. 1 378v6 (1
R olnsos =8V2 > <8N) <53 <3> .

N=25
Thus
k/2 k/2 k/2 k/2
1 1 1 1008v/6 (1
(88) |R: | < 2+4<2) +2(3) +- +2(46> +5(k\g(2> ,
k/2 k/2 k k/2
2 1 1 3786
242 2(= 2 = .
(89) [R5 o <2+ <3) + (2) + (9> +o— 3 <3)

Recalling the “RSD Method” subsection, we want to show that [R5 ;| < 2 and |Rj ,| < 2. But the right-
hand sides of both bounds are greater than 2, so these bounds are not good. The cases (¢,d) = £(2,1)
give us bound equal to 2 for |R} ;[, and the cases (c,d) = £(1, —1) give us bound equal to 2 for |R3 ,|.

5.6.2. T4(7). We note that N := ¢? + d>.
Firstly, we consider the case NV = 1. Then we can write;

(90) Fy71(0) = 2cos(k0/2) + R7 4,
(91) Fy72(0) = 2cos(k0/2) + R7 5
where R7 ; and R, are the terms such that N > 1 of F ;; and Fy ; ,, respectively.
For Fljml(ﬁ),
|R7 4] < Z |ce®®/2 4 \/Tde 027k,

(e,d)=1
Tte
N>1
Let vg(c,d, 0) := |ce’®/?4+/Tde=/%| =% then vy (c,d,0) = 1/ (02 + 7d? + 2v/Ted cos H)k/Q, and vi (e, d, 0) =
vg(—c, —d, 8). Now we will consider the next cases, namely N = 2,5,--- 29 and N > 34. Considering

—5/(2/7) < cos @ < 0, we have the following:

When N = 2, ve(1,1,0) < (1/3)%/2, vr(1,—1,0) < (1/8)F/2.
When N =5, k(1,2,0) < (1/19)%/2, ve(1,-2,0) < (1/29)%2,
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ve(2,1,0) < 1,
When N = 10, vk (1,3,0) < (1/7)*,
vk (3,1,0) < 1,
When N = 13, ve(2,3,0) < (1/39)F/2,
vk (3,2,0) < (1/7)*/2,
When N = 17, vp(1,4,0) < (1/93)%/2,
v (4,1,0) < (1/3)*2,
When N = 25, v(3,4,0) < (1/61)%/2,
vp(4,3,0) < (1/19)%/2,
When N = 26, ve(1,5,0) < (1/151)%/2,
i (5,1,0) < (1/7)*?,
When N = 29, ve(2,5,0) < (1/129)%/2,
vk (5,2,0) < (1/3)F/2,
When N > 34, lce?/? + \/Tde™ /%2 > N/11,

and the rest of the question is about the number of terms with ¢? + d?
of |¢| is not more than (6/7)N'/2 + 1. Thus the number of terms with ¢ + d?
(29/7)N'/2 for N >

4((6/T)NY/2 +1) <

|R71|N>34 =

34. Then

20v/11
— D

N=34

On the other hand, for F}; ; ,(0),

|R7 2] <

Now we will consider the next cases, namely N = 2,5,10,13,17, and N >

(¢, d)=1
Tte
2|ed
N>1

2/ V7, we have the following:

When N = 2, 2k 0 (1,1,0) < (1/2)F/2, ok .
When N =5, ve(1,2,0) < (1/29)%/2,

ve(2,1,0) < (1/11)%/2,
When N = 10, 2k r(1,3,0) < (1/4)F, 2k

28 0 (3,1,0) < (1/2)F, 2k

When N = 13, vk(2,3 0) < (1/69)%/2,

vk (3,2,0) < (1/37)*/2,
When N =17, vk(1,4 0) < (1/113)%/2,

ve(4,1,0) < (1/23)%/2,
When N > 25, |ce?®/? £ \/Tde™ /22 > N/3,

and the number of terms with ¢ + d2

583

|R7 2| N>25 =
N=25

1 (1—k)/2
—N <
()

Z |cei0/2 + d\ﬁe_w/2|_k + 2k Z |cei9/2 + d\ﬁe_w/2|_k.

(1—k)/2
N <
=2 (%)

Tk —3)

(c,d)=1
Tte
2fed

= N is not more than (29/7)]\71/2 for N >

2784+/6
7(k —

1914+/33

45

v(2,—1,0) < (1/11)%/2,
(1, —3,9) < (1/8),

vk(3,—1,0) < (1/4)%.

ve(2, -3, 9) < (1/69)k/2,
vi(3,—-2,6) < (1/37)%/2.
vp(1, —4,0) < (1/113)F/2,
v (4, —1 9) < (1/23)%/2,
or(3,—4,0) < (1/11)F,

v (4, —3,0) < (1/79)%/2.
vk(l,—5 0) < (1/176)%/2,
ve(5,—1,0) < (1/32)F/2,
vk(2,—5 0) < (1/179)%/2,
vr(5,-2,0) < (1/53)F/2,

= N. Because 71 ¢, the number
= N is not more than

6

3)

25. Considering 0 < cos 8 <

vp(1,-1,0) < 1.

vp(1,—2,6) < (1/21)%/2,
vk(2,-1,0) < (1/3)F/2.
vp(1,-3,0) < (1/13)%/2,
ve(3,-1,0) < 1.

vk (2,—3,6) < (1/45)%7,
vp(3,-2,0) < (1/14)%/2,
vk(l,—4 0) < (1/97)%/2,
(4, —1,0) < (1/7)/2.

25. Then

0"

3)
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Thus
N2\ R 1\*? 191433 (1)\*/?
2 4 18- 2 7(k—-3) \3
o wmsare(5) va(5) () H R (G)
k/2 k/2 k/2 k/2
) 1 1 2784V6 (1
(93) R, < 4+2<2> +2<3) + +2(113) +7(k3)<2> '

We want to show that |R7 ;| < 2 and |R} 5| < 2. But the right-hand sides of both bounds are much
greater than 2. The cases (c,d) = +(2,1) and +(3,1) give us bound equal to 4 for [R7 [, and the cases
(c,d) = £(1,~1) and £(3,—1) give us bound equal to 4 for [R5 ,|.

5.6.3. I';(11). We note that N := ¢? + d2.

Firstly, we consider the case N = 1. Then we can write;
(94) Fy111(0) = 2cos(k0/2) + RY; 4,
(95) Fy11,2(0) = 2cos(k0/2) + Ri; o
where R, ; and Rj, , are the terms such that N > 1 of Fy 1, ; and F ; 5, respectively.

For F§71171(0),

‘RT1,1| < Z |Cei9/2 + \/ﬁde—iG/Q‘—k.
(c,d)=1

11fe
N>1

Let vg(c,d,0) = |ce'®/? + /11de="%/2|7F  then wvy(c,d,0) = 1/ (c* + 11d> +2\/ﬁcd0050)k/2, and
vg(e,d, 0) = vg(—c,—d, ).

Now we will consider the next cases, namely N = 2,5,10,13,17,25, and N > 26. Considering
—19/(6v/11) < cosf < 0, we have the following:

When N = 2, ve(1,1,0) < (3/17)%/2, vp(1, —1,0) < (1/12)%/2
When N = 5, vp(1,2,0) < (3/97)F/2, vp(1, —2,0) < (1/45)%/2,
ve(2,1,0) < (3/7)%/2, ve(2,—1,0) < (1/15)%/2,
When N = 10, vr(1,3,0) < (1/9)*, vr(1,-3,0) < (1/10)%,
vp(3,1,0) < 1, ve(3,—1,60) < (1/20)%/2
When N = 13, ve(2,3,0) < (1/65)%/2, vp(2,—3,6) < (1/103)/2,
ui(3,2,0) < (1/15)%/2, (3, -2,0) < (1/53)%/2.
When N = 17, vi(1,4,0) < (3/455)%/2, vp(1, —4,0) < (1/177)%/2]
vp(4,1,0) < (3/5)%/2, vp(4, —1,0) < (1/27)%/2.
When N = 25, v(3,4,0) < (1/109)%/2, vp(3, —4,0) < (1/185)/2,
vi(4,3,0) < (1/39)%/2, vi(4,—3,0) < (1/115)%/2,
When N > 26, |ce®/? £ V11de /%2 > 2N /25,

and the rest of the question is about the number of terms with ¢® +d? = N. Because 11 1 ¢, the number
of |c| is not more than (10/11)N*/2 + 1. Thus the number of terms with ¢? + d> = N is not more than
4((10/11)NY/2 4 1) < (48/11)NY/2 for N > 26. Then

120v/2 & (1-k)/2 12000 1 k/2
* < —— | = .
|R111|N>26 = 1 Z (25N> S 11(k - 3) <2)

N=26
On the other hand, for Fy,, ,(6),

|R»1e172| < Z |Cezé/2+dfe—19/2 _|_2k Z |0610/2+d\/>e—19/2| k

(c,d)=1 (e,d)=1
11te 11t
2led 2fed

N>1
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Now we will consider the next cases, namely N = 2,5,10,13,17, and N > 25. Considering 0 < cosf <
8/(3v/11), we have the following:

When N =2, 2k u(1,1,6) < (1/3)%/2, 2w (1,-1,0) < (3/5)%/?

When N =5, ve(1,2,0) < (1/45)%/2, ve(1,—2,6) < (3/103)%/2
vp(2,1,0) < (1/15)%/2, vp(2,—1,6) < (3/13)%/2

When N = 10, 2k ur(1,3,0) < (1/5)%, 2k ok (1,-3,0) < (1/21)%/2,

2k 0 (3,1,6) < (1/5)%/2, 2k (3,-1,0) < 1

When N = 13, ve(2,3,0) < (1/103)%/2, ve(2,-3,0) < (1/71)%/2,
vi(3,2,0) < (1/53)%/2, ve(3,-2,0) < (1/21)F/2

When N = 17, ve(1,4,0) < (1/177)%/2, vp(1, —4, 9) < (3/467)%/2,
ve(4,1,0) < (1/27)’“2 vp(4,—1,0) < (3/17)%/2,

When N > 25, |cei0/2 + \/ﬁd(a_m/2|2 > §N’

and the number of terms with ¢ 4+ d? = N is not more than (48/11)N'/2 for N > 25. Then

96\[ (1-k)/2 4608[ k/2
: N < .
IR 2lvzes = == > (12 ) 11(k — 3)( )

N=25
Thus
3\ /2 3\ F/2 1\*2 12000 [1\"?
242 2(2 ey — P (=
o wm<ee(5)+2(3) o2 () ey (o) o
3\ k/2 1\ #/2 1 \*/2 1608\/6 k/2
242 2( = 2 .
o mad<ee2(3) w2 (5) o2 (m) e ()

We want to show that [R7; ;| < 2 and |Rj; 5| < 2. But the right-hand sides of both bounds are greater
than 2. The cases (c,d) = £(3,1) give us bound equal to 2 for |R7; ;|, and the cases (c,d) = £(3,—1)
give us bound equal to 2 for |Rj; 5|

5.6.4. T4(13). We note that N := ¢ + d>.
Firstly, we consider the case N = 1. Then we can write;

(98) Fy13.1(0) = 2cos(k0/2) + Ri3 1,
(99) Fi132(0) = 2cos(k0/2) + Ri3 5,
(100) Fy13.5(0) = 2cos(k0/2) + Ri3 5,

where Rig;, Ri3 5, and Ri3 5 are the terms such that N > 1 of Fy 15, Fy 15,5, and Fy ;3 5, respectively.
Firstly, for Fy; 15 ,(0),
|Ri31] < Z |ce®/? 4 \/13de~ /2| 7k,
(e,d)=1
13fc
N>1
Let vg(c,d,0) = |ce'®/? + /13de="/2|7F, then wvy(c,d,0) = 1/ (c* + 13d*> + 2v/13cd cos G)k/Q, and
vg(e,d,0) = vi(—c, —d,0). Now we will consider the next cases, namely N = 2,5,---,37, and N > 41.
Considering —7/(2v/13) < cos 8 < 0, we have the following;:

When N = 2, ve(1,1,0) < (1/7)%/2, vp(1, —1,0) < (1/14)%/2

When N =5, ur(1,2,0) < (1/39)%/2, vp(1,—=2,0) < (1/53)%/2,
ve(2,1,0) < (1/3)%/2, ve(2,—1,0) < (1/17)%/2

When N = 10, ur(1,3,0) < (1/97)%/2, vr(1,—3,0) < (1/118)%/2
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When N =13,
When N =17,
When N = 25,
When N = 26,
When N = 29,
When N = 34,
When N = 37,
When N > 41,

and the rest of the question is about the number of terms with ¢? 4+ d? =
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v(3,1,0) < 1,

vk (2,3,0) < (1/79)*/2,
vk (3,2,0) < (1/19)*/2,
vr(1,4,0) < (1/181)%/2,
vp(4,1,0) < 1,
v(3,4,0) < (1/133)%/2,
vi(4,3,0) < (1/39)%/2,
vi(1,5,6) < (1/291)%/2,
vk (5,1,0) < (1/3)*/2,
v(2,5,0) < (1/255)%/2,
vk (5,2,0) < (1/7)*/2,
vk(3,5,0) < (1/229)%/2,
ve(5,3,6) < (1/37)F/2,
vi(1,6,0) < (1/426)%/2,
v (6, 1,6) < (1/7)"2,

|ce'®/? £ \/13de™ /%2 > N/20,

vk (3, —1,0) < (1/22)%/2.
vr(2,—3,0) < (1/11)F,

v(3,—2,6) < (1/61)%/2,
vk(1,74 0) < (1/209)%/2,
(4, -1,0) < (1/29)%/2.
vi(3, —4 (9)<(1/217)’</2
vi(4,-3,0) < (1/123)%/2,
vk(l,—5 0) < (1/326)%/2,
ve(5, —1,0) < (1/38)"/2,
vk(2,—5 0) < (1/329)%/2,
v (5, —2,0) < (1/77)"/2,
vk(B,—S 0) < (1/334)%/2
vr(5,—3,0) < (1/142)%/2,
vp(1, —6,0) < (1/468)/2,
u(6,-1,60) < (1/7)".

N Because 13 1 ¢, the number

of |¢| is not more than (12/13)N'/2 + 1. Thus the number of terms with ¢? + d> = N is not more than
(30/7)N'/? for N > 41. Then

4((12/13)N1/2 +1) <

|Ri3 1 nsa1 =

Secondly, for £y 15 5(0),

60v5
— >

N=41

(1-k)/2
N <
(")

4800v/10
13(k — 3)

108

Risol < D wkle,d,0) +2" > wi(e,d,0).
(c,d)=1 (e,d)=1
13fc 13tc
2|cd 2ted
N>1
Now we will consider the next cases, namely N = 2,5,---,26, and N > 29. Considering 0 < cosf <

3/v/13, we have the following:

When N = 2,

When N =5,

When N = 10,
When N =13,
When N =17,
When N = 25,
When N = 26,

Qk
2k

Fook(1,1,0) < (2/7)F2,

ve(1,2,0) < (1/53)%/2,
v(2,1,60) < (1/17)%/2,
(1, 3,0) < (2/59)%/2,
up(3,1,0) < (2/11)%/2,
uk(2,3,0) < (1/11)F,

vk (3,2,0) < (1/61)%/2,
vp(1,4,0) < (1/209)/2,
ve(4,1,0) < (1/29)%/2
ve(3,4,0) < (1/217)F/2,
v(4,3,0) < (1/123)%/2,
Fooe(1,5,0) < (2/163)F/2,

2k uk(1,-1,0) < (1/2)%/2,
ve(1, —2,0) < (1/41)%/2
vp(2,—1,0) < (1/5)%/2,

2% ur(1,-3,0) < (1/5)F,

28 (3, -1,0) < 1.
ve(2,-3,0) < (1/85)%/2,
(3, -2,60) < (1/5)".
vk(l,—4 0) < (1/285)F/2,
v (4,-1,0) < (1/5)%/2.
vr(3,—4,0) < (1/145)%/2,
vr(4,-3,0) < (1/51)F/2,

2w (1, =5,0) < (1/74)F/2,
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2k 0k (5,1,0) < (2/19)/2,

When N > 29, |ce®/? £ \/13de /%2 > 2N/7,

and the number of terms with ¢ + d?2

) 99 /T4 (1—k)/
| Bisolvz20 = —— Z <14N>
N=29
Finally, for F; 3 5(0),
[Rissl < D wile,d,0) +
(e, d)=1 (e, d)=1
13fc 13fc
3|cd 3fed
N>1 c=d (3)

Now we will consider the next cases, namely N = 2,5,---

cosf < 5/(2v/13), we have the following:

When N = 2, u(1,1,0) < (1/10)%/2,
When N = 5, 38 up(1,2,0) < (1/5)%/2,
3% uk(2,1,0) < 1,
When N = 10, vie(1,3,6) < (1/106)%/2,
vi(3,1,0) < (1/10)%/2,
When N = 13, vk(2,3 0) < (1/97)%/2,
vk (3,2,0) < (1/37)*/2,
When N = 17, vk(1,4 6) < (1/193)%/2,
vp(4,1,0) < (1/13)F/2,
When N = 25, vi(3,4,0) < (1/13)%,
vi(4,3,0) < (1/75)%/2,
When N = 26, 38 up(1,5,0) < (1/34)%/2,
35 - vk (5,1,60) < (1/2)%/2,
When N = 29, ve(2,5,0) < (1/13)F,
ve(5,2,0) < (1/37)F/2,
When N = 34, vi(3,5,0) < (1/274)%/2,
ue(5,3,0) < (1/82)%/2,
When N = 37, ve(1,6,0) < (1/444)%/2,
u(6,1,0) < (1/5)F
When N > 41 |ce®/? + \/13de™ /%)% > 9N /20,

and the number of terms with ¢ + d?2

60v5

|Ris3ln>a1 =
N=41

,37, and N

(1-k)/2
N <
22 (V)

Foo(5,-1,0)

= N is not more than (22/5)N'/? for N >

()

24647
S 5(k —3)

(c,d)=1
13tc
3ted

c=—d (3)

svg(l, -1,
v (1, =2,
vE(2, —1,
vg (1, =3,
v (3, —
vg(2, —3,
ve(3, —2
1

(
(
(
(
(
(
3,
~v(1, —4,
s (4, -1
vg(3,—4
v (4, =3,
v (1, =5,
vg (5, —1,
- vE(2, =5,
-vk(5,—2
vk (3,
vi (5, =3,
vi (1, —6,
vg (6, —1,

= N is not more than (30/7)N'/2 for N >

0"

48004/10
7(k — 3)
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< (1/2)k72.

29. Then

Z vi(c,d,0) + 3" Z vk (e, d, 0).

> 41. Considering —2/v/13 <

0) < 1.
0) < (1/43)%/2,
0) < (1/7)*2.
6) < (1/103)%2,
,0) < (1/7)"2.
9) < (1/91)F2,
,0) < (1/31)F/2,
0) < (1/21)"2,
.0) < 1.
,0) < (1/157)%2,
0) < (1/63)%/2.
0) < (1/301)%/2,
0) < (1/13)*/2.
0) < (1/31)%/2
0) < (1/3)*2.
,0) < (1/259)"2,
9) < (1/67)k/2.
0) < (1/438)%/2
0) < (1/19)%/2.

41. Then
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Thus
e () B0
(102)  [Rigal <244 <;)k/2+2 (i)k/2+“-+2 (2;5>’“/2+ zuo1s? <2)m,
(103) | R133 <6+2(;)k/z+2<;>k/2+m+2(Zlill)k/z_ﬁl?zo\/; <2>k/2'

We want to show that [R75 | < 2, [Ri3,] < 2, and |R};3 3] < 2. But the right-hand side of every bound
is greater than 2. The cases (c,d) = +(3,1) and +(4,1) give us bound equal to 4 for |Rj; [, and the
cases (c,d) = £(3, —1) give us bound equal to 2 for |Rj; 5|, and the cases (¢,d) = £(1, 1), £(2,1), and
+(4, 1) give us bound equal to 6 for |R7; 5].

5.6.5. T4(17). We note that N := ¢ + d2.
Firstly, we consider the case N = 1. Then we can write;

(104) Fy17.1(0) = 2cos(k0/2) + Ri7 1,
(105) Fy17.2(0) = 2cos(k0/2) + Ri7 5,
(106) Fy 17.4(0) = 2cos(k0/2) + Ri; 4,

where Rf; , Ri;,, and R{;,, and Rj;, are the terms such that N > 1 of Fy,;,, Fjf 7,5, and F} ,,,
respectively.
Firstly, for F§71771(9)’

[Ri7q| < Z e/ 4+ V1Tde /2|7,
(e,d)=1
17tc
N>1
Let vg(c,d,0) = |ce?®/? + /17de="%/2|7F  then vy(c,d,0) = 1/ (c* + 17d> —|—2\/ﬁcd0050)k/2, and
v (c,d,0) = vip(—c,—d,0). Now we will consider the next cases, namely N = 2,5,--- 34, and N > 37.
Considering —4/v/17 < cos < 0, we have the following:

When N = 2, ve(1,1,0) < (1/10)%/2, ve(1,—1,0) < (1/18)%/2.
When N =5, ve(1,2,0) < (1/53)%/2, ve(1,—2,0) < (1/69)%/2,
vk (2,1,0) < (1/5)"/2, (2, -1,0) < (1/21)%/2,
When N = 10, ve(1,3,0) < (1/130)%/2, ve(1, -3, 9) < (1/154)%/2,
vk (3,1,0) < (1/2)*/2, (3, -1,0) < (1/26)"/2.
When N = 13, v(2,3,6) < (1/109)%/2, v (2, -3, 9) < (1/157)%/2,
vr(3,2,0) < (1/29)%/2, vr(3,-2,0) < (1/77)%/2,
When N = 17, vi(1,4,0) < (1/241)%/2, vg(1, —4 9) < (1/273)F/2
v(4,1,0) <1, ve(4, -1,0) < (1/33)%/2.
When N = 25, vi(3,4,0) < (1/185)%/2, vi(3, —4 9) < (1/281)k/2,
ve(4,3,0) < (1/73)%/2, v(4, -3,0) < (1/13)".
When N = 26, ve(1,5,0) < (1/386)%/2, ve(1, =5,0) < (1/426)%/2
ve(5,1,0) < (1/2)%/2, v(5,—1,0) < (1/42)%/2,
When N = 29, ve(2,5,0) < (1/349)%/2, v(2, —5,0) < (1/429)%/2,
ur(5,2,0) < (1/23)%/2, vr(5,—2,0) < (1/103)%/2,
When N = 34, ve(3,5,0) < (1/314)%/2, vr(3,—5,0) < (1/434)%/2
ur(5,3,0) < (1/42)%/2, vr(5,—3,0) < (1/162)%/2,
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When N > 37, |ce’®/? £ \/17de™ /%2 > N/18,

and the rest of the question is about the number of terms with ¢® +d? = N. Because 17 { ¢, the number
of |¢| is not more than (16/17)N'/2 + 1. Thus the number of terms with ¢? + d> = N is not more than
4((16/17)N/2 +1) < (22/5)N'/? for N > 37. Then

66v2 o A=k)/2 9504  /1\F/?
R* - N <27 (2}
|Rizalnzsr = —5— > (18 ) 5(k — 3) (2)

N=37
Secondly, for Iy 1, ,(0),

Rizol < D wile,d,0) +28 D wi(e,d,0).

(c,d)=1 (c,d)=1
2[00 2o
N>1
Now we will consider the next cases, namely N = 2,5,---,34, and N > 37. Considering 0 < cosf <
11/(3/17), we have the following:
When N = 2, 2% 0k (1,1,6) < (2/9)%/2, 2k uk(1,—1,0) < (3/8)%/2.
When N = 5, ve(1,2,0) < (1/69)%/2, vp(1,—2,0) < (3/163)%/2,
v(2,1,0) < (1/21)%/2, vp(2,—1,0) < (1/19)%/2,
When N = 10, 2 0 (1,3,0) < (2/77)F/2, 2w (1,-3,6) < (1/33)%/2,
2k uk(3,1,0) < (2/13)%/2, 2k (3, -1,0) < 1.
When N = 13, v(2,3,0) < (1/157)%/2, vp(2,—3,0) < (1/113)%/2,
ve(3,2,0) < (1/77)%/2, v (3, —2,0) < (1/33)%/2.
When N = 17, ve(1,4,0) < (1/273)%/2, vp(1, —4,0) < (3/731)*/2,
v(4,1,0) < (1/33)%/2 vp(4, —1,0) < (3/11)%/2,
When N = 25, vr(3,4,0) < (1/281)%/2, vr(3,—4,0) < (1/193)%/2,
v (4,3,0) < (1/13)F, ur(4,-3,0) < (1/9)*.
When N = 26, 2k .0 (1,5,6) < (2/213)%/2, 2k (1, =5, 9) < (3/292)%/2,
2k 0 (5,1,0) < (2/21)F/2, 2k 0 (5,—1,0) < (3/4)%/2
When N = 29, v(2,5,0) < (1/429)%/2, vg(2, -5, 0) < (3/1067)%/2,
vk(5,279) < (1/103)%/2, vr(5,—2,0) < (3/89)/2,
When N = 34, 2 . 0 (3,5,0) < (2/217)%/2, 2k (3, —5,0) < (1/9)F,
ok . vk(5,379) < (2/81)F/2, 2k (5, —3,0) < (1/13)%/2.
When N > 37, |ce'®/? £ \/17de /%2 > 16N/81,

and the number of terms with ¢ + d? = N is not more than (22/5)N'/2 for N > 37. Then

(1-k)/2 k
99 4 9504 (3
R —N Segroal1) -
|Ri72|n>37 = 5 Z (81 > 5(k —3) (4>

N=37
Finally, for F; ;7 ,(0),

[Rizal < ) wle,d,0) +28 > wp(e,d, ) +45 > wi(c,d,0).

(e, d)=1 (e,d)=1 (e,d)=1
17tc 17tc 174e
2|cd 2fed 2fed
N>1 c=d (4) c=—d (4)

Now we will consider the next cases, namely N = 2,5,--- 34, and N > 37. Considering —5/(3v/17) <
cos @ < 1/4/17, we have the following:
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When N = 2, Fook(1,1,0) < (3/11)F/2, 4k
When N = 5, ve(1,2,0) < (3/187)F/2,
ve(2,1,0) < (3/43)%/2,
When N = 10, 4% p.(1,3,0) < (1/3)F, 2"
48 0(3,1,0) < 1, 2k
When N = 13, ve(2,3,0) < (1/137)F/2,
v(3,2,0) < (1/57)%/2,
When N =17, ve(1,4,0) < (3/779)F/2,
vk (4,1,0) < (3/59)*/2,
When N = 25, v(3,4,0) < (1/241)/2,
ve(4,3,0) < (1/129)F/2,
When N = 26, 2k ur(1,5,0) < (3/307)F/2, 4k
2k 0k(5,1,0) < (3/19)%/2, 4*
When N = 29, ve(2,5,0) < (3/1187)%/2,
vk(5,2,9) < (3/209)%/2,
When N = 34, vk (3,5,0) < (1/24)F/2] 2k
4k -vk(5,3,9) < (1)7)F/2, 2k
When N > 37, |lce®/? £ /17de /%2 > 4N/5,

cop(1,-1,0) < 1.
vr(1,—2,0) < (1/65)%/2,
ve(2,—1,0) < (1/17)%/2.

~vk(1,—3 0) < (1/37)%/2

“uk(3,—1,0) < (1/5 )’“/2
vr(2,—3,0) < (1/145)%/2,
vr(3, —2,0) < (1/65)"/2,
vg(1, —4 9) < (1/265)%/2,
ve(4,=1,0) < (1/5)".
vg(3, —4 9) < (1/257)k/2,
vr(4,—3,0) < (1/145)%/2,

(1, =5,0) < (1/26)F/2,

~op(5,—1,60) < (1/2)F/2.
vk(2,—5 6) < (1/409)%/2,
vi (5,2, 6) < (1/83)%/2.

~uk(3, -5,0) < (1/101)"2,

(5, —3,0) < (1/33)%/2,

and the number of terms with ¢ + d?> = N is not more than (22/5)N'/2 for N > 41. Then

445 /1 NP2 9504 5\ K2
: ==V° ~N <22 (2)
Rz alvzar = — b (20 ) 5(k — 3) <9>

N=37

Thus

1 k/2 1 k/2 1 k/2
(107) |Ri7 1] < 2+4<2) +2<5> +---+2<34) +

3 k/2 3 k/2 1 k/2
1 9242 9 (2 Y
(108) [Ripol <2+ (4) " (8) T (429) ;

1\ k/2 1\ F/2 1\ /2
(109) R <as2(3) +2(3) wor2(m)

9504 (1)
pk—3)\2)
9504 (3\"

(k—3)\4)

9504 (5\"/*
pk—3)\9) -

We want to show that |Rj; ;| < 2, |Ri; | < 2, and |Rj; 4| < 2. But the right-hand side of every
bound is greater than 2. The cases (c,d) = +(4,1) give us bound equal to 2 for |R}; |, and the cases
(c,d) = £(3,—1) give us bound equal to 2 for [Rj7 5|, and the cases (c,d) = £(1,~1) and £(3, 1) give us

bound equal to 4 for |Rf; 4|

5.6.6. T5(19). We note that N := c? + d2.
Firstly, we consider the case N = 1. Then we can write;

(110) Fy10.1(0) = 2cos(k0/2) + Rig 1,
(111) Fy192(0) = 2cos(k0/2) + Rig o,
(112) Fi10,3(0) = 2cos(k6/2) + Rig 3,

where Rig, Rig o, and Rjg 3 are the terms such that N > 1 of Fy 1 1, F} 194, and Fy 14 5, respectively.
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Firstly, for Fy} 14 ,(0),

[Righl < D e’ + v/19de/2|7F.
(c,d)=1
19fc
N>1

Let vg(c,d,0) = |ce?®/? + /19de="%/2|7F then wvy(c,d,0) = 1/ (c* + 194> +2\/Ecdc050)k/2, and
vg(e, d,0) = vi(—c, —d, ). Now we will consider the next cases, namely N = 2,5,---,41, and N > 50.
Considering —17/ (4\ﬁ ) < cosf < 0, we have the following:

When N = 2,

When N =5,

When N = 10,
When N =13,
When N =17,
When N = 25,
When N = 26,
When N = 29,
When N = 34,
When N = 37,
When N =41,
When N > 50,

ve(1,1,0) < (2/23)F/2, vp(1,—1,6) < (1/20)%/2
vi(1,2,0) < (1/60)%/2, (1, -2,60) < (1/77)"2,
v(2,1,0) < (1/6)%/2, vr(2,—1,0) < (1/23)%/2
ve(1,3,0) < (2/293)F/2, vp(1,—3,0) < (1/172)%/2
ur(3,1,0) < (2/5)%/2, vr(3,—1,0) < (1/28)%/2
vp(2,3,0) < (1/124))%/2, vp(2,—3,0) < (1/175)%/2
v(3,2,0) < (1/34)%/2, v (3, —2,0) < (1/85)%/2
vp(1,4,0) < (1/271)F/2, vp(1, —4,0) < (1/305)%/2,
vp(4,1,0) < 1, vp(4,—1,0) < (1/35)%/2
vr(3,4,0) < (1/211)%/2, v(3, —4,0) < (1/313)F/2,
v(4,3,0) < (1/85)%/2, v (4, —3,0) < (1/187)%/2,
ur(1,5,0) < (2/867)%/2, vr(1,=5,0) < (1/476)%/2,
u(5,1,0) < (2/3)F/2, (5, —1,0) < (1/44)%/?
v(2,5,0) < (1/394)%/2, ve(2, —5,0) < (1/479)%/2,
vk (5,2,0) < (1/4)%, (5, -2,0) < (1/101)%/2
v (3,5,0) < (2/715)%/2, (3, —5,0) < (1/485)"/2,
ve(5,3,0) < (2/137)F/2, v (5, —3,0) < (1/13)"
v(1,6,0) < (1/634)/2, v(1, —6,80) < (1/685)%/2,
vp(6,1,0) < (1/4)%/2 vr(6,—1,0) < (1/55)%/2
v (4,5,0) < (1/321)’”2 vp(4, —5,0) < (1/491)%/2,
vr(5,4,0) < (1/159)%/2, vr(5,—4,0) < (1/329)%/?
\cei9/2 + md67i0/2|2 > 2—12N,

and the rest of the question is about the number of terms with ¢? + d? = N Because 19 1 ¢, the number
of |¢| is not more than (18/19)N'/2 + 1. Thus the number of terms with ¢? 4+ d> = N is not more than
4((18/19)N1/2 +1) < (13/3)N'/? for N > 50. Then

|Rig.1ln>50 =

Secondly, for F; 14 ,(0),

13v22 & 5 1y “*’“>/2<4459\/46 k/2
3 22 33(k — 3) 49 '

N=50

[Rigol < D wkle,d,0) +25 > wi(e,d,0).

(e,d)=1 (e,d)=1
19%c 19¢c
2|cd 2fed
N>1
Now we will consider the next cases, namely N = 2,5,--- 41, and N > 50. Considering 0 < cosf <

4/4/19, we have the following:
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When N = 2, Foon(1,1,6) < (1/5)%/2 Foor(1,—1,0) < (1/3)%2,
When N =5, v(1,2,0) < (1/77)%/2, vp(1,-2,0) < (1/61)%/2,
v(2,1,0) < (1/23)k ve(2,—1,0) < (1/7)/2.
When N = 10, 2F 0 (1,3,0) < (1/43)%/ 2F (1, -3,0) < (1/37)F/2,
2k 0(3,1,0) < (17 )’“/2 2k (3, -1,0) < 1.
When N = 13, vr(2,3,0) < (1/175)%/2, vr(2,—3,0) < (1/127)%/2,
vr(3,2,0) < (1/85)%/2, vr(3,-2,0) < (1/37)%/2,
When N = 17, v(1,4,0) < (1/305)%/2, vp(1, —4,0) < (1/273)/2,
ve(4,1,0) < (1/35)F/2, vp(4, —1,0) < (1/3)%/2,
When N = 25, vi(3,4,0) < (1/313)%/2, vi(3,—4,0) < (1/217)%/2]
ve(4,3,0) < (1/187)%/2, ve(4, —3,0) < (1/91)%/2.
When N = 26, 2k 0 (1,5,60) < (1/119)%/2, 2k u(1, =5, 6) < (1/109)%/2,
2k 0 (5,1,0) < (1/11)%/2, 2k (5, -1,0) < 1.
When N = 29, ve(2,5,0) < (1/479)%/2, ve(2,—5,0) < (1/399)%/2,
vi(5,2,0) < (1/101)’6/2 ve(5,-2,0) < (1/21)F/2.
When N = 34, 2k 0(3,5,0) < (4/485)%/? 2 . u(3, =5, 0) < (4/405)%/2,
28k (5,3,0) < (2/13)F, 2k (5, —3,0) < (1/29)%/2.
When N = 37, vie(1,6,0) < (1/685)%/2, vg(1, —6, 9) < (1/637)/2,
vk (6,1,0) < (1/55)%/2, vk (6, —1,6) < (1/7)%/2.
When N = 41, vr(4,5,0) < (1/491)%/2, vg(4, =5, 9) < (1/331)%/2,
vr(5,4,0) < (1/329)%/2, v (5, —4,0) < (1/13)*.
When N > 50, |ce?/? + /19de= /22 > 3N /20,
and the number of terms with ¢ + d? = N is not more than (13/3)N'/2 for N > 50. Then
1-k)/2 k/2
[Rig 2| Nz50 = 52\9/> > (80N)( ! < % (1%107> / :
N=50
Finally, for F 4 5(0),
|R’1k9,3| < Z vg(e, d,0) + Z vi (e, d, 0) + 3k Z vg (e, d, 0).
(c,d)=1 (c,d)=1 (c,d)=1
3o 3o e
N>1 c=d (3) c=—d (3)
Now we will consider the next cases, namely N = 2,5,--- 41, and N > 50. Considering —7/(2v/19) <

cosf < 13/(4v/19), we have the following:

When N = 2, ve(1,1,0) < (1/13)%/2 Foop(l,—1,0) < (2/3)F/2.
When N =5, 30 uk(1,2,0) < (1/7)%/2, vp(1,—2,6) < (1/8)F,
3k 0e(2,1,0) < 1, ve(2,—1,0) < (1/10)%/2,
When N = 10, ve(1,3,0) < (1/151)F/2, ve(1, =3, 9) < (2/305)%/2,
v (3,1,0) < (1/7)*?, v (3,-1,0) < (2/17)"/2.
When N = 13, ve(2,3,0) < (1/133)F/2, ve(2, -3, 9) < (1/136)%/2,
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ve(3,2,0) < (1/43)%/2, ve(3,—2,0) < (1/46)%/2.
When N = 17, vp(1,4,0) < (1/277)/2, 38 (1, —4,0) < (1/31)/2,
vp(4,1,0) < (1/7)%/2, 3% (4, -1,0) < 1.
When N = 25, v(3,4,0) < (1/229)F/2, vi(3,—4,0) < (1/235)%/2,
v(4,3,0) < (1/103)%/2, vp(4, —3,6) < (1/109)%/2,
When N = 26, 3% ur(1,5,0) < (1/7)F, vp(1, —5,0) < (2/887)F/2,
3k u(5,1,0) < 1, ve(5,—1,0) < (2/23)%/2.
When N = 29, vp(2,5,0) < (1/409)%/2, 38 (2, -5, 9) < (1/46)%/2,
v(5,2,0) < (1/31)%/2, 3% (5, —2,0) < (1/2)".
When N = 34, v(3,5,0) < (1/380)F/2, vg(3, =5, 9) < (2/775)%/2,
vk (5,3,0) < (1/91)%/2, vk (5, —3,6) < (2/197)*/2,
When N = 37, ve(1,6,0) < (1/643)”2 vi(1, —6, 9) < (1/646)/2,
vk(6 1,60) < (1/13)%/ (6, —1,60) < (1/4)*.
When N = 41, vp(4,5,0) < (1/39)’”2 vp(4, —5,0) < (1/19)%,
3k -vk(5,4,9) < (1/21)F/2, v (5, —4, 0) < (1/199)F/2,
When N > 50, |ce?/? £ \/19de~"/%|? > 27TN/80,

and the number of terms with ¢ + d? = N is not more than (13/3)N'/2 for N > 50. Then

. 5215 <= /3 \NYTM2 4459 80\ K2
|Rig slnz50 = > (N S\ :
) 9 80 3(k —3) \ 147

Thus v
(113) Rio,| <2+2(§>k/2+2 §>lc/2 2<&155>k/2+11;;)5(?{4?)2 (i;)km’
(114) |Rig ol < 4+4< )k/2+2(;>k/2 +2<6;5>k/2+3(?393) <i07>k/2,
(115) | R 3] < 6+2(§>k/2+2 ;) +- +2(6i6>k/2+m<i07>k/2.

We want to show that [Rig | < 2, |[Rigs| < 2, and |Rjg3| < 2. But the right-hand side of every
bound is greater than 2. The cases (¢,d) = +(4,1) give us bound equal to 2 for |Rj, ;[, and the cases
(c,d) = £(3,—1) and £(5, 1) give us bound equal to 4 for |Rjg,|, and the cases (c,d) = £(2,1),
+(4,~1), and £(5,1) give us bound equal to 6 for [Rg ;|-
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5.7. Valence formula. In order to decide the locating of zeros of Ej (z), we need the valence formula
for T (p):

5.7.1. Valence formula for T'(5).

Proposition 5.12. Let f be a modular function of weight k for T§(5), which is not identically zero. We
have

1 1 1
(116) Vool ) + 50/ vs(N 4 S0, (N4 300N+ D wl(f) =
pElG (5)\H
p#i/V/5,p5,1,05,2

k
1

)

where ps1 = —1/2+ i/ (2V5), p5 2 := —2/5+1i/5.

|
NS

FIGURE 8

Proof. Let f be a nonzero modular function of weight &k for I'fj(5), and let € be a contour of its funda-
mental domain F*(5) represented in Figure 8, whose interior contains every zero and pole of f except for
z/\/g, ps.1, and ps 2. By the Residue theorem, we have

LY s L

211
v PED; (5)\H
p#i/V/5,p5,1,p5,2

Similar to Proposition 3.1, (See [SE])

(i) For the arc GA, we have

A
2mi o f

(ii) For the arcs BB’, CC’', DD’, EE', and FF’, when the radii of each arc tends to 0, then we have

_UOO(f)-

1 (Ba 1 (Far 1
- =5 -+ = Vs (),

1 a1 [Far L )
1 o _ 1 o 1
211 Je 2ri Jgp  f 4 Pe2M D
1 [P ar 1
omi fy 7 2l

(ili) For the arcs AB and F'G, since f(Tz) = f(z) for T = ({ 1),

1
— =0.
211 A f 211 F f
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(iv) For the arcs C'D and D'E, since f(Wsz) = (v/52)* f(2), we have
dfWsz) _, dz | df(z)

= + .
f(Wsz) = f(2)
When the radii of the arcs CC’, DD’, EE' tend to 0, then

1 Ddf(z)+ 1 [Pdfz) 1 /D (_kdz)_)kﬁl

21 c (Z) 271’1 D’ f(Z) _Tm

B , z 27
where tan 6, = 2.
Similarly, for the arcs B'C' and E'F, since f ((Z23) Wsz) = (252 4+ V5)¥ f(z), we have
df ((52)Ws2) | dz  d(2)
FU(ZB5)Wsz) 24127 f(2)°
When the radii of the arcs CC’, DD’, EE' tend to 0, then

1 Cdf(z)+ 1 (Fdfz) 1 /C<_k ji/g)"kzeg’

where tanf; = 1/2.
Thus, since 61 + 03 = 7/2,

’

0 0, k
kot k2 ="
or "or T 1

5.7.2. Valence formula for T§(7).

Proposition 5.13. Let f be a modular function of weight k for T§(7), which is not identically zero. We
have

1 1 1
(117) Uoo(f) + §vz/\/7<f) + 5”97.1(]0) + §UP7,2 (f) + Z vp(f) =
pELS(T\H
p#i/VT,p7,1,07,2

)

k
3

where p71 = —1/2+ i/ (2V7), pr2:= —5/14 4+ V/3i/14.

The proof of this proposition is similar to Proposition 3.1, 5.12.

5.7.3. Valence formula for T§(11).
Proposition 5.14. Let f be a modular function of weight k for T'§(11), which is not identically zero.
We have

1

(118) voo(f) + 504/ v1 () + 32000 (F) F 30puaaF) + 50010a(F)

+ Z Up(f)zg,

pelG(11)\H
p#i/V11,p11,1,p11,2,011,3

where p11 = —1/2+ i/ (2V/11), p11,2 == —1/3 +1i/ (3V11), and p11,3 == 1/3 + i/ (3V/11).

Proof. Let f be a nonzero modular function of weight k& for I'j(11), and let € be a contour of its
fundamental domain F*(11) (Figure 7), whose interior contains every zero and pole of f except for
i/V1L1, p111, p11,2, P11,3, and p114 = —25/66 + /357/66 (cf. Figure 8). By the Residue theorem, we

have
L [a S uh

27
< pETG (11)\H
p#i/V1l,p11,1,+ ,p11,4

(i) For the arc around oo, we have —voo(f).
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(ii) For the arcs around i/v/11, p11,1, - - -, p11,4, when the radii of each arc tends to 0, then we have
1 1 1 1
_ivz/\/ﬁ(f)’ _ivpu,l(f)v _51}011,2<f)’ _§’UP11,3(f)7
~Upi1,4 (f)

(iii) For the arcs on {z; Re(z) = —1/2} and {z; Re(z) = 1/2}, since f(Tz) = f(z) for T = (} 1), we have
0.

(iv) For the arcs on {z; |z| = 1/V/11}, since f(Wi12) = (V112)* f(2), we have k), /(2r), where tanf; =
19/4/35. For the arcs on {z; [z £1/2| = 1/(2V11)}, since f (( 7 3) Wiiz) = (2V11z + VI1)* f(z), we
have k6o /(27), where tan 6, = 8/+/35.

Furthermore, for the arcs on {z; [z4+1/3| = 1/(3v/11)}, since f (( 717 '5) Wiiz) = 3V11z+V11)k f(2),

we have df (74 1) Wiyz) d dF(2) y
11 -3 11%) 2 p : A
FGE )W) e e M e

where tan 05 = 3/\/%

Similarly, for the arcs on {z; [z — 1/3| = 1/(3v/11)}, since f ({4} 3) Wi12) = (3v11z — VI1)F f(2), we
have kés/(27).

Thus, since 61 + 05 + 2603 = 7,

5.7.4. Valence formula for T§(13).

Proposition 5.15. Let f be a modular function of weight k for I'{(13), which is not identically zero.
We have

(119) voo(f) + 504/ vi50) + 32010 (F) F 3000a(F) + 50010 (f)

p€el(13)\H
p#i/V13,p13,1,013,2,013,3

where p131 = —1/2+1i/ (2V/13), p132 := —5/13 +i/13, and p13,3 := —7/26 + /3i/26.

Proof. Let f be a nonzero modular function of weight & for I'j(13), and let € be a contour of its
fundamental domain F*(13) (Figure 7), whose interior contains every zero and pole of f except for
i/V13, p131, p13,2, and p133 (c¢f. Figure 8). By the Residue theorem, we have

1 df
i - - = Z vp(f).
pET(13)\H
p#i/V13,p13,1,p13,2:P13,3
(i) For the arc around oo, we have —vo(f).
(ii) For the arcs around i/v/13, p13,1, p13,2, and p13 3, when the radii of each arc tends to 0, then we have

1 1 1 1
7§vz/\/ﬁ(f)a *57}013,1 (f)7 75”/)13,2 (f)a 75”013,3 (f)

(iii) For the arcs on {z; Re(z) = —1/2} and {z; Re(z) = 1/2}, since f(Tz) = f(z) for T = (} 1), we have
0.

(iv) For the arcs on {z; |z| = 1/v/13}, since f(Wi32) = (v/132)* f(2), we have k), /(27), where tanf; =
7/V/3. For the arcs on {z; |z £1/2| = 1/(2V/13)}, since f (( 3 5) Wisz) = (2V13z + V13)* f(2), we
have kfy/(27), where tanfy = 3/2.

Furthermore, for the arcs on {z; [z+1/3| = 1/(3V13)}, since f (( =75 3) Wisz) = (3V132+V13)* f(2),
we have k(03 + 05')/(27), where tan 63 = 5/(3v/3) and tan 63’ = 2/3.
Thus, since 01 + 0y + 03 + 03’ = 7w /6,
01 0 03 + (93/ 7
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5.7.5. Valence formula for T§(17).

Proposition 5.16. Let f be a modular function of weight k for T§(17), which is not identically zero.
We have

1 1 1

1 1
(120) Uoo(f) + 5’01/\/ﬁ(f) + §Up17,1(f) + 5”/717,2 (f) + 5”017,3 (f) + 5”017,4 (f)
3
+ Z vp(f) = Zka
pelG(17)\H
p#i/V17,017,1,P17,2,P17,3,P17,4

where p171 = —1/2 + i/ (2\/ﬁ), pi72 = —1/3 +1i/ (3\/ﬁ), p17,3 = —4/17 + /17, and p174 =
1/3 +1i/ (3V/17).

Proof. Let f be a nonzero modular function of weight k for I'j(17), and let 4 be a contour of its
fundamental domain F*(17) (Figure 7), whose interior contains every zero and pole of f except for
i/N1T, pira, -+ pi7.a, and pr7s := —20/51 + 2v/2i/51 (cf. Figure 8). By the Residue theorem, we have

L[4 = Z up(f)-

21
< pET; (1T)\H
p#i/NV1T,p17,1, ,p17,5

(i) For the arc around oo, we have —vs(f).

ii) For the arcs around i/v/17, p17.1, -+, p17.5, when the radii of each arc tends to 0, then we have
P17, P11,
1 1 1 1 1
_ivi/\/ﬁ(f)a _§UP17,1(f)’ _§'UP17,2 (f)’ _§UP17,3 (f>7 _§UP17,4 (f)7
“Vpi75 (f)

(iii) For the arcs on {z; Re(z) = —1/2} and {z; Re(z) = 1/2}, since f(Tz) = f(z) for T = (} 1), we have
0.

(iv) For the arcs on {z; |z| = 1/3/17}, since f(Wi72) = (V172)F f(2), we have k6, /(27), where tan ; = 4.
For the arcs on {z; |z £ 1/2| = 1/(2V17)}, since f(( % 3) Wirz) = (2V17z + VIT)F f(z), we have
kOy/(27), where tan 8y = 11/(4+/2).

For the arcs on {z; [z + 1/3] = 1/(3V17)}, since f ((72 1) Wizz) = (3V17z + VIT)* f(2), we
have kf3/(27), where tanfs; = 3/(2v/2). Similarly, for the arcs on {z; |z — 1/3| = 1/(3V/17)}, since
FU(E YD) Wigz) = (3V/172 — V1T)F f(2), we have kf3/(27).

Furthermore, for the arcs on {z; [z£1/4] = 1/(4V17)}, since f (( =15 1) Wirz) = (4V1T2+VIT)* f(2),

we have (( ) 1) )
A\ iza) Warz) e di(2) 01+ 04
F(Z71) Wirz) _kz+1/4+ 2 and k e

where tan 6y = 1/4 and tan 6y’ = 5/(8v/2)..
Thus, since 01 + 0y + 203 + 04 + 04" = 37/2,

01 02 05 04+6, 3
— — - k— = —k.
k27r+k2ﬂ'+2 k27r+k 2 4

5.7.6. Valence formula for T'§(19).
Proposition 5.17. Let f be a modular function of weight k for T'5(19), which is not identically zero.
We have

(121) 0sol) + 30ipi50) + 3%m00 () + 3010) + 30000 (1) + 38pr0(F)

5
+ Z Up(f) - éka
pel(19)\H
P#i/\/ﬁaplg,l7919,27919,371)19,4
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where pig1 == —1/2+1i/(2v/19), pro2 = —15/38 + V/3i/38, p1o3 := —1/4 + i/ (4/19), and pio4 :=
1/4+ i/ (4v/19).
Proof. Let f be a nonzero modular function of weight k& for I';(19), and let € be a contour of its

fundamental domain F*(19) (Figure 7), whose interior contains every zero and pole of f except for
i/V19, p191, - -+, P19.4, and p1g 5 := —21/76 + /15i/76 (cf. Figure 8). By the Residue theorem, we have

Lo 3 u(f).

27
“ pel; (19)\H
p#i/V19,p19,1, ,p19.5

(i) For the arc around oo, we have —vo(f).

(ii) For the arcs around i/v'19, p191, - - -, p19,5, when the radii of each arc tends to 0, then we have
1 1 1 1 1
_ivi/\/ﬁ(f)7 _51}019‘1 (f)v _gvmg,z (f)a _5’01719,3 (f)7 _51]/)19,4 (f)a
“Upio,s (f)

(iii) For the arcs on {z; Re(z) = —1/2} and {z; Re(z) = 1/2}, since f(Tz) = f(z) for T = (} 1), we have
0.

(iv) For the arcs on {z; |z| = 1/V/19}, since f(Wigz) = (v/192)* f(2), we have k6, /(27), where tanf; =
17/4/15. For the arcs on {z; [z £1/2| = 1/(2V19)}, since f (( {4 3) Wiez) = (2v19z + V19)* f(z), we
have k6 /(2r), where tan 6, = 4/v/3. For the arcs on {z; [2£1/3| = 1/(3v19)}, since f (( 2 3) Wig2) =
(3v192 4+ V19)* f(2), we have k(03 + 03')/(27), where tan 3 = 13/(3v/15) and tan 63" = 7/(3v/3).

Furthermore, for the arcs on {z; [z4+1/4] = 1/(4v/19)}, since f (( 75 4 ) Wioz) = (4V192+V19)* f(2),
we have kf,/(2), where tan 6y = 2/v/15. Similarly, for the arcs on {z; |z — 1/4| = 1/(4v/19)}, since
F(3 1) Wigz) = (4V/192 — V19) f(2), we have kf,/(2r).

Thus, since 01 + 0y + 03 + 03" + 20, = 57/3,

01 ) 03 + 93/ 04 5
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5.8. T5(5).

5.8.1. Preliminaries. Let as € [0,7/2] such that tan s = 2, then we denote
Az =1z |2l = 1/\/5, /2 < Arg(z) < 7m/2+ as},
Az, ={z; |2+ 1/2] = 1/(2V5), as < Arg(z) < w/2}.

Now we have
2 i ei(w/2+a5) eia5 1

=——4—_= — -,
P5,2 55 \/5 2\/5

o |

and we have
Fisa(m/2+as) = eik(w/2+a5)/2E1:5(P5,2)7
Fl:,s,z(af)) = eika5/2EZ,5(/’5,2)~

Now, we define

Fiso0—m/2) m/2+a5<0<T

Then Fj; 5 is continuous in the interval [7/2, 7]. Note that Fy 5 | (7/2 + a5) = ei(”/Q)k/gF,j7572(a5).
Let f be a modular form for I'§(5) of weight &, and let k£ =2 (mod 4). Then we have

Fi/V5) = f(Ws i/V5) =i f(i/V/5) = —f(i/V5),
Flpsa) = F((67") (Z32) Ws ps0) = i flps1) = —f(ps,0)s
Flps2) = F((Z23) ps2) =" fps.2) = —f(ps.2)-
Thus f(i/v/5) = f(ps.1) = f(ps2) = 0, then we have Vis(f) 2 1 vps, (f) 2 1, and vy, ,(f) > 1.
Let k be an even integer such that £ =0 (mod 4). Then we have

; . 5k/
Bis () = ey BB £0

Fr. (0 T/2<0<7/24+«
Fk5(9) { k51() / / 5-

V5 5k/2 11
9. 5k/2 1 V5
Biolps) = g7 P <_2+zl> 7
1 k/2 Nk .
By 5(ps2) = 5k/2+1(5/ +(2+14)")Ek(i) # 0.

Thus Ui/\/g(EZb) = UP5,1(E;,5) = vps,z (Ek,5) =0.

5.8.2. Ej 5 of low weights.
Fi 5(7/2). Let k > 4 be an even integer divisible by 4. We note that N := ¢* 4 d°.
Firstly, we consider the case N = 1. Then we can write;

F,;"75(7r/2) = Fl:,s,l(ﬂ'/2) = 2cos(km/4) + R;,w/z

where
[R5 72| < Z |cet™/4 4+ \/Bde /4| 7k

(e,d)=1
5td
N>1

Let v(c,d,0) = |ce’®/? + \/5de~"/?|7F then vi(c,d,7/2) = 1/(c* + 5d?)*/2. Now we will consider
the next cases, namely N = 2,5,10,13,17, and N > 25. We have the following;:

When N =2, ve(1,1,7/2) < (1/6)%/2

When N = 5, ve(1,2,7/2) < (1/21)k/2, vp(2,1,7/2) < (1/3)".
When N = 10, vr(1,3,7/2) < (1/46)F/2, o(3,1,7/2) < (1/14)F/2,
When N = 13, vp(2,3,7/2) < (1)7)F, vp(3,2,7/2) < (1/29)F/2,
When N =17, vp(1,4,7/2) < (1/21)%/2 ve(4,1,7/2) < (1/3)%.
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When N > 25, A4+5d2 >N
and the number of terms with ¢2 4+ d? = N is not more than (96/25)N'/2 for N > 25. Then

|R ‘ 192 i (k—3)/2
5,7/2|N>25 < 7“: 3) \ 24 .

k/2 k 2k (k—3)/2
1 1 1 192 1

RE | <4(= 4= - — = (= ,

Bomyal (6> " <3> T <3> T %Bk-3) (24)

< 1.77563... (k> 4)

Furthermore,

In conclusion, we have following:

Lemma 5.7. For an even integer k > 4

>0 k=0 (mod38)
Fio(n/2){ <0 k=4 (mod8)
=0 k=2 (mod4)

Fy5(m/2 + as). Let k > 4 be an even integer divisible by 4.

Fs(m/2+ as) = e m/2T0) 2 B (5 5)
eik(ﬂ/2+a5)/2 ' )
= W(5k/2 + (2 + Z)k)Ek(l).
Here

eih(m/2+05)/2(5k/2 | (9 1 k) = 5F/2gik(r/24as)/2(] 4 o=ik(m/2+as))
=252 cos(k(m/2 + a5)/2).
In conclusion, we have following:
Lemma 5.8. For an even integer k > 4

2582 cos(k(m/2 + as)/2) By (i)

Fis(m/24 as) = {SWH =0 (mod 4)

k
k=2 (mod4)’
Furthermore, by Proposition 3.3, we have Fj (i) > 0 for every k > 4 such that k =0 (mod 4).

Fy 5(m). Let k > 8 be an even integer divisible by 4. We note that N := 2+ d2
Firstly, we consider the case NV = 1. Then we can write;

F} () = F{ 5 5(n/2) = 2cos(km/4) + RS .

where
|R§77‘—| < Z |Cei7r/4_|_d\/ge—i7r/4|—k+2k Z |Cei7r/4_|_d\/ge—i7r/4|—k.
(c,d)=1 (¢, d)=1

5tc 5tc
2|ed 2fed
N>1

Let vg(c,d,0) = |ce’®/? + \/5de="/2|=F  then vi(c,d,n/2) = 1/(c* + 5d?)*/2. Now we will consider
the next cases, namely N = 2,5,10,13,17, and N > 25. We have the following:

When N =2, ve(1,1,7/2) < (2/3)%/2

When N = 5, ve(1,2,7/2) < (1/21)k/2, vp(2,1,7/2) < (1/3)".
When N = 10, or(1,3,7/2) < (2/23)%/2, o(3,1,7/2) < (2/7)F/2.
When N = 13, vp(2,3,7/2) < (1)7)F, vp(3,2,7/2) < (1/29)F/2,
When N = 17, vp(1,4,7/2) < (1/21)%/2 vp(4,1,7/2) < (1/3)%
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When N > 25, A +5d> >N

and the number of terms with ¢ 4+ d? = N is not more than (96/25)N'/2 for N > 25. Then

R: | 1536 (k=3)/2
5”N>25\25(k 3) 6 '

k/2 2k (k—3)/2
2 1 1536 (1
R:_|<4(= g4z L ,
mA<i(5) i (5) e (6)

<0.95701... (k> 8)

Furthermore,

In conclusion, we have following;:

Lemma 5.9. For an even integer k > 8

>0 k=0 (mod38)
Fps(m)4<0 k=4 (mod8).
=0 k=2 (mod4)

Fi5(0) for m/2 < < 5m/6. Let k > 10 be an even integer. We note that N := ¢? + d?.
Firstly, we consider the case N = 1. Since 57/6 < 7/2 + a5, we can write;

Fp5(0) = Fy51(0) = 2cos(k0/2) + R 5, ) for® € [r/2,57/6],

where

|R5 5 /6] < E |lce?/? 4 \/5de™0/2|7F
(e,d)=1
5¢d
N>1

63

Let vy,(c,d,0) := |ce®/?+/5de=/2| =% then vy (c,d,0) = 1/ (¢* + 5d? + 2v/5ed cos 0) */2 Now we will
consider the next cases, namely N = 2, 5,10, and N > 13. Considering —v/3/2 < cosf < 0, we have the

following:
When N = 2, (1,1,0) <1/ (6 \/ﬁ)m ur(1,—1,0) < (1/6)/2,
When N = 5, £(1,2,0) < 1/ (21—2W) (1, —2,0) < (1/21)%/2,
K(2,1,0) <1/ (9—2W) ve(2,—1,8) < (1/3)~.
When N = 10, L(1,3,0) < 1/ (46 3\/ﬁ)k/2 ve(1,-3,0) < (1/46)%/2,
¢(3,1,0) <1/ (14— 3\/6) (3, —1,0) < (1/14)%/2,
When N > 13, \ce”/2 +V/5de 9212 > N/5,

and the number of terms with ¢ + d? = N is not more than (21/5)N'/2 for N > 13. Then

1008v/3 < )““”“

* g
|1E5757r/6|N213 5(/€ 3)
Furthermore,

1

|R* | <y k/2 . Ly i k/2 N 1008\/§ 3 (k=3)/2
57m/20 =%\ 9 _9y15 46 5(k —3) \ 12 ’
< 1.34372... (k> 10)

In conclusion, we have following:
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Lemma 5.10. For an even integer k > 10,
Fp5(0) = 2cos(k0/2) + R; 5.6 for0 € [m/2,5m/6],

where [R5 56| < 2.

The locating zeros of Ej 5. We have Fj ;(m/2) < 0 by Lemma 5.7, and we have Fj5(7/2+ as) > 0 by
Lemma 5.8 because cos(2(7/2 + as)) = 3/5 > 0. Thus Ej 5 has at least one zero in A3 ;. Furthermore,
by the valence formula for I'5(5) (Proposition 5.12), £} 5 has no other zero. Thus we have following:

Lemma 5.11. Ej 5 has only one zero in Aj 1, and we have v;, 5(Ej 5) = vp; , (B 5) = Vps . (Ej5) = 0.

The locating zeros of Ef ;. By previous subsubsection, we have v;, £(Eg5) > 1, vy, (Egs) > 1, and
Vps (B 5) = 1. Furthermore, by the valence formula for I'5(5), Ef 5 has no other zero. Thus we have
following:

Lemma 5.12. We have v;, 5(E§5) = vps 1 (Eg5) = Vps . (EG 5) = 1, and E§ 5 has no other zero.

The locating zeros of E 5. We have Fg5(7/2) > 0 by Lemma 5.7, and we have Fg 5(7/2 + as) > 0 by
Lemma 5.8 because cos(4(m/2 + a5)) = —7/25 < 0, and we have Fg5(m) > 0 by Lemma 5.9. Thus Eg 5
has at least two zeros in each arc A3 ; and Az ,. Furthermore, by the valence formula for I'§(5), Eg 5 has
no other zero. Thus we have following:

Lemma 5.13. E{ 5 has only two zeros in each arc A3, and A3 5, and we have v, 5(E§5) = vps, (E§5) =
Ups.2 (E§,5) =0.

The locating zeros of ET 5.

We have Iy 5(37/5) < 0 and FYj 5(47/5) > 0 by Lemma 5.10. Thus EY; 5 has at least one zero in A3 ;.
In addition, by previous subsubsection, we have v;, &(Ejq5) = 1, vp;, (Efo5) 2 1, and vy, , (Efy5) > 1.
Furthermore, by the valence formula for I';(5), Efj 5 has no other zero. Thus we have following:

Lemma 5.14. EY, 5 has only one zero in A3 1, and we have v, 5(EYq5) = Vps 1 (Elo5) = Vps » (Efo5) =
1, and Ef, 5 has no other zero.

5.8.3. The space of modular forms. Let M;; 5 be the space of modular forms for I'§(5) of weight k, and let
M be the space of cusp forms for T(5) of weight k. When we consider the map M; ;> f — f(c0) € C,
the kernel of the map is M,j% So dim(M,jﬁ/M;%) <1l,and My, =CE} ;& M;C"O5
Recall that
A5 = 7 (2)n4(52)
is a cusp form for I'fj(5) of weight 4 (Remark 4.2). We have following theorem:

Theorem 5.3. Let k be an even integer.
(1) Fork <0 and k=2, My 5=0.
(2) For k=0 and 6, we have M}\% = 0, and dim(M;’ ;) = 1 with a base E} 5.
(3) M;% = A5MI:—4,5'
The proof of this theorem is very similar to Theorem 3.1 and 5.1. Furthermore, for an even integer
k>4, dim(M ;) = (k—2)/4if k=2 (mod 4), and dim(My 5) = k/4+1if k=0 (mod 4).
Let k be an even integer k > 4. Write n := dim(M; ;) — 1, then k — 4n = 0 or 6. Because Ej 5 —
E;74n75(Ejf’5)” e M,:’%, we have M]:"E) = (CE,’;74n15(EZ75)" @ M,:% Then

Mj, s =C(Ej5)" @ C(Ej5)" 'As @ --- & CA?
Min 65 = Bi5((Ej5)" © C(E}5)" A& - & CAY)

Thus, for every p € H and for every f € M 5, v,(f) = vp(E}_4,5)-
In conclusion, the next proposision follows:
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Proposition 5.18. Let k > 4 be an even integer. For every f € My 5, we have

(122) U 5(f) Z sk, Vps i () 2 Sk Ups o () = sk
(sk = 0,1 such that2s; =k (mod 4)).

Remark 5.5. Every modular form for T'{(5) is generated by
Eis, Egs, and As.
Now, we have following conjecture:

Conjecture 5.1. Let k > 4 be an even integer. E 5 has k/4 zeros in A3, and A3, if k =0 (mod 4),
and Ej; 5 has (k —6)/4 zeros in A; | and A3 5 if k =2 (mod 4). Furthermore, in Proposition 5.18, the
equality hold if f is equal to Ef 5 or its constant multiple.

5.8.4. Observation on Conjecture 5.1. To prove Conjecture 5.1 is much more difficult than the proof of
Theorem 1 and 2. The most difficult point is the argument Arg(ps2), which is not a product of rational
number and 7. When p = 2 and 3, for I'j(p), the arguments of p, are 37/4 and 57/6, respectively. Then,
in Lemma 5.2 and 5.5, we removed the angle w/2k and 7/3k from the angles of A5 and A%, respectively.
However, for ps 2, we can not decide the angle corresponding to m/2k and 7/3k. We need more radical
expansion to prove this conjecture.

As a prelude to prove Conjecture 5.1, we omit a few zeros. We consider the interval [7/2, 7/2+as—m /K]
and [m/2 + a5 + 7 /k, 7| for I 5. Now, we will prove next lemmas in the next subsubsection:

Lemma 5.15. Let k > 12. For V0 € [7/2,7/2+ as —z] (v = 7/k), |R5 ;| < 2.
Lemma 5.16. Let k > 12. For V0 € [as +x,7/2] (v = 7/k), |R§ 5| < 2.

By above lemmas, we can easily show that £} 5 has at least k/4 — 2 zeros in A3 ; and A3, if k =0
(mod 4), and Ej 5 has at least (k —6)/4 — 2 zeros in A3 ; and A3, if k =2 (mod 4). Thus, we can prove
Conjecture 5.1 except for at most 2 zeros.

5.8.5. Ezpansion of the RSD Method. Before proving the above lemmas, we need the following prelimi-
naries.

Proposition 5.19.

(1) If0 <z < /2, thensinz > 1 — cosz.

(2) If0 <z < /12, then 1 — cosz > %$2'

The proofs of Lemma 5.9.4 and 5.9.4 are similar to that of Lemma 5.2. We use the previous proposition
for the following proofs:

Proof of Lemma 5.9.4. Let k > 12 and « = 7/k, then 0 < z < 7/12.
. , 2
€19/2 4 V/5e™ /22 > 9 4 4v/5cos(m/2 + a5 — ) > 1+ ngQ. (Prop.5.19)

) ) 69
|619/2 + \/56—29/2|k >1+ ?x2 (k > ].2)

662472 1
20(1,1,0) <2 — 2~
’Uk( y Ly ) 237T2—|—96 k2
In inequality(88), replace 2 with the bound 2 — 22%44?; . 1712 Then
R <o 002r L NV (L\YR 10086 (1)
TR 2306k A2 16 s(k—3)\2)

Furthermore, (1/2)%/2 is more rapidly decreasing in k than 1/k?, and for k = 12, we have
|R: | < 1.26593...
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Proof of Lemma 5.9.4. Let k > 12 and « = 7/k, then 0 < z < 7/12.

1 . . 1 69
Z|eza/2 +VBe 022 > E(G +2v5cos(as + ) =1+ %xQ. (Prop.5.19)

L o2 —i0/2k 69
il 12 4 \/5e™ 02k > L+ 162” (k>12),
B 662472 i
2372 4+ 768 k2’
In inequality(89), replace 2 with the bound 2 — %k%. Then
662472 1 2\ "/ 1\" 378v6 (1\"?
|R32|<2—277T—2+2 = +oe 2 =)+ v (1 .
’ 23712 + 768 k 3 9 k—3 \3
Furthermore, (2/3)*/2 is more rapidly decreasing in k than 1/k?, and for k = 12, we have
|R: | < 1.89789...

2% 20,,(1,1,0) < 2
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5.9. T4(7).

5.9.1. Preliminaries. Let a7 € [0,7/2] such that tan ay = 2, then we denote

Az =1z |2 = /N7, 1/2 < Arg(z) < ©/2 + az},
A7y ={z; |z +1/2] = 1/(2V7), ar — )6 < Arg(z) < 7/2}.
Now we have
5 \/gl ei(ﬂ'/2+o¢7) ei(a7—7r/6) 1
Pr2=——+— = = — 5
14 14 N4 2T 2
and we have
Fiza(m/2 4 a7) = MORHODREL (pr ),
F:,?,Q(OW —7/6) = 6ik(a77ﬂ/6)/2E2,7(P7,2)~
Now, we define
. Fi71(0) 7/2<0<7/24ar
Fk,7(9) = F*’ ’ .
n72(0—=27/3) 724+ a7 <0< TT/6

67

Then F}; , is continuous in the interval [r/2, 77 /6]. Note that Fy; ;| (7/24a7) = e'®T/DR2Fr - (ar—7/6).
Let f be a modular form for I'§(7) of weight k, and let ¥ =2 (mod 4). Then we have

FGINT) = FWri/NT) = F/VT) = =F@/V7),
Flora) = F(§1) (751 Wapra) =i f(pra) = —fpra)-
Thus f(i/v/7) = f(pr.1) = 0, then we have v;,7(f) 2 1 and vy, (f) 2 1. On the other hand, let k # 0

(mod 6). Then we have

Thus f(p72) =0, then we have v, ,(f)
Let k be an even integer such that k

flpr2)=f

—~

(7 34) pra) = () f(pra).

> 1.
=0 (mod 4). Then we have
. i 2. 7k/2 .
Fir (=) = a7 20,
. 2.7k/2 INRVA
Bialon) = qeppbe |\ ma 57 70

Thus v, 7(Ef 7) = vy, (B} 7) = 0. On the other hand, let k be an even integer such that k =0 (mod 6).

Then we have

CoTk/2 41

1 54+ /3i :
* + 1
Eir(pr2) = s | T + (2) Ey(p) # 0.

Thus v, , (EZ7) =0.

5.9.2. E} ; of low weights.

Fi7(7/2). Let k > 4 be an even integer divisible by 4. We note that N := ¢ 4 d°.

Firstly, we consider the

where

case N = 1. Then we can write;

Fia(m/2) = Fig1(n/2) = 2cos(km/4) + R7 -/

Byl < 0 Jee™/ 4 v/Tdem /4R,
(e,d)=1
7td
N>1

Let v (c,d,0) = |ce®/? + /Tde "/?|7F then vy(c,d,7/2) = 1/(c* + 7d?*)*/2. Now we will consider
the next cases, namely N = 2,5,10,13,17, and N > 25. We have the following:

When N = 2,

op(1,1,7/2) < (1/8)F/2.
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When N =5, v(1,2,7/2) < (1/29)F/2, v(2,1,7/2) < (1/11)%/2,
When N = 10, vr(1,3, 77/2) < (1/8)%, vr(3,1,7/2) < (1/4)*.
When N = 13, vp(2,3,7/2) < (1/69)%/2, ve(3,2,m/2) < (1/37)%/2.
When N =17, vp(1,4, 77/2) < (1/113)%/2, vp(4,1,7/2) < (1/23)%/2,
When N > 25, 24+ 17d%> > N,

and the number of terms with ¢? + d?> = N is not more than (144/35)N'/2 for N > 25. Then

288 1\ k372
R S——— | = .
[t 2|25 35(k — 3) <z4>
Furthermore,

k/2 k/2 k/2 (k—3)/2
1 1 1 288 1
R | <4< 4 Y (= :
[t 2] (8) * <11) o (113) +35(k—3) (24)
<1.80820... (k> 4)

In conclusion, we have following;:

Lemma 5.17. For an even integer k > 4

>0 k=0 (mod 8)
Fi(m/2)3<0 k=4 (mod38).
=0 k=2 (mod4)

F3 7(57/6). To decide the zeros of Ej 7, we need the value of Fj;(57/6). We note that N := ¢? + d?,
Firstly, we consider the case N = 1. Then we can write;

Fy7(5m/6) = 2cos(10m/3) + R7 , = 1 + R;A

where

x 1 i5m/12 —ism/12y-4 | L —ibm /12 i5m/12y—4
R7,4<§ Z (ce +V/7de ) —|—§ Z (ce +V/Tde )

(e,d)=1 (c,d)=1
7td 74d
N>1 N>1

We want to prove Fy;(57/6) > 0, but it is too difficult to prove that |[R7 4| < 1. However, we have
only to prove R7 , > —1.

Let ug(c,d) := (ce®™/12 4 /Tde=®/12)=% 4 (ce®7/12 4 \/T7de?™™/12)=4 and let u(c,d) := ug(c, d) +
uo(c, —d) + uo(d, ¢) + ug(d, —c). Now we will consider the next cases, namely N = 2,5,---,197, and
N > 202. We have the following:

When N = 2, uo(1,1)  +uo(1,—1) > — 0.08151.

When N = 5, u(1,2) > —0.19373. When N = 10, u(1,3) > 0.24147.
When N =13, u(2,3) > —0.02162. When N =17, u(1,4) > —0.07736.
When N = 25, u(3,4) > —0.00313. When N = 26, u(1,5) > —0.02262.
When N = 29, u(2,5) > 0.03569. When N = 34, u(3,5) = —0.00503.
When N = 37, u(1,6) = —0.00586. When N = 41, u(4,5) > —0.00083.
When N = 50, u(1,7) > —0.00168. When N = 53, w(2,7) = —0.00400.
When N = 58, u(3,7) = 0.00491. When N =61, u(5,6) = —0.00033.
When N = 65, uw(l,8) +u(4,7) > —0.00211.

When N = 73, u(3,8) = 0.00692. When N = 74, u(5,7) > —0.00048.
When N = 82, u(1,9) > —0.00014.

When N = 85, w(2,9)  +u(6,7) > — 0.00295.

When N = 89, u(5,8) > —0.00064. When N = 97, u(4,9) > 0.00099.
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When N =101, u(1,10) > —0.00003. When N = 106, u(5,9) > —0.00064
When N =109,  u(3,10) > —0.00014. When N = 113, u(7,8) > —0.00009
When N = 122, u(1,11) > 0.00002. When N = 125, u(2,11) > —0.00073
When N =130,  u(3,11) +u(7,9) > — 0.00116.
When N = 137, u(4,11) > 0.00195.
When N = 145, w(1,12)  +u(8,9) > — 0.00003.
When N =146,  (5,11) > 0.00025. When N =149, (7,10) > —0.00015.
When N = 157, u(6,11) > —0.00030. When N = 169, u(1,2) > 0.00077.
When N = 170, u(1,13) +u(7,11) > — 0.00016.
When N = 173, u(2,13) > —0.00021. When N = 178, u(3,13) = —0.00068.
When N =181, (9,10) > —0.00004.
When N =185,  u(4,13) +u(8,11) >0.00003.
When N = 193, u(7,12) > —0.00019. When N = 194, u(5,13) > 0.00093.
When N =197, (1, 14) > 0.00002.

When N > 202, for the case cd < 0, we put X + Vi = (ce®®/12 + \/Tde=®7/12)2 = —(\/3/2)(c* +

7d?) + 2V/Ted + (1/2)(¢? — 7d2)i. Then |Y| — |X| < —¥3=1e2 — V312 4 9\/Ted < 0. Thus (ce?™/12 4
ﬁd67i5w/12)74 + (cefiSTr/lZ + ﬁdeiSﬂ/IQ)fél > 0.

For the case cd > 0, we have ¢ 4+ 7d? — v/21|cd| > (2/9)N, and the number of terms with ¢? 4 d?> = N
is not more than (13/7)N'/2 for N > 144. However, this bound is too large. We must consider some
cases.

For the case |c| < |d|, we have ¢ 4 7d? — v/21|ed| > (3/2)N and |¢| < (1/v/2)N'/2, 1/+/2 > 7/10. For
the case |d| < |¢| < (6/+/21)|d|, we have ¢? + 7d?> — v/21|cd| > N and |¢| < (6/v/57)NY2, 6/y/57 > 7/9.
For the case and (6/v/21)|d| < |¢| < \/7/3|d|, we have ¢? +7d? —v/21|cd| > (1/2)N and |c| < /T/1I0N'/2,
\/7/10 > 5/6. For the case cd > 0 and /7/3|d| < |e| < (22/3v/21)|d]|, we have c2+7d%>—+/21|cd| > (1/3)N
and |c| < (22/V673)N1/2, 22//673 > 22/25.

In conclusion, we have

R*
74 N2>202,cd>0
—k/2 —k/2
13,7 3 7 1 1
2 N1/2 N 7N1/2 N—k/2 7N1/2 _N
TN X (5V) g T NN 3 (g
N>202 N>202 N>202
—k/2 —k/2
7 1 3 2
EECTERS (N> NSNS (N) )
150 N>202 3 25 N>202 9
13(7 4 7 1 7 3 81) ko
= (st It — A —— 9] Y NOH/
7\10 9 90 18 150 25 4 N>202
7579
630201
Furthermore,
7579
Rz —0.08152 — 0.19373 + - - - + 0.00002 — ———=
e 6301/201

= —0.98316... (k>4)
In conclusion, we have following:

Lemma 5.18.
F§’7(57r/6) >0
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Fljj(@) for m/2 < 6 < 27/3. Let k > 6 be an even integer. We note that N := ¢ + d2.
Firstly, we consider the case N = 1. Since 27/3 < 7/2 + 7, we can write;

Fy7(0) = Fi71(0) = 2cos(k0/2) + R’7‘727r/3 for 0 € [r/2,27/3],

where
|R7 2r /3] < Z |ce™/? + VTde™ 2| 7F,

(e,d)=1
7td
N>1

Let vy, (c,d,0) := |ce®/?+/Tde=/2| =% then vy (c,d,0) = 1/ (¢* + 7d? + 2/Ted cos 0) "2 Now we will
consider the next cases, namely N =2 and N > 5. Considering —1/2 < cosf < 0, we have the following:

When N =2, uk(1,1,7/2) < (1/(8 = VT))*/?, (1, —1,7/2) < (1/8)F/2.
When N > 5, lce?/? + \/Tde™ /%2 > 5N/1,
and the number of terms with ¢ 4+ d? = N is not more than (36/7)N'/2 for N > 5. Then

|R ‘ 576 l (k—3)/2
man/sIN25 S 7y | 5 '

k/2 k/2 (k—3)/2
1 1 576 7
R: <2 ——= 2| = — | == ,
S (8— ﬁ) * (8) T3 <2O>

< 1.19293... (k‘ > 6)

Furthermore,

In conclusion, we have following:
Lemma 5.19. For an even integer k > 6
Fp2(0) =2cos(k0/2) + R7 505 for0 € [m/2,27/3],
where |R7 55| < 2.

Fy 7(0) for m < 0 < 7m/6. Let k > 6 be an even integer. We note that N := c +d>.
Firstly, we COHbldeI‘ the case N = 1. Then we can write;

Fi7(8) = Fyiq5(0 — 27/3) = 2cos(k(0 — 27/3)/2) + R, for 6 € [x, 7x /6],

where ‘ ‘ ‘ .
Z |ce’9/2 + d\ﬁeﬂemrk + 2k Z |cew/2 + d\ﬁeﬂemrk.
(e,d)=1 (c,d)=1
Tte Tte
2|ed 2fed
N>1
Let vy,(c,d,0) := [ce’/?+/Tde= /2| =% then vy (c,d,0) = 1/ (¢* + 7d?® + 2/Ted cos 6) *2 Now we will
consider the next cases, namely N =2,5,--- 82, and N > 85. Considering 0 < cosf < 1/2, we have the
following:
WhenN:Qa 2k'vk(17179) < (1/2)k/27 2k'vk(17_179) < (4/ (8_ ))
When N = 5, ue(1,2,0) < (1/20)%/2, ve(1,-2,8) <1/ (29 - Q\ﬁ)
ur(2,1,0) < (1/11)%/2, ve(2,-1,8) <1/ (11 - 2[)
When N =10, 25 - u,(1,3,0) < (1/4)F, 20 (1,-3,0) < (4/ (64 - 3[))
25 0(3,1,0) < (1/2)*, 2 0 (3,—1,0) < (4/ (16 - 3\f))
k/2

When N = 13, ue(2,3,0) < (1/69)%/2, ve(2,-3,0) < 1/ (69 6\[)
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When N = 17,

When N = 25,

When N = 26,

When N = 29,

When N = 34,

When N = 37,

When N =41,

When N = 50,

When N = 53,

When N = 58,

When N = 61,

When N = 65,

2k~1}k

2k~vk

ok .

ok .

2k .y

2k~1}k

vg(3,2,0) <
v (1,4,0) <
v (4,1,0)
vg(3,4,0) <
v (4,3,60) <

(1,5,0) <

(5,1,0)

v(2,5,0) <
vg(5,2,0) <
vg(3,5,0) <
ve(5,3,0) <
vg(1,6,0)
v (6,1,60) <
vg(4,5,0) <
vg(5,4,0) <
k(1,7,0)
ve(7,1,0) <
vE(2,7,0) <
v(7,2,60) <
(3,7,0) <
vg(7,3,0) <
vg(5,6,0) <
vg(6,5,0) <
vg(1,8,0) <
vg(8,1,0) <
vp(4,7,60) <

Uk(7a 47 0) g

(1/37)%/2,

(1/113)"/2,

< (1/23)42,

(1/11)",
(1/79)*2,

(1/44)%72,

< (1/8)"2,

(1/179)%/2,

(1/53)%/2,
(1/46)%/2,

(1/22)",

< (1/253)%/2,

(1/43)"72,

(1/191)%/2,
(1/137)%/2,

< (1/86)%/2,

(1/14)"2,

(1/347)%/2,

(1/77)*/2,
(1/88)"72,

(1/28)",

(1/277)%/2,
(1/211)%/2,

(1/449)*/2,

(1/7)*2,

(1/359)"/2,

(1/245)"/2,

FOR T} (p) AND Ty(p) OF LOW LEVELS
k)2
0k(3,-2,0) < 1/ (37— 6V7)

k/2
o(1,—4,0) <1/ (13- 4v7)
k/2
o(4,-1,6) < 1/ (23 - 4V7)

k)2
o(3,-4,0) <1/ (121 - 12v7)

o(4,-3,0) <1/ (79— 12\f7)k/2
2 ug(1,-5,0) < (4/ (176 - 5\f))
2 uy(5,-1,0) < (4/ (32 - 5[))k/2

o(2,-5,60) <1/ (179 - 10f7)k

op(5,~2,6) <1/ (53— 10[)’”2

20 (3,-5,0) < (4/ (184 - 15\ﬁ))

2 (5, -3,0) < (4/ (88 - 15[7))”2

ve(1,-6,0) < 1/ (253 - 6\f7)k/2 :
ve(6,-1,0) < 1/ (43 _ 6\f7)k/2
ve(4,-5,0) < 1/ (191 - 20\/)
(5, —4,0) <1/ (137 20f)
28 u(1,-7,0) < (4/ (344 7 7)
0 < (4 (56-7v7))
op(2,-7,0) < 1/ (347 - 14\f7)k
(7, -2,0) <1/ (77 - 14\f)k/2

k/2
Qk . vk(7,

2k (3, ~7,0) < (4/ (352 - 21[))
2k (7, -3,0) < (4/ (112 - 21[))
vk (5,—6,0) < 1/ (277 30[) .

0(6,-5,0) < 1/ (211 —30[)
(1, -8,0) /(449 Sf)
i (8, <1/ (71 )k/z
o(4,-7,0) < 1/ (359 - 28\f)
0r(7,—4,0) < 1/ (245 — 28\f)

71
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When N = 73, (3,8, 0) < (1/457)%/2, ve(3,-8,0) < 1/ (457 247 )
v (8,3,0) < (1/127)%/2, (8, —3,0) <1/ (127 24[)
When N =74, 25 - 0.(5,7,68) < (1/92)"/2, 2 (5, —T7,6) (4/ (368 35f)) 2
2k (7, 5,0) < (1/56)%/2, 2k .y (4/ (224 35\ﬁ))k/2.
When N =82, 2% .4,(1,9,0) < (1/142)%/2, 25 (1,9, 0) (4/ (568 9\f))k/2,
28 0e(9,1,0) < (1/22)%/2, 2k . 1 (9, —1,6) (4/ (88 9f))k/2

When N > 85,  |ce'®/? £ /Tde %/?2 > 5N/7,
and the number of terms with ¢? + d? = N is not more than (27/7)]\71/2 for N > 64. Then

RS 1206v/21 (1972
TrNEES S T3\ 15 ‘

Furthermore,

R: <22 k/2+~-+2 = k/2+71296‘/ﬁ LY
ST 8 — VT 457 E—3 \15 ’
< 1.98849... (k> 6)

In conclusion, we have following;:
Lemma 5.20. For an even integer k > 6,
Fy7(0) = 2cos(k0/2) + R; . for0 € [m,Tm/6],

where |R7 | < 2.

Fy7(0) for m/2 < 0 < 5m/6. Let k > 8 be an even integer. We note that N := 2+ d2
Firstly, we consider the case N = 1. Since 57/6 < /2 + a5, we can write;

Fp2(0) = Fy7,(0) =2cos(k0/2) + R7 5, ) for® € [r/2,57/6],

where

Bl € S0 lee®/? Ve 012,
(e,d)=1
Ttd
N>1
Let vg(c,d, 0) := |ce’®/2 +/Tde%/2|=F, then vy (c,d,0) = 1/ (c* + 7d> + 2v/Tcd cos 0) *2 Now we will
consider the next cases, namely N = 2,5,10, and N > 13. Considering —\/§/2 < cosf < 0, we have the
following:

k)2
When N = 2, ue(1,1,0) < 1/ (8—\/21) : ur(1,—1,0) < (1/8)/2,
k)2
When N = 5, ue(1,2,0) < 1/ (29 - 2\/21) : ur(1,—2,8) < (1/29)%/2,
k/2
ve(2,1,0) < 1/ (11—2\/21) , ur(2,—1,0) < (1/11)%/2.
k)2
When N = 10, ue(1,3,0) < 1/ (64 - 3\/21) , ur(1,-3,0) < (1/8)F,
k)2
or(3,1,0) <1/ (16 - 3v21) vr(3,-1,6) < (1/4)%.

When N > 13, |ce?®/? £ \/Tde ™9/ |2 > 2N /9,
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and the number of terms with ¢? + d? = N is not more than (36/7)N'/2 for N > 13. Then

17281/3 (3)““3)/2

|R? 5m6lv213 < o5 | 3

7(k —3)

|R: o] <2 <1 )m det2 (1>k PR <3) e
T2l 2\ 11— 221 8) T(k-3)\8 ’
< 1.96057... (k>8)

In conclusion, we have following:

Furthermore,

Lemma 5.21. For an even integer k > 8,
Fy 7(0) = 2cos(k0/2) + R;,5ﬂ'/6 for € [r/2,57/6],
where |R7 56| < 2.

The locating zeros of Ej ;. We have Fj,(7/2) < 0 by Lemma 5.17, and we have Fy,(57/6) > 0 by
Lemma 5.18. Thus Ej ; has at least one zero in A7 ;. In addition, by the previous subsubsections, we
have v,, ,(E} ;) = 1. Furthermore, by the valence formula for ' (7) (Proposition 5.13), E} ; has no other
zero. Thus we have following:

Lemma 5.22. Ej ; has only one zero in A7 1, and we have v, 7(Ej 7) = Vp, . (B} 7) = 0 and v, , (E} 7) =
1.

The locating zeros of Eg ;. We have Fg ;(27/3) > 0 by Lemma 5.19, and we have Fg ,(7) < 0 by Lemma
5.20, thus E§ ; has at least one zero in A7 ; U A7 5. By previous subsubsection, we have vi/\ﬁ(Eé‘J) >1

and v,, , (E§ ;) > 1. Furthermore, by the valence formula for I'§(7), Eg ; has no other zero. Thus we
have following;:

Lemma 5.23. Ej; has only one zero in A7y U A7, and we have v, 7(Eg7) = vy, (E§;) = 1 and
UP7,2 (EZJ) =0.

The locating zeros of Ej,,. We have FY, ,(7/2) < 0, F{5,(27/3) > 0, F}y;(57/6) < 0 by Lemma
521, and we have F{y ;(7) > 0, F{5 ,(77/6) < 0 by Lemma 5.20. Thus E7, ; has at least four zeros
in A7, U A% ,. Furthermore, by the valence formula for I'G(7), Ef; has no other zero. Thus we have
following:

Lemma 5.24. Ef,; has just four zeros in A7, U A7,, and we have v, =(Efy7) = vp,, (Efy7) =
Vp7,2 (Ei*277) =0.

5.9.3. The space of modular forms. Let Mj; , be the space of modular forms for I'5(7) of weight k, and let
M;% be the space of cusp forms for I't (7) of weight k. When we consider the map M;: ;> f — f(o0) € C,
the kernel of the map is M,;o?. So dim(M,jj/M,:%) <l,and My, =CE} ;& M,j07

Recall that

A7 =n°(2)n°(7z)

is a cusp form for T'y(7) of weight 6, and (A7)? is a cusp form for I';(7) of weight 12 (Remark 4.2).

We also have )

Eaq'(2) = G (TE2(72) — Ea(2)),

which is a modular form for I'g(7) with v,, ,(E27") = 2 and v,(E7") = 0 for every p # pr 2. Furthermore,
because we have Es 7' (Wr2) = —(V/72)?Fa7'(2), (E27')? is a modular form for T'(7) of weight 4. (See
Section 6)

We have following theorem:

Theorem 5.4. Let k be an even integer, and let Az 4 := (5/16)((E27")? — Ej ),
A9 1 := (559/690)((41065/137592)(E; , E§ 7 — Efo 1) — E§ 7A7.4).
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(1) Fork <0 and k=2, My, =0. We have Mg, = C.
(2) We have M;% = CAz 4.
( ) Let A7’6 = Ag,lO/Aﬂ‘l' We have Mék% = CA?,G-
(4) Let A?,S = (A7’4)2 and A%’g = EZ,7A7’4. We have Mgg = (CA%S D (CA%S.
(5) Let A} 1o := E§7A74. We have M;, = CAY | ® CAL 1.
(6) Let A 15 = (A7)%, A} g = (A74)?, A% 1y := Ef ,(A74)%, and A3 1y := (B} ;)*A74. We have
M3, =CA? 1, ® CA7 1, ® CAZ 1, ® CAZ 5.
(7) Let A%M = A774A(7)710, A%M = Eg77(A774)2, and A%M = Ej;E¢:A74. We have Mf}?,7 =
CA%M ©CA7 1, @ CA%14'
(8) Ml:,07 = Mfzolej—lz,?-

Let k be an even integer k > 4. Define my(k) := L% — %J, where t = 0,2 is chosen so that ¢t = k
(mod 4), and |n] is the largest integer not more than n. Define fo(k) := (Ej;)*/* if k =0 (mod 4), and
fo(k) == E§ 7(E; 7)F=9/4if k = 2 (mod 4).

The proof of this theorem is similar to Theorem 5.2. For every f € M ;97, it is easy to show that there
exist some ay, ag, az such that f + a1 Al 5 4+ aslA3 1) + azA3 1y = byg* +---. Then (f +a1A} 5 +
agA%lz + agA‘r%’lQ)/A?’lz € Mj;_,5 . This proves (8).

The table of orders of zeros of basis for My ; is following:

k f Voo V7 Upry Upr, |zeros on Aj
4 Ei, 0 1 1

o

8  (Eir)?

L'
=
o
N WO R NWERARODHFHNOFRNOR,ORFRO
— = 0O OO0 00O MFEMEFOOORRFEOOO
R PR RPR OO0, FERFEFOOOFREFEOO
NN WWWOOR R EFEFNNNOOOR &
— O WNF OO FRFONDFEONDORFEOO

[\

2
*
k f Voo Vi/7 Vpra Upr, |zeros on Af

3

-

S
—_
[

Then we have dim(M;%) = mz(k) and dim(Mj; ;) = m7(k) + 1.
Write n = m7(k), then k —12n =0, 4, 6, 8, 10 or 14. Because Ey 7 — Ej_,, -(E} )" € M,;*%, we have
M ; = CE}_y, 7(Ef7)*" @ M;. Then
M7 = Bioranz {C(B;0)* @ (Bf )" OMi9r @ (Bj ) D (M) @ -+ @ (Mi5,)" }
2 Mggun,?(Mfg,?)n

Thus, for every p € H and for every f € M ;, vp(f) = vp(Ef_19,.7)-
In conclusion, the next proposision follows:

Proposition 5.20. Let k > 4 be an even integer. For every f € My; 7, we have
V7 (f) Z sk, vpr i (f) 2 sk (si = 0,1 such that 2s;, =k (mod 4)),

> s
123
(123) Vpr o (f) 2tk (sx =0,1,2 such that — 2t =k (mod 6)).
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In addition, we have (A7)? = (38/45) ((5/114) (Ej 7(A7,4)? — (A7,6)?) — (A74)?). Then
Remark 5.6. Every modular form for T{(7) is generated by
Ejfj, Egj, A74, and Agg.
Now, we have following conjecture:

Conjecture 5.2. Let k > 4 be an even integer. Ej ; has m7(k) zeros in A7y and A7 5. Furthermore, in
Proposition 5.20, the equality hold if f is equal to Ef. ; or its constant multiple.

5.9.4. Observation on Congecture 5.2. Similar to I'§(5), to prove Conjecture 5.2 is very difficult. The most
difficult point is also the argument Arg(p72). We need more radical expansion to prove this conjecture.

By the Lemma 5.20 and 5.21, Ej ; has at least m7(k) — 2 zeros in A7, and A7, for & < 24. Then,
imilarly to Lemma and , we will prove next lemmas in the next subsubsection:

Lemma 5.25. Let k > 26. For V0 € [7/2,7/2+ a7 —z] (v = 7/k), |R7 1| < 2.
Lemma 5.26. Let k > 26. For V0 € [ay — /6 +x,7/2] (x = w/k), |R7 5| < 2.

By above lemmas, we can easily show that £ ; has at least m7(k) — 2 zeros in A7 ; and A% ,. Thus,
we can prove Conjecture 5.2 except for at most 2 zeros.

5.9.5. Ezpansion of the RSD Method. The proofs of Lemma 5.25 and 5.26 are similar to that of Lemma
5.5. We need following preliminaries.

Proposition 5.21 (for Lemma 5.25).

(1) Fork>26, (3)"" <1+ (2l0g3) £ + 1 (21083)" (3)"" &,
104+ 4vT7cos (5 + a7 — F) > 2V3m+.
(2) For k > 26, (f)Q/k <1+ (2log 2) ; (210g 3)2 (3)2% k%,

15+ 3V7cos (2 +ar—F) > S\fwk
Proposition 5.22 (for Lemma 5.26).
2/k 2/k
() Rork 226, (37" <1+ (2log )  + § (21og )" ()7 .
1+§COS(O&7—%—%) > .
(2) For k> 26, 42/F <1+ (4log2) § + § (410g2)” 4¥/*
3+ 5T cos (a7 — § — ) > 34

Proof of Lemma 5.25. Let k > and © = w/k, then 0 < < 7/26.
2/k
11+4\ﬁcos<2+a7 ( ) <1+ 2)

1 5 1 5\2/5\ Y1 1272 /5\¥F 1
>-{ov3r—2log> — = (210g2) (2) =-— 2y =

k{‘/g” %83 2( Og3) <3) k5 <3> ;2

1

k

> = x 9.81047... (k> 26)

By Proposition 5.21,

2/k
|26i9/2 4 ﬁ67i9/2|2 2 § / 1+ EI}C
3 5k

S 2602 4 T2

w| ot —

= ’Uk(2, 1,9) <

Similarly,

2k
7r T 5 12 1
+ Thar—2)—(2 +2a?) > x14.39532... (k>
16 6\f7(zos<2 oy k) (2> (1 SkI)/k 14.39532 (k > 26)
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2/k
) X 5 12
3610/2 7—19/222 9 14 =252
3¢9/ 4+ \/Te | 5 + A
) ) 5
= |26z9/2 + ﬁe—ze/Q‘k > 5 +3$L‘2
2 2
= up(3,1,0) < = — =22
Uk( s Ly ) 5 5$

Furthermore,
] 1\ /2 » 1\ /2 . Y 1\ /2 . 19144/33 /1 k/2 s 1\ /2
3 7 179 7(k—3) \3 = 3

272 1 k/2
R I<2——4+25( =
|R7 4 2 + <3>

Now, (1/3)*/2 is more rapidly decreasing in & than 1/k?, and for k = 26, we have
|R; | < 1.97081...

Thus

Proof of Lemma 5.26. Let k > and = w/k, then 0 < = < 7/26.

VT T 4 2/k 9 4 1
- YL R Z2%) > - x2 NS
2 5 cos (a7 6 k) (3) <1+5kx>/k><247345 (k = 26)

By Proposition 5.22,
_ _ 4N\ 2/* 9
272 e/ \Tem /22 > (3> <1 + 1‘2)
_ ; i 4 3
:>2 k‘|620/27\/?€ 19/2‘k>§+§m2

= 2% (1, -1,0) < 2 - %x?

Similarly,
37 12 1
4 Tf cos (a7 - % - %) g2k (1 + 5kx2> > 2 X 14.30532... (k> 26)
272 . |3ei9/2 _ ﬁ€7i0/2|2 > 42//(7 <1 + 4914:*%2)
= 2—k: . |3ei9/2 _ ﬁe—iG/Q‘k > 4+ ng
1 1
k . _ < o 2.
= 2" - v,(3,-1,0) 1 1%
Furthermore,
o () (1) () 2O () (1Y
2 3 113 7(k—3) \ 2 h 2
Thus

o2 1\ /2
* < _ - -
[Riol <2 = F5 +41 (2>

Now, (1/2)*/2 is more rapidly decreasing in k than 1/k?, and for k = 26, we have
|R3 5| < 1.97580...
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5.10. Conclusion of T'§j(p). Let k > 4 be an even integer.
In section 3, we have following result:

k (mod 12) v;(Ey) wv,(Ex) |zeros on Aj

0 0 0 k/12
2 1 2 (k—14)/12
4 0 1 (k — 4)/12
6 1 0 (k —6)/12
8 0 2 (k—8)/12
10 1 1 (k—10)/12
Table for Ej, : SLy(Z)
Also, by the theorem 1, 2, we have following;:
k (mod 8) v, 5(Ef,) vp,(Ef,) |zeros on A3
0 0 0 k/3
2 1 3 (k—10)/8
4 0 2 (k—4)/8
6 1 1 (k—16)/8

Table for Ej , : I'5(2)

k (mod 12) v, s(E} 3) vp,(Ef3) |zeros on Aj

2

0 0 0 k/6

2 1 5 (k—8)/6
4 0 4 (k—4)/6
6 1 3 (k—6)/6
8 0 2 (k—2)/6
10 1 1 (k—4)/6

Table for EJ 5 'y (3)
Above results are proved in this section.

7

For a prime p > 5, let A} := 0F*(p) \ {z; Re(z) = —1/2}, where F*(p) is the fundamental domain of

I't (p) represented in Figure 7.

In addition, in Conjecture 5.1, we expect following:
k (mod 4) v, /5 Vp,, Vs, |zeroson A
0 0 0 0 k/4
2 1 1 1 (k—6)/4
Table for Ej 5 : I'5(5)

We proved except for at most 2 zeros.

Also, in Conjecture 5.2, we expect following:

k (mod 12) w;, 7 vp,, vp,, |zeroson A7

0 0 0 0 k/3

2 1 12 (k—5)/3
4 0 0 1 (k—1)/3
6 1 10 (k—3)/3
8 0 0 2 (k—2)/3
10 1 1 1 (k—4)/3

Table for E; -
We proved except for at most 2 zeros.

Finally, we expect followings:
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Conjecture 5.3 (I'§(11)). Let k > 4 be an even integer.

k (mod4) v, AT Vpii1 Upa Upiis |2er0s on Af|
0 0 0 0 0 /2
2 1 1 1 1 (k —4)/2

Table for Ey; 1,

Conjecture 5.4 (I';(13)). Let k > 4 be an even integer.

*
k (mOd 12) Visviz VUpisi Upisz  Upiss |Z€7”08 on Aldl

0 0 0 0 0 k12

2 1 1 1 2 (Tk —26)/12
4 0 0 0 1 (Tk — 4)/12
6 1 1 1 0  (7Tk—18)/12
8 0 0 0 2 (Tk—8)/12
10 1 1 1 1 (Th—22)/12

Table for E}; 15
Conjecture 5.5 (I'§(17)). Let k > 4 be an even integer.
k (mod 4) Vi/vit Vpira Upiza Upizs  Upiza |Z€7”08 on AT?l

0 0 0 0 0 0 3k/4
2 1 1 1 1 1 (3k — 10)/4

Table for Ey; 17

Conjecture 5.6 (I';(19)). Let k > 4 be an even integer.

*
k (mOd 12) Vi/vio Upio,r VYpre2a Upigs VUpioa |Z€T’OS on A19|

0 0 0 0 0 0 5k/6

2 1 1 2 1 1 (5k — 16)/6
4 0 0 1 0 0 (5k —2)/6
6 1 1 0 1 1 (5k —12)/6
8 0 0 2 0 0 (5k —4)/6
10 1 1 1 1 1 (5k — 14)/6

Table for E} 14

By the application of the RSD Method, we have many zeros on some arcs in A;. But we have some
arcs in Ay, in which we do not know whether Ej, , has zeros or not.
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6. CONGRUENCE SUBGROUP I'y(p)
6.1. To(2).

We have the following transformation:
(_1 0 ) ' ei@ 41 ei(‘n’—@) -1

2 -1 2 T 9

6.1.1. Valence formula. In order to decide the locating of all zeros of Ep%(2) and E272(z), we need the
valence formula for Ty(2):

Proposition 6.1. Let f be a modular function of weight k for To(2), which is not identically zero. We

have
(124 vl F) F 00+ 2um(D Y wlp) =1,
e

where py :== —1/2+i/2. (See [KO] and [SE])

FIGURE 9

Proof. Let f be a nonzero modular function of weight k for I'y(2), and let € be a contour of F(2) which
is a fundamental domain of I'g(2) represented in Figure 9, whose interior contains every zero and pole of
f except for ps. By the Residue theorem, we have

1 d
o a_ > wlh)
v PEF(2)\{p2}

Similar to Proposition 3.1,
(i) For the arc EA, we have
1 [Adf

=~V (f)-

(ii) For the arc C'C’, without loss of generallity, we can define arc CC’ so that it equals the image of FA
by the transformation Ws. Define fo(2) := (v/22)7F f(Waz), then we can write

fo(z) = Z ao.nq", whereq=e*™*. (See equation (16))
neN
Furthermore, we have fo(Wy '2) = (v/22)* f(2) and

dfo(Wy'z) _df(z) |, dz
LW, )~ fe) TR

Thus

2mi Jo  f(z)  2mi

1 (“df(z) 1 /A dfo(z) 1 /C/ dz
J Apaiad

B g folz) 2mi)e Tz
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Now, when the arcs CC’ tend to 0, we have

c
i, k% — 0
2mt Jo z
In addition,
1 [ dfo
i . % = —Vo(fo) = —vo(f).
In conclusion, we have
1 [ df
Py . 7 — —vo(f).
(iii) For the arcs BB’ and DD’, when the radii of the each arc tends to 0, then we have
1 a1 [Par 1
5| F =5 gveef)
21 J g 2mi Jp  f 4
(iv) For the arcs AB and D'E, since f(Tz) = f(z) for T = (} 1),
1 (Pdf 1 (P4
fL L [d

27i A 7 2mi o
(v) For the arcs B'C and C'D, since f(S22) = (22 + 1) f(z) for Sy := (1 9), we have
df (S22) _ dz n df(z).
f(S22) z+1/2  f(2)
When the radii of the arcs BB’, CC’, DD’ tend to 0, the angle of the arc B'C tend to 7/2. Thus we

have
1 (Car 1 [Par 1 /C dz k
= -+ — - = T —k———— - —.
21t J g 2wt Jor f 0 2mi Jp z+1/2 4

6.1.2. Modular forms of weight 2. We define
(125) EQVQI(Z) = 2E2(22’) — EQ(Z)

Note that Es 5’ is generated by Eisensitein series for SLo(Z), but it is not Eisenstein series for SLa(Z)
nor I'(2).
It is easy to show that Es ' satisfies transformation rule (14):

Ero' ((§1)2) = B2 (2 +1) = B2/ (2).
Since (19) = Wo (31)"" Wy !, and

1 12
Ey(2(—-=— )| =%E —
( < 2)) 2B () + 7

1 12
Es | —— | = 422E5(2 = .9
2( 22) 2B (22) + 5 7 2%

we have
1
(126) E272'(W22) = E2721 <_22> = QZQEQ(Z) — 422E2(22) = —(\/§Z)2E272/(Z)7

then
B2’ ((39)2) = (22 +1)°Ea2'(2).
Recall that (} 1) and (3 9) generate I'g(2) (in Section 4), then we can show that E, > satisfies transfor-
mation rule for I'g(2).
Furthermore, by the definition, it is easy to show that Es 5" is holomorphic on H and at co. In addition,
by the equation (126), we have
(\/52)72E2,2/(W22) = —E272/(Z).
Thus Fs 5’ is holomorphic at cusp 0. (See equation (16)) Now, we prove Fa o’ is a modular form for T'g(2)
of weight 2.
How about the locating zeros of F'? By the valence formula for I'g(2) (Proposition 6.1), we have

Vpy (Eg,g') =1, ’Up(EQQ/) =0 foreveryp # pa.
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Incidentally, let f be a modular form for T'g(2) of weight 2. Then, By the valence formula for T'g(2),
we also have
vy, (f) =1, vp(f) =0 forevery p # po.

Thus f/E> 5 is a modular form of weight 0, then f/Es5" € C. In conclusion, f is a constant multiple of
E2’2/.

6.1.3. Preliminaries. Let f be a modular form for I'g(2) of weight k, and let kK = 2 (mod 4). Then we
have

Flp2) = (S 7Y) p2) =" fp2) = —f(p2).

Thus f(p2) =0 and v, (f) > 1.
Let k be an even integer such that k =0 (mod 4). Then we have

Ers(p2) = ﬁ((l +14)F — 28V By (i) # 0,
R a(po) = 7 (140~ DE(i) #0.

Thus Ups (Eg?2) = Up, (EIS,Q) =0.

Recall that vo(ER%) = veo (ER 5) = 1 and veo (ES) = vo(E} ,) = 0. (Section 4)

Finally, we study the locating zeros of E}% and E;g,z of weight 4 and 6.

For k = 4, we have vy(Ef%) = vso(E{5) = 1. By the valence formula, E$% and Ef , do not have any
other zeros.

For k = 6, we have vo(Eg%) = voo(EQ 5) = 1, v, (Eg%) = 1, and v, (EQ 5) > 1. By the valence formula,
we have v,, (Eg%) = vp, (Eg§ 5) = 1, and they do not have any other zeros.

6.1.4. The space of modular forms. Let My o be the space of modular forms for I'g(2) of weight k,
and let M]S,z be the space of cusp forms for I'g(2) of weight k. When we consider the map My o >
f — (f(), f(0)) € C x C, the kernel of the map is M?,. So dim(Mk)2/M£72) < 2, and My o =
CEX @ (CE,&2 ® M,SQ. Recall that Ay = 7®(2)n®(22). We have following theorem:

Theorem 6.1. Let k be an even integer.

(1) Fork <0, M2 =0.

(2) For k =0,2,4, and 6, we have My , = 0. Furthemore, we have My = C, My = CEy»’, and
My 2 = CE, © CER, for k=4 and 6.

(3) M;g,z = AQMk78,2'

Proof. Let f be a nonzero function of My o, then v,(f) > 0 for every p € H. By the valence formula for
T'o(2)(Proposition6.1), we have k > 0. This proves (1).

In Section 4, we have v (A2) = v9(A2) = 1 and v,(Ag) = 0 for every p € H. Then, for every f € M,SQ,
we have v, (f/Az) > 0 for every p € HU {00,0}. Thus f/Ay € My_g 5. This proves (3).

By (3) and Mg 2 = 0 for k < 0, we have Mlg2 =0 for £k =0,2,4, and 6. By previous subsubsections,
we can prove (2). O

Furthermore, we have dim(My, 2) = |k/4] + 1 for k > 0, and dim(My,) = |k/4] — 1 for k > 8.

Let k be an even integer such that k¥ > 4 and k = 2 (mod 4). For f € M}, 2, by previous subsubsections,
we have v,(f/F252") = 0 for every p € HU {00,0}. Then f/FE22" € My_s5. Thus My o = Es5' My_22,
and k —2 =0 (mod 4).

On the other hand, let k be an even integer such that kK > 4 and k& = 0 (mod 4). Write n :=
|k/8], then k —8n = 0 or 4. Now, we have vo(ES) = 1 and veo (EFS — E,g‘i8n72(Ef2)2") > 1. Thus
B — EX g, o(E%)*" € My ,. Similarly, we have E)) , — ER g, 5(E} ,)*" € My ,. In conclusion, we have
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My, = CE}iSn,z(Ez,%)zn @ CEl(c)fsn,z(Egz)zn D Ml(c),z- Then
M2 = CE/C;O—8’IL,2(EE,02)2TL D (CEzg—sng(Egg)Qn @ A2j\4k—8,2

= E?—Sn,Q(C(EfQ)% @ C(Eff,oz)%nfl)Az @@ CAY)
® Ej)_g, 2(C(ES,)*" @ C(EQ,)*" VA & --- @ CAR)
Thus, the next proposision follows:

Proposition 6.2. Let k > 4 be an even integer. For every f € My o, we have
(127) Voo (f) =t (tr = 0,1 such that 2t, =k (mod 4)).

In addition, we have Ef , = 4((E2,2")? — Eg%) and Ag = Eg% - EY 5/256. Then
Remark 6.1. Every modular form for T'o(2) is generated by
Eg,g/ and  E75%.
Finally, define
(128) A i={z; |z+1/2|=1/2, 0 < Arg(z) < w/2},
(129) AY = {z; Re(z) = —1/2, Im(z) > 1/2}.
Then we have following:

Conjecture 6.1. Let k > 4 be an even integer. Ep% has |k/4] — 1 zeros in Az, and E} 5 has |k/4] —1
zeros in AS. Furthermore, in Proposition 6.2, the equality hold if f is equal to Eps or Egg,

Now, we have the following transformation:
0 _ ;
(130) ((1) 11) WQ:%H—%JF%W.
This transform A to A9. Moreover,
B ((57") Waz) = (22)" BRi(2) for every z € As.
Then
Remark 6.2. If £S5 has |k/4] — 1 zeros in Az, then E,g)2 has |k/4| — 1 zeros in AY.

6.1.5. The function Fy . We give the next definition;
(131) Fio2(0) == ™2 EX (e /2 —1/2).
Again, E}5 is denoted by
9] 1 —k
B =5 3 (crd)

(c,d)=1
2|c

Since 2 | ¢, we can write ¢ = 2¢’ for 3¢’ € Z, and have 2t d.

cik0/2 eif 1 —k oik0/2 i ) Y
o) =5 Y ( . +d> = Y (@ (¢t d))
(e, d)=1 (c,d)=1
2|c 2td

Iei9/2_|_ (_C/+d)€7i0/2)7k'

N | =

(¢
(e,d)=1
24d

Then we have (¢/, —¢ +d) =1, 2| ¢(—=¢ + d). Thus we can write as following:

1 . .
Fr.2(0) = 3 Z (ce®/? 4+ de=10/2)7F,
c,d)=1
e



ON THE ZEROS OF EISENSTEIN SERIES FOR I'{(p) AND I'o(p) OF LOW LEVELS 83

Note that for any pair (c,d), (ce?/? + de'®/?)=% and (de'?/? 4 ce="/?)~* are conjugates of each other.
The next proposition follows.

Proposition 6.3. Fj, 2(0) is real for every 6 € R.

6.1.6. Application of the RSD Method (0). We note that N := % + d>.
Firstly, we consider the case N = 1. Then we can write:

(132) Fy, 2(0) = 2cos(k0/2) + Ra,

where

1 ) )
Ry == Z (6610/2+d6_19/2)_k.
(e, d)=1
2|cd
N>1
Now, we have
1 . .
|R2| < 5 Z |0620/2 +d6719/2|7k.
(e, d)=1

2|ed
N>1

Let vg(c,d,0) = |ce®®/? 4 de=/2|7F then wi(c,d,0) = 1/(c* + d? + 2cdcos0)*/? and wv(c,d,0) =
vg(—e¢, —d, 0) = v (£d, £c, 6).
However, for every n € N, we have (2n,—2n — 1) =1, 2| 2n(—2n — 1), and

ve(2n,—2n—1,0) <1 for0< 0 < 7/2.
Here, the number of the pairs (2n, —2n — 1) is infinite. Thus we have the bound
|R2| < o,

which does not make sense.

For 0 < 0 < 7/2, we have 0 < kf/2 < kr/4. Here the interval [0, k/4] has |k/4] + 1 integers, but we
need at most |k/4] integers for |k/4] — 1 zeros. Now, |Ra| tends to co when 6 tend to 0. Thus we expect
to remove the integer 0 from the interval [0, k/4]. Then we need

(133) |Ra| < 2 for every 0 € [2m/k,7/2].

However, it is still difficult to prove above bound.
For the first step, we will prove following in the next subsubsections:

(134) |Rs| < 2 for every 6 € [7/6,7/2].
(135) |Rs| < 2 for every 6 € [7/12,7/2].
(136) |Ra| < 2 for every 6 € [w/20,7/2].

6.1.7. Application of the RSD Method (1) : [r/6,7/2]. In this subsubsection, we prove the bound (134).
In privious subsubsections, Ep% and Eg’z of weight k < 8 has no zeros other than oo, 0, and ps. Thus
we may assume k > 8.

Now we will consider the next cases, namely N = 5,13,17, and N > 25. Considering 0 < cosf < 7/8
for the interval [7/6,7/2], we have the following:

When N = 5, ve(1,2,0) < (1/5)"2, i (1,-2,0) < (2/3)"/2.
When N = 13, ve(2,3,0) < (1/13)%/2, vp(2,—3,0) < (2/5)F/2.
When N = 17, vp(1,4,0) < (1/17)%/2, ve(1, —4,0) < (1/10)%/2,

When N > 25, |ce®®/? £ de™/2)2 > N/8,



84 JUNICHI SHIGEZUMI

and the rest of the question is about the number of terms with ¢ +d? = N. The number of |c| is not more
than N'/2, and we consider four terms (#(c, d), +(c, —d)) and the number 1/2 which is the coefficient of
the summation. Thus the number of terms is not more than 2N'/2. Then

S (1-k)/2 k/2
1 2526 (1
s =023 (5v) <35 (5)

N=25

Thus

k/2 k/2 k/2 k/2
1 252v/6 (1

1 | <2 o2 = - ’

17 mis2(3) +2(5) +eve(n) 327 0)

< 1.61099... (k> 8)

In conclusion,

Remark 6.3. We proved Conjecture 6.1 for 4 < k < 12.

6.1.8. Application of the RSD Method (2) : [w/12,7/2]. In this subsubsection, we prove the bound (135).
In privious subsubsections, we proved for £ < 12. Thus we may assume k > 14.

Now we will consider the next cases, namely N = 5,13, -+ ,61, and N > 65. Considering 0 < cosf <
29/30 for the interval [r/12,7 /2], we have the following:

When N =5, ve(1,2,0) < (1/5)%/2, vp(1,—2,0) < (15/17)%/2,
When N = 13, vp(2,3,0) < (1/13)%/2, vp(2,—3,0) < (5/7)F/2.
When N = 17, ve(1,4,0) < (1/17)%/2 vp(1, —4,0) < (15/139)%/2.
When N = 25, vp(3,4,0) < (1/5)", vp(3, —4,0) < (5/9)F/2.
When N = 29, v(2,5,0) < (1/29)%/2, vp(2, —5,0) < (3/29)%/2.
When N = 37, ve(1,6,0) < (1/37)%/2, vp(1,—6,0) < (5/127)%/2.
When N = 41, v(4,5,0) < (1/41)%/2, v (4, —5,0) < (3/7)F/2.
When N = 53, vp(2,7,0) < (1/53)%/2, v (2, -1, 9) < (15/389)%/2.
When N = 61, vi(5,6,0) < (1/61)%/2, v (5, —6,0) < (1/3)F/2,
When N > 65, lce??/? + de="/2|2 > N/30,

and the number of terms with ¢2 + d? = N is not more than 2N*/2. Then

|Ro|n>65 = 2v/30 i <310N)(1 v < ;0483 (15>k/2.
N=65
Thus
k/2 k/2 k/2 k/2
(138) |Rg\2<>/ <>/+-~-+2<611>/+§0_4§)<£>/,

< 1.98724... (k> 14)
In conclusion,

Remark 6.4. We proved Conjecture 6.1 for 14 < k < 24.

6.1.9. Application of the RSD Method (3) : [w/20,7/2]. In this subsubsection, we prove the bound (136).
In privious subsubsections, we proved for k < 24. Thus we may assume k > 26.

Now we will consider the next cases, namely N = 5,13,---,125, and N > 137. Considering 0 <
cos ) < 81/82 for the interval [7/20,7/2], we have the following:

When N = 5, ve(1,2,0) < (1/5)%/2, v(1,—2,0) < (41/43)%/2,
When N = 13, ve(2,3,0) < (1/13)%/2, vp(2,—3,0) < (41/47)%/2,
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When N = 17, ur(1,4,0) < (1/17)%/2, v(1,—4,0) < (41/373)%/2.
When N = 25, vk(3,4,0) < (1/5)F, ve(3,—4,0) < (41/53)%/2,
When N = 29, ve(2,5,0) < (1/29)%/2, vg(2, =5, 9) < (41/379)%/2.
When N = 37, vr(1,6,0) < (1/37)%/2, vr(1,—6,0) < (41/1031)%/2,
When N = 41, v(4,5,0) < (1/41)k/2, vg (4, =5, 9) < (41/61)%/2,
When N = 53, ve(2,7,0) < (1/53)F/2, vp(2, —7,6) < (41/1039)%/2.
When N = 61, vi(5,6,0) < (1/61)%/2, vi(5,—6,0) < (41/71)%/2,
When N = 65, vr(1,8,0) < (1/65)%/2, ve(1, —8,6) < (41/2017)%/2,

vp(4,7,0) < (1/65)%/2, vi(4,—7,0) < (41/397)%/2.
When N = 73, vi(3,8,0) < (1/73)%/2, vi(3, —8,6) < (41/1049)%/2,
When N = 85, vr(2,9,0) < (1/85)%/2, ve(2,-9,0) < (41/2027)/2,

v(6,7,0) < (1/85)F/2, v (6, —7,0) < (41/83)%/2,
When N = 89, vk (5,8,0) < (1/89)%/2, vr(5,—8,0) < (41/409)%/2.
When N = 97, ve(4,9,0) < (1/97)F/2, v (4, —9,0) < (41/1061)%/2,
When N = 101, vr(1,10,0) < (1/101)%/2, ve(1,—10,0) < (41/3331)%/2,
When N = 109, vk(3,10,0) < (1/109)%/2, v (3, —10,0) < (41/2039)%/2,
When N = 113, vk(7,8,0) < (1/113)%/2, vp(7,—8,0) < (41/97)%/2,
When N = 125, ve(2,11,0) < (1/125)/2, vp(2, —11,0) < (41/3343)%/2,
When N > 137, |ce®/? + de= /22 > N/82,

and the number of terms with ¢2 + d? = N is not more than 2N*/2. Then
|R2|N>137 = 2v/82 Z (6312N)(1 o < % (g;)’“/?'
N=137
Thus
k/2 k/2 k/2 k/2
(139) R2|<2(3;> +2<i;> +~-~+2<1215> +W<§> ,

< 1.88380... (k > 26)
In conclusion,
Remark 6.5. We proved Conjecture 6.1 for 26 < k < 40.
Now, by Remark 6.3, 6.4, and 6.5, we prove Conjecture 6.1 for 4 < k < 40. However, for greater k, we
prove only about 90% of Conjecture 6.1 by the sense of the interval /20, 7/2].

However, for greater k, it seems that we can not prove for all zeros with the same method. For example,
for k = 100, we consider 0 < cosf < 506/507 for the interval [r/50,7/2], we have

|R2| 2’()k( 2 9) + 2Uk(2 3 9) + 27)k(3 —4 9)

Co (TN (169, (169"
= T\511 173 177
=2.16912... (k= 100)

Thus we can not prove for £ > 100 with this method. We will need some expansion.
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6.2. Ty(3).

We have the following transformation:

<_1 0 > . etf +1 61’(71'70) -1

3 -1 3 7 3

Then we have Vr3) = {—1/2 + V/3i/6} (cf. Theorem2.1).

6.2.1. Valence formula. In order to decide the locating of all zeros of EP; (z) and E273(z), we need the
valence formula for To(3):

Proposition 6.4. Let f be a modular function of weight k for To(3), which is not identically zero. We

have
(140 vl ) F o) + 3o Y wlh=5,

where p3 := —1/2 +/3i/6.

The proof of this proposition is similar to Proposition 6.1 because the figure of fundamental domain
of T'9(3) is similar to that of I'g(2) (¢f. Figure 4). The angle of the arc around p3 (BB’ in Figure9.)
tends to 7/6 when radius of it tends to 0, thus the coefficient of v,,(f) is 1/3. Furthermore, since
f(S32) = (=32 — 1)k f(2) for S5 := — (19), the right-hand side is k/3.

6.2.2. Modular forms of weight 2. We define
1
(141) Eg’gl(z) = 5(3E2(32’) - EQ(Z))

Note that Es 3 is generated by Eisensitein series for SLo(Z), but it is not Eisenstein series for SLa(Z)
nor I'y(3).
Similarly to Es»’, we have

Furthermore, because
(142) E2,3/(W32) = —(\/§Z)QE2’3/(Z>,

E2’3/ is holomorphic at cusp 0. Now, we prove E2’3/ is a modular form for I'g(3) of weight 2.
By the valence formula for T'g(3) (Proposition 6.4), we have

Upy(B23') =2, vp(Eay’) =0 forevery p # ps.

Incidentally, let f be a modular form for T'g(3) of weight 2. Then, By the valence formula for I'y(3),
we also have v, (f) = 2 and v,(f) = 0 for every p # p3. Thus f/Es2 3" is a modular form of weight 0,
then f/FE2 3" € C. In conclusion, f is a constant multiple of Es 3'.



ON THE ZEROS OF EISENSTEIN SERIES FOR I'{(p) AND I'o(p) OF LOW LEVELS 87

6.2.3. Preliminaries. Let f be a modular form for T'g(3) of weight k, and let & £ 0 (mod 3). Then we
have

Flp3) = F((F71) p3) = (€2/%)k f(ps).

Thus f(p3) =0 and v,,(f) > 1.
Let k be an even integer such that k =0 (mod 3). Then we have

Fi%(ps) = 1 B2 (/) — 39 Bi(p) #0,
L B2~ 1)Ew(p) £ 0.

Eg,:a(ﬂ?,) =

(cf. Proposition 3.3) Thus v, (ER%) = v, (B 3) = 0.

Recall that vo(ERS) = UOO(E,%?)) =1 and v (E}S) = UQ(E273) = 0. (Section 4)

In paticular, we have vo(ES%) = veo(Ef3) = 1, v, (E%) > 1, and v,,(Ef3) > 1. By the valence
formula, we have v,, (Eg%) = v, (Ef 3) = 1, and they do not have any other zeros.

Finally, define

(143) Az :={z; |24+ 1/3] =1/3, 0 < Arg(z) < 27 /3},
(144) AY = {z; Re(z) = —1/2, Im(z) > V3/6}.
Now, we have the following transformation:
1 -1 e —1 i1

This transform A3 to AJ. Moreover,
ERs (371 )Wsz) = (3z)kE,3°3(z) for every z € As.
Then

Remark 6.6. The number of zeros of Ep% in As is equal to that of zeros of E,873 in AY.

6.2.4. The function Fy 3. We give the next definition;
(146) Fyo3(0) := €2 B (e /3 — 1/3).
Again, E7S is denoted by
50 1 k
E(2) = 5 Y (eztd)7.

(c,d)=1
3lc

Since 3 | ¢, we can write ¢ = 3¢’ for 3¢’ € Z, and have 3 1 d.

ik0/2 eif _ 1 —k
Fie3(0) = — > (c + d)
(e,d)=1

3
3le

1 ) .
_ 5 Z (0,67'0/2+(7C/+d)6710/2)7k.

Then we have (¢/,—¢' +d) =1. If 31/ (—¢ 4+ d), then ¢ £0,¢ # d (mod 3), and we have ¢ = —¢' +d
(mod 3). Thus we can write as following:

1 . ) 1 ) )
F.3(0) = 3 Z (ce“g/2 + de*w/z)*k + 3 Z (6610/2 + defw/z)*k.
(e,d)=1 (e,d)=1
3led 3ted
c=d(3)

Note that for any pair (¢, d), (ce’?/? +de?®/?)=F and (de'®/? + ce=/2)~* are conjugates of each other.
The next proposition follows.

Proposition 6.5. Fj, 3(0) is real for every 6 € R.
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6.2.5. Application of the RSD Method (0). We note that N := ¢? + d?.
Firstly, we consider the case N = 1. Then we can write:

(147) Fy 3(0) = 2cos(k0/2) + Rs,
where
1 ) . 1 ) .
Ry == Z (0610/2 + de—19/2)—k + 5 Z (6619/2 + d6_19/2)_k.
(c,d)=1 (c,d)=1
3|cd 3fed
N>1 c=d(3)
Now, we have
1 , , 1 , .
|R3| < 5 Z ‘6619/2 +de—19/2|—k + 5 Z |Ceze/2 +d6_19/2|_k.
(¢, d)=1 (¢, d)=1
3|cd 3fed
N>1 c=d(3)

N>1

Let vg(c,d,0) = |ce’®/? + de="0/2|7F then wvy(c,d,0) = 1/(c* + d? 4+ 2cdcos6)*/? and vy (c,d, ) =
vg(—c, —d, 0) = v (£d, £c, 6).
However, for every n € N, we have (3n,—3n —1) =1, 3| 3n(—3n — 1), and

vg(3n,—3n —1,0) <1 for0 <6< 27/3.
Here, the number of the pairs (3n, —3n — 1) is infinite. Thus we have the bound

which does not make sense.

6.2.6. Application of the RSD Method (1) : [r/4,2n/3]. In privious subsubsections, Ep% and EY 5 of
weight k& < 6 has no zeros other than co, 0, and p3. Thus we may assume k > 6. We consider two cases,
namely [7/2,27/3] and [r/4,7/2].

For the interval [r/2, 27/3], we will consider the next cases, namely N = 2,5, and N > 10. Considering
—1/2 < cos @ < 0 for the interval /2,27 /3], we have the following:

When N = 2, ve(1,1,0) < 1.
When N = 5, ve(1,-2,0) < (1/5)%/2.
When N > 10, |ce'®/? £ de™/22 > N/2,

and the number of terms is not more than 2N/2. Then

00 (1—k)/2 k/2
1 108 /2
|R3‘N210 = 2\/5 E (2N> < —_— () .

N=10 k=3

Thus

k/2 k/2
1 108 (2
(148) |Rs| <1+2 <5> + s <9> < 1.41106... (k> 6)

On the other hand, for the interval [r/4, 7 /2], we will consider the next cases, namely N = 2,5, 10, 13,
and N > 17. Considering 0 < cosf < 3/4 for the interval [7/4, /2], we have the following:

When N = 2, vp(1,1,0) < (1/2)%/2.

When N =5, ve(1,2,0) < (1/2)%/2

When N = 10, ve(1,3,6) < (1/10)%/2, vp(1,—3,0) < (2/11)%/2,
When N = 13, ve(2,3,0) < (1/13)%/2, vp(2,—3,6) < (1/2)".

When N > 17, |ce®®/? + de™/2)2 > N/4,
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and the number of terms is not more than 2N/2. Then

0 (1-k)/2 k
1 256 1
= — < — | = .
|Rs|n>17 4N§=17 <4N> S 13 (2>
Thus

k/2 k k/2 k
1 1 1 256 (1
14 <3(= 2( = 2= = (),
o mi<a(y) +2(3) () i)
< 1.75451... (k> 6)

By above bounds, Eg% and Eg% have at least 1 zeros in Az. Then by Remark 6.6, Eg 3 and Eg 3 have
at least 1 zeros in AY.

Recall that vo(Eg%) = veo(Eg 3) = 1. By the valence formula, Egy and E§ 5 have just 1 zero in As
and AY, respectively. Furthermore, they have no other zeros.

Recall that vo(Eg%) = veo(ES3) = 1, vy, (Eg%) > 1, and v, (ES 3) > 1. By the valence formula, EgS
and EY 3 have just 1 zero in Az and A§, respectively. Furthermore, we have v,,(Eg%) = v, (Eg3) = 2,
and they have no other zeros.

6.2.7. The space of modular forms. Let My, 3 be the space of modular forms for I'g(3) of weight &, and
let M,g,?) be the space of cusp forms for I'g(3) of weight k. Because dim(Mk’g/M,gjs) < 2, we have
M3 =CER; & (CE,?B & M,(C)’S. Recall that Az = 75(2)n°(32). We have following theorem:

Theorem 6.2. Let k be an even integer.
(1) Fork <0, My3=0.
(2) For k = 0,2, and 4, we have M,873 = 0. Furthemore, we have Moo = C, My 3 = CEz3’, and
M3 = CEy & CEY.,.
(3) M£73 = A3Mk76’3.

The proof of this theorem is similar to that of Theorem 6.1. Furthermore, we have dim(Mj3) =
|k/3] +1 for k > 0, and dim(M,S’?,) = |k/3] — 1 for k > 6.

Let k be an even integer such that k¥ > 4 and k£ = 2 (mod 6), then we have M}, 5 = E273'Mk72,3, and
k—2=0 (mod 6).

On the other hand, let k be an even integer such that k > 4 and k = 0,4 (mod 6). Write n := |k/6],
then k — 6n = 0 or 4. Now, we have E% — Ep° g, o(Eg3)" € My 5 and E)) 3 — ER g, 5(Eg3)" € M 5.
Thus we have My, 3 = CER® ¢, 3(E§3)" © CE,?_M’B(ESVB)” @ M£,3. Then

My = ER2 6n 3(C(EGS)" ® C(EZS)" ™ Az @ - @ CAR)
D Eg—ﬁn,lS(C(Egﬁ)n D C(Eg,3)n71A3 © - @& CAy)

Thus, the next proposision follows:

Proposition 6.6. Let k > 4 be an even integer. For every f € My 3, we have
(150) Upy (f) =t (tk = 0,1,2 such that — 2t =k (mod 6)).

In addition, we have E , = 9((Es 3')?— E53), B = Ba s B —(108/13)Ag, and ES, = (49/729) By 5 BY 5
(50/3)As5. Then

Remark 6.7. Every modular form for I'y(3) is generated by
E2,3’, EX??’, and A3.
Then we have following:

Conjecture 6.2. Let k >4 be an even integer. Ep% has |k/3] —1 zeros in Az, and E}) 4 has |k/3] — 1
zeros in AS. Furthermore, in Proposition 6.6, the equality hold if f is equal to Epsy or E273.

Then we improve Remark 6.6 as following;:

Remark 6.8. If EX% has |k/3| — 1 zeros in Az, then E}) 4 has |k/3] — 1 zeros in A3.
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For 0 < 6 < 27/3, we have 0 < k6/2 < kr /3. Here we need at most |k/3]| integers for |k/3]| — 1 zeros.
We may remove the integer 0 from the interval [0, k/3]. We have already proved the bound |R3| < 2 for
the interval [7/2,27/3] in the previous section. Thus we need

(151) |Rs| < 2 for every 6 € [2n/k, 7 /2].

For the first step, we will prove following in the next subsubsection:
(152) |Rs| < 2 for every 6 € [7/8,7/2].
(153) |Rs| < 2 for every 6 € [7/15,7/2].
(154) |Rs| < 2 for every 6 € [r/20,7/2].

6.2.8. Application of the RSD Method (2) : [r/8,7/2]. In this subsubsection, we prove the bound (152).
In privious subsubsections, we proved for k < 8. Thus we may assume k > 10.

Now we will consider the next cases, namely N = 2,5,---,34, and N > 37. Considering 0 < cosf <
13/14 for the interval [7/8, 7 /2], we have the following:

When N = 2, vp(1,1,0) < (1/2)%/?

When N =5, ve(1,—2,0) < (7/9)F/2.

When N = 10, v(1,3,6) < (1/10)%/2, v(1,-3,60) < (7/31)F/2
When N = 13, ve(2,3,0) < (1/13)%/2, vp(2,—3,0) < (7/13)%/2
When N = 17, vp(1,4,0) < (1/17)F/2

When N = 25, v(3,4,0) < (1/5)%, v (3, —4,0) < (7/19)%/2.
When N = 29, vp(2,5,0) < (1/29)%/2.

When N = 34, vi(3,5,0) < (1/34)%/2, v(3, —5,0) < (7/43)%/2.
When N > 37, |ce?/? + de= /22 > N/30,

and the number of terms with ¢2 + d? = N is not more than 2N/2. Then
o0 (1-k)/2 k/2
1 864 7
— 2/ - < - .
[Bslnzar = 2V14 3 (14N) S k-3 <18>
N=37
Thus

k/2 k/2 k/2 k/2
7 1 1 864 (7
< — — — | —
(155) R3|\2<13> +<2) + +2(34) +k_3<18> :
< 1.80389... (k> 10)

In conclusion,

Remark 6.9. We proved Conjecture 6.2 for 4 < k < 16.

6.2.9. Application of the RSD Method (3) : [w/15,7/2]. In this subsubsection, we prove the bound (153).
In privious subsubsections, we proved for k£ < 16. Thus we may assume k > 18.

Now we will consider the next cases, namely N = 2,5,--- 85, and N > 89. Considering 0 < cosf <
45/46 for the interval [7/15,7/2], we have the following:

When N = 2, ve(1,1,0) < (1/2)%/2

When N =5, ve(1,—2,0) < (23/25)%/2,

When N = 10, ve(1,3,0) < (1/10)%/2, ve(1, —3,6) < (23/95)%/2.
When N = 13, ve(2,3,0) < (1/13)%/2 vp(2, —3,0) < (23/29)%/2.
When N = 17, vp(1,4,0) < (1/17)%/2.



ON THE ZEROS OF EISENSTEIN SERIES FOR I'{(p) AND I'o(p) OF LOW LEVELS 91

When N = 25, ve(3,4,0) < (1/5)%, ve(3, —4,0) < (23/35)F/2.
When N = 26, v(1,—5,0) < (23/373)%/2.
When N = 29, v(2,5,0) < (1/29)%/2.
When N = 34, v(3,5,0) < (1/34)%/2, vp(3,—5,0) < (23/107)%/2,
When N = 37, ve(1,6,0) < (1/37)%/2, vp(1,—6,6) < (23/581)%/2.
When N = 41, vi(4, —5,0) < (23/43)%/2,
When N = 37, vk(l, 7,0) < (1/50)%/2.
When N = 53, vp(2, —7,0) < (23/589)%/2,
When N = 58, v(3,7, 9) < (1/58)%/2, v (3, —7,6) < (23/389)%/2.
When N = 61, v(5,6,0) < (1/61)%/2, vg (5, — 6) < (23/53)%/2,
When N = 65, v (1, =8, 9) < (23/1135)F/2, vp(4,7,0) < (1/65)F/2,
When N = 73, v(3,8,0) < (1/73)%/2, v (3, -8 9) < (23/599)%/2
When N = 74, v(5,—7,0) < (23/126)*/2.
When N = 82, ve(1,9,0) < (1/82)%/2, vp(1,—9,0) < (23/1481)%/2,
When N = 85, vp(2,9,0) < (1/85)F/2, vp(2,—9,6) < (23/1145)%/2,

v (6,7,0) < (1/85)F/2, vp(6,—7,0) < (23/65)%/2,
When N > 89, \cew/2 + de_w/Q|2 > N/46,

and the number of terms with ¢ 4+ d? = N is not more than 2N'/2. Then
| R3|n>s0 = 2V/46 i (416N)(1 o < 724:/?2 (ﬁ)km.
N=89
Thus
(156) |R3| <2 (;g)m +2 (gz)m g4 (815>k/2 - 7241/? (ii)m ;

< 1.89019... (k> 18)

In conclusion,

Remark 6.10. We proved Conjecture 6.2 for 18 < k < 30.

6.2.10. Application of the RSD Method (4) : [1/20,7/2]. In this subsubsection, we prove the bound (154).
In privious subsubsections, we proved for k£ < 30. Thus we may assume k > 32.

Now we will consider the next cases, namely N = 2,5,---,113, and N > 125. Considering 0 < cos <
81/82 for the interval [r/20, 7 /2], we have the following:

When N = 2, ve(1,1,0) < (1/2)%/2.

When N = 5, v(1, —2,0) < (41/43)%/2,

When N = 10, ve(1,3,0) < (1/10)%/2, vr(1,—3,0) < (41/167)%/2.
When N = 13, ve(2,3,0) < (1/13)%/2 vr(2,—3,0) < (41/47)%/2,
When N = 17, vp(1,4,0) < (1/17)%/2.

When N = 25, vi(3,4,0) < (1/5)%, vr(3,—4,0) < (41/53)%/2,
When N = 26, v(1,—5,0) < (41/661)%/2.

When N = 29, vp(2,5,0) < (1/29)%/2.

When N = 34, v(3,5,0) < (1/34)%/2, v(3, —5,0) < (41/179)%/2,
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and the number of terms with ¢ + d?

(157)

When N = 37,
When N =41,
When N = 50,
When N = 53,
When N = 58,
When N = 61,
When N = 65,
When N =73,
When N = 74,
When N = 82,
When N = 85,
When N = 89,
When N = 97,
When N = 101,
When N = 106,
When N = 109,
When N =113,

When N > 125,

JUNICHI SHIGEZUMI

ve(1,6,0) < (1/37)%/2,
vp(4, —5,0) < (41/61)F/2,
vp(1,7, 9) < (1/50)%/2,
vp(2, —7,6) < (41/1039)%/2,
v(3,7, 9) < (1/58)%/2,
v(5,6,0) < (1/61)%/2,
ve(1, —8,6) < (41/2017)%/2,
vk (3,8,0) < (1/73)"/2,
v (5, -7, 9) < (41/199)%/2.
vk (3,8,0) < (1/82)"/2,
vk(2,9 0) < (1/85)%/2,
vp(6,7,0) < (1/85)%/2,
vi(5,8,0) < (1/89)F/2.
vp(4,9,0) < (1/97)%/2,
vr(1,10,0) < (1/101)%/2,
v (5,9,0) < (1/106)%/2,
vk (3,10,0) < (1/109)%/2,
vp (7, —8,6) < (41/97)F/2,

vg(1,—6,0) < (41/1031)%/2.

41/677)%/2.

’Uk(g (
(41/71)k/2,
(
(

7.0)

vg (5, —6,0)
v (4,7,0)
vg(3,—8,0)

<
<
< (1/65)%/2.
< (41/1049)%/2,
vi(3, —8,6) < (41/2633)%/2.
vr(2,-9,0) < (41/2027)/2,
vp(6,=7,0) < (41/83)%/2,
v (4, —9,0) < (41/1061)%/2,
’Uk('(—), —9, 9)
vk (3, —10,0)

(41/701)/2,
(41/2039)%/2.

NN

|ce’®/? £ de™/2)2 > N/82,

= N is not more th

0 (1—k)
1
|Rs|ns125 = 2V82 ) (82N>

|R3| < 2 <

< 1.69883...

In conclusion,

k/2 k/2
41
9( == a9

N=125

(k > 30)

L\
109

an 2N1/2. Then

)/2 992\/> k/2
S k-3 62 '

992v/31 (41\"?
k—3 \62)

Remark 6.11. We proved Conjecture 6.2 for 32 < k < 40.

Now, by Remark 6.9, 6.10, and 6.11, we prove Conjecture 6.2 for 4 < k <

40. However, for greater k,

we prove only about 92.5% of Conjecture 6.2 by the sense of the interval [7/20,7/2].

However, for greater k, it seems that we can not prove for all zeros with the same method.



ON THE ZEROS OF EISENSTEIN SERIES FOR I'{(p) AND I'o(p) OF LOW LEVELS 93

6.3. To(5).

We have the following transformation:

-1 0 e +1  eilm=0) _q
(5 1): 5 5
2 —1 e —2 im0 _9
(5 2>: 5 5
-2 -1 e 42 im0 4 9
(7 7)) et

Then we have Vi, 5 = {—3/10 + v/3i/10} (¢f. Theorem2.1).

6.3.1. Valence formula.

Proposition 6.7. Let f be a modular function of weight k for T'o(5), which is not identically zero. We

have
1 1 k
(158) Voo (F) + 00 (F) + 50psn (1) + 50pss (N + D2 wl(H) =75,
AP

where ps o = —2/5+1/5 and ps 3 :=2/5+1i/5.

Proof. Let f be a nonzero modular function of weight & for I'g(5), and let € be a contour of its fundamental
domain F(5) (Figure 4), whose interior contains every zero and pole of f except for psa, ps3, and
ps5.4:=—3/10 +/3i/10 (cf. Figure 9). By the Residue theorem, we have

LYy L0

271
¢ pETo(5)\H
PF#P5,2,05,3,05,4

(i) For the arc around oo, we have —voo(f)-
(ii) For the arc around 0, we have —vg(f).
(iii) For the arcs around ps 2, ps.3, P54, when the radii of each arc tends to 0, then we have

1 1

751}[)5,2 (f)v 75”95,3 (f)a and - Ups,4(f)'

(iv) For the arcs on {z; Re(z) = —1/2} and {z; Re(z) = 1/2}, since f(Tz) = f(z) for T = (} 1), we have
0.
(v) For the arcs on {z; |z £1/5| = 1/5}, since f(S5z) = (52 + 5)* f(z) for S5 := (1 9), we have k/3.
Furthermore, for the arcs on {z; |2+ 2/5| = 1/5}, since f (( 32 3') 2) = (52 + 2)* (), we have

(2502, d Ak
FU(F5)2) s T M ow

Similarly, for the arcs on {z; [z — 2/5| = 1/5}, since f ((2 Z3) z) = (52 — 2)* f(), we have k/12.
Thus /3 + 2 k/12 = k/2.
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6.3.2. Modular forms of weight 2. We define
1
(159) E2’5,(Z) = Z(5E2(5Z) - EQ(Z))

Note that Es 5" is generated by Eisensitein series for SLa(Z), but it is not Eisenstein series for SLo(Z)
nor Iy (5).
Similarly to E2,2/ and E273/7 we have
Eys' ((§1)2) = B25'(2),
Bys'((39)2) = (52 + 1)*Ea 5 (2).
In addition, we have ( 1) =TST*ST=2S7 for T := ({ 1) and S := (9 ). (See [RD]) Similarly,
we have 5+ (21)z=(33) 5z and (35) =T3S~ 1T-1ST. Recall that we have following: (Section 3)
12
(160) Ey(Tz) = Ex(2),  E(S2) = 2°Ex(2) + 57

Then we have

Bo(TST?ST 287 12) = Eo(ST?*ST 257 12)

2
2 12 52 + 2
<5z+ ) Ea(T2ST257 1) + 2 22+

2z +1 2mt 2z + 1

5z + 2 gl 12 52+ 2

(2z+1) )+2m’2z+1
_ 5z+2 2z+1 Ba(T 251)_£2z+1 +£5z+2
o 22+1 oz 27 2z + 1

(z+2 Ea(S )_ 12 2(5z+2)

z

(52+2) ) 12 12 2(52 +2)

= \FPROt ) e

12
= 2)2E il 2).
(52 4+ 2)*Es(z) + i 5(5z + 2)

Similarly,
5z +2 12 5242
Eo(T?2S~'T7718T 52) = Ey(ST 52) — —
2175 ST 52) (22+1) 2(5T'52) — 55 v 1
12
= (524 2)2Fy(52) + — (52 + 2).
211
Thus

Eys' ((23)2) = (524 2)°Ea5/(2).

Recall that (1), (£9), and (2 }) generate I'g(5) (in Section 4), then we can show that Fs 5’ satisfies

transformation rule for T'y(5).
Furthermore, because

(161) E2)5/(W5Z) = —(\/52)2E275/(Z>,

FE5 5" is holomorphic at cusp 0. Now, we prove Fs 5’ is a modular form for I'g(5) of weight 2.

6.3.3. Preliminaries. Let f be a modular form for T'y(5) of weight k, and let &k = 2 (mod 4). Then we
have

flps2) = F((F23Y) ps2) =i f(ps2) = —f(ps2)-
flpss) = F((223) ps3) =" f(ps3) = —F(ps,3).

Thus f(p5,2) = f(p5 3) - 0 Vps, Q(f) 17 and Ups, 3(f) > 1
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Let k be an even integer such that k =0 (mod 4). Then we have

Bi5(052) = 5 (240" — 59 Bu(i) £0,
B 5(52) = 75 (2 ) — DE(i) £0.
B (0s) = 15 (2 + )" =59 B(i) £0,
B (p5s) = T (-2 +0)* — 1E(D) £0.

ThUS UP5,2 (EI??E)) = UP5,2 (Elg,ii) = 07 Uﬂs,s (El(:,o5) = UP5,3 (E2,5) =0.

Recall that vo(ERS) = UOO(E,S’S) =1 and v (E}S) = UQ(E%S) = 0. (Section 4)

Finally, for Ey5', we have v, ,(Fa5') > 1 and v, ,(E25") > 1. By the valence formula for T'g(5)
(Proposition 6.7), we have

”ps,z(E2,5l) = vp5,3(E2,5’) =1, Up(E2,5/) =0 foreveryp# 5,25 05,3

Incidentally, let f be a modular form for I'g(5) of weight 2. Then, By the valence formula for I'g(5),
we also have

Vps o (f) = 0ps s (f) = 1, vp(f) =0 forevery p # ps2, ps,3.

Thus f/E> 5" is a modular form of weight 0, then f/Es5" € C. In conclusion, f is a constant multiple of
E2’5/.

6.3.4. The space of modular forms. Let My 5 be the space of modular forms for I'o(5) of weight k,
and let M,S75 be the space of cusp forms for I'g(5) of weight k. Since dim(Mk75/M,g)5) < 2, we have
My 5 = CEYS @ CEQ 5 © My 5. Recall that As = 1*(2)n*(52). We have following theorem:

Theorem 6.3. Let k be an even integer.

(1) Fork <0, My5=0.
(2) For k=0 and 2, we have My ; = 0. Furthemore, we have Mo = C, Ma5 = CEy5'.
(3) MYs=AsMy 45

The proof of this theorem is similar to that of Theorem 6.3. Furthermore, we have dim(My5) =
2|k/4] +1 for k > 0, and dim(My ;) = 2|k/4| — 1 for k > 4.

Let k be an even integer such that k > 4 and k = 2 (mod 4). For f € My, 5, by previous subsubsections,
we have v,(f/Fa25") = 0 for every p € HU {00,0}. Then f/FEs5" € My_a5. Thus M5 = Es5'My_o5,
and k —2 =0 (mod 4).

On the other hand, let k be an even integer such that k¥ > 4 and k¥ = 0 (mod 4). Write n := k/4.
Now, we have EpS — (Ef%)" € MY, and E ; — (EQ5)" € M . In conclusion, we have M5 =
C(ES)" © (C(EE,E))" ® M,875. Then

My 5 = (C(ES3)" © C(E5)" ' As & - & CAY)
& (C(Es)" & C(Ef5)" ' As @ -+ © CAY)
Thus, the next proposision follows:

Proposition 6.8. Let k > 4 be an even integer. For every f € My 5, we have

(162) Vps o (f) 2ty pss(f) Ztx  (th = 0,1 such that 2ty =k (mod 4)).

In addition, we have Ef 5 = 25((E25")* — ES%) — (900/13)As. Then
Remark 6.12. FEvery modular form for T'g(5) is generated by
Es5, B, and  As.
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Finally, define

(163) Asq1:={z; |z +1/5] =1/5, 0 < Arg(z) < 27/3},
(164) Ad | ={z; Re(z) = —1/2, Im(z) < V3/6},

(165) Aso:={z; |z+2/5| =1/5, m/3 < Arg(z) < w/2},
(166) Ag,g ={z;|2+2/3|=1/3, a < Arg(z) < ©/3},
(167) Al =A{z; |z —2/5| = 1/5, /2 < Arg(z) < 27/3},
(168) AfY ={z;]2—2/3|=1/3, 2n/3 < Arg(2) < 7 — o},

where a € [0,7/2] such that tana = 3/4. Furthermore, we define A5 := A5 1 U A5 U A;Q and A :=
Ag,l U A%Q U AQ:QO. Then we have following:

Conjecture 6.3. Let k > 4 be an even integer. ERS has 2|k/4] —1 zeros in As, and E,&S has 2| k/4] —1
zeros in AY. Furthermore, in Proposition 6.8, the equality hold if f is equal to Eps or Elg,S'

Now, we have the following transformations:

1 -1 e —1 1 i 1
169 Ws: A —— 4 ——— e AY
(169) (0 1 ) A A R TN At
e — 2 2 —cosf +isinf
1 c A A?
(170) Ws: 4523 5 '_) 5 —4cosf €452
e + 92 —2 —cosf +isinf
171 Ws: A, e AT,
) 582 5 5+ 4cosd 5,2
Furthermore,
Els ((§71) Ws 2) = (52)"E5(2)  for every 2 € As,,
E275(W5 z) = (5z)kE}3°5(z) for every z € As o, A;Q.
Then

Remark 6.13. If S has 2|k/4] — 1 zeros in As, then E}) 5 has 2|k/4] — 1 zeros in A3.

6.3.5. The function Fi,51(0), Fr52(0), and F,i572(0). We give the next definition;

(172) Frsa(0) i= e*/2E55 (e /5 — 1/5),
(173) Fs2(0) 1= 2B (e /5 - 2/5),
(174) Flc+,5,2(9) — eike/gEg%(ew/f) +2/5).
Again, E7% is denoted by
i~ 1 _
Ek,5(z) =3 Z (cz+d) k
(e,d)=1
5|c
= By s(2) = Z Dy 5(5"z). (See Section 2)
neN
Then
o @i‘) -1 n—1/_i0
Ek,s 5 = Z Dy 5(5 (e —1))
neN
neN
4 ‘ ‘
= Z Dgﬁ(el@ _ 1) + Z Dk’5(5n619)
n=1 neN

3
Bis(e)+ Crs(e)+ > Dy 5(e”).

n=1
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Thus
1 . ) 1 ) .
Fk,{),l(e) :i Z (0619/2+d€—19/2)—k+§ Z (06—19/2+d616/2)—k
(¢, d)=1 (¢, d)=1
5|c 5|c
1 _ .
_|_§ Z (Ceze/2+de—10/2)—k
(¢,d)=1
5ted
c=d (5)
1 , ) 1 ) .
_’_5 Z (0619/2+de—10/2)—k+§ Z (06—19/2+d619/2)—k
(C,S?)? (675?);1
d=2c (5) d=2c (5)
Similarly,
- 620 —92
By (=) = Brale”) + Cis(e”) + D Dis(e”),
n=1,2,4
0 2)
E;;%(e 5+ >:B’(19)+de 10 Z Dn 29
n=1,3,4
Thus

1 , X 1 , .
Fk,5,2(9): 5 Z (C619/2_‘_de—19/2)—k+§ Z (06—19/2+d619/2)—k

(e, d)=1 (e,d)=1
5lc 5lc

1 i0/2 —i0)2y—k | L i6/2 —i0/2y—k
+§ Z (ce®™’* + de ) +§ Z (ce™/= + de )

(¢,d)=1 (c,d)=1
5ted 5ted
c=d (5) c=—d (5)
1 ) )
t5 D (e den )T
(e,d)=1
5ted
d=2c (5)
1 : . 1 . )
Fl:f5,2<9) =5 Z ((:@“9/2 + de‘“g/Q)—k + 3 Z (Ce—w/z + dezG/Z)—k
(e, d)=1 (ed)=1
5‘0 5‘C
1 ; : 1 . .
+ 5 Z (6616/2 + de—10/2)7k + 5 Z (0619/2 + defw/z)fk
(c,d)=1 (c,d)=1
5fcd 5)[(3(1
c=d (5) c=—d (5)
+ % Z (ce™ /% 4 de?/2)=F
(e, d)=1
5ted
d=2c (5)

Note that (ce’?/? + de’?/2)=F and (de?®/? + ce="%/2)~F are conjugates of each other for any pair (c,d)

)
such that ¢ = +d (mod 5), and (ce?®/? + de?®/2)=F and (ce™"%/2 4 de'?/?)~* are conjugates of each other
for any pair (¢, d) such that ¢ # d (mod 5).
The next proposition follows.

Proposition 6.9. Fj 51(0) is real for every 6 € R. On the other hand, Fy52(0) and Fy52(0) are
conjugates of each other for every 6 € R.

6.3.6. Application of the RSD Method. We note that N := c? 4+d?. Let v(c,d, ) := |ce??/? + de="9/%| 7k,
then vi(c,d,0) = 1/(c? + d? + 2cd cos 0)*/2 and vi.(c, d, 0) = vi(—c, —d, 0) = vp(*d, %, 0).
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In this subsubsection, we consider an application of the RSD Method to Fj, 5 1(). Firstly, we consider
the case N = 1. Then we can write:

(175) Fk’5,1(9) = 2COS<I€9/2) + R5717

where

> vk(c,d,e)—i—% > wled,0)+ > wile,d,0).

(¢,d)=1 (¢, d)=1 (¢, d)=1
5|c 5tcd 5ted
N>1 c=d (5) d=2c (5)

We consider two cases, namely [r/2,27/3] and [r/4,7/2].
For the interval [r/2, 27/3], we will consider the next cases, namely N = 2,5, and N > 10. Considering
—1/2 < cos@ < 0 for the interval [7/2,27/3], we have the following:

When N = 2, ve(1,1,0) < 1.
When N =5, vi(1,2,0) < (1/3)F/2, (2, -1,0) < (1/5)F/2,
When N > 10, |ce®®/? + de=/22 > N/2,

and the number of terms is not more than 2N'/2. Then

o0 (1—k)/2 k)2
1 108 2
R =22 —N <— (= .
|R5,1|N>10 \[N;O <2 > 3 (9>
Thus

k/2 k/2 k/2
1 1 108 2
176 R5 <1 21 = 21 = - | =
(176) | B5.1] + (3) + (5) +k:—3 <9>
< 1.41106... (k> 6)

On the other hand, for the interval [/6, 7 /2], we will consider the next cases, namely N = 2, 5,10, 13,17,
and N > 25. Considering 0 < cosf < 7/8 for the interval [7/6,7/2], we have the following:

When N = 2, ue(1,1,0) < (1/2)%/2,

When N = 5, ve(1,2,0) < (1/5)%/2, ve(2,—1,0) < (2/3)F/2,
When N = 10, vk (3, 1,9) < (1/10)%/2, vi(1,-3,0) < (4/19)%/2.
When N = 13, vp(2,—3,0) < (2/5)F.

When N =17, v (1, —4,9) < (1/10)".

When N > 25, |ce'®/? £ de="/2)2 > N/8,

and the number of terms is not more than 2N/2. Then

0 (1-k)/2 b2
1 1926 (1
[Rsa|ns2s = 4V2 <8N) <53 (3) .

N=25

Thus

k/2 k/2 k/2 k/2
1 192[
1 <2 2
< 1.67753... (k > 8)

By the above bounds, we know that E,‘c’% has many zeros in As ;. However, for the arcs A5 2 and A;;z,
it is not clear.
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6.4. To(7).

We have the following transformation:
(1 0 > . eie _|_ 1 e’i(ﬂ'—e) _ 1

— )
7 7

-3 -1 ei@ -9 61’(7770) -3
N —

2 1 . ei@ +3 » 62‘(7‘[‘79) + 2
7 -3 7 7 )

Then we have Vi (7) = {—3/14 + V/3i/10, —5/14 + /3i/10}.

6.4.1. Valence formula.

Proposition 6.10. Let f be a modular function of weight k for T'g(7), which is not identically zero. We

have
(178) Voo (f) +vo(f) + %vpm(f) + éva N+ > wlf)= g
AN

where pro = —5/14 +/3i/14 and p73 := 5/14 +/3i/14.

Proof. Let f be a nonzero modular function of weight k for I'x(7), and let € be a contour of its fundamental
domain F(7) (Figure 4), whose interior contains every zero and pole of f except for p7a, pr3, and
pra:=—3/14+/3i/14 (cf. Figure 9). By the Residue theorem, we have

1 df
i)y F o > wlh)
peTo(T)\H
DPF#P7,2,P7,3:P7,4
(i) For the arc around oo, we have —voo(f).
(ii) For the arc around 0, we have —vg(f).
(iii) For the arcs around p7 2, p7.3, p7,4, when the radii of each arc tends to 0, then we have

_%Uﬁh,z (f)v _%Uprs (f)’ and - Uﬂ7,4(f)'

(iv) For the arcs on {z; Re(z) = —1/2} and {z; Re(z) = 1/2}, since f(Tz) = f(z) for T = (} 1), we have
0.
(v) For the arcs on {z; |z £1/7| = 1/7}, since f(S72) = (T2 + 1)k f(2) for S7:= (19), we have k/3.
Furthermore, for the arcs on {z; [z 4+ 2/7| = 1/7} and {z; |z +3/7| = 1/7}, since f ((F* 3') 2) =
(72 + 3)* f(2), we have k/6. Similarly, for the arcs on {z; |z —2/7| = 1/7} and {z; |z — 3/7| = 1/7},
since f ((223)2) = (72 — 2)F f(z), we have k/6.
Thus k/3 + 2 k/6 = 2k/3.

6.4.2. Modular forms of weight 2. We define
1
(179) E277/(Z) = 6(7E2(7Z) - EQ(Z))

Note that Es ;' is generated by Eisensitein series for SLo(Z), but it is not Eisenstein series for SLy(Z)
nor I'y(7).
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Similarly to E2,2/ and Es, 3', we have

Byt (31)2) = Baf(2), Ead (—~(39)2) = (-T2 1By, <>

7
In addition, we have (43) = TST?ST 35! for T = ({ 1) and S = (9 '). ( ) Similarly,
we have 7- (43)z = (47) 7z and (17) = T3S~ 'T-1ST. Recall that EQ(TZ) ( ) Ey(Sz) =
2?Es(2) + (12/27i)2. Similarly to Fa 5’

Tz +2
3z+1

(72 +2)?
- 2

12 72+ 2
270 3z + 1
12 2(7z + 2)
2 2

2
Eo(TST?*ST35712) = ( ) Eo(ST3S8712) +

EQ(Sflz) -

12
= (T2 +2)%Ey(2) + %5(% +2),

Tz 42
Tz4+1

£7z+2
2mi Tz + 1

2
Eo(T3S'T~ ST 52) = ( ) Eo(ST 72) —

= (T2 +2)?Ey(72) + %(u +2).
Thus
Er7' ((23)2) = (T2 + 2)*Ea 7/ (2).
Recall that (1), —(39), and (41) generate I'y(7) (in Section 4), then we can show that E» 7’ satisfies

transformation rule for T'o(7).
Furthermore, because

(180) E277/(W7Z) = 7(\ﬁz)2E277/(2’)7

E2,7’ is holomorphic at cusp 0. Now, we prove E2,7' is a modular form for I'y(7) of weight 2.

6.4.3. Preliminaries. Let f be a modular form for T'y(7) of weight k, and let & £ 0 (mod 6). Then we
have

Flor2) = F((F ) pra2) = (€23 f(pr2).
flors) = F((323) prs) = (€23 fprs).

Thqu(,O72) f(p73)_0 Up72(f) 1, andvﬂ7s( )/1
Let k be an even integer such that k =0 (mod 6). Then we have

B (pra) = (((5+fz) /2) —7’€) Ew(p) #0,
Efo(pra) = 1= (((5+fz /2)k1> Exl(p) #0.
B (prs) = ((( 5+\ﬂ) /2)k—7k> Bx(p) #0,
B atona) = g (-5 V3) 2) 1) Bato) 20

Thus Vp7,2 (EIC;,O7) = Vpr o (Elg,?) 0, Vpr, 3(Elcc>,o7) P7 3(Elc 7) =0.
Recall that vo(ER%) = veo (ER ;) = 1 and veo (ER%) = vo(EJ ;) = 0. (Section 4)
Finally, for Es ', we have vpm(Egj’) > 1 and Vo4 (Ea,7 ') > 1. By the valence formula for I'o(7)

(Proposition 6.10) and Corollary 2.1.2, we have

Vpz,2 (E2,7,) = vP7,3(E2,7/) =2, UP(EQJ/) =0 foreveryp # P7,25 07,3
Incidentally, let f be a modular form for I'g(7) of weight 2. Then, By the valence formula for I'y(7),
we also have v, ,(f) + v, ,(f) = 4. Then, if v, ,(f) # 2, we have f = ag + a1q +--- for some ag # 0,
f—aoE27" = (a1—4ag)q+ -, and voo (f —agE2 7") > 1. This contradicts v,(f) = 0 for every p # pr.2, p7 3.
Now
UP7,2(f) = Upr 5 (f) =2, ’Up(f) =0 foreveryp 7& P7,25 P7,3-
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Thus f/FE> 7" is a modular form of weight 0, then f/E> ;" € C. In conclusion, f is a constant multiple of
E2,7/.

6.4.4. The space of modular forms. Let My 7 be the space of modular forms for T'o(7) of weight k,
and let M}, be the space of cusp forms for To(7) of weight k. Since dim(My7/Mp ;) < 2, we have
My, 7 = CERS, ®CE)) , ® My ;. Recall that Az = 1°(2)1°(72), and Az 4, Az are the cusp forms for T's(7)
of weight 4, 6, respectively. We have following theorem:

Theorem 6.4. Let k be an even integer.

(1) Fork <0, My7=0.

(2) For k=0 and 2, we have M,g7 = 0. Furthemore, we have My7 =C, My 7 = CEQJ/.

(3) M£7 = CA774.

(4) Let Azg = (1/13)(E27'A74 — A7) and A;G = —(1/13)(E2 7' A7 4 + Az ). ng = CA; &
CA7 ¢ ® CAzg.

(5) My 7= Mg Mi_q.7.

Let k be an even integer k > 4. Define fo(k) := (Ej ;)**if k = 0 (mod 4), and fo(k) := Ef ;(Ej ;) k=0/4
if k=2 (mod 4). Then we have (\ﬁz)kfo(k)‘zzwﬂ = fo(k) because fo(k) is a modular form for T'§(7).
The proof of this theorem is similar to that of Theorem 5.2. We have A7y = (\ﬁz)kA;iG and
Afs = (VT2)PA7 4. Because A7 g = ¢4+ and A = —(2/13)g+- -, we have v (A7 ) = vo(AT ) =2
and UOO(A;)G) =vo(A76) =1
For every f € My ;, we can write f(2) = a1q + --- and (V72)"*f(Wr2) = big+ ---. Now, put
g:=f—(a1A76— (13/2)(b1 — a1)A7 ) fo(k — 6), then it is easy to show that vo.(g) > 2 and wvo(g) > 2.
Thus g/A7 € My_g 7. This proves (5).
The table of orders of zeros of basis for M ; is following:
k v
2 By

|other zeros|

<
S
3

<
S
3

2 3

— R, NN OO0
Nl VI I S I S ] B
SO OO OO - =N

0
1
1
0
3
3
0
1
1
2

SO OO OO FEFEIN

e}

Furthermore, we have dim(My, 7) = |2k/3] + 1 for k > 0, and dim(M} ;) = [2k/3] — 1 for k > 4.

Let k > 8. Write n := |k/6]. If k = 0,4 (mod 6), then we have Ep% — E° ¢, -(Eg%)" € My, and
ER 7= E} _g,7(E¢ ;)" € M ;. Tn conclusion, we have M}, 7 = (CE;j‘ij(ng})”@CE276n’7(E877)”@Mlgj.
Similarly, if & = 2 (mod 6), then we have My 7 = CEy 7' (Eg%)" @ CEy 7 (E§ ;)" & M ;. Thus we have
following:

If k=0,4 (mod 6),

M7 = B, 7(C(Egy)" @ C(Eg,o7)n_1Mg,7 DD C(ng)n)
@ Eg—ﬁn,?(C(Egﬁ)n @ C(Egﬁ)nflMg,? S D C(ng)n)
D Mlgff}n,?'
If k=2 (mod 6),
My, = o' ((C(EZ)" @ C(EZ)" M7 @ -+ & C(M)")
& (C(B7)" & C(EQ,)" ' M7 &+ & C(MI7)™) ).

Now, the next proposision follows:
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Proposition 6.11. Let k > 4 be an even integer. For every f € My 7, we have
(181) Vpro(f) 2ty Vps(f) 2tk (e =0,1,2 such that — 2t =k (mod 6)).

In addition, we have Egj = 49((E2’7/)2 — EX%) — (784/5)A7,4, Ego7 = E2’7I(Eio7 — (348/95)A7’4) —
(36/19)A7 — (10/43)Az6, and Ef ; = Ey 7' (343(E5% — (E27')?) + (223636/95) A7 4) + (12348/19)A7 —
(3430/43)Az 6. Then
Remark 6.14. Fvery modular form for T'o(7) is generated by

/ (e’e)
Esq', Ef%, Aza, Agg, and Ag.
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APPENDIX.
On the zeros of Eisenstein Series for I'g(4) and I'jj(4)

In this paper, we consider Eisenstein Series for T'§(p) and TI'y(p) for primes p. In general, T'§(N) and
T'o(N) for a nonprime integer N have more cusps than I'fj(p) and T'g(p) for a prime p. Then, it gets much
more difficult to decide the locating of zeros.

In this appendix, we consider about I'j(4) and I'g(4). Note that I'g(4) is a subgroup of I'y(2). In-
terestingly, if we can decide all the zeros of Eisenstein Series for I'g(2), then we can decide all the zeros
of Eisenstein Series for T'§(4) and T'g(4). Thus, by the results of this paper, we decide all the zeros of
Eisenstein Series of low weights 0 < k < 40 for T';(4) and T'g(4). We may say it is natural, though it is
not clear for me.

Again,

To(4) ={(24) €SLa(Z); c=0 (mod 4)},
[5(4) =To(4)UTo(4) Wy, Wa= () 7%)/2) .
APPENDIX A. PRELIMINARIES

A.1. Fundamental Domains. For T'y(4), similarly to T'g(p) for prime p, we consider the following
condition:

(Co) |24 1/4] > 1/4, —1/2 < Re(z) < 1/2.
Then, by corollary2.1.1, we have
(182) Lo(4) = (=1, (51), (19))-
On the other hand, for I'g(4) Wy, we need to consider the following condition for every positive number
m:
(Cam) |z —n/m| > 1/2m./p, —1/2 < Re(z) < 1/2 for Vn € Nsuch that (m,n) = 1.

For every z € H such that |z — n/m| = 1/2m, we have (2n — 1)/2m < Re(z) < (2n+ 1)/2m. If
(2n —1)/2m < 1/2, then we have (2n — 1) <m, (2n+1)/2m < 1/2. Also, if (2n +1)/2m > —1/2, then
we have (2n —1)/2m > —1/2. In addition, By Wy, we have the condition |z| > 1/2. Note that we have
the condition —1/2 < Re(z) < 1/2, then we have following sufficient condition:

(Cy) |z] > 1/2, —1/2 < Re(z) < 1/2.

Moreover, (Cy) is a sufficient condition for (Cp).
Furthermore, we have the following transformations:

For T'y(4), _ '
1 0 . 620 -1 62(71'7(9) +1
4 1) T4 T 4
For T§(4), , o)
eZ 6Z N d
Was 5o
To(4) : Ti(4) 2 ;

FIGURE 10. T'g(4) and I'}(4)
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A2. Ex(z+1/2). Let k > 2 be a even integer. In this subsection, we consider about Ej(z + 1/2). We
will denote Ex(z + 1/2) by Ex(z), Ex(22), and Ej(42).
Firstly, we have

1 —k
Ei(z+1/2) = 5 > (e(z+1/2) +d)7F
(e,d)=1
If ¢ is odd, then (c(z + 1/2) +d)~* = 2¥(2cz + (c + 2d)) 7%, and (2¢,c + 2d) = 1. If ¢ is divisible by 4,
then we can write ¢ = 4¢’ for some integer ¢/, and we have (c(z + 1/2) +d)™% = (4c'z + (2¢' + d))7F,
(4¢,2¢ +d) = 1. And if ¢ is even and not divisible by 4, then we can write ¢ = 2¢ for some integer ¢”,
and we have (c(z +1/2) +d)~% = (1/2%)("z + (" +d)/2)7F, (", (" + d)/2) = 1. Here, we have

1 1 ) 1 1
Ex(z+1/2) = 5 > (cz+d)—’“+2’“-5 > (c,z«Jrcl)—’UrQ—k-§ > (ez+d)7,
(e,d)=1 (e,d)=1 (e,d)=1
4|c c:even,4fc c:odd

Now, let us denote A, B, C' as follows:

— 1 —k - 1 —k - 1 —k
A= 3 Z (cz+d)™", B:= 3 Z (cz+d)™", C:= 3 Z (cz+d)~".
(e, d)=1 (e,d)=1 (c,d)=1
4lc c:even,4fc c:odd
Then
1
En(z+1/2) = A4 2* B+ C.
Similarly,
Ey(z)=A+B+C.
1
Ek(QZ) :A+B+270
1 1
In conclusion,
(183) En(z+1/2) = —E(2) + (2% + 2)Ex(22) — 2YE).(42).

A.3. Eisenstein Series. Let k > 4 be an even integer. Recall Section 2, and we have
Toi={yeTol); yw=r}, TL:i={yelo();yn=r}
for a cusp . Furthermore, 7,7y € SLa(R) satisfy y,00 = 700 = k and
Do =7loovn s Th =25 (00) 7"

In addition, we denote the Eisenstein series associated with T'g(4) and T'§(4) for a cusp x by Ey 4 and
Ej 1, respectively.
Now, I'g(4) has three cusps oo, 0, and —1/2. On the other hand, I'fj(4) has two cusps oo and —1/2.

A.3.1. For the cusp oo. We have I'oo =T%, = {+(§ %) ; n € Z}. Thus, similarly to Ey, Ej; ,, and E°,

o . 1 -
(184) B = Y it =5 3 (v
€T 0 \T'o(4) (C’f‘)zl
Eir()=c >, i) F+e D a7t
YETZA\T0(4) YETE Lo (4) Wy
1 9—Fk
(185) =3 > (cz+cl)—’“+7 > (ez+ad)7.
(c;d)=1 (c,d)=1

4lc c:odd
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Also, we have

(186) Ey(2) = Bia(22) = ﬁ (Er(22) — 28 Er(42)),
B £°(2) = Bi2(22) + 275 (Bi(2) — Bia(2))
1

(187) (—Ex(2) + 2Ex(22) — 2F B, (42)) .

T 1ok

A.3.2. For the cusp 0 (only for To(4)). Similarly to E}) , we have T = {# (4, ?) ; n € Z} and yo = Wi.
Thus

. _ 1 _
(188) Bla)=c Y jagtrat=g Y (erd
~ETo\ o (4) (c,d)=1
c:odd
Also,
1
(189) B 4(2) = Bu(2) — Bra(2) = 75— (Bu(2) — By(22)).

In addition, we have following;:
Remark A.1. Let k > 4 be an even integer. We have
(190) EQ 4(2) = EQ5(2)  for everyz € H.

A.3.3. For the cusp —1/2. Firstly, we decide I'_; /5 and I"il/Q.
Fora~y = (2%) € To(4), if v(—1/2) = —1/2, then we have ¢ = 2a + 4b + 2d. By ad — bc = 1, we have
a=2b+1,d=2b+1, and ¢ = —4b. Thus we have

T oipp={% (2111711 ony1) s nEL}.
Furthermore, if yW4(—1/2) = —1/2, then we have ¢ = —2a — 4b — 2d. Similarly, we have F*_l/2 )
{:I: ( 2n ”_1/2> in € Z}. Thus we have

—4n+2 —2n+2
Ity = {£ (25 22 ) inez).

Secondly, we decide y_y /5 and v*, /2
For ay=(2%) € To(4), if yoo = —1/2, then we have ¢ = —2a and d = 1/a — 2b. Then we have

2 2
’}/Foo'}/_l = {Zl: (zfznjzl _2232+1) yn e Z} .

For I'y(4), we need a? = 1, thus we can define as following:

(1 0
Y-1/2 = —9 1)

On the other hand, for I';(4), we need a? = 1/2, thus we can define

Finally, we decide Ek_’im and E,:;UQ.
For a v = (2%) € I'g(4), we have j((v-1/2)"*7,2) = ((2a 4+ ¢)z + (2b + d)), and I'_; )5 stabilize the
pair (2a + ¢,2b + d). Thus we have

_1/2 o ]. —k
(191) B (2) =5 > ezt )k
(c,d)=1

cieven,4fc



106 JUNICHI SHIGEZUMI

Similarly, we have j((v_1/2) 'YW, 2) = (1/v2)((4b+ 2d)z + (a + ¢/2)), and ', ), stabilize the pair
(2a + ¢,2b + d) and (4b + 2d, a + ¢/2). Thus we have

E;Zlm(z):e Z (cz +d)~F 4 27/2¢ Z (cz+d)~*

(e,d)=1 (e,d)=1
cieven,4fc cieven,dfc
1 —k
(192) =5 > (ez+d)
(e,d)=1
cieven,4fc
Then
Remark A.2. Let k > 4 be an even integer. We have
(193) EZ;l/Q(z) = E,;}l/z(z) for every z € H.
Also,
By i*(2) = By i %(2) = Bra(2) = Bra(22)
1
(194) =T %" (Er(z) — (2" + 1) Eg(22) + 2" Ei(42)) .

A.3.4. The orders at cusps. For T'g(4), we have followings:

rion) = e (5 () -2 (1)

= o (B(e) - Bu(22) = B (2)
then
E2,4(702) = 4kaE1304(Z)~
BiaO-122) = 758 <E ( 2z + 1> 2B < 22 + 1)>
1 1
=1_2,€<Ek((11 _2kE’“( 1/2—1/4z>)
= (=22 + 1) 12k (Er(2) — (2 + 1) E(22) + 2" Ep(42))
= (-2 + 1B, (2).
Similarly,

By P (1o1p22) = (=22 + DFER (2).
By E2,4 = E}, and y_15 € I'g(2),
E2,4(70z) =(-22+ 1)kE12,4(Z)-

o (1) -wm ) ()

= (22)’@% (Ex(2) — (2" + 1) ER(22) + 2" By (42))

= (22)"E; )% ().

Thus the orders at cusps are folloing;:

Table for the orders at cusps
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For T'§(4), since

* 00 1
E;¥(2) = T—oF (Ep(z £1/2) — 2V Ey(22)),
we have
Ek,4 (771/22) = Ek,4 (—42:4—2)
1 1 1
=—— (Ex | - —2kE, (-1 -
1—2k(’“< 22—1) k( z—1/2)>
1
= (—2z+ 1)’“ﬁ (Er(2) — (2F + 1) Ey(22) + 28 Ex(42))
= (=22 + 1)*E; [ *(2).
Similarly,
* —1/2, % (_2Z+1)k * 00
Ek,4 / (7—1/22) = TEIC,4 (2)

Thus we have
* 0O * —1/2
Voo (BL ) = v_1ya(Ef ;%) =0,
* 00 * —1/2
U71/2(Ek,4 ) = Uoo(Ek,4 / ) =1

APPENDIX B. MODULAR FORMS FOR I'g(4) AND I'§(4)

B.1. Valence formula for T'p(4). In order to decide the locating of zeros of Eisenstein series, we need
the wvalence formula for T'o(4):

Proposition B.1. Let f be a modular function of weight k for Tg(4), which is not identically zero. We
have

(195) voo(f) +vo(f) +vo1p2(H)+ D vp(f) =

pely(4)\H

3

k
2

,

ol [
ol Lo

FIGURE 11

Proof. Let f be a nonzero modular function of weight k for I'g(4), and let € be a contour of F(4) which
is a fundamental domain of I'g(4) represented in Figure 11, whose interior contains every zero and pole
of f. By the Residue theorem, we have
1 df
)

27 € pEF(4)

Similar to Proposition 6.1,
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(i) For the arc FA, we have
1 [Adf
i . — = ~Uso(f)-
(ii) For the arc CC’, define fo(2) := (V42) 7% f(702), then we have fo(v5 '2) = (V42)F f(z) and

dfo(vg '2) _ df(2)

o'z 1) #r

Thus

1 [TdE) 1 e 1 /C' ke
2mi Jo f(z) 2w Jgp folz)  2mi
Now, when the arc C'C’ tend to 0, we have

C z’

1 [ af
i . 7—’—U0(f)

(iii) For the arcs BB’ and DD’, without loss of generallity, we can define arcs BB’ and DD’ so that
it equals the image of FF and F'A by the transformation v_;,o and Tvy_; /5T, respectively. Define
fo1/2(2) == (=22 +1)7F f(y_1/22), then we have f_y/2(vy '2) = (22 + 1) f(2) and

df—12(72102)  df(2) dz

= k .
[y B () BAAPES

Here, f_1 /5 is holomorphic at co. On the Fourier expansion, we have qlrmzt1 = e2milztl) — p2miz —
Thus we have f_1/5(Tz) = f_1/2(2) for T = (§ 1).
Now, when the arcs BB’ and DD’ tend to 0, we have

1 (Bdfz) 1 [Pdfoipa(z) 1 /B/ L dz 1
L _ _ b !
2mi B (Z) 27, F ffl/Q(Z) 271 B z+ 1/2 2

U—1/2(f)~

L D’ df(Z) B 1/T1D/ df(Z) 1 TA df 1/2( ) B 1/T1D/k dx

2mi Jp  f(z) 27 Jrp ID f(z) ~ 2mi Jpp fo12(2) 2w Jpap 2412
1 [Adf 1/2(2) 1

H% r fo1/2(2) ivil/z(f).

Thus

_lv L2 (f) — 1u 1/2(f) = —v_1)2(f).

(iv) For the arcs AB and D'E, since f(Tz) f( )s

Bar 1 [Pdf
AT L
(v) For the arcs B'C and C'D, since f(S42) = (42 + 1)*f(2) for Sy :=
df (S42) _k dz n df ()
f(S42) z+1/4  f(z)

19), we have

and

(
k
>

O

B.2. Valence formula for I'{(4). In order to decide the locating of zeros of Eisenstein series, we need
the valence formula for T'§(4):

Proposition B.2. Let f be a modular function of weight k for T'§(4), which is not identically zero. We
have

(196) WOO(f)+'U—1/2(f)+%vi/2(f)+ > vp(f):;
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PR R

Nl [T
N

FIGURE 12

Proof. Let f be a nonzero modular function of weight k for I'j;(4), and let € be a contour of F*(4) which

is a fundamental domain of I'fj(4) represented in Figure 12, whose interior contains every zero and pole
of f except for i/2. By the Residue theorem, we have

1 df
omi )y Z vp(f)-
pEF™(4)
L p#i/2
Similar to Proposition B.1,
(i) For the arc EA, we have
1 [Adf
271 E T _,UOO(f).

(i) For the arcs BB" and DD, define f*, ,(2) := (—v2z+v2) ¥ f(v_1/22), then we have fjl/Q('yO’lz) =
(V224 1/v/2)k f(2) and
dfjl/z((’)’:ﬂ)_lz) _df(2) k dz
P2~ 1) Tarie
Now, when the arcs BB’ and DD’ tend to 0, we have

1 Pdfx) 1 Ed () 1/3’ dz 1

omi)y F2) " 2mi)e TG 2wty i vl

1 D’df(z)1/T‘1D’df(z) 1/TAdf*1/2() 1 /T”D'k dz

27TZ D (Z) o 27TZ T-1D f(Z) 27'” TF f_1/2( ) B Tm T-1D Z+1/2
1 df71/2(z) 1

" omi oIz 1/2(2) §U71/2(f>.

Thus

—50-1(0) = 50-12() = =01

(iii) For the arc CC’, when the radius of the arc tends to 0, then we have

1 [ ar 1
il 1 2

(iv) For the arcs AB and D'E, since f(Tz) = f(z) for T = (} 1),
1 (Bar 1 [Far

=0.

21 A f % D’ f
(v) For the arcs B'C and C'D, since f(W,z) = (v/22)" f(2), we have
YWi2) _ de | df)

k
) T e M



110 JUNICHI SHIGEZUMI

Let f be a modular form for T'g(4) of weight k, and let £ =2 (mod 4). Then we have
f(i/2) = f(Wai/2) = i*f(i/2) = —f(i/2).

Thus f(i/2) = 0 and v;/5(f) > 1.
Let k be an even integer such that ¥k =0 (mod 4). Then we have

L (/2) = 1 (B(6/2 —1/2) — 2 B(2(i/2 ~ 1/2)) = BRa(~1/2+i/2) £ 0

1
1—2k

Thus v; /2 (Ef5) = vija(Ep ;%) = 0.

Ep i 2i/2) = (Bk(2(i/2 — 1/2)) = Bi(i/2 = 1/2)) = 27 B 5(~1/2 +i/2) # 0.

B.3. Modlular forms of weight 2. As a preliminaries, we have following;:
Ea(y02) = 162% Ex(42) + (12/(271)) - 4z,
Eo(2-y02) = 422 B2 (22) + (12/(27)) - 22,
Es(4-702) = 22 Ea(2) + (12/(2m0)) - »

1 12
E =Ey(— =(-22+1)*E — . 2(-2z+1
2(0122) = B2 (~ 5z ) = (224 DPBa(e) + g 2254 1),

1 12
Ey(2-~_ =Fy [ ————— ) = (=22 +1)%E»(2 = (=22 41
2(2+9002) = Ba (~ 175 ) = (24 DPBa(2) 4 s (<2541),

1
Ea(4-7-1722) = B2 (_1/2—1/42:)
_(~22+1)?
= f

12 —2z+1
2mi 2 '

<_E2(Z) + 6E2(22) — 4E2(4Z)) +

Recall that
(197) EQ,QI(Z) = 2E2(22) - EQ(Z)
be a modular form for I'g(2). Since I'g(4) C I'o(2), F22’ satisfies transformation rule for I'g(4) and is
holomorphic in H and at co. In addition, we have

Es 5 (y02) = —2(2z)2E2)2’(22),
Eoo'(v-1/22) = (=22 + 1)2Fy 5/ (2).
Thus Es 5’ is a modular form for I'g(4), and we have
v_124i/2(Fa2’) =1, vp(Fa2') =0 foreveryp # —1/2+1i/2.
Similarly, we define
(198) By 4/ (2) == (4E2(42) — F2(2))/3,
then we have
B4/ ((§1)7) = B2,4'(2),
Bra'((19)2) = (42 +1)°Ey 4/ (2),
Bz (y02) = —(22)° B4/ (2),
Es4'(v-1)22) = (=22 + 1)* (B2 (2) — E24'(2)).
Thus E» 4 is a modular form for I'g(4), and we have
v_12(E24’) =1, vp(E24") =0 foreveryp# —1/2.
For every a, 8 € C, aFE2 4"+ BE> 5" is a modular form for I'g(4). For example:
Voo (—(Ea4’ — E22")/16) =1, vp(—(F24" — F2')/16) = 0 for every p # oo,
v0(2F24" — Eao') =1, vp(2F24" — Ea5') =0 forevery p # 0,
V_1/a1i/a((3E24" — E22")/2) =1, vp((3E24" — E22")/2) =0 foreveryp # —1/4+i/4.
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Furthermore, let f be a modular form for T'g(4) of weight 2. If v (f) = 1, then f is a constant
multiple of —(E34 — E35")/16. Also, if v_15(f) = 1, then f is a constant multiple of E; 4'. Otherwise,
Voo (f — f(00)E24") = 1, and f — f(00)E24" is a constant multiple of —(E2 4" — Fa5')/16. Thus every
modular form for T'g(4) of weight 2 is written as a linear combination of EQ’QI and E2,4’.

For T'§(4), since

aBy 4 (Waz) + BE2 o' (Waz) = (22)*{(—a — 38)Ea4(2) + BE2' (2)},
we need 2o = —3(3. Now, we define
(199) Ea4"(2) :=3F24'(2) — 225 (2).
We also have

Then
. 2z +1 1
Boa (1 p2) = 2B () — By [ ———
24 (V21727 2(—2z+1) 2(—2z+1>

= 2B (_1 - 211/2> — (_221 1)

= —(—V22 +1/V2)2Ey4/" ().

Thus F, 4" is a modular form for T'(4), and we have
'UZ'/Q(EQAI*) =1, vp(Ea4') =0 foreveryp #i/2.
Furthermore, let f be a modular form for I'fj(4) of weight 2. By the valence formula for I'§(4), we have
wplf) =1 wl(f)=0 foreveryp#i/2

Thus f is a constant multiple of E2,4’*.

B.4. The space of modular forms for I'y(4). Let My 4 be the space of modular forms for I'y(4) of
weight k, and let M, ,87 4 be the space of cusp forms for T'g(4) of weight k. When we consider the map
M43 fr (f(00), f(0), f(—1/2)) € C x C x C, the kernel of the map is M,?A. So dim(MkA/M,gA) <3,
and Mj,4 = CES, ® CE) , ® CE; ,/* @ MY . Define

1

(201) A4 = _T6E2’4/(E274/ — E272,)(2E2,4/ — E272/).

We have following theorem:

Theorem B.1. Let k be an even integer.
(1) For k < 0, Mk74 =0.
(2) For k=0,2, and 4, we have M,SA = 0. Furthemore, we have Moo = C, Moo = CFEs5 & CEs 4/,
and My = CE, @ CEY, & CE,,/.
(3) MY, = AsMy ¢

The proof of this theorem is similar to that of Theorem 6.1. The table of orders of zeros of basis for
My, 4 is following:
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k f Voo Up U_1so |other zeros|
2 Esa 0 0 0 1
o 0 0 1 0
Bai — By’ 1 0 0 0
9B, —Ers 0 1 0 0
4 B, 0 1 1 0
EY, 1 0 1 0

—1/2

Ep/ 1 1 0 0
6 E 0 1 1 0
Egl,é}2 1 0 1 0
Byl 110 0
Ay 1 1 1 0
8 Ay 1 2 1 0

Furthermore, we have dim(My, 3) = k/2+1 for k > 0, and dim(M} 5) = k/2 —2 for k > 6. Similarly to
My 2 and My 3, if k =2 (mod 6), we have My 4 = My 4My_24. On the other hand, if £ = 0,4 (mod 6),
then let n := |k/6], and we have

Mys = ER% g, 4(C(EG)" ® C(Egy)" ' Ay & - & CAY)

& EQ_gn, 4(C(E6 Nk @C(Egdn*lﬁz;@-“@(CAZ)
® B, 5 (C(Eg, )" @ C(Eg /)" 104 @ - @ CAL).

In addition we have followings:
Efy = By 4 (2E2 4" — B '),
E2,4 = (=1/16)Es 4 (B2 4 — Es %),
E;im = (E24' — E32")(2F24 — Ea5').
Eff% = (1/2)E274/(2E274' — EQ,Q')(?)EQA/ — QEQ,QI),
EQ ¢ =32F24'Ey 5 (2E24" — Fa '),
Ers? = (~1/2)(Boy — E22')(2E24’ — Ez2')(3Ea s’ — 2E»2").
Then
Remark B.1. Fvery modular form for Tog(4) is generated by
Ez’g/ and E2’4/.

B.5. The space of modular forms for I'j(4). Let M, be the space of modular forms for I'§(4) of
weight k, and let M, ;21 be the space of cusp forms for I'(4) of weight k. When we consider the map
M4 > f = (f(00), f(—=1/2)) € C x C, the kernel of the map is M,;kgl. So dim(M,jA/M,jSl) < 2, and
M, = CE.¥ ® CE;, ;" ® M9, Define

“ 1 *—1/2
(202) Af =~ BT E /2,

We have following theorem:

Theorem B.2. Let k be an even integer.
(1) Fork <0, M ,=0.
(2) Fork =0,2,4, and 6, we have M,ﬁ = 0. Furthemore, we have Moo = C, Myo = (CEQA’*, and
M;, =CE; ¥ ®CE;;"/? for k=4 and 6.
(3) Ml:gl = Asz—s,z-

The proof of this theorem is similar to that of Theorem B.1. The table of orders of zeros of basis for
M;; 4 1s following:
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k f Uso U_1s2 Vo |other zeros|
2 Fyy 0 0 1 0
4 Eir 0 1 0 0
E;;7Y? 1 00 0 0
6 EiF 0 1 1 0
Eg; 1 001 0
8 Eif 0 1 0 1
Es;Y? 1 000 1
Ax 1 1 0 0
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Furthermore, we have dim(Mjy 3) = |k/4]|+1 for k > 0, and dim(M;%) = |k/4] =1 for k > 8. Similarly
to My, if k=2 (mod 8), we have My, = E2’4/*M,:_274. On the other hand, if £ # 2 (mod 8), then let

n = |k/8], and we have
My = B} 5% 1 (CELF) @ C(E )" A @ - @ C(A))")
& E; A (C(Es P e CEs A A @ - e CA)").

Thus, the next proposision follows:

Proposition B.3. Let k > 4 be an even integer. For every f € My ,, we have

(203)

In addition we have Ej ;% = (1/4)((Ea.a"" )2~ B} ), B4 = Bad"E{F, By g/ = (—1/2) B2 E}

Then

vis2(f) = ti

(tx, = 0,1 such that 2t = k

Remark B.2. Every modular form for T'g(4) is generated by

APPENDIX C. LOCATING THE ZEROS OF EISENSTEIN SERIES

C.1. On T'y(4). Define
(204)
(205)
(206)

Then we have following:

*
E2,4/ and EZ)ZO

(mod 4)).

Ay:={z; |z+1/4 =1/4, 0 < Arg(z) < 7},
{z; Re(z) = —1/2, Im(z) > 0},

A =
A21/2 o

{z; Re(z) =0, Im(z) > 0}.

* —1/2

Conjecture C.1. Let k >4 be an even integer. EPS has k/2 —1 zeros in Ag, EQ 4 has k/2 —1 zeros in
AY, and E,;i/Q has k/2 — 1 zeros in A;1/2.

Now, we have the following transformations:

(207)

(208)

1 -1 ( €1 1

tan(6/2)

e? —1

-1 .
(7—1/2) : 4 = 9

tan(6/2) ;

2 9

1.

This transform A4 to A9 and AZI/ 2, respectively. Moreover, for every z € Ay,

Then

EX (o (81) 2) = (z+ 1)FE4(2),
By (7_1/2 z) =(—-2z+ 1)’“E,;411/2(z).

Remark C.1. The number of the zeros of E°, in Ay equals to that of El(c),4 in AY and that of E,;}/Q n

A2
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Now, recall that Remark A.1, where we have E , = E},. Moreover, we have A3 = {z; Re(z) =
—1/2, Im(z) > 1/2} and write AO, = A\ AJU{—1/2+i/2}. Then we have the following transformation:
-1 -1 1 . 1 1
2 et L S o
(209) (2 1) 5 T 5t 2+2yz

This transform A to A3'. Moreover,
Ek () Wez) =22+ 1)’“E,8$4(z) for every z € AY.
Then
Remark C.2. If EY , = E}) , has |k/4] — 1 zeros in A3, then EJ) , has also [k/4] — 1 zeros in AY'

In addition, recall that v_y/54i/2(Ep ) > 1 for k=2 (mod 4).
In conclusion, we have following:

Remark C.3. If Conjecture 6.1 is proved, then we can prove Conjecture C.1.

C.2. On T'{(4). Define

(210) A= o] = 1/2, 7/2 < Arg(z) < 7},
(211) ALV = {21 Re(2) =0, Im(z) > 1/2}.

Then we have following:

Conjecture C.2. Let k > 4 be an even integer. E;° has |k/4] — 1 zeros in A}, and Ek41/2 has

|k/4| — 1 zeros in A -1z, Furthermore, in Proposztwn B.3, the equality hold if f is equal to E} 3° or

* —1/2
E,

Now, we have the following transformation:

e’ tan(0/2)

212 i) T "
(212) (VZ12) 5 9 !
This transform A} to A -1/

Er T (Viip2) = (—22+ 1)* E l/2(,2) for every z € A}~

. Moreover,

1/2

Then

Remark C.4. E} ¥ has [k/4] — 1 zeros in A}, if and only if E* Y% has |k/4| — 1 zeros in Az_l/z

172’

1/2 . .-
/ . Moreover, we write A, =

Now, recall that Remark A.2, where we have EZ; 12 _ = F_
Azl/z \ A} —2y {i/2}. Then we have the following transformatlon.

1
(213) W - %2 T

This transform A} /% to A} 172" Moreover,
. 42 2B, ,/7(z) foreveryze A; /7.
b (Waz) = 2P B [%(2) for every z € A7/
Then
emar 5. L T=E_ as —1 zeros in A, /7, then E, as also — 1 zeros
Remark C.5. If Ej [ '/* = B }/* has |k/4] —1 Ay Y2 then By ? has also |k/4] — 1
/
in A} —
In addition, note that UZ‘/Q(E]:;/2) > 1 for k=2 (mod 4). Furthermore, recall Remark C.3.
In conclusion, we have following:

Remark C.6. If Conjecture 6.1 is proved, then we can prove Conjecture C.2.

Remark C.7. Note that £} (2 £ 1/2) = Ep%(2) and E,:_;lﬂ(z +1/2) = EQ 4(2). The Remark C.6 is
natural result.
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APPENDIX D. ANOTHER CONSIDERATION : ISOMORPHISM

Let MY" be the space of modular forms for I'(2), and My be that for T'o(4). By collorary 2.1.1, we

have
I'2)=(-1, (1), (39)) Tod)=(-1 (51), (19))-

Define V5 := (1/8/5 %) Then

N

Valo(4) Vo ' =T(2).
In addition, by the map ¢ : MY > f(2) — f(2z) € My, we have following:

Theorem D.1. MY is isomorphic to My.
Proof. For every f € My and every v = (2%) € I'(2), we put 7/ := VoyVy ' = (0‘72 zdb), then
F(2-72) = [2(V5 19'Vez2)) = f(7/(22)) = (ez + d)* (22).
O

Similarly, let My be the space of modular forms for I'g(2), and Mj; be that for I'§(4). By collorary
2.1.1, we have
Lo(2) = ((§1), (39, To(@) = (1), (574

(o 7Y%) T6(®) (5 '{*) = To(2).
In addition, by the map ¢ : My > f(2) — f(z+ 1/2) € M], we have following:

Thus

Theorem D.2. M is isomorphic to M} .
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