九州大学学術情報リポジトリ Kyushu University Institutional Repository

浮葉性植物のある閉鎖性密度2成層水域における乱流 構造に関する実験的研究

村松, 亮介 九州大学大学院生物資源環境科学府生産環境科学専攻生産環境情報学研究室

https://hdl.handle.net/2324/1498275

出版情報:九州大学, 2003, 修士, 修士 バージョン: 権利関係:

修士論文

浮葉性植物のある閉鎖性密度2 成層水域における乱流構造に関する実験的研究

九 州 大 学 大 学 院 生 物 資 源 環 境 科 学 府 生 産 環 境 科 学 専 攻 生 産 環 境 情 報 学 研 究 室

村松 亮介

2 0 0 4 年 2 月

第 1 章 序 論

1.1 はじめに

では閉鎖性密度2成層 水域を 本 研 究 対 象 と し τ 11 る .一般に湖 沼 や貯水 池 内 部 流 れ は の る かであり,河 Þ や 川と 異 な IJ 水域 は 閉 鎖 的 . そ の た め 物 質 が 蓄 積 し や す で あ る く,自 浄 作 いこ とから富栄 用 も 小 さ 養化しやすい.こ D 閉 性水域の水理学 的特性には水 よ う な 鎖 温 差 ゃ 水 質 濃 差 に 基 づ く 密 が 密 接 の 度 度 流 ወ 働 き 関 係 τ いる.また,水域内 部 循 環 流 形 し の を に 成 す る も ወ Ø 1 つに,風に誘引され る吹 送 流 と そ れ 因 る 乱 れの作用が に 起 す あ る . こ ወ よ して、近 う な 閉 特 徴 を 有 す る 鎖 性 水 域 に 関 年 境 問 Ø と,湖 せ 環 題 に 対 す る 意 識 高 ま IJ 沼 ወ 池 水 環境の悪化に より、閉 性 貯 水 に お け る 鎖 域 の吹送流型密度成層流の特性に関 す る 実 水 験 的 • 理 論 的 な 研 究 が 行 わ れ て き た (森 5 1989,森川ら 1999).

かし,実際の成層化した閉鎖 性 し 水域 Ø 密 象 は 非 常 に 複 雑 で あ る . こ よ 度 流 現 れ を IJ ΤĒ ために、風洞水槽実験 に 把 握 す る お よ び 現 確 知見に基づいた数値モデルの 再 現 地 観 測 の 性 研究も後に行われてきた に 関 する (道 奥 5 1995,赤 堀 ら 2001).

しかし,これらの研究は閉鎖性水域 質 の 水 把握するためのモデルの構 築 に 有 益 で 変 動 を る が,そのパラメータは物理的 諸 量 あ の み を 場合が多く、水域周辺の生物・化 学 用 11 る 的 諸 は 考 慮されていないのが現状 で あ る 量 ま で や貯水池などの閉鎖性水域では流れの 湖 沼

水理だけでなく,生物・化学的過程,さらには 景観や親水性に関わる五感的な要素など, 様々な要素が水環境を支配しているものと考 えられる.

そ こ で , 閉 鎖 性 水 域 に お け る 環 境 対 策 な ど に よ る 水 質 改 善 効 果 の 評 価 に は 時 空 間 的 な 水 質 変 動 を 把 握 す る 必 要 が あ る . そ の た め に は , 流 体 力 学 的 な 観 点 に 加 え 生 態 学 的 な 評 価 も 加 味 し た モ デ ル を 構 築 す る 必 要 と 考 え ら れ る . 1.2 研究背景

2 成 層 水 域 に お け る 閉 鎖 性密度 水環 境 物 質 挙 動 (Fig. 1 - 2 - 1 に ወ 参 照)は,吹送流 よ 3 機 械 的 擾 乱 お よび太陽熱 に よる熱的擾 乱 に よ IJ 形 する.また,日 中 成 さ れ る 循 環 流 に 依 存 の 日 射 るいは底泥からの栄養塩類 夜 間 冷 却 あ の 溶 の 水域内に密度成層が形成される 出 に よ IJ 密 . 層化した水域の水面に風が作用 度 2 成 し た 場 , 吹送流とその乱れにより密度界 面 合 の 連 行 現 象が 生ずる.この連行現象に基づく上,下 層 合は水域の水質変動に大きな影響 間 の 混 を 及 ぼ す

閉 性水域における時空間的な 質 鎖 水 変 動 Ŧ 学 には、流体力 的 点 加 デ ル 構 築 た め な 観 に の 学的な観点も含めた 築 ,生 物・化 Ŧ デ ル ወ 構 え が 必 要 と な る .本研究では,その — 助 と す べ < 水 域 周 辺 に 鰵 茂 する植物体と水域内 部の 流 れ と 関 に 着 目 している. の 係

池などの閉鎖性水域では,夏 湖 沼 や貯水 期 ,抽水性,浮 葉性,沈水性および浮遊 性 の 植 に .これらの水生植物 物 が 繁 茂 する は富 栄 養 化 因 と 栄養塩類を吸収する能力が 評 偭 ወ 原 な る さ れ る — 方 で ,特に浮葉性植物に関しては,水 を形成する機械的擾乱を少なか 域 内 ወ 循 環 流 こ ず る と が 考 え 5 5 妨 げ れ る

そ う 2003) の よ な観 点 か 5 尾 崎 (は 浮 葉 性 物 の 水 面 被 覆 率 と 閉 鎖 性 密 度 2 成 層 水 域 植 に る 連 現 象の規模の 関係 に つ お け 行 1 1 て 実 験 水 槽 を 用 11 て 考 察 し,浮葉性植物 の 水 面 被 覆 率 が 増 加 す ると上下層間の連行規模が 減 少 す る

ことを明らかにしている.

こ Ø 連 象 流 乱 流 構 造 せ 密 度 界 行 現 は れ 場 Ø 面 に 発 生 す る 内 部 波 と 密 接 な 関 係 を τ 11 も っ る と 究 験 槽 こ か 5 ,本 研 で は ,実 水 を 用 11 τ 流 速 お よ び 度 時 計 測 行い 浮 葉 性 植 物 密 ወ 同 を , の 水 面 被 覆 率 層 Ø 乱 流 構 造 変 化 を に よ る 上 ወ 詳 細 把 ,連行 現 象 に 関 験 と よ IJ に 握 し す る 実 比 較 検 討 を 行 な • っ た .

Fig.1-1-1 密度成層化した閉鎖性水域の概略図

1.	3	水	生	植	物	群	落	Ø	構	造									
	水	生	植	物	Ø	群	落	Ø	研	究	は	歴	史	が	深	<	1	9	世
紀	後	半	か	6	現	在	に	61	た	る	ま	で	多	<	Ø	学	者	が	研
究	を	行	っ	τ	61	る		c	れ	6	Ø	研	究	Ø	主	な	内	容	は
各	々	Ø	植	生	を	ど	Ø	よ	う	に	分	類	し	位	置	付	け	3	か
と	11	う	も	Ø	で	あ	る	が	,	c	れ	5	Ø	研	究	に	共	通	し
τ	11	え	3	C	٢	は	湖	沼	,	溜	め	池	Ø	水	生	植	物	群	落
(F	i g	. 1	- 3	- 1	参	照)	は	周	辺	部	か	6	中	心	に	向	か	61
明	瞭	な	同	心	円	的	帯	状	に	分	布	が	な	さ	れ	τ	11	3	と
11	う	E	٤	が	挙	げ	6	れ	る	(生	嵨	6	1	97	4)			

1.4

Fig.1-3-1 岸辺に繁茂するホテイアオイ

水生植物の生活型

環境に結びついた植物の生活様式 ,形態的 徴(適応性)が生活型である.生活型 特 に は 有 名 な ラウンケアの生活型があ る . こ れ は が生活に不利な時期 をどの 植 物 よ う に 過 ご す か よ って分類したものである 休 眠 芽 が に . 地 表 か 5 ど 位置につくるかによ IJ 地 上 の 植 , ・ 半 地 中 植 物 ・ 中 に 物 地 表 植 物 地 植 物 分 け • る さ ,一年 生 _ 年 5 れ 5 に 生 • 越 年 • 生 植 . 物 を _ 年 生 植 物 にまと め 休 眠 芽 置 が ወ 位 水 , 中 ま た は 水 で 満 ち た土中 に あ る も Ø を 水 生 植 す る こ れ は 湿 性植 も 含 る 物 と • に 物 ま れ ど と 期の生活 考 以 上の 分 類 生 育 様 式 な を 慮 し の 生 活 型 は 次 の よ う に 分 草 類 す る こ と τ 水 が でき る ・ 水 生 ー 年 植 物 ・・・種 子 を 作 り . ー 年 で 生 活 環境を完 了 す る . ・水 生 地 中 植 物 ・・・休 眠 芽 が 水 底 の 泥 の 中 に る あ . 水生半地中植物・・・休眠芽が水底の • 地 表近くにある . 3 つを大きく区分した上で,さら 生 こ ወ 育 期 してい に 水中でどのように生活 る か に よ IJ ・着生植物・・・急 流 の 岩 の 表 面 に 固 着 し τ い ゴ る も Ø (カ ワ ケ ソ ウ ٠ • 力 ワゴロモなど) 浮 遊 生 植 物 ・・・水 面 に 浮 遊 し て い る も の (ウキクサ 類) 根生植物・・・根は水底の土 中に あ る もの (ヒツジクサ・ヒシな ど)

に分類される

また, おもな葉が水面に対してどのような 位置にあるかにより ・抽水植物帯・・・水面上に葉がつき出ている ・浮葉植物帯・・・水面上に葉が浮かんでいる ・沈水植物帯・・・葉はすべて水中にある.

水生植物の生活型による湖沼の分 1.5 類 湖 沼 に それぞれの 生 は 11 立 ち 形 水 質 , , , 集 水 域な ど 湖 沼 を とり ま < 環 境 条 件の 違 いが れが そ あ IJ そ こに生育 す る 植 生 の 違 11 と し , 表 れ て < る の は当 然 で る 池 ご と τ わ あ . に 生 草の優占生活 型 湖 沼 育 す 3 水 を も とに Ø 分 類 浮 葉 帯 沈 が 行 われ ている 植 物 水 植 物 帯 は . , 帯に比べ強く 環境 要 因の影 響 受 抽 水 植物 を け と考えられるので, これらの優占度を 重 視 る し て次のように分類されている(生 嵨 5 1974).

〇 浮 葉 · 沈 水 植 物 帯 優 占 型 浮 葉 沈水 抽 水植物帯が調和を保ち生育 , る 安 定 し た 湖 沼 で 富 栄養化の進 す あ る . 行 し τ 11 な 11 比 較 的 き れいな 湖 沼 で , 丘陵地 の 人 少 湖 為 的 影 響 の な い地域の 沼 に 多 11 . 富 栄 養 化 ょう った時 が 現 在 の に 進行していな か 代 に 湖 が ご く 普 は こ ወ 型 の 沼 通 であ た と 思わ , っ る 草の 種 類 量 と も に 豊 富 で る ご n . 水 あ , . 稀 に 浮 を 欠き沈 < は 葉 植 物 帯 水 植 物 帯 ወ み , 占 る 沈 水 植 物 帯 優 占 型 と い う べ き 湖 優 す 沼 も る あ

0	浮	葉	植	物	優	占	型													
	浮	葉	植	物	帯	が	優	占	b	,	沈	水	植	物	体	は	存	在	し	
な	61	か	,	ĩ	<	わ	ず	か	に	見	6	n	3	だ	け	で	あ	3		
岸	辺	に	は	Ξ	シ	•	マ	コ	ŧ	な	ど	抽	水	植	物	帯	が	生	育	
す	る	•	富	栄	養	化	に	伴	う	水	質	汚	濁	で	,	浮	葉	•	沈	
水	植	物	帯	優	占	型	か	5	c	Ø	型	^	移	行	す	る	も	Ø	ک	
考	え	5	れ	る		汚	濁	に	よ	IJ	透	明	度	が	低	下	し	,	沈	
水	植	物	帯	Ø	生	育	を	阻	害	す	る	か	5	と	考	え	5	n	3	•
0	浮	遊	植	物	帯	優	占	型												
	岸	辺	に	は	Ξ	シ	•	マ	コ	Ŧ	な	ど	抽	水	植	物	帯	が	生	
育	す	3	が	,	浮	葉	•	沈	水	植	物	帯	は	見	6	れ	な	11		
富	栄	養	化	Ø	か	な	IJ	進	行	L	た	湖	沼	が	C	Ø	型	で	あ	
る		優	占	群	落	は	,	ウ	+	ク	サ	群	落	,	朩	テ	1	ア	オ	
イ	群	落	で	あ	3	•	家	庭	排	水	に	よ	3	汚	濁	Ø	激	し	11	
住	宅	周	辺	Ø	湖	沼	で	,	L	ば	L	ば	朩	テ	イ	ア	才	イ	が	
水	面	全	域	を	う	め	っ	<	す	程	繁	茂	L	τ	11	3	Ø	が	観	
察	さ	n	3	•																
0	抽	水	植	物	帯	優	占	型												
	浮	葉	, ນີ້	たって	K 札	直 牧	勿暮	帯に	ま	ŧĭ	育 t	t i	ť	, 岸	辺	に	Ξ	シ	,	
マ	コ	ŧ	,	フ	۲	イ	,	カ	ン	ガ	レ	1	,	ク		グ	ワ	1	な	
ど	Ø	生	育	す	3	池	で	あ	3		水	Ø	華	を	生	ず	3	ほ	ど	
富	栄	養	化	L	た	湖	沼	に	c	Ø	型	が	豹	11	•	C	Ø	型	Ø	
湖	沼	は	,	富	栄	養	化	に	よ	3	水	質	汚	濁	を	原	因	٢	す	
る	場	合	٢	,	水	位	変	動	が	激	し	<	,	毎	年	池	底	部	Ø	
多	<	が	露	出	す	3	こ	٢	が	原	因	٢	な	3	場	合	が	あ	3	
٤١	ず	n	Ø	場	合	も	,	そ	n	5	を	原	因	٢	し	τ	浮	葉	,	
沈	水	植	物	帯	が	絶	滅	し	た	も	Ø	٢	考	え	6	n	3			

こ よ う に 湖 沼 に お け る 水 生 植 生 育 環 Ø 物 Ø , と る 境 水 質 変 動 は 密 接 に 関 わ IJ あ τ 11 ま っ . 生 植 物 が 多 量 に 繁 茂 期 栄 た 水 す る 夏 に は 富 , が 進 る 湖 多 養 化 行 し τ 11 沼 に な る ほ ど よ IJ , 生 物 が る 生 量 に 水 植 繁 茂 す た め 水 植 物 の 存 , 在 が 湖 沼 水 質 動 妨 な る 考 の 変 Ø げ に τ 11 と っ え 5 さ れ る 5 に 浮 葉 性 植 物 は 葉 Ø 幅 が 広 • , 11 に 閉 鎖 性 域 内 を 循 環 風 る 11 た め 水 さ せ る あ は 熱 と た 水 内 に 浄 作 用 も た 5 外 11 域 自 を す っ 乱 を 阻 害 す る と 考 え 5 れ る 泉 5 1 9 8 4 飯 (, . 浜 5 島 1 9 8 3 福 島 5 1 9 8 3) 本 研 究 で は 水 , 質 が 悪 化 場 浮 葉 植 帯 占 し た 合 に 遷 移 す る 物 優 型 湖 沼 照 を 象 浮 葉 Ø (Fig. 1 - 5 - 1 参) 対 に 場 室 性 植 物 が 湖 沼 る 合 を 内 実 の 面 を 占 有 す 水 験 模 擬 験 に お ,実 を 行 た 11 τ し っ .

Fig.1-5-1 浮葉植物帯優先型の湖沼

流 と 安 定 性 1.6 密 度 そ の 間 閉 閉 , 水 空 的 に Ů た 鎖 性 水 域 に お 11 τ 温 浮 遊 物 質 ど 空 間 に よ る 濁 度 溶 解 性 物 質 な の 的 量 Ø 差 に よ IJ 鉛 直 方 向 に 密 度 差 を 生 Ů 外 乱 が な 態 安 化 11 状 で は 定 に 成 層 し τ 11 る こ う 成 閉 表 ற よ な 密 度 層 を 有 す る 鎖 性 水 域 の 水 用 面 に 風 が 作 す る と そ の 応 答 と τ 風 波 と し 吹 送 流 び 乱 が こ に お よ そ ወ n 存 在 す る と な IJ と < に 表 乱 流 状 態 に 鉛 直 方 層 付 近 は な る 向 . 連 続 的 な 密 度 分 布 を 有 す る 成 層 連 続 成 層 に を が 層 IJ 度 (Fig. 1 - 6 - 1 参 照), 成 層 多 か 6 な 密 布 が 不 を 不 連 続 層(Fig. 1 - 6 - 2 分 連 続 な 成 層 成 照 呼 る 密 度 流 が と 参) と h で 11 安 定 で あ る 経 う と 時 間 が 過 流 速 密 度 11 こ は し τ も 分 が 初 期 状 態 意 布 を 保 と を 味 し τ 11 る つ こ 方 密 度 流 が 不 安 定 で あ る と 11 う こ と は 時 , 間 Ø 経 過 と と も に 上 下 層 間 ወ 混 合 が 生 Ů 様 速 ,密 布 が 化 る を 意 味 る 流 度 分 ____ す こ と す 淡 塩 本 研 究 と 水 と 水 を 用 上 で は < に 11 τ 下 , 層 か 2 模 波 2 5 な る 密 度 成 層 を 擬 風 に よ し 外 乱 上 2 層 間 混 現 る に 対 す る 下 ወ 合 象 に つ 11 τ 考 察 を 行 た っ •

Fig.1-6-1 連続成層概略図

Fig.1-6-2 密度2成層概略図

1.7 風 が 閉鎖性密度 2 成 層 水 域 に 及 ぼ す 効 果 層水 Ø 水面に風が作用 す る と 鉛 成 域 直 循 環 流 が 形成 され る (Fig.1-7-1 参 照).以 下 に 風 の 直循環流の形成過程を示 吹 送 に よ る 鉛 す (有 5 1995). 田 第 段 階 • 1 上層深水 が 風 下 側 に 吹 き 寄 せ ら れ , 上 層 水 で は 逆 方 向 の 補 償 流 れ が 生 じ 層 部 る 底 • 第 2 段 階 とともに風 下側の水位 は 吹 き 寄 せ 上 昇 (セ ト ア プ) し 風 上 側 で は 低 下 セ タ ッ ッ (ッ ト , と す る こ き 密 度 界 面 で 変 位 非 ウ ン) の の は . 吹 送 大 き な る 流 が 風 端 に 到 達 す る 常 に < 下 . 流 続 け 界 で 内 部 ま で 速 は 増 加 し 密 度 面 ወ せ , こ 断 力 が 増 大 す る . れ に よ IJ せん 断不 安定 h 直混合が生じ る 型 Ø 強い 鉛 段 階 • 第 3 ップ,セットダウンが完了すると ト セ ア ッ 層 と 下 回転方向が逆の鉛直循環流が 上 層 内 で 形 成 され る . 义 Ø よう に 第 2 段 階 の場合 よ IJ が 小 さ い 躍 層 界 も 面 で ወ 内 部 せ ん 断 力 の で 鉛 合 層 混 は 弱 11 . 躍 Ø セ ト ア ッ プ が 大 き い 直 ッ 場 合 に は 深 層 水 が 水 面 に到 達す る(湧 昇 現 象). 水が 酸 素 化 τ 11 る 深層 湧 昇 すると 沿 岸 貧 し , 魚介類が短時間で大量に死滅するこ 域 Ø とが る あ .

・ 第 4 段 階

	風	Ø	吹	送	が	止	ま	る	と	水	面	と	密	度	界	面	が	揺	IJ
戻	さ	れ	τ	セ	1	シ	ב	お	よ	び	内	部	セ	イ	シ	ב	が	発	生
す	3	•	c	n	6	Ø	振	動	は	や	が	τ	減	衰	す	る			
	以	上	Ø	よ	う	な	各	段	階	は	L١	つ	も	す	べ	τ	生	じ	る
わ	け	で	は	な	11		第	2	段	階	に	至	る	ま	で	に	全	層	が
混	合	し	τ	第	3	,	4	段	階	が	現	わ	れ	な	11	場	合	や	,
第	1	段	階	だ	け	で	終	了	す	る	場	合	,	第	2	段	階	か	5
第	4	段	階	に	直	接	移	行	す	る	場	合	な	ど	, I	吹 ì	送 田	寺同	
水	域	Ø	サ	1	ズ	や	成	層	状	態	な	ど	に	よ	っ	τ	さ	ま	ざ
ま	な	ケ	-	ス	が	出	現	す	3		—	方	,	湖	岸	せ	水	深	な
ど	Ø	条	件	,	風	向	•	風	速	や	水	温	の	場	所	的	な	不	均
—	性	に	よ	っ	τ	湖	流	の	加	速	度	や	方	向	が	水	平	面	内
で	—	様	と	な	5	ず	`	C	れ	が	原	因	と	な	っ	τ	水	平	循
環	流	が	形	成	さ	n	る		実	際	の	水	域	内	Ø	流	n	は	鉛
直	方	向	と	水	平	方	向	の	循	環	流	が	組	み	合	わ	さ	IJ	,
Ξ	次	元	で	複	雑	に	な	っ	τ	11	る	•							
	本	研	究	で	は	,	セ	ッ	۲	ア	ッ	プ	, セ	ッ	۲	ダ	ウ	ン	が
完	了	し	, _	E -	ГJ		に	そ	n	ぞ	れ	逆	向	き	Ø	循	環	流	が
形	成	さ	n	た	段	階	(第	3	段	階)	に	お	11	τ,	,上	層	Ø
流	速	お	よ	び	密	度	_ກ	時	間	変	動	を	計	測	し	た			

第 2 章 連行現象に関する既往の研究結果 2.1 実験方法および実験条件

装 置は,Fig.2-6-1 および Fig.2-6-2 に 実 験 幅 す よ う に長 さ 600cm, 30cm , 深 さ 40 c m 示 そ 上部に取り付けた長さ の 水 槽 と , の 30 c m か 5 な る 2 成層場は水 幅 30 c m の風 路 密度 . 水を用いて作製した. 道 水と 塩 実験水槽 への ,密度界面の急激な擾乱を避けるた 送 風 は め, 徐 々 に 所定の風速になるようにした.実 験 は 上 下 層 の 密 度 ho_1 , ho_2 の 差 $\Delta
ho_0 =
ho_2 -
ho_1$, 上層 の 水 , 空 気 の 摩 擦 速 度 u_{*a}お よ び 水 草 深 の h_{10} , 水 面 占 $\beta(=(2s/L)\times 100)$ をパラメータとして 率 有 , 層 平 均 IJ ド ソ ン 数 $R_{ia} \left(= \Delta \rho_0 g h_{10} / \rho_a {u_{*a}}^2 \right)$ が 100 以下 の 範 チ ヤ 行 こに, Lは水槽の長さ た こ sは 水 囲 で っ . , 草 が 水面 を 占有 する岸からの長さ,gは 重 力 ወ 加速度 , ho_a は空気の密度である. 実 験 条 件 Table.2-1-1 に示す を 測 定 頂 目 は 風 速 の 鉛 . よ び 水 温 分布 塩分濃度お 鉛 布 直 , の 直 分 で あ 風速は熱線風速計 塩 分濃度 は る 電 気 伝 導 . , 計 , 水 温 は 熱 電 対 を用いて 測 度 定 た L . Fig.2-1-1 に示すように,風速 は 風 上 か 5 300cm , 塩 分 濃 度 , 水 温 は 風 上 か ら 275cm の 置 で 測 定 し た . 浮 葉 性 植 物 は Fig.2-1-3 位 お Fig.2-1-4 に示すように厚 よ び さ 3 m m の 30cm×30cmの発砲スチロール板で模擬し,実 置の両端から順に10%,20%,30%と 装 被 験 率 を 増 加 さ せ 被 覆 率 10%の場合 覆 , は両 端 に れ ぞ れ の 発 泡 スチ ロールを 1 枚 ず そ つ 20% , 場 合 は 2 枚 ず つ , 30%の場合は 3 枚 ず の つ水 面 に浮かべて実 験を行った

Fig.2-1-3 浮葉性植物の模擬および設置方法

Fig.2-1-4 浮葉性植物を模擬した発砲スチロール板

Run No.	Covered	Wind Velocity	× 10 ³	a	h ₁ (m)	U _{*a} (m/s)	R _{ia}
	Rate	(m/s)	(kg/m ³)	(kg/m^3)			
-1	=0%	5.9	0.0052	1.168	0.100	0.282	54.3
-2		6.3	0.0018	1.169	0.116	0.307	18.3
-3		7.9	0.0045	1.171	0.120	0.407	27.0
-4		6.2	0.0043	1.208	0.104	0.301	40.0
-5		7.6	0.0062	1.226	0.108	0.388	35.6
-6		8.8	0.0081	1.238	0.110	0.463	32.7
-7	=10%	6.2	0.0027	1.173	0.106	0.272	31.1
-8		7.2	0.0018	1.181	0.110	0.312	25.4
-9		6.0	0.0013	1.168	0.100	0.261	21.1
-10		8.3	0.0076	1.173	0.116	0.432	39.6
-11		6.8	0.0057	1.173	0.090	0.301	47.6
-12		7.4	0.0049	1.175	0.110	0.376	32.3
-13		7.7	0.0021	1.198	0.158	0.395	17.6
-14		7.9	0.0112	1.196	0.101	0.407	55.9
-15		7.8	0.0107	1.195	0.084	0.401	45.8
-16	=20%	6.0	0.0076	1.190	0.100	0.261	90.1
-17		6.0	0.0059	1.190	0.110	0.261	80.9
-18		6.0	0.0028	1.176	0.104	0.261	41.2
-19		7.5	0.0080	1.183	0.107	0.488	48.8
-20		8.1	0.0047	1.190	0.109	0.244	24.4
-21		7.9	0.0037	1.173	0.115	0.217	21.7
-22		7.7	0.0027	1.194	0.141	0.201	20.1
-23		7.8	0.0020	1.192	0.113	0.401	12.1
-24		5.2	0.0081	1.197	0.094	0.232	116.5
-25		5.5	0.0058	1.203	0.108	0.257	77.4
-26	=30%	5.9	0.0058	1.188	0.101	0.258	68.4
-27		6.4	0.0033	1.189	0.108	0.265	35.1
-28		5.9	0.0027	1.173	0.102	0.258	32.9
-29		7.5	0.0059	1.194	0.094	0.382	31.4
-30		7.7	0.0053	1.208	0.100	0.395	27.9
-31		8.1	0.0037	1.202	0.100	0.419	16.9
-32		7.9	0.0028	1.197	0.110	0.408	15.3

Table.2-1-1 連行速度に関する実験条件

2.2 電気伝導度計の較正方法

本 実 験 で は , 密 度 界 面 の 時 間 変 化 を 計 測 す る た め に , 電 気 伝 導 度 計 を 用 い て 水 槽 内 の 塩 分 濃 度 を 電 気 伝 導 度 計 の 電 圧 に よ り 計 測 し た 塩 分 濃 度 と 電 圧 の 較 正 手 順 を 以 下 に 示 す . Fig. 2 - 2 - 1 に 示 す よ う に , 塩 化 ビ ニ ー ル パ イ プ を 6 本 た て た 水 槽 を 用 い る . 水 槽 は 保 温 効 果 を 有 す る よ う に 発 砲 ス チ ロ ー ル で 囲 い 保 温 す る .

並 塩 (NaCl) を 1g, 3g, 5g, 7.5g, 10g, 秤 量 す る .

それぞれを 11 の 純 水 に 溶 解 さ せ る . 溶 解 さ せ た 塩 水 を Fig. 2 - 2 - 1 に 示 す 水 槽 に そ れ ぞ れ 入 れ る . た だ し , 1 本 に は 純 水 を 入 れ る .

それぞれの電圧を計測する.このとき水 槽内に冷水をいれ 10 まで温度を下げ 徐々に温度を上げていき 30 までを 2 き ざみに計測していく. 2.3 塩水の密度の決定方法

	今	回	Ø	実	験	に	お	61	τ	,	塩	分	濃	度	の	決	定	は	,
主	成	分	1	才	ン	が	塩	水	中	に	_	定	Ø	比	で	存	在	す	3
と	い	う	仮	定	Ø	下	に	,	塩	素	(Cl) (の量		より	ני נ	語う	ት s
を	求	め	3	方	法	で	あ	3	ク	ヌ	-	ッ	セ	ン	Ø	式	を	用	11
た		塩	分	<i>s</i> (%)	と	塩	素	皇	C	l _s (‰)	と	Ø	関	係	式
は	以	下	Ø	٢	お	IJ	で	あ	る	•									
		<i>S</i> =	= 0.03	805+	1.805	$5Cl_s$													
塩	水	Ø	密	度	$ ho_{s}$	g / cn	n³]lə	t,	塩	分	S	(%	60) と	: 水	く 温		()
Ø	関	数	で	あ	3		そ	Ē	で	,	Cl_{j}	, ک	t	6	ρ	゚゚を	算	出	す
る	方	法	が	以	下	Ø	と	お	IJ	で	あ	3							
ま	す	,	塩	水	Ø	密	度	ρ_s Z	ŧ										
		$ ho_{s}$:	=1+1	$10^{-3}\sigma$	5														
と	し	塩	水	Ø	密	度	を	$ ho_s$	Ø	代	わ	IJ	に	σ_s ξ	: 表	長 羽	見す	t ą	5.
そ	E	で	,	水	温	t = 0	()	に	お	け	る	σ_s : c	₅₀ は	C	l _s の	関	数
と	し	τ	次	式	で	表	現	で	き	3									
		$\sigma_{_{s0}}$	= -0	.069+	-1.47	$08Cl_s$	-0.0	0157	$0Cl_s^2$	+0.0	0003	89 <i>Cl</i>	3						
ま	た	,	水	温	t ()	Ø,)問	寺 の) c	$\sigma_s:\sigma_s$	ぱ	次	式	で	与	え	5
れ	3																		
		$\sigma_{\scriptscriptstyle st}$	$=-\frac{(i)}{2}$	t – 3.9 503.5	$\frac{98)^2}{70}g_t^t$	+ 283	$\frac{3.0}{26}$ + ($(\sigma_{s0} +$	0.13	44){1	$-A_t$	$+B_t(a)$	$\sigma_{_{s0}}$ –	0.132	24)}				
E	こ	に	,																

 $A_t = t(4.7869 - 0.098185t + 0.0010843t^2) \times 10^{-3}$ $B_t = t(18.030 - 0.8164t + 0.01667t^2) \times 10^{-6}$

である.以上の式より,塩水の密度ρ_sが塩素 量 Cl_sと水温 tを与えることによって計算でき る. 2.4 空気の密度の決定方法

今回の実験において、工業規格として与え られる気温t()と空気の密度 $\rho_a(kg/m^3)$ の関係 から求めた、以下の近似式により算出した、 $\rho_a = 0.0097t^2 - 4.3801t + 1290.8$

2.5 密度界面の決定方法

面 は , 目 視 で き る 密度界 密 界面の, 上 方 度 2 c m と下 方 2 c m Ø 間 気 伝 導 度 1cm 間 隔 ወ 電 を で測 定 し 得 5 れた 鉛 直 濃 度 分 布 か 5 求 めた , 上、 下 層 平 均濃度の位置 を 度 界 とした の 密 面 (Fig.2-5-1 参 照).

Fig.2-5-1 密度界面の時間変化測定例(Run12)

2.6 代表風速と空気の摩擦速度

Fig.2-6-1 は風速分布の測定結果のうち吹送距離が275cmのものについて示したものである.そこで空気の摩擦速度u_{*a}は風速分布の対数則である次式より算出した.

 $\frac{U(z)}{u_{*a}} = \frac{1}{\kappa} \ln \frac{z}{z_0}$ (2 - 1)

U(z)は高 さ zにおける風 速 , κはカルマン定 数 , z₀は粗 度 定 数 である . Fig . 2 - 6 - 1 に描 かれている斜 線 は (2 - 1) 式 を用 いるために求 めた回 帰 線 である . Fig . 2 - 6 - 2 は z = 1 5 cm における代 表 風 速 U₁₅とし , これと上 述 の方 法 で 求 められる空 気 の摩 擦 速 度 u_{sa}の関 係 を示 したものであ る . この図 より本 実 験 で用 いたものと浦 ら(1983)および 古 本 ら(1991)の研 究 で得 られている代 表 風 速 と空 気 の摩 擦 速 度 の関 係 とー 致 している .

また,Fig.2-6-3 は本 実 験 で用 いた風 洞 の風 洞 特 性 を表 したものであるが,風 洞 上 部 で天 井 の影 響 を受 け ているが水 面 付 近 では対 数 分 布 則 が成 立 している.

Fig.2-6-1 風速分布(x=275cm)

2.7 連行係数とリチャードソン数

一般に、連行速度は次式で定義される連行 係数 Eと 層 平 均 リ チャード ソ ン 数 R_{io}の 関 係 と して表現されている.

$$E = \frac{u_e}{V}$$

$$R_{io} = \frac{\Delta \rho g H}{\rho V^2}$$
(2 - 2)

ここに, u_e は連行速度,V,Hおよびhoはそれ ぞれ代表の速度、長さおよび密度、 $\Delta
ho$ は上、 下層の密度差,gは重力加速度である.いま, れが2次元的であり,かつ流水断面を矩形 流 とすれば、上層の流量の連続式および密度保 存則は次式となる.

 $\frac{\partial h_1}{\partial t} + \frac{\partial (u_1 h_1)}{\partial r} = u_e$ (2-3) $\frac{\partial(\rho_1 h_1)}{\partial t} + \frac{\partial(\rho_1 u_1 h_1)}{\partial r} = \rho_2 u_e$ (2-4) ここに, u_1 は上層の断面平均流速, h_1 は上層 水深 , ho_1 , ho_2 は そ れ ぞ れ 上 , 下 層 の 密 度 , xは 主流方向,tは時間を表す.吹送流の場合, (2-3)式の右辺第2項はきわめて微小である から, $\frac{dh_1}{dt} = u_e$

となり,連行速度は上層水深の時間変化,す なわち密度界面の低下速度として求められる.

(2 - 5)

(2-3)式および $\Delta
ho =
ho_2 -
ho_1$ を用いると、(2-4)式は 次式となる.

$$\frac{\partial \rho_1}{\partial t} + u_1 \frac{\partial \rho_1}{\partial t} = \frac{\Delta \rho}{h_1}$$
 (2 - 6)

密度界面を介して上層へ連行された下層水は 鉛直・水平方向に速やかに混合し、一様化さ れるものとすると, (2-6)式は

$$\frac{d\rho_1}{dt} = u_e \frac{\Delta\rho}{h_1} \tag{2-7}$$

と な る . (2-5)式 , (2-7)式 か ら , $ho_2=-$ 定 の 条 件のもとで積分すれば、

(2-8) $h_1 \Delta \rho = h_{10} \Delta \rho_0 = const.$

を得る.ここに, $h_{\scriptscriptstyle 10}$ および $\Delta
ho_{\scriptscriptstyle 0}$ は初期の上層水 深 お よ び 上 , 下 層 の 密 度 差 で あ る . そ こ で , (2-2)式において, $H \rightarrow h_{10}$, $\Delta \rho \rightarrow \Delta \rho_0$, $\rho \rightarrow \rho_a$, $V \rightarrow u_{*_a}$ を 用いて層平均リチャードソン数を表すと

$$R_{ia} = \frac{\Delta \rho_0 g h_{10}}{\rho_a u_{*a}^2}$$
 (2-9)
となり,これは時間的に変化しないので都合が良い.このとき,連行係数は

$$E = \frac{dh_1 / dt}{u_{*a}} = \frac{u_e}{u_{*a}}$$
 (2 - 1 0)

として求められる(森ら1984).

とな

2.	8	遉	11 行	, 現	見多	え に		剧了	5 3	5 3	尾 駒	食 0	D 糸	吉男	艮					
	吹	送	流	12		Ł	る	上	層	水	深	の	民	f f	眀	変	化	は	,	
Γi	g.	2 -	8 -	1	に	示	す	よ	う	に	,	風	Ø	作	用	後	し	ば	5	
<	は	循	環	流	Ø	形	成	お	よ	び	内	部	波	Ø	発	達	Ø	た	め	
変	動	が	大	き	11	が	,	時	間	Ø	経	過	٤	٢	も	に	時	間	ſĊ	
ΤĒ	比	例	す	3	傾	向	を	示	L	た		С	n	は	水	面	に	水	草	
Ø	な	61	既	往	Ø	吹	送	流	に	よ	る	密	度	界	面	Ø	連	行	現	
象	Ø	場	合	と	同	様	で	あ	IJ	,	実	験	初	期	を	除	61	τ	密	
度	界	面	Ø	低	下	速	度	は	—	定	で	あ	3	こ	٢	を	示	し	τ	
い	3																			
本	実	験	に	お	11	τ	も	F	i g	. 2	- 8 -	- 1	に	示	し	τ	11	3	よ	
う	に	,	密	度	界	面	Ø	低	下	速	度	は	実	験	初	期	を	除	い	
τ	—	定	で	あ	3	Ø	で	,	連	行	速	度	u _e	= dk	n_1/dt	t = c	onst.	٤	な	
IJ	時	間	に	依	存	L	な	11	(森	6	,	19	8 9	9)	•				
	本	研	究	で	対	象	と	し	τ	11	る	浮	葉	性	植	物	Ø	あ	る	
場	合	に	お	け	3	吹	送	流	に	よ	る	密	度	界	面	Ø	連	行	速	
度	に	っ	61	τ	も	,	既	往	Ø	浮	葉	性	植	物	Ø	な	11	場	合	
Ø	そ	n	٢	同	様	に	,	連	行	速	度	u _e	= dk	v_1/dt	= c	onst.	で	あ	る	
C	と	が	わ	か	3	•	C	Ø	よ	う	に	L	τ	得	5	れ	た	本	実	
験	に	お	け	3	連	衍	係	数	٢	層	平	均	IJ	チ	ヤ	-	ド	У	ン	
数	Ø	関	係	を	义	示	U	た	Ø	が	F	i g	. 2	- 8	- 2	で	あ	3	•	
义	中	Ø		ED	は	浮	葉	性	植	物	Ø	な	61	密	度	2	成	層	場	
Ø	吹	送	流	に	よ	3	密	度	界	面	Ø	連	行	速	度	に	関	す	る	
森	6	(1	98	9)	Ø	実	験	結	果	を	示	し	τ	11	3	•				
Γi	g.	2 -	8 -	2 7	かり	6;	b	か	3	۶.	5 1	こえ	本 5	実	験	結	果	は	,	
R_{ia}	<10)0の	範	进	に	お	l	τ	, ,	浮	葉	性	植	物	の	な	い	密	度	
2	成	層	場	に	お	け	る	連	行	速	度	Ø	既	往	の	結	果	で	あ	
3	E∝	R_{ia}^{-2}	^{3/2} の	関	係	を	: 13	E IJ	〔 満	うた	: L	, T	l	ą	, 2	ع 1	: ,	ま	た	,
浮	葉	性	植	物	Ø	あ	る	場	合	Ø	連	行	速	度	は	,	同	じ	R_{ia}	

対 し て 浮 葉 性 植 物 の な い 場 合 の そ れ に 比 べ に τ か なり小さくなることが示されている.さ に , 水草の占有率 βが大きくなるにつれて 5 速度が小さくなっていることがわかる 行 連 . で , $E=K_{\beta}R_{ia}^{-3/2}$ と お い て , 比 例 係 数 K_{β} を 実 験 E そ から推定した結果を Fig.2-8-3 に示して 結 果 . Fig.2-8-3 から , 浮葉性植物の水面占 11 る βが大きくなるにつれて K_gが次第に低 有 率 下 す る傾向にあることがわかる.いま,風の吹 に よ る 上 層 の 循 環 流 が 確 立 し た 後 の 2 送 成 層 度界面の連行速度は、密度界面近傍の乱流 密 造 す な わ ち 風 の 剪 断 に 基 づ い て 水 面 近 傍 で 構 成された乱流エネルギーが界面近傍へ 拡 生 輸 送 さ れ た 量 に 依 存 す る も の と 考 え ら れ 散 • . さらに浮葉性植物が水面を占有する場合, る 面に付加される風の剪断力は浮葉性植物が 水 い場合に比べて水草が占める割合だけ小さ な なるものと考えられる < .

第3章 風のせん断力に関する実験 3.1 はじめに

第 2 章で述べたように、浮葉性水草 の 水面 占 有 率 が増加すると,密度 2 成 層 の 上 下 層 間 行の規模が減少するという に お け る 連 結 果 を 6 章 で 述 べ る が ,密 度 2 成 層 場 に 得 た 後 に 第 . エネルギー 収支 (Fig.6-0-0 参照) お け る 乱 流 に つ 考 え ると,上層の乱流エネルギー いて の 面 近 傍 に 輸 送 さ れ た エ ネ ル ギ ー う ち 密 度 界 が ポ テ ン シ ャル エネルギーと交換される.こ ወ ギー機構と連行現象は密接な Т ネル 関 係 に あ .ここで,浮葉性植物が水 面 を 占 す る 場 る 有 合 に付 る 風の 力は 浮 性 植 の 水 面 加 さ れ 剪 断 葉 , な 場 に 比べて水草が占める 割合だ 物 が 11 合 け と考え られる.これは即ち,水 さ < な る も の 小 付 近 で 発 生する乱れのエネルギーが減少 し 面 密 度 界 面 付 近に輸送されるエネルギー,さ 5 上 層 間の連行現象に影響を与 え る に は 下 も ወ 考 え る.そこで,本章で は水 加 さ と 5 れ 面 に 付 3 のせん断力と浮葉性植物の水面 占有 れ 風 率 の関係について考察する と .

3.2 実験方法および実験条件

実験水槽は連行現象に関する実験で用いた ものと同様の水槽を用いた. Fig. 2-1-1 お よ び Fig. 2-1-2 に示すように,実験水槽は 長さ 600cm , 幅 30cm, 深さ 40cmの水槽と , その 部 に 取 り 付 け た 長 さ 30 cm 幅 30 cm の 風 上 路か . 風速および気温の測定は熱線 5 な る 風 速 計 用いた.風速の測定は連行現象に 関 る を す 実 で界面の低下量を計測した水槽 験 中心 (風 上 か 5 300cm)の位置から風上側始端 風 上か (0 c m) ま で を 30 cm 間 隔 に 区 切 り , 各 点 に お 5 て水面から水面高さ 6.0 cm までを 0.5 cm 間 11 った.ただし,浮葉性植物を模擬した発 隔 で行 チ ロ ー ル 板 に よ る 被 覆 が あ る 場 合 は ,実 砲 ス に風が作用し始める水面上の点から計測を 際 った.計測位置についてはFig.3-2-1および 行 Fig.3-2-2 に示す.代表風速 Uは 4.8m/s (2.6 項参照)とした.

3.3 実験結果および考察

における風速の鉛直分布を Fig.3-3-1 各 点 示 す.各測点における風速分布が対数則 に に っているものとし, $U/u_{*a} = (1/\kappa) \ln(z/z_0)$ を し た が 用 の 摩 擦 速 度 u_{*_a} を 算 出 し , 水 面 働 11 て 空 気 に < ん断力 τ_a を $\tau_a = \rho_a u_{*a}^2$ から算出 風 した (ወ せ 2.4 頂 2.6 項参照).各測点における風 お よ び が 水 面 断力の分布 に え るせん を示 し 与 た も ወ が Fig. 3 - 3 - 2 である.ここに,グラ フの 横 軸 は 吹 送 距離 Fを 表 し ,浮 葉 性 植 物 の 水 面 有 率 が 占 10%,20%,30% Ø 場 合 始 ぞ Ø 端 は そ れ n 有 F = 30,60,90(cm)となる. 各 水 面 占 率 に お け る せ 断力 τ_a を 対数 近似して 得 5 れ た 曲 線 に つ 11 h ,実際に風が水面に作用し始 め た 点か 5 水 τ 槽 中心まで積分した値を総せん断力 $\tau_{A} \ge$ し τ 水 面 占 有 率 ご と に 比 較 し た も ወ を 各 Fig.3-3-3 に 示 す . 縦 軸 は 比 較 の ために水 面 占 率 が 0%の場合の総せん 断力 au_{A0} を 有 用い τ 無 している.Fig.3-3-3か 5 浮 葉 物 次 元 化 性 植 の 率が増加するにつれ 水 面 占有 て 水 槽 中 心 ま で れたせん断力の総量は減少 に 与 え 5 す る 傾 向 ある とがわかる.またその割合は,占 有 に こ 率 が 10%の場合は被覆がない場合の 8 割 程 度 で リ,20%および 30%の場合は被覆が あ な 11 場 合 割程度になることが示された.このこ 6 の と 浮 植物の水面占有率が か 5 葉 性 増 加する と、 面 作 用 す る 風 のせん断力が減少し,密 水 に 度 成 層 場 に え られるせん断力によるエネル 2 与 減少していることが示唆された. ギ — も 量

第4章 密度2成層場の乱流構造に関する実 験

4.1 はじめに

2 章 で 述 べ た よ う に , 浮 葉 性 植 物 の 第 水面 率 が 増 加 す る と , 密 度 2 占有 成層 の 上 下 層 間 ける連行現象の規模が減少するという に お 結 果 を 得 た . 第 3 章 で も 述 べ た が , 密 度 2 成 層場 おける乱流エネルギー収支(Fig.6-0-0 に 参 照)について考えると, 上層の乱流エネルギー ወ うち密度界面近傍に輸送されたエネルギー テンシャルエネルギーと交換される.こ が ポ エ ネ ル ギ ー 機 構 と 連 行 現 象 は 密 接 な 関 ወ 係に .本章では浮葉性植物の水面 率 が 増 あ る 占 有 ることで、上層の乱流構造お よ 密 加 す び 度 界 傍の鉛直輸送能力に及ぼされる に 影 響 つ 近 面 て考察し,連行現象に関する実験の結 果と 11 比較,検討する.

4.2 実験装置

	実	験	装	置	は	, F	i g	. 4	- 2	- 1	に	示	す	よ	う	に	連	行	現
象	に	関	す	る	実	験	ات	月] l	۱ 1	と フ	k t	曲日	と	同	様	Ø	長	さ
60	0 c	m	,	幅	3 0	c n	ı,	深	さ	4	4 O C	m	Ø	水	槽	と	,	そ	Ø
上	部	に	取	IJ	付	け	た	長	さ	3	0 c 1	m,	幅	3	0	c m	Ø	風	路
か	5	な	る	•	密	度	2	成	層	場	は	水	道	水	と	塩	水	を	用
11	τ	作	製	し	た	•	実	験	水	槽	~	Ø	送	風	は	,	密	度	界
面	Ø	急	激	な	擾	乱	を	避	け	る	た	め	,	徐	々	に	所	定	Ø
風	速	に	な	る	よ	う	に	し	た	•	流	速	Ø	測	定	に	は	Х	型
朩	ッ	۲	フ	イ	ル	Ъ	流	速	計	(Fi	g.	4 -	2 -	2	参	照)	を
使	用	し	,塩	副 分	入 湄	農	度	の	測	定	に	は	白	숦	ž	板	電	極	式

(Fig.4-2-3 参 照) を , 測 伝 導 度 計 風 速 の 定 に は 熱 線 風 速 計 を 用いた . 流 速 塩 分 • 300cm, 度 び 上 濃 お よ 水 温 は 風 か 6 風速 風 270cm は 上 か 5 Ø 位 置 で 測 定 し た Fig. 4 - 2 - 1 照 浮 葉性 植 物 模擬方法 (参) . の よび水 る 方法は連行現 象 に関 お 面 占 に 関 す 有 す (Fig.2-1-3 参 る実 と 同樣 で あ る 照). 験

Fig.4-2-1 乱流構造に関する実験装置

Fig.4-2-2 X型ホットフィルム流速計 Fig.4-2-3

Fig.4-2-3 白金板電極式伝導度計

4.3 実験方法および実験条件

,上 ・ 下 層 の 密 度 ho_1 , ho_2 の 差 $\Delta
ho_0$ = ho_2 – ho_1 , 実 験 は 層 水 深 h, 空 気 の 摩 擦 速 度 u_{*a}お よ び 水 草 の 上 Ø 率 β (=(2s/L)×100)をパラメーターとして, 水 面 占 有 平 層 均 IJ チ ャードソン数 $R_{ia} = \Delta \rho_0 g h_{10} / \rho_a u_{*a}^2$)が 100 前 で 行 ここに, Lは水槽の長さ, sは水 後 っ た . が 水 面 占有する水槽端からの長さ, u_{*_a} は 草 を 気の 擦 , ho_a は 空 気 の 密 度 る 空 摩 速 度 あ な で . お 空 気 の 摩 擦速度 *u**aは水面 近傍 に お け る 風 , 速 分布の測定結果が対数則に従っている こ と , $U/u_{*_a} = (1/\kappa) \ln(z/z_0)$ により算定した.ここに, か 5 Uは水面下からの高さzにおける 風速 кは カ , る (2.6 項 ン 定 数 , z₀は 粗 度 定 数 で あ 参 照). ル マ 心すなわち風上から 槽 ወ 中 300 cm 地 水 の ットフィル Ь 流 点 に Х 型 朩 速 計 を 取 IJ 付 け た ゲ ー ジ を 固 定 し ,2 成 層 流 ወ 境 界 面 か 5 水 面 ま で , Table. 4 - 3 - 1 に 示 す 計 測 時 間 測 お よ び 計 点 間 隔で,各点 で 水 面 に 対 し 平 τ 水 方 の 流 速 и, 鉛直方向の流速 v お 向 よ び 塩 分 濃 度 ρを計測した.計測は サ ン プ IJ ン グ 周 波 数 100Hz のもと で行 った . な ,密 度 界 面付近の濃度 変 化 は 内 部 波 お の 受 けるも 考 影 響 を 大 き < の と え 5 れ る た , 内 部 波 周 期 を 考 慮 し 密 度 界 面 め の 近 傍 ወ 時 間 とした . ま た,浮 で 計 測 を 60 秒 葉 占有率による変 草 面 化 を 確 性 水 の 水 か め ,風速 U,上 層 水 深 h お る た め に よ び 下 層 密 整 し , な る べ く *R_{ia}*の も 度 $\rho_{2} \epsilon$ 調 と で 実 験 を うにした.実験条件は Table.4-3-2 行 う よ に 示す .

境界面からの高さ	測定時間	測定間隔
(elli)	(3)	(CIII)
0~3	60	0.5
3~5	25	0.5
5~10	25	1.0

Table.4-3-1 計測時間および計測点間隔

Table.4-3-2 乱流構造に関する実験条件

被覆率	風速 (m/s)	上層水深 h ₁ (cm)	密度差 (kg/m ³)	空気の密度 a×10 ³ (kg/m ³)	空気の摩擦速度 U _* a (cm/s)	R _{ia}	水の摩擦速度 U _* (cm/s)
0%	4.7	10.8	0.005229	0.001256	20.748	102.348	0.735488
10%	4.8	10.1	0.005521	0.001261	21.372	94.849	0.759065
20%	4.7	11.1	0.005403	0.001265	20.748	107.959	0.737996
30%	4.8	11.0	0.005361	0.001294	21.372	97.805	0.767814

4.4 白金板電極式伝導度計の較正方法

本 実 験 で は , 上 層 の 密 度 の 時 間 変 化 を 知 る た め に 白 金 板 電 極 式 伝 導 度 計 (Fig. 4 - 2 - 3 参 照) を 自 作 し て 使 用 し た . そ の 形 状 を Fig. 4 - 4 - 1 に , 較 正 手 順 を 以 下 に 示 す .

ビニールパイプを 6 本たて 塩 化 た 水 槽 用 る (Fig.4-4-2 参 照). を 11 水 槽 は 保 温 るようにするために 効 果 す 発 泡 ス チ を 有 ー ル で 囲 い 保 温 す る .

並塩 (NaCl) を 0.15g, 0.35g, 0.50g, 1.50g, 2.50g, 秤量する.

それぞれを 500mlの純水に溶解 させる.溶解させた塩水を Fig.2-4 に 示す塩化ビニールパイプ内にそれぞ れ入れる.ただし1本には純水を入れ る.

それぞれの電圧を計測する.こ の 水槽内に冷水を入れ,10 まで 温 と き 下げ徐々に温度を上げ を て 11 き 度 2 0 までを 1 きざみに計測して 11 < .

Fig.4-4-1

白金板伝導度計寸法図 Fig.4-4-2 塩分濃度と電圧の較正

4.5 水 平 , 鉛 直 方 向 流 速 の 算 定 方 法

電 圧 と 流 速 の 較 正 で は , Fig. 4 - 5 - 1 に 示 す よ う に 水 平 方 向 の み の 流 れ , す な わ ち 水 平 方 向 流 速 uの み (鉛 直 方 向 流 速 v=0) の 流 体 中 に 熱 線 プ ロ ー ブ を 設 置 し , Probe1 の 出 力 E₁, Probe2 の 出 力 E₂を そ れ ぞ れ 計 測 す る . そ し て 流 速 を 変 化 さ せ , Fig. 4 - 5 - 2 に 示 す よ う に , そ れ ぞ れ の uに 対 す る E₁, E₂を 計 測 す る .

このとき Probe1 に直交する流速 u,, Probe2 に直交する流速 u,,をそれぞれ,

$$\begin{cases} u_{I} = \alpha_{I} E_{I} + \beta_{I} & (2 - 2) \\ u_{II} = \alpha_{II} E_{II} + \beta_{II} & (2 - 3) \end{cases}$$

と , 線 形 の 式 で 表 す と き , Probel と Probe2の角度が水平方向に対してそれぞれ 45度, -45度なので, $u_I = u_{II} = \frac{1}{\sqrt{2}}$ uとなり,

$$\begin{cases} \frac{1}{\sqrt{2}}u = \alpha_I E_I + \beta_I & (2 - 4) \\ \frac{1}{\sqrt{2}}u = \alpha_{II} E_{II} + \beta_{II} & (2 - 5) \end{cases}$$

となる.またここで, $u=\alpha E+\beta$ において,各区間の α , β は次のように表せる.

$$\begin{cases} \alpha_{\kappa} = \frac{u_{\kappa} - u_{\kappa+1}}{E_{\kappa} - E_{\kappa+1}} & (2 - 6) \\ \beta_{\kappa} = \frac{u_{\kappa+1}E_{\kappa} - u_{\kappa}E_{\kappa+1}}{E_{\kappa} - E_{\kappa+1}} & (2 - 7) \end{cases}$$

すなわち,N通りの流速を計測した場合, N-1区間の α_{I} , β_{I} , α_{II} , β_{II} がそれぞれ求まる.

Fig.4-5-1流体中に設置したX型ホットフィルム流速計

Fig.4-5-2 流速 u に対する 各プローブ電圧

	実	測	に	お	け	3	и,	v D)算	۲ E	1							
	実	測	に	お	11	τ	, F	i g	. 4	- 5 -	- 3	に	示	す	よ	う	に	
流	れ	場	に	お	け	3	任	意	Ø	方	向	Ø	流	速	χ	を	水	
平	方	向	流	速	и,	鉛	直	方	向	流	速	v IZ	分	け	る	ζ		,
Ρr	o b	e 1	に	直	交	す	る	流	速	u ₁ -	$+v_I$,	Р	r o	b e	2	に	直	

交 す る 流 速 $u_{II} - v_{II}$ は そ れ ぞ れ ,

$$\begin{cases} u_{I} + v_{I} = \alpha_{I} E_{I} + \beta_{I} & (2 - 8) \\ u_{II} - v_{II} = \alpha_{II} E_{II} + \beta_{II} & (2 - 9) \end{cases}$$

となり,また $u_{I} = u_{II} = \frac{1}{\sqrt{2}}u$, $v_{I} = v_{II} = \frac{1}{\sqrt{2}}v$ より式(2-8),

$$\begin{cases} \frac{1}{\sqrt{2}}(u+v) = \alpha_{I}E_{I} + \beta_{I} & (2 - 1 \ 0) \\ \frac{1}{\sqrt{2}}(u-v) = \alpha_{II}E_{II} + \beta_{II} & (2 - 1 \ 1) \end{cases}$$

となる.この式(2-10),(2-11)を連立して 解くことにより,水平方向流速u,鉛直方 向流速vはそれぞれ,

$$\begin{cases} u = \frac{1}{\sqrt{2}} \left\{ \left(\alpha_{I} E_{I} + \alpha_{II} E_{II} \right) + \left(\beta_{I} + \beta_{II} \right) \right\} & (2 - 1 \ 2) \\ v = \frac{1}{\sqrt{2}} \left\{ \left(\alpha_{I} E_{I} - \alpha_{II} E_{II} \right) + \left(\beta_{I} - \beta_{II} \right) \right\} & (2 - 1 \ 3) \end{cases}$$

で算出される、すなわち、Probel、Probe2 の出力電力 E_{I} 、 E_{II} がFig.4-5-2のどの区間 であるかを判断し、その区間 κ における係 数値 $\alpha_{I,\kappa}$ 、 $\beta_{I,\kappa}$ 、 $\alpha_{II,\kappa}$ 、 $\beta_{II,\kappa}$ を用いて式(2-12)、 (2-13)を用いてu、vを算出する.

Fig.4-5-3実験水槽中に設置したX型ホットフィルム流速計

	ま	た	,	水	平	方	向	時	間	平	均	流	速	- ,	鉛	直	方	
向	時	間	Ψ	均	流	速	\overline{v} ,	水	平	方	向	乱	n	強	度	$\hat{u} =$	$=\sqrt{u'^2}$,
鉛	直	方	向	乱	n	強	度	^ v =	$=\sqrt{v'^2}$	2,	レ	イ	J	ル	ズ	ス	۲	
レ	ス	$-\overline{u}$	は	デ	_	タ	数	を	N	「個	٤	: す	3	٢	き	,	そ	
れ	ぞ	れ	,															

$\overline{u} = \frac{1}{N} \sum_{i=1}^{N} u_i$	(2-14)
· · · · ·	

$$\bar{v} = \frac{1}{N} \sum_{i=1}^{N} v_i$$
 (2 - 1 5)

$$\hat{u} = \sqrt{u'^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (u_i - \overline{u})^2}$$
 (2 - 1 6)

$$\hat{v} = \sqrt{\overline{v'^2}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (v_i - \overline{v})^2}$$
 (2 - 1 7)

$$-\overline{u'v'} = -\frac{1}{N} \sum_{i=1}^{N} (u_i - \overline{u})(v_i - \overline{v})$$
 (2 - 1 8)

に よ っ て 算 定 す る .

第	5 重	Ì		密	度	2	成	層	場	Ø	乱	流	構	造	に	関	す	る	
実	験	結	果	لح	考	察													
5.	1	流	速	分	布	と	乱	流	諸	量	に	関	す	3	考	察			
	4	章	で	示	し	た	実	験	Ø	流	速	デ	-	タ	か	6	,	水	平
方	向	時	間	平	均	流	速	ū	,鉛	直	方	向	時	間	平	均	流	速	\overline{v} ,
-r	л и	÷	占	ŦI	ħ	74	è ré	F.) _ A	$\sqrt{\frac{1}{1}}$		¢Л	古	÷	占	ŦI	th	卍	臣
小	Ŧ	Л	ΙIJ	山	10	59		ż U	$\iota = \chi$	u	'	亚口	且	Л	ΙIJ	άL	16	归	反
$\hat{v} =$	$\sqrt{v'^2}$	2,	レ	イ	J	ル	ズ	ス	F	u	ス	—u	<i>ぃ</i> ′ѵ′ を	花	えめ	った	: .		
	Γi	g.	5 -	1 -	1	お	よ	び	F	i g	. 5	- 1	- 2	は	水	平	方	向	お
よ	び	鉛	直	方	向	時	間	平	均	流	速	の	鉛	直	分	布	に	っ	11
τ	表	し	た	も	Ø	で	あ	IJ	,	横	軸	,	縦	軸	は	そ	れ	ぞ	れ
水	Ø	摩	擦	速	度	\mathcal{U}_{*}	, ⊥	二 層	雪	水氵	深 /	h ₁ を	用	11	τ	無	次	元	表
示	し	τ	11	る		以	下	,	F	ig.	5 -	1 -	3~	· F	i g	. 5	- 2	- 2	Ø
横	軸	, ‡	縦	軸	は	и _* ,	h ₁ 7	ŧ۶	刊	L1 .	τ \$	₩)	次	元 1	化	- J	ς ι	١	3.
义	に	お	11	τ	風	向	は	义	の	右	か	6	左	で	あ	IJ	,	z, /	$h_1 = 1$
は	水	面	,	2	z_1 / h_1	=0	が	密	度	界	面	i đ	Ē	長	し	τ	11	3	•
Γi	g.	5 -	1 -	1	か	6	水	草	Ø	占	有	率	が	増	加	す	3	に	つ
n	τ	各	水	深	で	Ø	水	平	方	向	時	間	平	均	流	速	は	減	少
す	3	傾	向	に	あ	3	٢	言	え	3	•	ま	た	,	分	布	形	状	に
つ	11	τ	は	水	面	か	6	境	界	面	に	向	か	う	に	っ	れ	τ	減
少	L	,	水	面	か	6	上	層	水	深	の	4	割	程	度	ま	で	は	風
上	か	5	風	下	方	向	^	Ø	順	流	部	を	も	ち	,	そ	Ľ	か	6
風	下	か	5	風	上	方	向	Ø	逆	流	部	に	移	行	し	τ	61	3	こ
と	が	わ	か	3	•	順	流	部	か	6	逆	流	部	^	Ø	移	行	水	深
は	浮	葉	性	植	物	Ø	水	面	占	有	率	が	増	加	す	3	に	つ	れ
水	面	に	近	ブ	<	傾	向	に	あ	る	C	٢	が	わ	か	3	•		
鉛	直	方	向	時	間	平	均	流	速	Ø	鉛	直	分	布	ſĊ	つ	61	τ	は
鉛	直	方	向	に	間	欠	的	に	発	生	す	3	渦	Ø	影	響	を	受	け
る	も	Ø	と	考	え	5	れ	,	本	実	験	で	は	計	測	時	間	が	鉛

方向において異なることなどが影響して 直 明 確 な 傾 得 るには至っていない.占有 率 向 を D よ び 流 れの方向にかかわらず,そ 違 いお ወ 値 は 水 平 方向流速が水面付近でもつ値の 1 割 程 り,上層の流れ場において 度 で あ は 鉛 直 方 向 べ,水平方向の流れが卓越して る こ に 比 11 と が わ か る.

乱 強度は各点での乱れの強さを れ 表 す 指 標 で あ る が Fig. 5 - 1 - 3 よ IJ 水 平 方 向 乱 れ 強 度 , ወ 鉛 直 分 布は,水平方向 流 速 と 同 様 に 水 草 の 増 て 占 有 率 が 加 す る につれ 各 点 で Ø 乱 れ の 強 が 減 少 す る 向を示して 11 る さ 傾 水 面 か 5 上 . 卓 越 値 層 水 深 ወ 3 割 程度の深さま で し た を 持 . Fig.5-1-4 の 鉛 乱 強 と 言 え る 直 方 向 の れ つ ついても水平方向と同様 度 に の 傾 向 が 見 5 れ る .

Fig.5-1-5 に示すレイノルズストレスは 乱 の発生源を示すものであるが, その 鉛 れ 直 分 は水面付近でとくに大きな乱れの発 生 が み 布 . いずれの条件でも水面付近でのみ れ る 5 レ ノルズストレスは大きく,上層水深の 1 割 イ 程 度 深さを越えるとほぼ 0 となっている. の こ れ は 乱 れ エ ネ ル ギ - の 発 生 が 水 面 で の 風 の 断のみに依存していることを示すも せ h の で る あ .

5.2 密度分布とその時間変化

第4章で示した実験の密度計測データから, 上層の時間平均密度 ρおよび密度の乱れ強度 $\hat{
ho}=\sqrt{{
ho^{\prime 2}}}$ を求め,その鉛直分布を示した も Ø が,Fig.5-2-1 および Fig.5-2-2 である.横軸お よび縦軸はそれぞれ上層の初期密度 ρ₁および 上層水深れを用いて無次元表示している. 义 に お い て 風 向 は 図 の 右 か ら 左 で あ り , $z_1/h_1 = 1$ は , z₁/h₁=0が密度界面を表してい 水 面 る . Fig5-2-1 および Fig.5-2-2 から,密度界面近 を除いて上層の密度はほぼ一定であり,密 傍 界面近傍でのみ大きな値をとっていること 度 ら , 塩 水 が 下 層 か ら 上 層 へ と 輸 送 か され τ 11 とがわかる.また浮葉性植物に こ よ る 水 る 面 有 率が増加すると,密度界面近傍での密 度 占 変 化が減少する傾向を得た.

乱れエネルギー収支に関する考察 第6章 6.1 はじめに 密 度 2 成 層 場 に お け る 上 層 の 乱 れ エ ネ ル ギ Ø 機 構図を Fig.6-1-1 に示す.ここに 示 さ れ — に、乱れのエネルギーは水面に作 よ う る 用 す る 風 せん断力によって与えられ、粘性によ の 散 逸 散による輸送によって消費され, る や拡 で 至 っ た エ ネ ル ギ ー 量 が ポ テ ン シ 界 面 近傍 ま ル Т ネルギーとの交換に使われる も の と 考 ヤ え 5 れ る.第 4 章で示した流速と密度 の 同 時 測 って得られたデータから,浮 葉 計 に よ 性 水 を占有する場合と浮葉性水草 草 が 水 面 が な 11 上層の乱れエネルギー収支 と を 定 場 合 の 量 的 把 握 す る こ と で ,連 行 現 象 に 関 す る 実 験 の に 果と比較,検討を行なう. 結

Fig.6-2-1 は 第 4 章 で 示 し た 実 験 に 関 し て 上 層 の 様 子 を 模 式 的 に 示 し た も の で あ る . こ こ に , 横 軸 を x, 縦 軸 を zと お き , 各 方 向 の 流 速 成 分 を u, vで 表 す も の と す る . Fig.6-2-1 に 示 さ れ る よ う な 2 次 元 の 平 面 に お け る x方 向 の ナ ビ エ ス ト ー ク ス の 方 程 式 は 以 下 の よ う に な る .

 $\frac{\partial u}{\partial t} + \frac{\partial u^2}{\partial x} + \frac{\partial uv}{\partial z} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial z^2} \right)$ (6 1) ここに右辺第 1 項 Xは重力などの質量に比例 して働く質量力, vは動粘性係数, pは圧力を示 す. $u = \overline{u} + u', v = \overline{v} + v', X = \overline{X} + X', p = \overline{p} + p'$ を代入して,式(6 1)を乱流の影響を考慮した形に書き直す と以下のようになる.なお, - は時間平均成分

を,' は 乱 れ 成 分 を 表 す .

 $\frac{\partial \overline{u}}{\partial t} + \frac{\partial \overline{u^2}}{\partial x} + \frac{\partial \overline{uv}}{\partial z} = \overline{X} - \frac{1}{\rho} \frac{\partial \overline{\rho}}{\partial x} - \frac{\partial \overline{u'^2}}{\partial x} - \frac{\partial \overline{u'v'}}{\partial z} + \nu \left(\frac{\partial^2 \overline{u}}{\partial x^2} + \frac{\partial^2 \overline{u}}{\partial z^2}\right) \qquad (6 \qquad 2)$

ー 方 , 式 (6 1) に *u*を か け , さ ら に 連 続 の 式 を 考 慮 す る と 以 下 の よ う に な る .

 $\frac{\partial}{\partial t}\left(\frac{1}{2}u^{2}\right) + \frac{\partial}{\partial x}\left(u\frac{1}{2}u^{2}\right) + \frac{\partial}{\partial z}\left(v\frac{1}{2}u^{2}\right) = uX - \frac{u}{\rho}\frac{\partial p}{\partial x} + vu\left(\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial z^{2}}\right) \quad (6 \quad 3)$

式 (6 3) に u=u+u', v=v+v', p=p+p'を 代入し,時間 平均をとった式から, 式 (6 2) を差し引く と, x方向の乱れエネルギーに関する次式を 得る.

$$\frac{D}{Dt}\left(\frac{1}{2}\overline{u'}^{2}\right) = -\overline{u'}^{2}\frac{\partial\overline{u}}{\partial x} - \overline{u'v'}\frac{\partial\overline{u}}{\partial z} - \frac{\overline{u'}\frac{\partial p'}{\partial x}}{\rho} + v\overline{u'\Delta u'} - \frac{1}{2}\left\{\frac{\partial}{\partial x}\left(\overline{u'}^{3}\right) + \frac{\partial}{\partial z}\left(\overline{v'u'}^{2}\right)\right\}$$

$$(6 \quad 4)$$

ここに,

 $D/Dt = \partial/\partial t + u\partial/\partial x + v\partial/\partial z \, \mathfrak{C} \quad \mathfrak{F} \quad \mathfrak{Y} \quad , \ \Delta = \partial^2/\partial x^2 + \partial^2/\partial z^2 \, \mathfrak{C} \quad \mathfrak{F} \quad \mathfrak{F}$

同様にして, $\overline{v^{'^2}}/2$ に関する式を誘導し,式(6 4)と合計することで,Fig.6-2-1で表される流 れ場の全乱れエネルギー $e=(\overline{u^2}+\overline{v^2})$ に関する支配 方程式が得られる.

こ こ で 簡 単 の た め に , z方 向 に の み 平 均 流 速 u と 乱 れ 諸 量 が 変 化 す る 場 合 を 考 え る と , 乱 れ エ ネ ル ギ ー の 収 支 式 は 以 下 の よ う に な る .

 $\frac{D\bar{e}}{Dt} = -\bar{u'v'}\frac{\partial\bar{u}}{\partial z} - \frac{\partial}{\partial z}\left(\overline{ev + \frac{p'v'}{\rho}}\right) - \frac{g}{\rho}\overline{\rho'v'} + v\left(\overline{u'\Delta u'} + \overline{v'\Delta v'}\right) \qquad (65)$ ここに右辺第 1 項は乱れエネルギーの発生, 第 2 項は速度変動と圧力変動による乱れエネ ルギーの輸送,第 3 項は浮力の輸送,第 4 項は 粘性による乱れエネルギーの消散を表す.ま た,消散項に関しては, $\varepsilon = v\left(\overline{u'\Delta u'} + \overline{v'\Delta v'}\right)$ で表され, 定常流れにおける壁面近傍の粘性効果の強い 領域では第 1 項と第 4 項が卓越し,

 $-\overline{u'v'}\frac{\partial\overline{u}}{\partial z} = \varepsilon$

が成立している.

さらに,等方性乱流の場合, $\varepsilon = 7.5\nu \overline{\left(\frac{\partial u}{\partial z}\right)^2}$ で表され, 空間的なパワースペクトルすなわち波数スペ クトルを用いて, $\varepsilon = 15\nu \int_0^\infty k^2 F(k) dk$ とも表される. ここに,F(k)は $F(k) = \overline{u}E(f)/2\pi$ で表される波数スペ クトルであり, $k = 2\pi f/\overline{u}$ で表されるkは波数,fは 周波数,E(f)はパワースペクトルである.

6.	3	乱	れ	Т	ネ	ル	ギ	-	ЧX	支	Ø	鉛	直	分	布	に	関	す	3
	考	察																	
	第	4	章	で	示	し	た	実	験	に	お	け	る	流	速	と	密	度	の
同	時	計	測	に	よ	っ	τ	得	5	n	た	デ	-	タ	か	5	密	度	2
成	層	場	に	お	け	3	上	層	Ø	乱	れ	т	ネ	ル	ギ	_	ЧX	支	式
各	項	Ø	鉛	直	分	布	を	算	出	し	た	. 코	t (6		5)	に	お	61
τ	,右	迈	」第	3	4	項	Ø	消	散	項	は	等	方	性	乱	流	Ø	仮	定
Ø	も	٤	で	,	E =	7.5v	$\sqrt{\frac{\partial u}{\partial z}}$	$\left(\frac{1}{2}\right)^2 \hbar$	n E	。 貨	〕日	ιL	, ,	右	辺	第	2	項	Ø
輸	送	項	は	乱	n	I	ネ	ル	ギ	_	Ø	時	間	的	変	化	が	な	61
も	Ø	٢	し	τ	,右	5 V	0	D 列	浅 麦	É 1	5V i	5 z	校び	カ	た.	そ	の	う	ち
浮	葉	性	植	物	に	よ		5 <u>7</u>	k ī	⑤ (ש ג	被	覆	が	な	11	場	合	を
Γi	g.	6 -	3 -	1	ا ج	Γl	ι,	3 0) %	Ø	水	面	占	有	率	Ø	場	合	を
Γi	g.	6 -	3 -	2	に	示	す	. ク	グ ラ	; 7	7 0	D 樟	黄 車	曲,	縦	軸	は	そ	n
ぞ	n	u_{*}^{3} /	h_1 ,	h ₁ を	月] l	17	て無	乗 ン	र र	ī₹	長う	₹ (ר נ	τι	۱ ą	3.	z_1 / z_1	$h_1 = 1$
が	水	Ī	面	を	表	l		,	z_1 / h	$_{1} = 0$	は	密	5	度	界	面	ā	を	表
す	. F	i g	. 6	- 3	- 1	お	よ	び	F	ig.	6 -	3 -	2	か	6	,乱	れ	т	ネ
ル	ギ	-	Ø	生	成	項	は	水	面	付	近	で	卓	越	し	た	値	を	示
し	,密	自度	5 牙	1111	ī ſ	t U	Í T	С 1	も 1	5 1	Þ 7	大き	<u></u>	ີ ຊີ 1	直	を ;	示	し 1	Ξ.
浮	葉	性	植	物	が	存	在	U	, な	: 1	\ 場	릉 슫	i 15	= t	t ⁄	ヾ,	水	面	占
有	率	が	3	80	%	<i>ກ</i> ີ	場	合	は	水	面	付	近	に	お	け	る	乱	れ
т	ネ	ル	ギ	-	Ø	生	成	が	減	少	し	τ	11	3	c	と	が	わ	か
る	. 同	椋		,	水	面	付	近	お	よ	び	密	度	界	面	付	近	で	粘
性	に	よ	る	乱	れ	Т	ネ	ル	ギ	-	Ø	散	逸	が	大	き	<	な	2
τ	お	IJ	,‡	寺(Κī	面	付	近	で	は	浮	葉	性	植	物	が	水	面
に	繁	茂	す	3	場	合	Ø	方	が	粘	性	に	よ	3	影	響	を	受	け
3	こ	と	が	示	さ	n	た	. }	孚ノ	ן ל	<u>ت</u> ،	よる	3 🕸	俞	送	項	t,	他	Ø
項	٢	Ø	バ	ラ	ン	ス	を	考	え	3	と	非	常	に	小	さ	な	値	を
持	っ	結	果	を	得	た		E	れ	は	実	験	時	Ø	層	平	均	IJ	チ
ヤ	_	ド	У	ン	数	R_{ia}	Ø	影	響	を	受	け	τ	11	3	も	Ø	と	考

えられる.密度界面付近の浮力による輸送項 均 リ チ ャ ー ド ソ ン 数 R_{ia}が 増 加 す る に つ は 層 平 て減少することを、同様の風洞水槽を用い れ 実験から,森ら(1989)が明らかに し てい た . す な わ ち , 浮 力 項 が 非 常 に 小 さ な 値 る を 示し の は , 本 研 究 に お け る 乱 流 構 造 に 関 す る た 実 層 平 均 リ チ ャ ー ド ソ ン 数 R_{ia}は 験 の 94~ 108 で (Table.4-3-2 参 照) ,比 較 的 安 定 IJ な 成 層 あ あったことに起因しているものと考えられ で る.

6.4 乱 れ エ ネ ル ギ ー 収 支 と 連 行 現 象 と の 関 係

Fig.6-4-1 は密度界面付近の浮力によ る 輸 送 項 の 鉛 直 分 布 を ,浮 葉 性 植 物 の 水 面 占 有 率 β って比較したものである. グラフの横 に よ 軸 は そ れ ぞ れ u_*^3/h_1 , h_1 を 用 い て 無 縦 軸 次 元 表 示 し る.浮葉性植物の水面 τ 11 占 有 率 が 増 加 す る ,浮力による 鉛直輸送能 が 減 少 し τ こ と 1 1 る が わかる.これは,水面付近で与 え 5 界 と れ 面 付 近 ま で 輸送されたエネルギー,す な わ ち 界 ポテンシャルエネルギーと 面 付 近 で の 交 換 に わ れ る ネルギーの絶対量が,浮 葉 性 使 Т 植 物 増加とともに減少し 率 τ 11 傾 ወ 水 面 占 有 の < も のである (Fig.6-1-1 参照).第 を 示 し た 向 章 ように,浮葉性植物 2 で 述 べた の 水 面 占 有 率 が 増 加 す る と,2 成 層 場 の 上 下 層 間 の 連 行 規 模が減少するという結果が先に 示 さ れ τ 11 .Fig.6-4-1 が示すように,上 下 層 間 の 質 る 物 送に使われるエネルギー量も 同 様 傾 輸 の 向 を した.すなわち上層の乱流構造 を 把 握 す る 示 で,浮葉性植物の水面占有率の 増 加 こ と が 連 規模を減少させることを再評価できた. 行

第 7 章 結 論

究 で は , 化 学 的 浄 化 作 用 を も つ が 物理 本 研 に 弊 恐れ る水生植 的 害 になる があ 物 が 閉 鎖 性 が 密 度 成 層 水域に 生息した場合 , こ れ 5 内 部 流の形成にどのように影 響を及 循 環 ぼ す かに ,特に浮葉性の植物が水域 つ 11 τ に 繁 茂 す る 場 合 に つ い て 水 理 実 験 を 行 い 検 討 し た 浮 葉 . 加す る と 性 植 物 の 水面 占有率 が増 密 度 2 成 層 場 模が減少するという既 往 研 究 Ø 連 行 規 の 結 て,上層の乱流構造および乱 果 を う け れ Т ネ ギ 支について考察した結果,以下 ル — 収 Ø よ なことが明らかになった. う

1)浮葉性植物の水面占有率が増加すると, (層の流速分布に変化が生じた.水面付近に F け 流 速が減少し,順流部から逆 流 部 お る への 移 行点が水面方向に上昇するという 結 果 を 得 た.また、浮葉性植物の水面占 有率 が増 加 る す と,乱れ強度およびレイノルズスト ス レ に つ いてもそれぞれが卓越した値をもつ水面付近 において減少するという結果を得た .

2)浮葉性植物の水面占有率が増加すると, (洞内の風速分布および風が水面に作用する 風 変化が生じ,風が水面に与え 吹 送 距 離 に る せ 少する結果を得た.また,このせ 断 力 が 減 h h 力 下が水面に お け る 乱 れ エ ネ ル ギ ー の 断 の 低 少させていることが示唆された. 発 生を減

(3)浮葉性植物の水面占有率が増加すると、 水面付近における乱れエネルギーの発生量が 減少した.また,上層の乱流場の乱れエネルギ ー収支に変化が生じ,界面付近に輸送される エネルギー量も, 浮葉性植物の水面占有率が 増加すると,減少する結果を得た.

(4) 浮 葉 性植物が水面に繁茂することで, 乱 れエ ネ ル ギ ー の 発 生 を 抑 制 し , 密 度 界 面 付 で 上 下 層 間 の 混 合 に 使 わ れ る エ ネ ル ギ ー 近 量 減少す ることが示された.これは上下層 間 も 連 行 規 模 が 減 少 す る こ と を よ く 説 明 す る も ወ と考えられる. の

参考文献

	赤	堀		良	介	•	清	水		康	行	:	閉	鎖	性	水	域	に	お
	け	る	密	度	流	現	象	に	関	す	る	3	次	元	乱	流	ŧ	デ	ル
	に	よ	3	業女	攵	値	計	算	,	-	£	木	学	会	誦	à J	文	集	,
	No	, 6	84	, p	р 1	13	3 - 1	2 5	5,2	0 0) 1								
	有	田		ΤĒ	光	:	水	巻	Ø	環	境	,	東	京	電	気	大	学	出
	版	局	,	19	9 5	ó													
	飯	泉		茂	:	植	物	群	落	と	そ	Ø	生	活	,	19	86		東
海	大	学	出	版	会														
	生	嵨		功	:	水	界	植	物	群	落	の	物	質	生	産		共	立
出	版	,	19	74															
	浦		勝	:	風	Ø	せ	ю	断	力	に	よ	3	密	度	界	面	の	変
	動	と	連	行	速	度	,	第	3	0	回	海	洋	I	学	講	演	会	論
	文	集	,	рр	. 5	61	~ 5	66	5,1	98	33								
	尾	崎		彰	則	:	水	生	植	物	が	あ	3	閉	鎖	性	2	成	層
	水	域	Ø	吹	送	流	に	よ	3	連	行	現	象	,	九	州	大	学	大
	学	院	生	物	資	源	環	境	科	学	府	修	±	論	文	,	2 (003	3
	玉	井		信	行	:	連	行	概	念	Ø	統	—	化	と	連	行	係	数
	Ø	評	価	法	,	±	木	学	会	論	文	集		第	3	81	[号 /	
	- 7 , 1 9 8 7																		
	椿		東	_	郎	: 기	く理	里 芎	Ž		, 森	北	出	版	株	式	会	社	,
19	95																		
	椿		東	_	朗	: 기	く 理	11 1	ž		, 森	北	出	版	株	式	会	社	,
1995																			
	浜	島		繁	隆	:	池	沼	植	物	Ø	生	態	と	観	察	,	Ξ	ב
_	サ	イ	I	ン	ス	社	,	19	83	;									
	福	島		博	:	淡	水	植	物	プ	ラ	ン	ク	۲	ン	,	Ξ	ב	_
サ	イ	I	ン	ス	社	,	19	8 3	3										
	古	本		勝	弘	:	_	成	層	閉	鎖	水	域	Ø	風	に	対	す	る

内部静振応答,土木学会論文集,No,429/-15,pp.37-46,1991
道奥康治・辻本 剛三・宮本 仁志:半
閉鎖水域における風成密度流の水質交換特
水工学論文集,No,39/pp.805-810,1995
森健:吹送流型二層流の乱流構造,農業
土木学会論文集,第144号,pp.75-84 1989
森川浩・村本 嘉雄・大久保 賢治・濱

ロ 一 郎 ・ 細 身
 知 彦 : 風 応 力 が 及 ぼ す 成
 層 湖 の 流 動 機 構 に 関 す る 実 験 , 水 工 学 論 文

集 , No43/pp1061-1067,1999

謝辞

本論文の作成にあたり、御多忙の中、御 指 ,御協力を承りました九州大学大学院生 道 物 資 源 環境科学府生産環境科学部門生産 環 境 , 健教授,井上英二助教 学 研究 室森 授 原 和助手に深く感謝し、厚く御礼申し 智 上 げ ま す .

な お , 本 研 究 を 実 施 す る に あ た り , 九 大 州 門 学 大 学 院農学研究院生産環境科学部 zК 環 境 学 研 究 室 に便宜を図っていただいた こ と に 謝 意 を表します.

,九州大学大学院生物資 ま た 源 環 境 科 学 府 生産 環 境科学部門生産環境学研 究 室 博 \pm 課 程 尾 彰則氏には,本研究を進め る に 当 た 崎 IJ 実 験 ,助言等惜しみないご協力 の補 助 を 11 ただ き 心より御礼申し上げます.

,多方面にわたり広く御意見,御 ま た 協 力 だいた同生産環境情報学研究 を 11 た 室 の 博 +課 程 平 井 康丸氏,松井 正実氏 光 , 畄 宗 修 士 課 程 Nguyen Van Tuan 氏 司 氏 上 , , 加 朗 氏 ,黒川 昇 平 氏 , 原 定宏 郁 氏 古 , 野 裕 子氏,研究生 Bui Quoc Lap 氏 学 部 勝 博 氏 , 江 藤 祐 貴 氏 , 岡 田 生 川崎 淳 氏 , 恭弘氏,濱上邦彦氏,すべての皆様に 豐 畄 深 く感謝いたします

さらに,修士課程入学以来,本日に至るまで励まし あい,助け合った炭本 祥生氏,福島 崇志氏,丸 谷 一郎氏,中島 央晶氏に深く感謝いたします.

最後にいつもかげながら協力,激励してく ださった家族に心より感謝の意を捧げて結 びとさせていただきます.