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Abstract

Bayesian nonlinear regression modeling based on basis expansions provides ef-
ficient methods for analyzing data with complicated structure. A crucial issue in
the model building process is the choice of adjusted parameters including hyper-
parameters for prior distribution and the number of basis functions. Choosing
these parameters can be viewed as a model selection and evaluation problem. We
present an information criterion for evaluating Bayesian nonlinear regression mod-
els. Our proposed modeling procedure enables us to select the appropriate values
of hyper-parameters and the number of basis functions. We use a real data anal-
ysis and simulation studies to validate the performance of the proposed nonlinear
regression modeling. Simulation studies show that our proposed modeling strategy
performs well in various situations.

Key Words and Phrases: Basis expansions, Bayesian predictive distribution, Model selection,

Nonlinear regression models.

1. Introduction

Nonlinear regression models based on basis expansions have emerged as useful
tools to draw information from data with complex structure (see, e.g., Bishop, 2006;
Figueiredo, 2003; Kohn et al., 2001; Minka, 2000 and so on). The essential idea for
basis expansions is to express a regression function as a linear combination of specified
functions, called basis functions (Hastie et al., 2009; Konishi and Kitagawa, 2008). In
constructing a model, various basis functions are used to represent a regression function
according to the structure of data or the purpose of analysis. For example, splines (Green
and Silverman, 1994), B-splines (de Boor, 2001) and radial basis functions (Hastie et al.,
2009) have been widely used to construct nonlinear regression models. Nonlinear regres-
sion models are generally characterized by many parameters to be estimated. Since
maximum likelihood methods yield unstable parameter estimates, the adopted model is
usually estimated by the method of regularization or the Bayesian approach (Bishop,
2006; Denison et al., 2002; Figueiredo, 2003).

In nonlinear regression models constructed by Bayesian approach, a crucial issue
is to select hyper-parameters in prior distributions and the number of basis functions.
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The selection of the tuning parameters can be viewed as a model evaluation problem.
In order to overcome the problem, several information criteria have been proposed; e.g.,
mAIC (Hasite and Tibshirani, 1990), NIC (Murata et al., 1994), RIC (Shibata, 1989),
GIC (Konishi and Kitagawa, 1996). While these criteria are generally constructed based
on the Kullback-Leibler information (Kullback and Leibler, 1951) for a plug-in predictive
distribution, we take a Bayesian predictive distribution instead of the plug-in predictive
distribution. Until now, only Kitagawa (1997) presented an information criterion for
Bayesian predictive distributions, called the predictive information criterion (PIC). In
regression models with known variance, PIC can be exactly derived since the Bayesian
predictive distribution belongs to the normal distribution. However, in practice, it is
difficult to consider the situation that the variance is known. Hence, we should assume
regression models with unknown variance in practical situations. In such cases, PIC
cannot be directly provided, since the Bayesian predictive distribution does not belong
to the normal distribution.

In this paper, we derive an information criterion for evaluating Bayesian nonlinear
regression models with unknown variance. The proposed criterion enables us to choose
the values of hyper-parameters in the prior distribution and the number of basis functions
simultaneously. Our Bayesian nonlinear regression modeling procedure is investigated
through some numerical examples.

The remainder of this article is organized as follows. In Section 2, we describe a
framework of nonlinear regression models based on basis expansions. Section 3 derives
Bayesian predictive distributions for nonlinear regression models. In Section 4, we obtain
a model selection criterion for evaluating Bayesian predictive distributions for nonlinear
regression models. In Section 5, we investigate the performance of the proposed modeling
procedure by real data analysis and Monte Carlo simulations. Some concluding remarks
are given in Section 6.

2. Nonlinear regression models based on basis expansions

Suppose that {(yi,xi); i = 1, ..., n} are n sets of data obtained in terms of the
response variable y and p-dimensional explanatory variables x = (x1, ..., xp)

T. In order
to draw information from the data, we consider the Gaussian nonlinear regression model

yi = u(xi) + εi, i = 1, ..., n, (1)

where u(·) is a true smooth function and errors εi are independently, identically dis-
tributed according to N(0, σ2). The unknown function u(·) is approximated by a linear
combination of basis functions

u(xi) =
m∑
j=1

wjϕj(xi) = wTϕ(xi), (2)

where ϕ(x) = (ϕ1(x), ..., ϕm(x))T is a vector of basis functions and w = (w1, ..., wm)T is
an unknown coefficient parameter vector. Often times, natural cubic splines (Green and
Silverman, 1994), B-splines (de Boor, 2001) and radial basis functions (Hastie et al.,
2009) are used for basis functions.

Combining Equations (1) and (2), we have the Gaussian nonlinear regression model

yi = wTϕ(xi) + εi, i = 1, ..., n
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with a probability density function

f(yi|xi;w, σ2) =
1√
2πσ2

exp

[
−
{
yi −wTϕ(xi)

}2

2σ2

]
, i = 1, ..., n.

Hereafter, for simplicity, we omit the description of the explanatory variables and denote
f(yi|xi;w, σ2) as f(yi|w, σ2). For a future data z generated independently from the
observed data y, the plug-in type predictive distribution is given by f(z|ŵMLE, σ̂

2
MLE),

where ŵMLE and σ̂2
MLE are the maximum likelihood estimators,

ŵMLE = (ΦTΦ)−1ΦTy, σ̂2
MLE =

1

n
(y − ΦŵMLE)

T(y − ΦŵMLE)

with Φ = (ϕ(x1), . . . ,ϕ(xn))
T and y = (y1, . . . , yn)

T. It is known that the maximum
likelihood methods in nonlinear regression modeling often yield unstable parameter es-
timates, and lead to overfitting (Konishi and Kitagawa, 2008). Then the adopted model
is usually estimated by the regularization method or the Bayesian approach. In the next
section we consider a predictive distribution from the Bayesian viewpoint.

3. Bayesian predictive distributions

Given data y, it follows from Bayes rule that a joint posterior distribution of w
and σ2 is defined by

π(w, σ2|y) = f(y|w, σ2)π(w, σ2)∫
f(y|w, σ2)π(w, σ2)dwdσ2

, (3)

where π(w, σ2) is a joint prior distribution of w and σ2, and f(y|w, σ2) is a joint
probability density function defined as f(y|w, σ2) =

∏n
i=1 f(yi|w, σ2). For the joint

prior distribution π(w, σ2), we use a normal inverse-gamma distribution (Denison et al.,
2002), which is defined by

π(w, σ2) = π1(w|σ2)π2(σ
2),

where the density functions π1(w|σ2) and π2(σ
2) are given by

w|σ2 ∼ Nm

(
w|0,

(
σ2/nλ

)
Im

)
, σ2 ∼ IG

(
σ2|ν0/2, η0/2

)
,

respectively. Here Nm(w|·, ·) is an m-dimensional normal distribution, IG(σ2|·, ·) is an
inverse gamma distribution and λ, ν0 and η0 are hyper-parameters with positive values.
We set ν0 = η0 = 10−10 so that the prior distribution does not affect estimators of the
parameters.

Then the joint posterior distribution (3) can be expressed as

π(w, σ2|y) = π1(w|σ2,y)π2(σ
2|y),

where the density functions of posterior distributions are given by

w|σ2,y ∼ Nm

(
w|ŵn, σ

2An

)
, σ2|y ∼ IG

(
σ2|νn/2, η̂n/2

)
, (4)
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respectively. Here,

An = (ΦTΦ+ nλIm)−1, ŵn = AnΦ
Ty,

νn = n+ ν0, η̂n = η0 + yTy − ŵT
nA

−1
n ŵn.

From (4), we obtain the Bayesian predictive distribution which is an n-dimensional
Student t-distribution with νn degrees of freedom,

h(z|y) =
∫

f(z|w, σ2)π(w, σ2|y)dwdσ2

=
Γ ((n+ νn)/2)

Γ (νn/2) (πνn)
n
2

∣∣∣Σ̂∣∣∣− 1
2
[
1 + (1/νn)(z − Φŵn)

TΣ̂−1(z − Φŵn)
]−(n+νn

2 )
, (5)

where Σ̂ = (η̂n/νn)(ΦAnΦ
T + In) and Γ(·) is the Gamma function.

Note that the Bayesian predictive distribution (5) includes a hyper-parameter λ
and the number of basis functions m. We choose the optimal value of hyper-parameter
and the number of basis functions from given data, objectively. This problem will be
discussed in the next section.

4. Model selection criterion

4.1. Proposed model selection criterion

In the Bayesian nonlinear regression model based on basis expansions, a crucial
problem is the choices of the hyper-parameter λ for the prior distribution and the number
of basis functions m.

In this paper, we derive a predictive information criterion to evaluate the Bayesian
predictive distribution given in Equation (5). Kitagawa (1997) proposed information
criterion PIC for evaluating the Bayesian predictive distribution given as a multivariate
normal distribution. The PIC for the Bayesian predictive distribution is, in general,
given by

PIC = −2 log h(y|y) + 2Bp,

where Bp is a bias term defined as

Bp = Eq(y)

[
log h(y|y)− Eq(z) [log h(z|y)]

]
for the true distribution q(·). It is, however, difficult to derive PIC for the predictive
distribution h(z|y) in Equation (5) analytically, because it does not belong to the normal
distribution. To overcome this difficulty, we derive the PIC approximately by using the
Laplace method (Davison, 1986; Tierney and Kadane, 1986). According to Konishi
and Kitagawa (2008), the Laplace method yields the approximation of the Bayesian
predictive distribution in Equation (5) as

h(z|y) = f(z|w̃, σ̃2)(1 +Op(n
−1)),

where w̃ and σ̃2 are, respectively, given by

w̃ = (ΦTΦ+ nλIm)−1ΦTy, σ̃2 =
(y − Φw̃)T(y − Φw̃) + nλw̃Tw̃ + η0

n+m+ ν0 + 2
.
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For the approximated Bayesian predictive distribution f(z|w̃, σ̃2), we define PIC∗

as follows:

PIC∗ = −2 log f(y|w̃, σ̃2) + 2B′
p,

where B′
p is the approximated bias term of Bp, given by

B′
p = Eq(y)

[
log f(y|w̃, σ̃2)− Eq(z)

[
log f(z|w̃, σ̃2)

]]
.

The bias term B′
p can be written as

B′
p = − 1

2σ̃2
tr
[
Eq(y)

[
(y − Φw̃)(y − Φw̃)T − Eq(z)

[
(z − Φw̃)(z − Φw̃)T

]]]
. (6)

It is assumed here that the true distribution q(z) is f(z|w∗, σ2∗), where w∗ ∈ Rm and
σ2∗ ∈ R are the true regression coefficients and variance, respectively. Then the second
term in Equation (6) can be expressed as

Ef(z|w∗,σ2∗)

{
(z − Φw∗)(z − Φw∗)T

}
+ (Φw∗ − Φw̃)(Φw∗ − Φw̃)T,

noting that the following equations hold

Φw∗ − Φw̃ = Φ(ΦTΦ+ nλIm)−1ΦT(Φw∗ − y) + nλΦ(ΦTΦ+ nλIm)−1w∗,

y − Φw̃ = (In − Φ(ΦTΦ+ nλIm)−1ΦT)(y − Φw∗) + nλΦ(ΦTΦ+ nλIm)−1w∗.

Hence we have

B′
p =

(
σ2∗

σ̃2

)
tr
[
Φ(ΦTΦ+ nλIm)−1ΦT

]
.

Consequently, we obtain the PIC∗ in the form

PIC∗ = n log(2π) + n log σ̃2 +
1

σ̃2
(y − Φw̃)T(y − Φw̃)

+2

(
σ2∗

σ̃2

)
tr
[
Φ(ΦTΦ+ nλIm)−1ΦT

]
.

Our proposed model selection criterion contains the unknown variance σ2∗. We
consider two types of PIC∗. We first take the maximum likelihood estimate for σ2∗. As
a consequence, the PIC∗ can be expressed as follows:

PICMLE = n log(2π) + n log σ̃2 +
1

σ̃2
(y − Φw̃)T(y − Φw̃)

+2

(
σ̂2
MLE

σ̃2

)
tr
[
Φ(ΦTΦ+ nλIm)−1ΦT

]
. (7)

Secondly, the variance is replaced with the mode of the posterior distribution, and hence
we obtain

PICMode = n log(2π) + n log σ̃2 +
1

σ̃2
(y − Φw̃)T(y − Φw̃)

+2tr
[
Φ(ΦTΦ+ nλIm)−1ΦT

]
. (8)

We select the optimal values of the hyper-parameter and the number of basis functions
that minimize either PICMLE or PICMode.



22 D. Kim, S. Kawano and S. Konishi

4.2. Other model selection criteria

Other model selection criteria include GIC (Konishi and Kitagawa, 1996) and mAIC
(Hastie and Tibshirani, 1990). Konishi and Kitagawa (1996) introduced an evaluation
criterion of statistical models estimated by various types of estimation procedures such
as the robust and penalized likelihood procedures. In this section, we consider GIC for
the nonlinear regression model based on basis expansions which are estimated by the
penalized likelihood method. We estimate regression coefficients w and a variance σ2

for maximizing the penalized likelihood function,

ℓP(w, σ2) = log f(y|w, σ2)− nγ

2
wTw,

where γ (> 0) is a smoothing parameter which controls the model complexity. The
estimates of regression coefficients and the variance are respectively given by

ŵP = (ΦTΦ+ nγσ̂2
pIm)−1ΦTy, σ̂2

P =
1

n
(y − ΦŵP)

T(y − ΦŵP).

Then, we derive the GIC for nonlinear regression models based on basis expansions as
follows;

GIC = n {log(2π) + 1}+ n log σ̂2
P + 2tr

{
R−1Q

}
, (9)

where R and Q are (m+ 1)× (m+ 1) matrices and are, respectively, given by

R =
1

nσ̂2
P

 ΦTΦ+ nγσ̂2
PIm

1

σ̂2
P

ΦTΛ1n

1

σ̂2
P

1T
nΛΦ

n

2σ̂2
P

 ,

Q =
1

nσ̂2
P


1

σ̂2
P

ΦTΛ2Φ− γImŵP1
T
nΛΦ

1

2σ̂4
P

ΦTΛ31n − 1

2σ̂2
P

ΦTΛ1n

1

2σ̂4
P

1T
nΛ

3Φ− 1

2σ̂2
P

1T
nΛΦ

1

4σ̂6
P

1T
nΛ

41n − n

4σ̂2
P


with 1n = (1, ..., 1)T and Λ = diag[y1 − ŵT

Pϕ(x1), ..., yn − ŵT
Pϕ(xn)].

Hastie and Tibshirani (1990) proposed to use the trace of the smoother matrix
given by H = Φ(ΦTΦ + nγσ̂2

PIm)−1ΦT, as an approximation of the effective degrees of
freedom. By replacing the number of parameters in AIC (Akaike, 1974) with trace of
the smoother matrix, we obtain

mAIC = n {log(2π) + 1}+ n log σ̂2
P + 2tr

{
Φ(ΦTΦ+ nγσ̂2

PIm)−1ΦT + 1
}
. (10)

We select the optimal values of m and γ that minimize either GIC or mAIC.

5. Numerical examples

5.1. Analysis of real data

We illustrate the proposed procedure for choosing the hyper-parameter in prior
distribution and the number of basis functions through the analysis of the motorcycle
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Figure 1: The motorcycle impact data. The left solid curve is the estimated curve based
on PICMLE while the right solid curve is the estimated curve based on PICMode.

impact data (Eilers and Marx, 1996; Härdle, 1990; Silverman, 1985). The motorcycle
impact data were simulated to investigate the efficacy of crash helmets and it comprised
a series of measurements of head acceleration in units of gravity and times in milliseconds
after impact.

We fitted our proposed nonlinear regression model based on cubic B-spline to the
motorcycle impact data. Then we chose the number of basis functions m and the
hyper-parameter λ that minimize the information criteria PICMLE and PICMode given
by Equation (7) and (8). For the analysis of the motorcycle impact data, we set the
candidate values ofm and λ to {4, ..., 25} and

{
1010(i−100)/99; i = 1, ..., 100

}
, respectively.

The criterion PICMLE selected m = 13 and λ = 1.62 × 10−9, while PICMode selected
m = 13 and λ = 2.59× 10−9. The corresponding fitted curve is shown in Figure 1 (solid
curve). We compared our proposed procedure with two types of criteria which were
introduced in Section 4.2. Table 1 gives the number of basis functions m, the smoothing
parameter γ and the hyper-parameter λ chosen by each model selection criterion. The
result shows that the variance estimators σ̂2 of all model selection criteria are almost
equal to each other. Note that ŷi is a predictive value which is estimated by each model
selection criterion. Table 1 suggests that the estimated curves constructed by PICMLE

and PICMode are almost equal to those selected by other model selection criteria. In the
next section, we show that our proposed nonlinear regression modeling is useful in some
situations by simulation studies.

5.2. Monte Carlo simulations

We applied our proposed nonlinear regression modeling based on cubic B-spline to
the simulated data. Repeated random samples {(xi, yi); i = 1, ..., n} with n = 50, 100
and 300 were generated from a true regression model yi = u(xi)+ εi. The design points
xi were uniformly distributed in [0, 1] and the errors εi were independently, normally
distributed with mean zero and variance τ2, where the standard deviation is taken as
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Table 1: The result of each nonlinear regression modeling for the motorcycle impact
data.

PICMLE PICMode mAIC GIC

m 13 13 13 13
γ - - 3.51×10−6 2.21 ×10−6

λ 1.62× 10−9 2.59× 10−9 - -

σ̂2† 464.3025 464.3022 467.3327 469.4488

†σ̂2 =
∑n

i=1(yi − ŷi)
2/n, ŷi = ŵTϕ(xi).
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Figure 2: Examples of simulated data for n = 100. The solid curve is the true regression
curve (u1(x); left top, u2(x); left bottom), while the chain curve and dashed curve (right
top and bottom) are estimated curve based on PICMLE and PICMode, respectively.
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Table 2: Comparison of results for curve fitting: function (a) for τ = 0.15Ry.

m γ λ AMSE APSE
Criterion mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)
(n = 50)
GIC 8.37 3.03 ×10−4 - 2.20×10−2 1.19 ×10−1

(3.06) (1.70×10−2) - (1.28×10−2) (2.55×10−2)
mAIC 7.61 6.73×10−4 - 2.04×10−2 1.18 ×10−1

(2.79) (2.70×10−3) - (1.22×10−1) (2.48×10−2)
PICMLE 6.57 - 4.04×10−4 1.79×10−2 1.16 ×10−1

(2.12) - (2.00×10−3) (1.11×10−2) (2.45×10−2)
PICMode 7.14 - 1.00×10−8 1.93×10−2 1.17×10−1

(2.38) - (6.29×10−23) (1.19×10−2) (2.45×10−2)
(n = 100)

GIC 7.88 3.03×10−4 - 1.03 ×10−2 1.07 ×10−1

(2.60) (1.70×10−3) - (0.62×10−2) (1.64×10−2)
mAIC 7.45 4.71×10−4 - 1.00×10−2 1.07 ×10−1

(2.47) (2.10×10−1) - (6.30×10−3) (1.67×10−2)
PICMLE 6.60 - 1.00×10−8 9.20 ×10−3 1.06 ×10−1

(1.68) - (6.29×10−23) (5.50×10−3) (1.66×10−2)
PICMode 7.16 - 1.00×10−8 9.60 ×10−3 1.07×10−1

(2.14) - (6.29×10−23) (5.90×10−3) (1.69×10−2)
(n = 300)

GIC 7.53 3.36×10−5 - 3.20×10−3 1.01 ×10−1

(1.86) (5.83×10−4) - (1.90×10−3) (9.00×10−3)
mAIC 7.47 3.36×10−5 - 3.20×10−3 1.01 ×10−1

(1.76) (5.83×10−4) - (1.90×10−3) (9.00×10−3)
PICMLE 7.24 - 1.00×10−8 3.10×10−3 1.01 ×10−1

(1.52) - (6.29×10−23) (1.80×10−3) (8.90×10−3)
PICMode 7.43 - 1.00×10−8 3.20×10−3 1.01×10−1

(1.71) - (6.29×10−23) (1.90×10−3) (9.00×10−3)

Table 3: Comparison of results for curve fitting: function (a) for τ = 0.3Ry.

m γ λ AMSE APSE
Criterion mean(SD) mean(SD) mean(SD) mean(SD) mean(SD)
(n = 50)
GIC 8.46 1.60 ×10−3 - 3.28×10−1 1.8932

(3.57) (3.70×10−3) - (2.15×10−1) (4.14×10−1)
mAIC 8.14 2.90 ×10−3 - 2.85×10−1 1.8539

(3.53) (4.60×10−3) - (1.87×10−1) (3.88×10−1)
PICMLE 9.75 - 7.80×10−3 2.47 ×10−1 1.8197

(4.08) - (6.80×10−3) (1.28×10−1) (3.73×10−1)
PICMode 7.94 - 3.10×10−3 2.69×10−1 1.8397

(3.54) - (4.70×10−3) (1.80×10−1) (3.86×10−1)
(n = 100)

GIC 7.13 7.40×10−4 - 1.42×10−1 1.6976
(3.04) (2.60×10−3) - (1.00×10−1) (2.64×10−1)

mAIC 6.77 9.09 ×10−4 - 1.32×10−1 1.6876
(2.86) (2.90×10−23) - (9.59×10−2) (2.61×10−1)

PICMLE 6.93 - 2.00×10−3 1.21 ×10−1 1.6794
(3.15) - (4.00×10−3) (7.97×10−2) (2.60×10−1)

PICMode 6.55 - 7.40×10−4 1.27×10−1 1.6850
(2.69) - (2.60×10−3) (9.22×10−2) (2.63×10−1)

(n = 300)
GIC 6.98 1.50×10−4 - 4.49×10−2 1.6200

(2.56) (4.11×10−4) - (3.03×10−2) (0.14)
mAIC 6.78 1.40×10−4 - 4.37×10−2 1.6199

(2.46) (3.90×10−4) - (2.88×10−2) (0.14)
PICMLE 6.50 - 1.51×10−4 4.14 ×10−2 1.6178

(2.20) - (4.61×10−4) (2.77×10−2) (0.14)
PICMode 6.59 - 1.13×10−4 4.26×10−2 1.6188

(2.2904) - (3.50×10−4) (2.88×10−2) (0.14)
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Table 4: Comparison of results for curve fitting: function (b) for τ = 0.15Ry.

m γ λ AMSE APSE
Criterion mean(SD) mean(SD) mean(SD) mean(SD) mean(SD)
(n = 50)
GIC 10.45 7.90 ×10−3 - 2.10×10−3 9.90 ×10−3

(3.08) (2.38×10−2) - (9.78×10−4) (2.10×10−3)
mAIC 9.68 1.57 ×10−2 - 2.00×10−3 9.80×10−3

(3.06) (3.47×10−2) - (9.86×10−4) (2.10×10−3)
PICMLE 7.89 - 1.00×10−8 1.70 ×10−3 9.50 ×10−3

(1.76) - (6.29×10−23) (8.99×10−4) (2.00×10−3)
PICMode 9.04 - 1.00×10−8 1.90×10−3 9.80 ×10−3

(2.70) - (6.29×10−23) (8.59×10−4) (2.10×10−3)
(n = 100)

GIC 9.70 4.10 ×10−3 - 1.00×10−3 9.00 ×10−3

(2.96) (1.27×10−2) - (4.87×10−4) (1.30×10−3)
mAIC 9.05 5.70 ×10−3 - 1.00×10−3 9.00×10−3

(2.82) (1.64×10−2) - (4.90×10−4) (1.30×10−3)
PICMLE 8.04 - 1.00×10−8 9.11 ×10−4 8.90×10−3

(1.99) - (6.29×10−23) (4.6×10−4) (1.30×10−3)
PICMode 8.60 - 1.00×10−8 9.56×10−4 8.90×10−3

(2.49) - (6.29×10−23) (4.73×10−4) (1.40×10−3)
(n = 300)

GIC 10.31 8.75×10−4 - 3.87×10−4 8.40 ×10−3

(2.96) (3.60×10−3) - (1.54×10−4) (7.49×10−4)
mAIC 9.86 9.76 ×10−4 - 3.85×10−4 8.40×10−3

(2.92) ( 4.00×10−3) - (1.50×10−4) (7.49×10−4)
PICMLE 9.41 - 1.00×10−8 3.74×10−4 8.40×10−3

(2.79) - (6.29×10−23) (1.43×10−4) (7.50×10−4)
PICMode 9.70 - 1.00×10−8 3.77×10−4 8.40 ×10−3

(2.84) - (6.29×10−23) (1.48×10−4) (7.48×10−4)

τ = 0.15Ry or 0.3Ry with Ry being the range of u(x) over x ∈ [0, 1]. For the analysis
of the simulated data, we partitioned the interval [10−8, 100] into 99 equal subintervals,
to obtain candidate values λ1 = γ1 = 10−8, λ2 = γ2 = 10−8 + h, . . ., λ100 = γ100 = 1,
where h = (1 − 10−8)/99. We also set the candidate values of m to {4, . . . , 15}. We
considered the following two cases for the true regression model:

(a) u1(x) = 1− 48x+ 218x2 − 315x3 + 145x4,

(b) u2(x) = sin(2πx3).

We performed 300 repetitions, and then calculated average mean squared errors (AMSE)

defined by AMSE =
∑n

i=1 {u(xi)− ŷi}2 /n, average predictive squared errors (APSE)

defined by APSE=
∑n

i=1 {zi − ŷi}2 /n and deviations to assess the goodness of fit, re-
spectively. Here, z is a future observation that is generated from true regression models.
We compared the performance of nonlinear regression models based on PICMLE and
PICMode with that of GIC in (9) and mAIC in (10). Table 2, 3, 4 and 5 display simula-
tion results with AMSE, APSE, the number of basis function m, smoothing parameter
γ and hyper-parameter λ. Figure 2 shows the fitted curves by PICMLE and PICMode.

Simulation results may be summarized as follows. For the regression function (a),
our proposed modeling procedure performs well in terms of minimizing the AMSE and
the APSE. In the regression function (b) in small and middle sample sizes (i.e., n = 50
and n = 100), the performance of our methods is competitive to other methods, while, in
large sample size (i.e., n = 300), the proposed methods provide smaller values of AMSE
and APSE than other methods (mAIC and GIC). From these descriptions, we conclude
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Table 5: Comparison of results for curve fitting: function (b) for τ = 0.3Ry.

m γ λ AMSE APSE
Criterion mean(SD) mean(SD) mean(SD) mean(SD) mean(SD)
(n = 50)
GIC 9.85 8.10 ×10−3 - 2.89×10−2 1.54 ×10−1

(2.95) (1.48×10−2) - (1.55×10−2) (3.28×10−2)
mAIC 9.80 1.41 ×10−2 - 2.72×10−2 1.53×10−1

(2.97) (1.89×10−2) - (1.40×10−2) (3.21×10−2)
PICMLE 13.95 - 1.32 ×10−2 2.89 ×10−2 1.54 ×10−1

(1.35) - (5.00×10−3) (1.14×10−2) (3.18×10−2)
PICMode 11.84 - 8.10×10−3 2.94×10−2 1.55 ×10−1

(2.86) - (5.40×10−3) (1.32×10−4) (3.21×10−2)
(n = 100)

GIC 8.96 4.70 ×10−3 - 1.38×10−2 1.41 ×10−1

(2.68) (9.70×10−3) - (7.90×10−3) (2.18×10−2)
mAIC 8.88 6.20 ×10−3 - 1.35×10−2 1.40×10−1

(2.64) (1.07×10−2) - (7.70×10−3) (2.19×10−2)
PICMLE 13.21 - 9.60×10−3 1.48 ×10−2 1.41 ×10−1

(2.09) - (2.40×10−3) (6.20×10−3) (2.13×10−2)
PICMode 10.22 - 4.90×10−3 1.42×10−2 1.41×10−1

(3.13) - (5.10×10−3) (7.60×10−3) (2.18×10−2)
(n = 300)

GIC 8.58 1.70 ×10−3 - 2.20×10−3 6.45 ×10−2

(2.45) (4.40×10−3) - ( 1.20×10−3) (5.80×10−3)
mAIC 8.50 2.00 ×10−3 - 2.20×10−3 6.44×10−2

(2.45) (4.70×10−3) - (1.30×10−3) (5.80×10−3)
PICMLE 7.74 - 1.00×10−8 2.00 ×10−3 6.43 ×10−2

(1.59) - (6.29×10−23) (1.30×10−3) (5.80×10−3)
PICMode 7.84 - 1.00×10−8 2.00×10−3 6.43×10−2

(1.70) - (6.29×10−23) (1.30×10−3) (5.80×10−3)

that our proposed modeling procedure may be more useful than previously developed
procedures in practical situations.

6. Concluding Remarks

We considered the problem of evaluating the predictive distributions for nonlinear
regression models based on basis expansions. In order to select the optimal values
of the hyper-parameters included in the prior distribution and the number of basis
functions, we obtained information criteria for the evaluation of the Bayesian predictive
distributions. The simulation results suggest that our proposed procedure provides
improvements from the viewpoint of the mean squared errors and the predictive squared
errors, and yields stable prediction results. A further research is to identify the shape
of the prior distribution for the parameter σ2 based on observed data; i.e., selecting the
hyper-parameters ν0 and η0 in the prior distribution objectively.
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