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By

Shuichi Kawano∗ and Sadanori Konishi†

Abstract

Multi-class classification methods based on both labeled and unlabeled func-
tional data sets are discussed. We present a semi-supervised logistic model for clas-
sification in the context of functional data analysis. Unknown parameters in our
proposed model are estimated by regularization with the help of EM algorithm. A
crucial point in the modeling procedure is the choice of a regularization parameter
involved in the semi-supervised functional logistic model. In order to select the ad-
justed parameter, we introduce model selection criteria from information-theoretic
and Bayesian viewpoints. Monte Carlo simulations and a real data analysis are
given to examine the effectiveness of our proposed modeling strategy.

Key Words and Phrases: EM algorithm, Functional data analysis, Model selection, Regular-

ization, Semi-supervised learning.

1. Introduction

In recent years, functional data analysis has been used in various fields of study
such as chemometrics and meteorology (e.g., we refer to Ramsay and Silverman, 2002;
2005, Ferraty and Vieu, 2006). The basic idea behind functional data analysis is to
express a discrete data set as a smooth function data set, and then exploit informa-
tion obtained from the set of functional data using the functional analogs of classical
multivariate statistical tools. Till this day, several researchers have studied a variety of
functional versions of traditional supervised and unsupervised statistical methods; e.g.,
functional regression analysis (James and Silverman, 2005; Yao et al., 2005; Araki et al.,
2009a), functional discriminant analysis (Ferraty and Vieu, 2003; Rossi and Villa, 2006;
Araki et al., 2009b), functional principal component analysis (Rice and Silverman, 1991;
Siverman, 1996; Yao and Lee, 2006) and functional clustering (Abraham et al., 2003;
Rossi et al., 2004; Chiou and Li, 2007).

Meanwhile, a semi-supervised learning, which is a modeling procedure based on
both labeled and unlabeled data, has received considerable attention in the contempo-
rary statistics, machine learning and computer science (see, e.g., Chapelle et al., 2006;
Liang et al., 2007; Zhu, 2008). In particular, it is known that the semi-supervised learn-
ing is useful in the application areas including text mining and bioinformatics, in which
obtaining labeled data is difficult while unlabeled data can be easily obtained. Many of
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ordinary statistical multivariate analysis have been extended into the semi-supervised
resemblances by earlier researchers; e.g., semi-supervised regression analysis (Verbeek
and Vlassis, 2006; Lafferty and Wasserman, 2007; Ng et al., 2007), semi-supervised dis-
criminant analysis (Miller and Uyer, 1997; Yu et al., 2004; Zhou et al., 2004; Dean et
al., 2006; Kawano and Konishi, 2011) and semi-supervised clustering (Basu et al., 2004;
Zhong, 2006; Kulis et al., 2009).

In this paper, our aim is to extend the supervised modeling procedures for func-
tional data into semi-supervised counterparts. We, in particular, focus on a multi-class
classification or discriminant problem, and develop a semi-supervised logistic model for
functional classification problem. Unknown parameters in the model are estimated by
the regularization method along with the technique of EM algorithm. A crucial issue
for the modeling procedure is to choose a value of a regularization parameter involved
in the semi-supervised functional logistic model. In order to select the optimal value
of the regularization parameter, we then introduce model selection criteria based on
information-theoretic and Bayesian approaches that evaluate semi-supervised functional
logistic models estimated by the regularization method. Some numerical examples in-
cluding a microarray data analysis are illustrated to investigate the effectiveness of our
modeling strategy.

This paper is organized as follows. In Section 2, we consider a functionalization
method that converts the discrete data into the functional form using basis expansions.
Section 3 proposes a functional logistic model in the context of the semi-supervised
multi-class classification problem. In this section, we also present an estimation pro-
cedure based on the regularization method with the help of EM algorithm. Section 4
derives model selection criteria to select a regularization parameter in the functional
logistic models. In Section 5, Monte Carlo simulations and a real data analysis are given
to assess the performances of the proposed semi-supervised functional logistic discrimi-
nation. Some concluding remarks are given in Section 6.

2. Functionalization

Suppose that we have n independent observations x1, . . . ,xn, where xα consist of
the Nα observed values xα1, . . . , xαNα at discrete times tα1, . . . , tαNα , respectively. Our
aim in this section is to express a data set {(xαi, tαi); i = 1, . . . , Nα, tαi ∈ T ⊂ R}
(α = 1, . . . , n) as a set of smooth functions {xα(t);α = 1, . . . , n, t ∈ T } by a smoothing
technique. In this section we drop the notation on the subject xα, and hence consider
a functionalization procedure of the data set {(xi, ti); i = 1, . . . , N}.

It is assumed that the observed values {(xi, ti); i = 1, . . . , N} for a subject are
drawn from a regression model as follows:

xi = u(ti) + εi, i = 1, . . . , N, (1)

where u(t) is a smooth function to be estimated and the errors εi are independently,
normally distributed with mean zero and variance σ2. We also assume that the function
u(t) can be represented by a linear combination of pre-prepared basis functions in the
form

u(t) =
m∑

k=1

ωkϕk(t;µk, η
2
k), (2)
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where ωk are coefficient parameters, m is the number of basis functions and ϕk(t;µk, η
2
k)

are Gaussian basis functions given by

ϕk(t;µk, η
2
k) = exp

{
− (t− µk)

2

2η2k

}
, k = 1, . . . ,m. (3)

Here µk are the centers of the basis functions and ηk are the dispersion parameters. In
particular, we use Gaussian basis functions proposed by Kawano and Konishi (2007),
and hence the centers µk and the dispersion parameters ηk are determined as follows:
for equally spaced knots τk so that τ1 < · · · < τ4 = min(t) < · · · < τm+1 = max(t) <
· · · < τm+4, we set the centers and the dispersion parameters as µ̂k = τk+2 and η̂ ≡
η̂k = (τk+2 − τk)/3 for k = 1, . . . ,m, respectively. For details of the procedure, we refer
to Kawano and Konishi (2007).

It follows that the nonlinear regression model based on the Gaussian basis functions
can be written as

f(xi|ti;ω, σ2) =
1√
2πσ2

exp

[
−
{
xi − ωTϕ(ti)

}2
2σ2

]
, i = 1, . . . , N, (4)

where ω = (ω1, . . . , ωm)T and ϕ(t) = (ϕ1(t), . . . , ϕm(t))T . The parameters ω and σ2 are
estimated by maximizing the regularized log-likelihood function in the form

ℓζ(ω, σ2) =
N∑
i=1

log f(xi|ti;ω, σ2)− Nζ

2
ωTKω

= −N

2
log(2πσ2)− 1

2σ2
(x− Φω)T (x− Φω)− Nζ

2
ωTKω, (5)

where x = (x1, . . . , xN )T , Φ = (ϕ(t1), . . . ,ϕ(tN ))T , ζ (> 0) is a smoothing parameter
and K is a positive semi-definite matrix defined by K = DT

2 D2, where D2 is a second-
order difference term. The regularized maximum likelihood estimates are given by

ω̂ = (ΦTΦ+Nζσ̂2K)−1ΦTx, σ̂2 =
1

N

N∑
i=1

{
xi − ω̂Tϕ(ti)

}2

. (6)

We obtain the optimal number of basis functions m and the value of the smoothing
parameter ζ by using a model selection criterion GIC (Ando et al., 2008) for each smooth
curve as the minimizer of the form

GIC(ζ) = N log(2πσ̂2) +N + 2tr{QR−1}, (7)

where σ̂2 is given in Equation (6) and the m × m matrices Q and R are, respectively,
given by

Q =
1

Nσ̂2

 1

σ̂2
ΦTΛ2Φ− ζKω̂1T

NΛΦ
1

2σ̂4
ΦTΛ31N − 1

2σ̂2
ΦTΛ1N

1

2σ̂4
1T
NΛ3Φ− 1

2σ̂2
1T
NΛΦ

1

4σ̂6
1T
NΛ41N − N

4σ̂2

 , (8)

R =
1

Nσ̂2

 ΦTΦ+Nζσ̂2K 1

σ̂2
ΦTΛ1N

1

σ̂2
1T
NΛΦ

N

2σ̂2

 , (9)
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Figure 1: Functionalization by Gaussian basis expansions

where 1N = (1, . . . , 1)T and Λ = diag
[
x1 − ω̂Tϕ(t1), . . . , xN − ω̂Tϕ(tN )

]
.

Hence, the observed discrete data {(xαi, tαi); tαi ∈ T , i = 1, . . . , Nα} (α = 1, . . . , n)
are smoothed by the methodology described above, and we obtain a functional data set
{xα(t); α = 1, . . . , n} given by

û(t) =

m∑
k=1

ω̂αkϕk(t) ≡ xα(t), t ∈ T . (10)

Figure 1 shows a sketch of the functionalization using Gaussian basis functions. Circles
represent observed discrete data, the below solid curves basis functions pre-prepared
and the above solid line the estimated smooth curve. For details of the functionalization
step in functional data analysis, we refer to Ramsay and Silverman (2005) or Araki et
al. (2009a).

3. Semi-supervised functional logistic discrimination

3.1. Semi-supervised logistic model for functional data

In the framework of semi-supervised functional data analysis, we are given n1

labeled functional data {(xα(t), gα);α = 1, . . . , n1, t ∈ T } and (n − n1) unlabeled
functional data {xα(t);α = n1 + 1, . . . , n, t ∈ T }. Here xα(t) are functional pre-
dictors given in the previous section and gα ∈ {1, . . . , L} are group indicator vari-
ables in which g = k implies that the functional predictor xα(t) belongs to group k.
First, a functional logistic model is constructed by using only labeled functional data
{(xα(t), gα);α = 1, . . . , n1, t ∈ T }.

We consider the posterior probabilities for group k (k = 1, . . . , L) given in a func-
tional data xα(t) as follows: Pr(gα = k|xα). Under these posterior probabilities, Araki
et al. (2009b) introduced a functional logistic model in the form

log

{
Pr(gα = k|xα)

Pr(gα = L|xα)

}
= βkf +

∫
xα(t)βk(t)dt, k = 1, . . . , L− 1. (11)

By using the same Gaussian basis function ϕj(t) as in Equation (2), βk(t) is assumed to
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be expanded as

βk(t) =
m∑
j=1

βkjϕj(t). (12)

Then we can rewrite the functional logistic model in Equation (11) using the expansion
in Equation (12) as follows:

log

{
Pr(gα = k|xα)

Pr(gα = L|xα)

}
= βkf +

∫
xα(t)βk(t)dt = βT

k zα, (13)

where βk = (βkf , βk1, . . . , βkm)T and zα = (1,wT
αJ)

T . Here J is an m×m matrix with
the (i, j)-th element

Jij =
√
πη̂2 exp

{
− (µ̂i − µ̂j)

2

4η̂2

}
, i, j = 1, . . . ,m, (14)

where µ̂i and η̂ are estimated centers and width parameters included in Gaussian basis
functions in Section 2, respectively.

Thus the conditional probabilities can be rewritten as

Pr(gα = k|xα) =
exp{βT

k zα}

1 +

L−1∑
j=1

exp{βT
j zα}

, k = 1, . . . , L− 1,

Pr(gα = L|xα) =
1

1 +
L−1∑
j=1

exp{βT
j zα}

. (15)

We describe Pr(gα = k|xα) as πk(xα;β), since the probabilities depend on a parameter
vector β = (βT

1 , . . . ,β
T
L−1)

T .

We introduce an (L−1)-dimensional response variable yα = (y
(α)
1 , . . . , y

(α)
L−1)

T (α =
1, . . . , n1), which indicates that the k-th element of yα is set to 1 if the corresponding
xα(t) belongs to the k-th class, for n1 labeled functional data {(xα(t), gα);α = 1, . . . , n1}.
Hence we obtain a multinomial distribution with the posterior probabilities πk(xα;β)
as follows:

f(yα|xα;β) =
L−1∏
k=1

πk(xα;β)
y
(α)
k {πL(xα;β)}1−

∑L−1
j=1 y

(α)
j . (16)

By introducing a dummy class label variable tα for unlabeled functional data
{xα(t);α = n1 + 1, . . . , n} given by

tα = (t
(α)
1 , . . . , t

(α)
L−1)

T =

 (0, . . . , 0, 1
(k)

, 0, . . . , 0)T if xα(t) belongs to k-th class,

(0, . . . , 0)T if xα(t) belongs to L-th class,

it is assumed that tα is distributed as the same multinomial distribution with the poste-
rior probabilities πk(xα;β) as in Equation (16). Also, for unlabeled functional data, we
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assume βkf +
∫
xα(t)βk(t) = βT

k zα (α = n1+1, . . . , n; k = 1, . . . , L−1) similar to Equa-
tion (13). The log-likelihood function based on both labeled and unlabeled functional
data is then obtained by

ℓ(β) =

n1∑
α=1

[
L−1∑
k=1

y
(α)
k βT

k zα − log

(
1 +

L−1∑
l=1

exp{βT
l zα}

)]

+

n∑
α=n1+1

[
L−1∑
k=1

t
(α)
k βT

k zα − log

(
1 +

L−1∑
l=1

exp{βT
l zα}

)]
. (17)

3.2. Estimation via regularization

As mentioned in Araki et al. (2009b), the maximum likelihood method often causes
some ill-posed problems for a functional logistic model; i.e., unstable or infinite param-
eter estimates. Then we employ a regularization method to obtain the estimator of the
parameters included in the functional logistic model. A regularization method achieves
to maximize a regularized log-likelihood function

ℓλ(β) = ℓ(β)− n1λ

2

L−1∑
k=1

βT
k Kβk, (18)

where λ (> 0) is a regularization parameter and K is an (m+1)× (m+1) matrix given
by

K =

(
0 0T

0 K∗

)
. (19)

Here 0 is an m-dimensional zero vector and K∗ is an m×m positive semi-definite matrix.
In the section of numerical examples, we use an identity matrix as the matrix K∗.

In maximizing the regularized log-likelihood function in Equation (18), it is difficult
to obtain the estimator of the parameters, since the values of dummy class labels t are
unknown and ∂ℓλ(β)/∂β = 0 does not have an explicit solution with respect to the
parameter vector β. Hence, we employ a following EM-based algorithm to obtain the
estimator β̂.

Step1 Initializing the parameter vector β by maximizing the regularized log-likelihood
function via only labeled functional data {(xα(t), gα);α = 1, . . . , n1} with the help
of Fisher’s scoring method.

Step2 Construct a classification rule πk(xα; β̂).

Step3 (E-step) By the use of the classification rule in Step2, compute the posterior

probabilities πk(xα; β̂) (k = 1, . . . , L) for unlabeled functional data xα(t) (α =
n1 + 1, . . . , n). According to the posterior probabilities, estimate tα as follows:

t̂α = (t̂
(α)
1 , . . . , t̂

(α)
L−1)

T = (π1(xα; β̂), . . . , πL−1(xα; β̂))
T . (20)

Note that t̂
(α)
k is the conditional expectation of t

(α)
k (k = 1, . . . , L− 1).

Step4 (M-step) Replace t
(α)
k into t̂

(α)
k in the regularized log-likelihood function. Then

estimate the parameter vector β using Fisher’s scoring method.
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Step5 Repeat the Step2 to the Step4 until the convergence condition

|ℓλ(β̂(k+1))− ℓλ(β̂
(k))| < 10−5 (21)

is satisfied, where β̂(k) is the value of β after the k-th EM iteration.

Therefore, we derive a statistical model f(y|x; β̂) which is constructed by using
both labeled and unlabeled functional data. The statistical model includes a tuning
parameter; i.e., the regularization parameter λ. Since the selection of this parameter is
regarded as the selection of candidate models, we introduce model selection criteria to
choose the constructed models.

4. Model selection criteria

In this section, we derive two types of model selection criteria to evaluate semi-
supervised functional logistic models from the viewpoints of information-theoretic and
Bayesian approaches.

4.1. Generalized information criterion

Akaike (1974) proposed the Akaike information criterion (AIC), which enables us
to evaluate statistical models estimated by the maximum likelihood method. While the
AIC is very useful for various fields of research, the criterion cannot be directly applied
into models constructed by other estimation procedures.

Konishi and Kitagawa (1996) introduced an information criterion, which can evalu-
ate models constructed by various estimation procedures including robust, Bayesian and
regularization methods. Using the result of Konishi and Kitagawa (1996), we propose a
generalized information criterion (GIC) in the context of the semi-supervised functional
logistic model. The model selection criterion is given as follows:

GIC = −2

n1∑
α=1

log f(yα|xα; β̂) + 2tr
{
Q(β̂)R−1(β̂)

}
, (22)

where the matrices Q(β̂) and R(β̂) are

Q(β̂) =
1

n1

[
{(B − C)⊙A}T − λEβ̂1T

n1

]
{(B − C)⊙A}, (23)

R(β̂) = − 1

n1
(C ⊙A)T (C ⊙A) +

1

n1
D + λE, (24)

with

A = (Z, . . . , Z), n1 × (m+ 1)(L− 1),

B = (y(1)1
T
m+1, . . . ,y(L−1)1

T
m+1)

T ,

C = (π(1)1
T
m+1, . . . ,π(L−1)1

T
m+1)

T ,

D = block diag{ZTdiag(π(1))Z, . . . , Z
Tdiag(π(L−1))Z},

E = block diag(K, . . . ,K), (m+ 1)(L− 1)× (m+ 1)(L− 1),

Z = (z1, . . . , zn1)
T ,

y(k) = (y
(1)
k , . . . , y

(n1)
k )T ,

π(k) = (πk(x1; β̂), . . . , πk(xn1 ; β̂))
T .
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Here the operator ⊙ denotes the Hadamard product, which means the elementwise
product of matrices; that is, Aij⊙Bij = (aijbij) for matrices Aij = (aij) and Bij = (bij).

4.2. Generalized Bayesian information criterion

In Bayesian inference, Schwarz (1978) presented the Bayesian information criterion
(BIC) from the viewpoint of maximizing a marginal likelihood. However, the BIC covers
only models estimated by the maximum likelihood method.

By extending the Schwarz’s (1978) idea, Konishi et al. (2004) derived a novel
Bayesian information criterion to evaluate models estimated by regularization in the
framework of generalized linear models. Hence, by using the result given in Konishi et al.
(2004), we present a generalized Bayesian information criterion (GBIC) for evaluating
the statistical model constructed by the semi-supervised functional logistic modeling
procedure in the form

GBIC = −2

n1∑
α=1

log f(yα|xα; β̂) + n1λ
L−1∑
k=1

β̂T
k Kβ̂k − (L− 1) log |K|+

+ log |R(β̂)| − (L− 1)(m+ 1− d) log λ− (L− 1)d log

(
2π

n1

)
, (25)

where R(β̂) is given by Equation (24) and |K|+ is the product of the positive eigenvalues
of K with the rank d.

We thus select a tuning parameter λ by minimizing either the model selection
criterion GIC or GBIC. For more details of derivations about the model selection criteria,
we refer to Konishi and Kitagawa (2008).

Note that the GIC in (22) and the GBIC in (25) are proposed based on the log-
likelihood function from only labeled functional data. The reason why we employ the
log-likelihood function based on only labeled functional data is according to Hirose et al.
(2008) and Kawano and Konishi (2011). It may be possible to introduce model selection
criteria based on the log-likelihood function from both labeled and unlabeled functional
data in Equation (17). We consider this as our future research topic.

5. Numerical studies

We conducted some numerical examples to investigate the effectiveness of the pro-
posed modeling procedure. Monte Carlo simulations and a real data analysis are given
to illustrate our proposed semi-supervised functional logistic modeling strategy.

5.1. Monte Carlo simulations

We demonstrated the efficiency of the proposed functional logistic modeling proce-
dure through Monte Carlo simulations. In the simulation study, we generated n discrete
samples {(xαti , gα);α = 1, . . . , n, i = 1, . . . , l}, where predictors xαti are assumed to be
obtained by xαti = hα(ti) + εαti and the class label gα indicates 1 or 2 which is the
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Figure 2: True functions for (a) Case 1 and (b) Case 2. In each case, there are 10
subjects. Solid lines represent the group 1, while dashed lines represent the group 2.

group number. We considered two settings as follows:

Case 1

hα(ti) = sin(cαtiπ)uα, εαti ∼ N(0, 0.1), ti =
2i− 2

49
, n = 600, l = 50,

gα = 1 : cα = 1, uα ∼ U [0.3, 1.3],

gα = 2 : cα = 1.02, uα ∼ U [0.1, 0.6],

Case 2

hα(ti) = uαw(ti) + (1− uα)v(ti), εαti ∼ N(0, 1), ti =
i+ 4

5
, n = 600, l = 101,

gα = 1 : uα ∼ U [0, 1], w(ti) = max(6− |ti − 11|, 0), v(ti) = max(6− |ti − 11|, 0)− 4,

gα = 2 : uα ∼ U [0, 1], w(ti) = max(6− |ti − 11|, 0), v(ti) = max(6− |ti − 11|, 0) + 4.

Figure 2 denotes the true functions h(t) for the Cases 1 and the Case 2, respectively. We
divided the data set into 300 training data and 300 test data with an equal prior prob-
ability for each class. In order to implement the semi-supervised method, the training
data were randomly divided into two halves with labeled functional data and unlabeled
functional data, where the labeled functional data were assigned as 5%, 10%, 20%, 30%,
40%, 50% and 60% of the training data, respectively.

We compared the performances of semi-supervised functional logistic model (SFLDA)
with those of supervised functional logistic model (FLDA) proposed by Araki et al.
(2009b), support vector machine with the RBF kernel (SVM), k-nearest neighbor clas-
sification (KNN), functional support vector machine with the RBF kernel (FSVM) pro-
posed by Rossi and Villa (2006), and semi-supervised methods proposed by Zhou et
al. (2004) (LLGC: learning with local and global consistency) and Yu et al. (2004)
(ILLGC: inductive learning with local and global consistency). The discrete data set
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Table 1: Comparison of test errors with different percentages of labeled functional data
in the training data set for the Case 1. Figures in parentheses indicate the model
selection criteria used in the simulation study.

Method \ % 5 10 20 30 40 50 60
SFLAD (GIC) 0.269 0.210 0.202 0.192 0.189 0.186 0.185
FLDA (GIC) 0.248 0.216 0.204 0.193 0.187 0.185 0.184
SFLAD (GBIC) 0.271 0.210 0.202 0.193 0.188 0.185 0.185
FLDA (GBIC) 0.359 0.237 0.200 0.188 0.185 0.183 0.182
SVM 0.278 0.221 0.203 0.195 0.194 0.183 0.185
KNN 0.268 0.244 0.236 0.228 0.225 0.220 0.215
FSVM 0.322 0.266 0.253 0.231 0.229 0.218 0.215
LLGC 0.313 0.255 0.227 0.204 0.197 0.192 0.187
ILLGC 0.335 0.255 0.221 0.200 0.193 0.189 0.185

was transformed into a functional data set using the smoothing technique described in
Section 2. Semi-supervised and supervised functional modeling strategies (i.e., SFLDA,
FLDA and FSVM) were applied into the functional data set. The regularization pa-
rameter in the SFLDA and the FLDA was selected by using the GIC or the GBIC. For
the GIC or the GBIC of the FLDA, we refer to Araki et al. (2009a; 2009b). Adjusted
parameters included in the SVM, the FSVM, the LLGC and the ILLGC were optimized
by the five-fold cross validation, respectively. The number of neighbors k in the KNN
was selected by the leave-one-out cross validation.

Tables 1 and 2 show comparisons of the test error rates for the simulated data.
These values were averaged over 50 repetitions. The average values of the tuning param-
eter λ for 50 runs of the Case 1 were λ = 5.96×10−5 for the GIC and λ = 9.48×10−5 for
the GBIC, while those of the Case 2 were λ = 1.00×10−2 for the GIC and λ = 2.28×10−2

for the GBIC. For the Case 1, we observe that the SFLDA methods evaluated by the GIC
and the GBIC are superior to other methods except for the FLDA methods in almost
all cases. Also, our proposed methods SFLDA seem to provide lower misclassification
errors than the FLDA methods, when the size of labeled functional data is small (e.g.,
10% of training data). In the case of the Case 2, the SFLDA methods outperform the
SVM, the KNN, the FSVM, the LLGC and the ILLGC in all situations with respect
to minimizing the test errors. In addition, the proposed procedures SFLDA may be
competitive or slightly superior to the FLDA methods.

5.2. Microarray data analysis

We describe an application of the semi-supervised functional discriminant analysis
to yeast gene expression data given in Spellman et al. (1998). This data set contains
77 microarrays and consists of two short time-courses (i.e., two time points) and four
medium time-courses (18, 24, 17 and 14 time points). About 800 genes were classified
into five different cell-cycle phases, namely, M/G1, G1, S, S/G2 and G2/M phases, while
the other 5,378 genes were not classified. For more details of this data set, we refer to
Spellman et al. (1998).
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Table 2: Comparison of test errors with different percentages of labeled functional data
in the training data set for the Case 2. Figures in parentheses indicate the model
selection criteria used in the simulation study.

Method \ % 5 10 20 30 40 50 60
SFLAD (GIC) 0.056 0.040 0.032 0.031 0.029 0.028 0.027
FLDA (GIC) 0.056 0.043 0.035 0.029 0.029 0.029 0.027
SFLAD (GBIC) 0.056 0.040 0.032 0.029 0.029 0.028 0.026
FLDA (GBIC) 0.056 0.043 0.035 0.029 0.029 0.028 0.026
SVM 0.075 0.056 0.040 0.037 0.034 0.030 0.031
KNN 0.068 0.062 0.052 0.051 0.050 0.047 0.048
FSVM 0.107 0.081 0.068 0.057 0.057 0.053 0.054
LLGC 0.124 0.082 0.062 0.049 0.043 0.040 0.040
ILLGC 0.111 0.049 0.040 0.035 0.031 0.030 0.030

In our analysis, we used the “cdc15-based experiment data” sampled over 24 points
after synchronization. For simplicity, any genes that contain missing values across any
of the 24 time points were discarded. These expression data were considered to be a
discretized realization of 632 expression curves evaluated at 24 time points. We func-
tionalized the data using the smoothing methodology given in Section 2. A total of
300 genes were used as the training data set, and the remaining 332 genes were used
as the test data set. We compared the SFLDA, which is our proposed semi-supervised
functional method, with the FLDA, which is the supervised functional method.

First, we demonstrated the effectiveness of our semi-supervised methodology by
setting functional data with known class labels as unlabeled functional data. We ran-
domly split the training data set into labeled functional data and unlabeled functional
data, where 15%, 20%, 30%, 40% and 50% of training data are allocated as labeled
functional data, respectively, and we repeated the procedures 10 times. The values of
the selected regularization parameter for 10 runs were λ = 2.80× 10−5 for the GIC and
λ = 7.78×10−4 for the GBIC. Figure 3 shows the average precisions of the test data set
for different ratios of labeled-unlabeled functional data in the training data set. On the
x-axis, 15 means that 15% of the training data was assigned as labeled functional data,
and the remaining 85% was used as unlabeled functional data. From the left panel of
Figure 3, we observe that the SFLDA with the GIC seems to extract useful information
from unlabeled functional data, since the SFLDA performs better than the FLDA in
all cases. In contrast, the right panel of Figure 3 shows that the SFLDA is superior to
the FLDA until 30% labeled functional data, whereas the SFLDA is comparable to the
FLDA in the range from 30% to 50% labeled functional data.

Second, we examined the performances of our methods by using real unlabeled
functional data which were not classified by Spellman et al. (1998). We prepared
labeled functional data which consist of 20%, 25%, 30%, 40%, 50% and 60% of the
training data, while unlabeled functional data are set to 500 samples randomly selected
from 5,378 real unlabeled examples. Our proposed models and the supervised functional
models were applied into the data set. We repeated these procedures 10 times. We
obtained the averaged optimal values of the regularization parameter for 10 repetitions
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Figure 3: Average prediction errors for several ratios of labeled functional data in the
training data set. Solid line shows the result of the SFLDA while dashed line shows that
of the FLDA. The left-hand panel indicates the results for the methods evaluated by the
GIC, whereas the right-hand panel indicates those by the GBIC.
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Figure 4: Average prediction errors for several ratios of labeled functional data in the
training data set, where we use real unlabeled functional data. Solid line shows the
result of the SFLDA while dashed line shows that of the FLDA. The left-hand panel
indicates the results for the methods evaluated by the GIC, whereas the right-hand panel
indicates those by the GBIC.
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as λ = 1.00× 10−5 for the GIC and λ = 7.85× 10−5 for the GBIC. Figure 4 shows the
average test error rates for various ratios of labeled functional data in the training data
set. For the left-hand panel of Figure 4, the SFLDA outperforms the FLDA without
20% labeled functional data, while the SFLDA gives lower prediction errors than the
FLDA on 20% labeled functional data. Hence, these results suggest that real unlabeled
functional data included in Spellman’s et al. (1998) data set may have a potential for
improving a prediction accuracy of our functional logistic procedures.

6. Concluding remarks

We proposed a semi-supervised functional logistic modeling procedure for the multi-
class classification problem with the help of regularization. On the step of functionaliza-
tion, a smoothing method using Gaussian basis expansions was applied to the observed
discrete data set. A crucial issue for our semi-supervised modeling process is the choice
of the regularization parameter λ. In order to select the value of the parameter, we intro-
duced model selection criteria from the viewpoints of information-theoretic and Bayesian
approaches. Monte Carlo simulations and a microarray data analysis showed that our
modeling strategy yields relatively lower prediction error rates than previously devel-
oped methods. A further research should be to construct a semi-supervised functional
regression modeling or clustering.
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