九州大学学術情報リポジトリ
Kyushu University Institutional Repository

On the rigidity of spherical t－designs that are orbits of reflection groups E＿8 and H＿4
Nozaki，Hiroshi
Graduate School of Mathematics，Kyushu University：Student（D3）：Algebraic Combinatorics

https：／／hdl．handle．net／2324／14753

出版情報：European Journal of Combinatorics． 29 （7），pp．1696－1703，2008－10．Elsevier バージョン：
権利関係：

On the Rigidity of Spherical t-Designs that are Orbits of Reflection Groups E_{8} and H_{4}

Hiroshi Nozaki
Graduate School of Mathematics Kyushu University
Hakozaki 6-10-1 Higashi-ku, Fukuoka, 812-8581 Japan
nozaki@math.kyushu-u.ac.jp

Abstract

The concept of rigid spherical t-designs was introduced by Eiichi Bannai. We want to find examples of rigid but not tight spherical designs. Sali investigated the case when X is an orbit of a finite reflection group and proved that X is rigid if and only if tight for the groups A_{n}, B_{n}, C_{n}, $D_{n}, E_{6}, E_{7}, F_{4}, H_{3}$. There are two cases left open, namely the group E_{8} and the isometry group H_{4} of the four dimensional regular polytope, the 600 -cell. In this paper, we study the rigidity of spherical t-designs X that are orbits of a finite reflection groups E_{8} and H_{4}, and prove that X is rigid if and only if tight or the 600 -cell.

1 Introduction

Spherical t-designs were introduced by Delsarte, Goethals and Seidel [10]. A finite nonempty set X in the unit sphere

$$
\mathbb{S}^{d}:=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{d+1}\right) \in \mathbb{R}^{d+1} \mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{d+1}^{2}=1\right\}
$$

is called a spherical t-design in \mathbb{S}^{d} if and only if the equality

$$
\frac{1}{\left|\mathbb{S}^{d}\right|} \int_{\mathbb{S}^{d}} f(x) d \omega(x)=\frac{1}{|X|} \sum_{x \in X} f(x)
$$

holds for all polynomials $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{d+1}\right)$ of degree at most t. Here, the left-hand side involves integration on the unit sphere, and $\left|\mathbb{S}^{d}\right|$ denotes the volume of the sphere \mathbb{S}^{d}.

It is known [10] that there is a lower bound (Fischer-type inequality) for the size of a spherical t-design in \mathbb{S}^{d}.

2000 Mathematics Subject Classification: 05B30(20F55).
Supported by JSPS Research Fellow.

Theorem 1.1 (Delsarte-Goethals-Seidel). Let X be a spherical t-design in \mathbb{S}^{d}. Then

$$
|X| \geq \begin{cases}\binom{d+t / 2}{d}+\left({ }^{d+t / 2-1}\right), & \text { if } t \text { is even } \\ 2\left({ }_{d}^{d+(t-1) / 2}\right), & \text { if } t \text { is odd }\end{cases}
$$

If equality holds, then X is called tight spherical t-design.
The concept of the rigidity was introduced by Bannai [1]. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a spherical t-design in $\mathbb{S}^{d} . X$ is said to be non-rigid or deformable, if for any given $\epsilon>0$ there exist another spherical t-design $X^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ such that $\left|x_{i}-x_{i}^{\prime}\right|<\epsilon$ for $1 \leq i \leq n$, and there exists no orthogonal transformation $g \in O(d+1)$ with $g\left(x_{i}\right)=x_{i}^{\prime} . X$ is said to be rigid if it is not non-rigid.

If X, X_{1} and X_{2} are spherical t-designs in \mathbb{S}^{d}, then the following hold.
(1) For any $\sigma \in O(d+1), X^{\sigma}:=\left\{x^{\sigma} \mid x \in X\right\}$ is spherical t-design in \mathbb{S}^{d}.
(2) If $X_{1} \cap X_{2}=\emptyset$, then $X_{1} \cup X_{2}$ is spherical t-design in \mathbb{S}^{d}.

The property (2) means that we can make many spherical t-designs from given spherical t-designs. However spherical t-designs, that are disjoint union of spherical t-designs, are not "new" spherical t-designs. Such spherical t-designs is clearly non-rigid. Therefore rigid spherical t-designs are essential objects of study of spherical t-designs.

Bannai conjectured the following two propositions about rigid spherical t design.

Conjecture 1.1 (Bannai, [1]). There exist a function $f(d, t)$ such that if X is a spherical t-design in \mathbb{S}^{d} such that $|X|>f(d, t)$, then X is non-rigid.
Conjecture 1.2 (Bannai, [1]). For each fixed pair d and t, there are only finitely many rigid spherical t-design in \mathbb{S}^{d} up to orthogonal transformations.

Lyubich and Vaserstein proved that Conjecture 1.1 and 1.2 are equivalent [12]. These conjecture are supported by the fact that the known rigid t-designs are very rare. Bannai proves this for dimension 1 , by showing that any rigid spherical t-design X in \mathbb{S}^{1} consists of the vertices of a regular $(k+1)$-gon with $t \leq k \leq 2 t$.

Because the distances between points of a tight spherical design are described by a theorem of Delsarte-Goethals-Seidel [10], we have the following proposition.

Proposition 1.1. A tight spherical t-design is rigid.
Unfortunately, tight spherical t-designs rarely exist [5], and it was proved that if a tight spherical t-design in \mathbb{S}^{d} with $d \geq 2$ exists, then necessarily either $t \leq 5$, or $t=7,11[3,4]$. We want to find examples of rigid but not tight spherical t-designs.

The following theorem, which was proved by Delsarte-Goethals-Seidel, is very useful for getting examples of spherical t-designs.
Theorem 1.2 (Delsarte-Goethals-Seidel). For a finite subgroup G of $O(d+1)$ the following conditions are equivalent:

1. every G-orbit is a spherical t-design in \mathbb{S}^{d},
2. there are no G-invariant harmonic polynomials of degree $1,2, \ldots, t$.

Let q_{i} be the dimension of the space of G-invariant harmonic polynomials of degree i. If we know the eigenvalue of each $g \in G$, then we determine t by the harmonic Molien series

$$
\sum_{i=0}^{\infty} q_{i} \lambda^{i}=\frac{1}{|G|} \sum_{g \in G} \frac{1-\lambda^{2}}{\operatorname{det}\left(I_{d+1}-\lambda g\right)}
$$

where I_{d+1} is the $(d+1) \times(d+1)$ identity matrix [14, 11, Corollary 6.4].
Let W be a finite irreducible reflection group in \mathbb{R}^{d+1}. It is known that finite irreducible reflection groups are classified completely [6]. Let integers $1=m_{1} \leq m_{2} \leq \cdots \leq m_{d+1}$ be the exponents of W (please see [6, Ch.V, $\S 6$]). The exponents of W is important for the following theorem [7, Ch.VIII, 88 , Corollary 1].

Theorem 1.3. Let W be a finite reflection group. Let q_{i} be the dimension of the space of W-invariant harmonic polynomials of degree i. Then we have

$$
\sum_{i=0}^{\infty} q_{i} \lambda^{i}=\prod_{i=2}^{d+1} \frac{1}{1-\lambda^{1+m_{i}}} .
$$

Therefore every orbit $X=\left\{x^{w} \mid w \in W\right\}$ is a spherical m_{2}-design in \mathbb{S}^{d}.
If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d+1}$ are the fundamental roots, then the corner vectors $v_{1}, v_{2}, \ldots, v_{d+1}$ are defined by $v_{i} \perp \alpha_{j}$ if and only if $i \neq j$. The following proposition is immediate.

Proposition 1.2 (Sali, [13, Proposition 1.13]). If $X=\left\{x^{w} \mid w \in W\right\}$ is such that x is not a corner vector of W, then X is non-rigid spherical m_{2}-design.

The following lemma is useful for proving the non-rigidity.
Lemma 1.1 (Sali, [13, Lemma 2.3]). Suppose that $X \subset \mathbb{S}^{d}$ is a spherical t design. Let $Y \subset X$ satisfy $Y \subset U^{r} \cup \mathbb{S}^{d}$ where U^{r} is an r-dimensional affine subspace of $\mathbb{R}^{d+1}(1<r \leq d+1)$. That is, $U^{r}=\left\{z_{0}+x \mid x \in T^{r}\right\}$ where T^{r} is a linear subspace of \mathbb{R}^{d+1}. Furthermore, let us assume that

$$
\tilde{Y}=\left\{\left.\frac{y-z_{0}}{\left|y-z_{0}\right|} \right\rvert\, y \in Y\right\}
$$

forms a t-design in \mathbb{S}^{r-1}. If $X \backslash Y$ spans \mathbb{R}^{d+1}, then X is non-rigid.
Sali proved the following theorem by finding sub- t-designs in affine subspaces.
Theorem 1.4 (Sali, [13, Theorem 1.4]). Let W be any of the following reflection groups.

1. A_{n} for $n=3,4 \ldots$
2. B_{n} for $n=3,4, \ldots$
3. C_{n} for $n=3,4, \ldots$
4. D_{n} for $n=4,5, \ldots$
5. $E_{6}, E_{7}, F_{4}, H_{3}$

Then the orbit $X=\left\{x_{0}^{w} \mid w \in W\right\}$ for a corner vector x_{0} is a rigid spherical m_{2}-design if and only if it is tight.

There were two cases left open, namely the group E_{8} and the isometry group H_{4} of the four dimensional regular polytope, the 600 -cell. In this paper, we investigate the case of the group E_{8} and H_{4}, and prove the following theorems.

Theorem 1.5. Let $W\left(E_{8}\right)$ be the reflection groups of E_{8}. Then the orbit $X=$ $\left\{x_{0}^{w} \mid w \in W\left(E_{8}\right)\right\}$ for a corner vector x_{0} is a rigid spherical 7-design if and only if it is tight (i.e. $x_{0}=v_{1}$).

Theorem 1.6. Let $W\left(H_{4}\right)$ be the reflection group H_{4}. Then the orbit $X=$ $\left\{x_{0}^{w} \mid w \in W\left(H_{4}\right)\right\}$ for a corner vector x_{0} is a rigid spherical 11-design if and only if it is the 600-cell (i.e. $x_{0}=v_{1}$).

2 Group E_{8}

Space $\quad \mathbb{R}^{8}$

Dynkin diagram

Exponents $\quad 1,7,11,13,17,19,23,29$.
Reflection Group The order is $2^{14} 3^{5} 5^{2} 7$.

Fundamental Roots

$$
\begin{aligned}
\alpha_{1} & =[-2,2,0,0,0,0,0,0] \\
\alpha_{2} & =[0,-2,2,0,0,0,0,0] \\
\alpha_{3} & =[0,0,-2,2,0,0,0,0] \\
\alpha_{4} & =[0,0,0,-2,2,0,0,0] \\
\alpha_{5} & =[0,0,0,0,-2,2,0,0] \\
\alpha_{6} & =[0,0,0,0,0,-2,2,0] \\
\alpha_{7} & =[0,0,0,0,0,0,-2,2] \\
\alpha_{8} & =[1,1,1,1,1,-1,-1,-1]
\end{aligned}
$$

Corner vector

$$
\begin{aligned}
& v_{1}=[-1,1,1,1,1,1,1,1] \\
& v_{2}=[0,0,1,1,1,1,1,1] \\
& v_{3}=[1,1,1,3,3,3,3,3] \\
& v_{4}=[1,1,1,1,2,2,2,2] \\
& v_{5}=[3,3,3,3,3,5,5,5] \\
& v_{6}=[1,1,1,1,1,1,2,2] \\
& v_{7}=[1,1,1,1,1,1,1,3] \\
& v_{8}=[1,1,1,1,1,1,1,1]
\end{aligned}
$$

By computer search, using GAP, we get the orbits of v_{i} for $i=1,2, \ldots, 8$ as following.

	Cardinality	Vectors
v_{1}	240	$2^{2} 0^{6}, \mathrm{D} 1^{8}$
v_{2}	6720	$21^{2} 0^{5}, 1^{6} 0^{2}, \mathrm{D}(3 / 2)^{2}(1 / 2)^{6}$
v_{3}	60480	$62^{3} 0^{4}, 4^{3} 0^{5}, 4^{2} 2^{4} 0^{2}, \mathrm{E} 3^{5} 1^{3}, \mathrm{D} 53^{2} 1^{5}$
v_{4}	241920	$41^{4} 0^{3}, 2^{5} 0^{3}, 1^{3} 2^{2} 30^{2}$,
		$\mathrm{E} 2^{4} 1^{4}, \mathrm{E}(5 / 2)^{3}(1 / 2)^{5}, \mathrm{E}(5 / 2)^{2}(3 / 2)^{3}(1 / 2)^{3}, \mathrm{D}(7 / 2)(3 / 2)^{3}(1 / 2)^{4}$
v_{5}	483840	$(10) 2^{5} 0^{2}, 6^{2} 4^{3} 0^{3}, 6^{3} 2^{3} 0^{2}, 84^{3} 2^{2} 0^{2}$,
		$\mathrm{E} 5^{3} 3^{5}, \mathrm{E} 6^{2} 4^{2} 2^{4}, \mathrm{E} 75^{2} 3^{2} 1^{3}, \mathrm{D} 93^{4} 1^{3}$
v_{6}	69120	$31^{5} 0^{2}, 2^{3} 1^{2} 0^{3}, \mathrm{E} 2^{2} 1^{6}, \mathrm{E}(7 / 2)(1 / 2)^{7}, \mathrm{E}(5 / 2)(3 / 2)^{3}(1 / 2)^{4}$
v_{7}	2160	$40^{7}, 2^{4} 0^{4}, \mathrm{E} 31^{7}$
v_{8}	17280	$21^{4} 0^{3}, \mathrm{E} 1^{8}, \mathrm{E}(3 / 2)^{3}(1 / 2)^{5}, \mathrm{D}(5 / 2)(1 / 2)^{7}$

The full list of vectors is obtained by applying arbitrary permutations and signs to the vectors in the table, except that if the vector is prefixed by an E (resp. D) then an even (resp. odd) number of minus signs are required.

These orbits are spherical 7 -designs in \mathbb{S}^{7} because the exponent $m_{2}=7$. By Fischer-type inequality, a spherical 7 -designs in \mathbb{S}^{7} has at least 240 points. Therefore the orbit of v_{1}, which is the E_{8} root system, is tight 7 -design in \mathbb{S}^{7}. We shall find the subset Y in Lemma 1.1 to prove that other orbits are non-rigid. Indeed, the orbit of v_{i} for $i=2,3, \ldots, 8$ contains the E_{8} root system which is tight 7 -design in \mathbb{S}^{7}. The E_{8} root system, which contained in the orbit, has the following fundamental roots.

$$
\begin{aligned}
& \text { The orbit of } v_{2} \\
& \alpha_{1}=[-2,-1,-1,0,0,0,0,0] \\
& \alpha_{2}=[0,1,2,-1,0,0,0,0] \\
& \alpha_{3}=[0,1,-1,2,0,0,0,0] \\
& \alpha_{4}=[1 / 2,-3 / 2,1 / 2,-1 / 2,-3 / 2,-1 / 2,-1 / 2,1 / 2] \\
& \alpha_{5}=[0,0,0,0,1,0,1,-2] \\
& \alpha_{6}=[0,0,0,0,0,1,1,2] \\
& \alpha_{7}=[0,0,0,0,0,1,-2,-1] \\
& \alpha_{8}=[0,1,-1,-1,0,-1,-1,1] \\
& \text { The orbit of } v_{4} \\
& \alpha_{1}=[-4,-1,-1,-1,-1,0,0,0] \\
& \alpha_{2}=[1 / 2,3 / 2,5 / 2,5 / 2,3 / 2,-3 / 2,-1 / 2,1 / 2] \\
& \alpha_{3}=[1 / 2,-3 / 2,-3 / 2,-1 / 2,3 / 2,5 / 2,1 / 2,-5 / 2] \\
& \alpha_{4}=[0,1,0,0,-1,1,1,4] \\
& \alpha_{5}=[0,1,1,-3,1,-2,0,-2] \\
& \alpha_{6}=[0,0,1,2,-3,2,-1,-1] \\
& \alpha_{7}=[0,1,-3,0,2,-1,-2,1] \\
& \alpha_{8}=[1 / 2,-5 / 2,-3 / 2,5 / 2,-1 / 2,-3 / 2,3 / 2,1 / 2]
\end{aligned}
$$

The orbit of v_{3}

$$
\begin{aligned}
\alpha_{1} & =[-6,-2,-2,-2,0,0,0,0] \\
\alpha_{2} & =[0,4,4,4,0,0,0,0] \\
\alpha_{3} & =[2,-6,-2,2,0,0,0,0] \\
\alpha_{4} & =[0,2,2,-4,-4,-2,-2,0] \\
\alpha_{5} & =[0,0,0,0,2,2,6,-2] \\
\alpha_{6} & =[0,0,0,0,0,4,-4,4] \\
\alpha_{7} & =[0,0,0,0,2,-6,2,2] \\
\alpha_{8} & =[0,2,-4,2,0,-2,-4,-2]
\end{aligned}
$$

The orbit of v_{5}

$\alpha_{1}=[-10,-2,-2,-2,-2,-2,0,0]$
$\alpha_{2}=[2,2,2,6,6,4,-4,-2]$
$\alpha_{3}=[0,0,4,-4,-2,2,8,4]$
$\alpha_{4}=[1,1,-1,5,-3,-7,-5,3]$
$\alpha_{5}=[0,0,2,-2,-2,2,2,-10]$
$\alpha_{6}=[0,2,-8,2,4,0,4,4]$
$\alpha_{7}=[0,0,2,-2,-6,6,-6,2]$
$\alpha_{8}=[1,-7,1,-3,5,-1,-3,5]$

The orbit of v_{6}

$$
\begin{aligned}
& \alpha_{1}=[-7 / 2,-1 / 2,-1 / 2,-1 / 2,-1 / 2,-1 / 2,-1 / 2,-1 / 2] \\
& \alpha_{2}=[1,0,0,0,1,2,2,2] \\
& \alpha_{3}=[0,0,1,2,1,-2,-2,0] \\
& \alpha_{4}=[0,0,1,0,-2,1,2,-2] \\
& \alpha_{5}=[0,1,0,-2,2,1,-2,0] \\
& \alpha_{6}=[0,1,-2,1,0,-2,2,0] \\
& \alpha_{7}=[0,0,0,1,-2,2,-2,1] \\
& \alpha_{8}=[1 / 2,-5 / 2,1 / 2,-1 / 2,-3 / 2,-3 / 2,1 / 2,3 / 2]
\end{aligned}
$$

The orbit of v_{8}
$\alpha_{1}=[-5 / 2,-1 / 2,-1 / 2,-1 / 2,-1 / 2,-1 / 2,-1 / 2,1 / 2]$
$\alpha_{2}=[1 / 2,-1 / 2,3 / 2,1 / 2,1 / 2,1 / 2,3 / 2,-3 / 2]$
$\alpha_{3}=[0,1,-2,0,1,1,-1,0]$
$\alpha_{4}=[0,0,1,1,-1,0,1,2]$
$\alpha_{5}=[0,0,1,0,1,-1,-2,-1]$
$\alpha_{6}=[0,1,-1,-1,0,-1,2,0]$
$\alpha_{7}=[0,0,0,1,-2,1,-1,-1]$
$\alpha_{8}=[1 / 2,-3 / 2,-1 / 2,-3 / 2,-1 / 2,3 / 2,1 / 2,1 / 2]$
It is well known that the E_{8} root system is linear combination of the fundamental roots with integer coefficients all of the same sign (all non-negative or all non-positive). Moreover, by seeing [6, PLATE VII], we easily get the E_{8} root system which is contained in the orbit. Therefore the orbits of the group E_{8} are non-rigid spherical 7-designs except the E_{8} root system.

3 Group H_{4}

This group is the isometry group of the 600 -cell acting on \mathbb{R}^{4}.

Space $\quad \mathbb{R}^{4}$

Dynkin diagram

Exponents 1,11,19,29
Reflection Group The order is 14400 .
Fundamental roots Corner vectors

$$
\begin{array}{ll}
\alpha_{1}=[-2,2,0,0] & v_{1}=[3-\sqrt{5}, 1+\sqrt{5}, 1+\sqrt{5}, \\
\alpha_{2}=[0,-2,2,0] & v_{2}=[2-2 \sqrt{5}, 2-2 \sqrt{5},-4,4] \\
\alpha_{3}=[0,0,-2,-2] & v_{3}=[10,10,10,-6 \sqrt{5}] \\
\alpha_{4}=[1,1,1, \sqrt{5}] & v_{4}=[4,4,4,-4]
\end{array}
$$

We get the orbits of v_{i} for $i=1,2,3,4$ as following.

	Cardinality	Vectors
v_{1}	120	$\begin{aligned} & 4^{2} 0^{2}, \mathrm{E} 2^{3}(2 \sqrt{5}), \mathrm{D}(1+\sqrt{5})^{3}(3-\sqrt{5}) \\ & \mathrm{D}(-1+\sqrt{5})^{3}(3+\sqrt{5}) \end{aligned}$
v_{2}	720	$\begin{aligned} & 4^{2}(-2+2 \sqrt{5})^{2}, \mathrm{D} 2(2 \sqrt{5})^{2}(-4+2 \sqrt{5}), \mathrm{E} 2^{2} 6(-4+2 \sqrt{5}) \\ & 0^{2}(6-2 \sqrt{5})(2+2 \sqrt{5}), \mathrm{E}(7-\sqrt{5})(3-\sqrt{5})(1+\sqrt{5})^{2} \\ & \mathrm{D}(5-\sqrt{5})^{2}(3+\sqrt{5})(-1+\sqrt{5}), \mathrm{E}(-1+\sqrt{5})^{2}(3+\sqrt{5})(-3+3 \sqrt{5}) \\ & \mathrm{D}(3-\sqrt{5})^{2}(-1+3 \sqrt{5})(1+\sqrt{5}) \end{aligned}$
v_{3}	1200	$\begin{aligned} & 0^{2}(20)(4 \sqrt{5}), \mathrm{D}(10)^{3}(6 \sqrt{5}), \mathrm{E}(10)(2 \sqrt{5})(10-4 \sqrt{5})(10+4 \sqrt{5}) \\ & 0(4 \sqrt{5})^{2}(8 \sqrt{5}),(10-2 \sqrt{5})^{2}(10+2 \sqrt{5})^{2}, \mathrm{E}(10)(2 \sqrt{5})(6 \sqrt{5})^{2}, \\ & \mathrm{E}(5+3 \sqrt{5})^{3}(15-3 \sqrt{5}), \mathrm{E}(15-\sqrt{5})(-5+3 \sqrt{5})(5+\sqrt{5})(5+5 \sqrt{5}) \\ & \mathrm{D}(15+\sqrt{5})(-5+5 \sqrt{5})(5-\sqrt{5})(5+3 \sqrt{5}), \mathrm{E}(15+3 \sqrt{5})(-5+3 \sqrt{5})^{3} \\ & \mathrm{D}(5+\sqrt{5})^{2}(-5+7 \sqrt{5})(5+5 \sqrt{5}), \mathrm{E}(5-\sqrt{5})^{2}(5+7 \sqrt{5})(-5+5 \sqrt{5}) \end{aligned}$
v_{4}	600	$\begin{aligned} & 80^{3}, 4^{4}, 04(-2+2 \sqrt{5})(2+2 \sqrt{5}), \mathrm{E} 2(2 \sqrt{5})^{3}, \mathrm{D} 2^{2} 6(2 \sqrt{5}) \\ & \mathrm{E}(3+\sqrt{5})^{2}(5-\sqrt{5})(-1+\sqrt{5}), \mathrm{E}(3-\sqrt{5})^{2}(5+\sqrt{5})(1+\sqrt{5}) \\ & \mathrm{D}(1+\sqrt{5})^{3}(-1+3 \sqrt{5}), \mathrm{E}(-1+\sqrt{5})^{3}(1+3 \sqrt{5}) \end{aligned}$

These orbits are spherical 11-designs in \mathbb{S}^{3} because the exponent $m_{2}=11$. The orbit of v_{1} is the 600 -cell which has 120 points. Boyvalenkov and Danev [8] proved that uniqueness of the 120 points spherical 11-design in \mathbb{S}^{3}. Of course, the uniqueness is stronger than the rigidity. The 600 -cell is the first reported rigid non-tight t-design for $t \geq 3$ and $d \geq 2$.

Each orbit of v_{i} for $i=2,3,4$ contains the 600 -cell. Moreover the following proposition holds in the case of the group H_{4}.

Proposition 3.1. Let $W\left(H_{4}\right)$ denote the reflection group H_{4}. Every $W\left(H_{4}\right)$ orbit is disjoint union of orthogonal transformations of the 600-cell.

Proof. There exists the normal chain, such that

$$
W\left(H_{4}\right) \triangleright D\left(W\left(H_{4}\right)\right) \triangleright N \triangleright\left\{ \pm I_{4}\right\} .
$$

Here, $D\left(W\left(H_{4}\right)\right):=\left\langle x^{-1} y^{-1} x y \mid \forall x, y \in W\left(H_{4}\right)\right\rangle$ is the derived subgroup of $W\left(H_{4}\right)$ and N is isomorphic to $\mathbb{Z}_{2} \cdot A_{5}$ (non-splitting semi-direct product) where A_{5} is alternating group on five symbols. The cardinality of $D\left(W\left(H_{4}\right)\right)$ is 7200 and that of N is 120 .

Let q_{i} be the dimension of the space of N-invariant harmonic polynomials
of degree i. The harmonic Molien series of N is

$$
\begin{align*}
\sum_{i=0}^{\infty} q_{i} \lambda^{i}= & \frac{1}{|N|} \sum_{g \in N} \frac{1-\lambda^{2}}{\operatorname{det}\left(I_{4}-\lambda g\right)} \tag{1}\\
= & \frac{1-\lambda^{2}}{120}\left\{\frac{1}{(1-\lambda)^{4}}+\frac{1}{(1+\lambda)^{4}}+\frac{30}{\left(1+\lambda^{2}\right)^{2}}\right. \tag{2}\\
& +\frac{20}{\left(1-\lambda+\lambda^{2}\right)^{2}}+\frac{20}{\left(1+\lambda+\lambda^{2}\right)^{2}} \\
& +\frac{12}{(\lambda-\exp (\pi i / 5))^{2}(\lambda-\exp (-\pi i / 5))^{2}} \\
& +\frac{12}{(\lambda-\exp (2 \pi i / 5))^{2}(\lambda-\exp (-2 \pi i / 5))^{2}} \\
& +\frac{12}{(\lambda-\exp (3 \pi i / 5))^{2}(\lambda-\exp (-3 \pi i / 5))^{2}} \\
& \left.+\frac{12}{(\lambda-\exp (4 \pi i / 5))^{2}(\lambda-\exp (-4 \pi i / 5))^{2}}\right\} \\
= & 1+13 \lambda^{12}+21 \lambda^{20}+25 \lambda^{24}+31 \lambda^{30}+\cdots
\end{align*}
$$

Therefore every orbit $x^{N}:=\left\{x^{w} \mid w \in N\right\}$ is spherical 11-design in \mathbb{S}^{3} for any $x \in \mathbb{S}^{3}$.

By Fischer-Type inequality, if X is spherical 11-design in \mathbb{S}^{3}, then the cardinality of X is at least 112. Thus the stabilizer subgroup N_{x} of any single point $x \in \mathbb{S}^{3}$ is trivial. Since 120 points spherical 11-design in \mathbb{S}^{3} is unique, every N-orbit is the 600 -cell. The orbit $x^{W\left(H_{4}\right)}$ is disjoint union of N-orbits. Therefore this proposition is proved.

Thus the orbits of the group H_{4} are non-rigid spherical 11-designs except the 600-cell.

In the case of the group E_{8}, if the E_{8} root system is removed from the orbit of the corner vectors, then the remaining set is also spherical 7 -design in \mathbb{S}^{7}. The reflection group of E_{8} does not have the subgroup like N which appeared in proof of the Proposition 3.1.

Problem 3.1. Let v_{i} be corner vectors for $i=2,3, \ldots, 8$ and $W\left(E_{8}\right)$ denote reflection group E_{8}. Is the orbit $X:=\left\{v_{i}^{w} \mid w \in W\left(E_{8}\right)\right\}$ disjoint union of orthogonal transformations of the E_{8} root system?

By using computer, we checked that the orbits of v_{i} for $i=2,7,8$ are disjoint union of orthogonal transformations of the E_{8} root system.

Remark:
(i) In the case of group D_{4}, one of the orbit of corner vectors is a cross polytope which is a tight 3 -design in \mathbb{S}^{3}. The orbits of corner vectors are disjoint union of orthogonal transformations of the cross polytope.
(ii) In the case of groups $A_{n}(n \geq 3)$, one of the orbits of corner vectors is a
regular simplex which is a tight 2-design in \mathbb{S}^{n-1}. Some orbits of corner vectors are not disjoint union of orthogonal transformations of the regular simplex.
(iii) In the case of groups $B_{n}(n \geq 3), C_{n}(n \geq 3)$ and $D_{n}(n \geq 5)$, one of the orbits of corner vectors is a cross polytope which is a tight 3 -design in \mathbb{S}^{n-1}. Some orbits of corner vectors are not disjoint union of orthogonal transformations of the cross polytope.
(vi) In the case of group H_{3}, one of the orbits of corner vectors is the icosahedron which is a tight 5 -design in \mathbb{S}^{2}. Some orbits of corner vectors are not disjoint union of orthogonal transformations of the icosahedron.
(v) In the case of group E_{6}, one of the orbits of corner vectors is a tight 4design in \mathbb{S}^{5}. Some orbits of corner vectors are not disjoint union of orthogonal transformations of the tight 4-design.
(iv) In the case of group E_{7}, one of the orbits of corner vectors is a tight 5design in \mathbb{S}^{6}. Some orbits of corner vectors are not disjoint union of orthogonal transformations of the tight 5-design.

Acknowledgements. The author wishes to thank Professor Eiichi Bannai for suggesting this research problem and providing useful informations.

References

[1] E. Bannai, Rigid spherical t-designs and a theorem of Y. Hong, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(1987), no. 3, 485-489.
[2] E. Bannai and E. Bannai, Algebraic Combinatorics on Spheres, Springer, Tokyo, 1999 (in Japanese).
[3] E. Bannai and R. M. Damerell, Tight spherical designs. I, J. Math. Soc. Japan, 31(1979), no. 1, 199-207.
[4] E. Bannai and R. M. Damerell, Tight spherical designs. II, J. London Math. Soc. (2) 21(1980), no. 1, 13-30.
[5] E. Bannai, A. Munemasa and B. Venkov, The nonexistence of certain tight spherical designs, Algebra i Analiz, 16(2004), no. 4, 1-23; translation in St. Petersburg Math. J. 16(2005), no. 4, 609-625.
[6] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 4-6 (Elements of Mathematics), Springer (2002).
[7] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 7-9 (Elements of Mathematics), Springer (2004).
[8] P. Boyvalenkov and D. Danev, Uniqueness of the 120-point spherical 11design in four dimensions, Arch. Math. (Basel), 77(2001), 360-368.
[9] H. S. N. Coxeter, Regular polytopes, third edition, Dover (1973).
[10] P. Delsarte, J.M. Goethals and J.J. Seidel, Spherical Codes and Designs, Geom. Dedicata 6(1977), no. 3, 363-388.
[11] J.-M. Goethals and J. J.Seidel, Spherical designs, Relations between combinatorics and other parts of mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978), pp. 255-272, Proc. Sympos. Pure Math., XXXIV, Amer. Math. Soc., Providence, R.I., 1979.
[12] Y. I. Lyubich and L. N. Vaserstein, Isomorphic embeddings between classical Banach spaces, cubature formulas and spherical designs, Geom. Dedicate, 47(1993), 327-362.
[13] A. Sali, On the Rigidity of Spherical t-Designs that are Orbits of Finite Reflection Groups, Des. Codes Cryptogr. 4(1994), 157-170.
[14] N. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, Amer. Math. Monthly 84(1977), no. 2, 82-107.

