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Abstract

The concept of rigid spherical t-designs was introduced by Eiichi Ban-
nai. We want to find examples of rigid but not tight spherical designs.
Sali investigated the case when X is an orbit of a finite reflection group
and proved that X is rigid if and only if tight for the groups An, Bn, Cn,
Dn, E6, E7, F4, H3. There are two cases left open, namely the group E8

and the isometry group H4 of the four dimensional regular polytope, the
600-cell. In this paper, we study the rigidity of spherical t-designs X that
are orbits of a finite reflection groups E8 and H4, and prove that X is
rigid if and only if tight or the 600-cell.

1 Introduction

Spherical t-designs were introduced by Delsarte, Goethals and Seidel [10]. A
finite nonempty set X in the unit sphere

Sd := {x = (x1, x2, . . . , xd+1) ∈ Rd+1 | x2
1 + x2

2 + · · · + x2
d+1 = 1}

is called a spherical t-design in Sd if and only if the equality

1
|Sd|

∫
Sd

f(x)dω(x) =
1
|X|

∑
x∈X

f(x)

holds for all polynomials f(x) = f(x1, x2, . . . , xd+1) of degree at most t. Here,
the left-hand side involves integration on the unit sphere, and |Sd| denotes the
volume of the sphere Sd.

It is known [10] that there is a lower bound (Fischer-type inequality) for the
size of a spherical t-design in Sd.
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Theorem 1.1 (Delsarte-Goethals-Seidel). Let X be a spherical t-design in Sd.
Then

|X| ≥

{(
d+t/2

d

)
+

(
d+t/2−1

d

)
, if t is even

2
(
d+(t−1)/2

d

)
, if t is odd

If equality holds, then X is called tight spherical t-design.
The concept of the rigidity was introduced by Bannai [1]. Let X = {x1, x2, . . . , xn}

be a spherical t-design in Sd. X is said to be non-rigid or deformable, if for any
given ϵ > 0 there exist another spherical t-design X ′ = {x′

1, x
′
2, . . . , x

′
n} such

that |xi − x′
i| < ϵ for 1 ≤ i ≤ n, and there exists no orthogonal transformation

g ∈ O(d + 1) with g(xi) = x′
i. X is said to be rigid if it is not non-rigid.

If X, X1 and X2 are spherical t-designs in Sd, then the following hold.
(1) For any σ ∈ O(d + 1), Xσ := {xσ | x ∈ X} is spherical t-design in Sd.
(2) If X1 ∩ X2 = ∅, then X1 ∪ X2 is spherical t-design in Sd.

The property (2) means that we can make many spherical t-designs from
given spherical t-designs. However spherical t-designs, that are disjoint union of
spherical t-designs, are not “new” spherical t-designs. Such spherical t-designs
is clearly non-rigid. Therefore rigid spherical t-designs are essential objects of
study of spherical t-designs.

Bannai conjectured the following two propositions about rigid spherical t-
design.

Conjecture 1.1 (Bannai, [1]). There exist a function f(d, t) such that if X is
a spherical t-design in Sd such that |X| > f(d, t), then X is non-rigid.

Conjecture 1.2 (Bannai, [1]). For each fixed pair d and t, there are only finitely
many rigid spherical t-design in Sd up to orthogonal transformations.

Lyubich and Vaserstein proved that Conjecture 1.1 and 1.2 are equivalent
[12]. These conjecture are supported by the fact that the known rigid t-designs
are very rare. Bannai proves this for dimension 1, by showing that any rigid
spherical t-design X in S1 consists of the vertices of a regular (k + 1)-gon with
t ≤ k ≤ 2t.

Because the distances between points of a tight spherical design are described
by a theorem of Delsarte-Goethals-Seidel [10], we have the following proposition.

Proposition 1.1. A tight spherical t-design is rigid.

Unfortunately, tight spherical t-designs rarely exist [5], and it was proved
that if a tight spherical t-design in Sd with d ≥ 2 exists, then necessarily either
t ≤ 5, or t = 7, 11 [3, 4]. We want to find examples of rigid but not tight
spherical t-designs.

The following theorem, which was proved by Delsarte-Goethals-Seidel, is
very useful for getting examples of spherical t-designs.

Theorem 1.2 (Delsarte-Goethals-Seidel). For a finite subgroup G of O(d + 1)
the following conditions are equivalent:

1. every G-orbit is a spherical t-design in Sd,
2. there are no G-invariant harmonic polynomials of degree 1, 2, . . . , t.
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Let qi be the dimension of the space of G-invariant harmonic polynomials of
degree i. If we know the eigenvalue of each g ∈ G, then we determine t by the
harmonic Molien series

∞∑
i=0

qiλ
i =

1
|G|

∑
g∈G

1 − λ2

det (Id+1 − λg)

where Id+1 is the (d + 1) × (d + 1) identity matrix [14, 11, Corollary 6.4].
Let W be a finite irreducible reflection group in Rd+1. It is known that

finite irreducible reflection groups are classified completely [6]. Let integers
1 = m1 ≤ m2 ≤ · · · ≤ md+1 be the exponents of W (please see [6, Ch.V, §6
]). The exponents of W is important for the following theorem [7, Ch.VIII, §8,
Corollary 1 ].

Theorem 1.3. Let W be a finite reflection group. Let qi be the dimension of
the space of W -invariant harmonic polynomials of degree i. Then we have

∞∑
i=0

qiλ
i =

d+1∏
i=2

1
1 − λ1+mi

.

Therefore every orbit X = {xw | w ∈ W} is a spherical m2-design in Sd.
If α1, α2, . . . , αd+1 are the fundamental roots, then the corner vectors

v1, v2, . . . , vd+1 are defined by vi ⊥ αj if and only if i ̸= j. The following
proposition is immediate.

Proposition 1.2 (Sali, [13, Proposition 1.13]). If X = {xw | w ∈ W} is such
that x is not a corner vector of W , then X is non-rigid spherical m2-design.

The following lemma is useful for proving the non-rigidity.

Lemma 1.1 (Sali, [13, Lemma 2.3]). Suppose that X ⊂ Sd is a spherical t-
design. Let Y ⊂ X satisfy Y ⊂ Ur ∪ Sd where Ur is an r-dimensional affine
subspace of Rd+1(1 < r ≤ d + 1). That is, Ur = {z0 + x | x ∈ T r} where T r is
a linear subspace of Rd+1. Furthermore, let us assume that

Ỹ =
{

y − z0

|y − z0|

∣∣∣ y ∈ Y

}
forms a t-design in Sr−1. If X \ Y spans Rd+1, then X is non-rigid.

Sali proved the following theorem by finding sub-t-designs in affine subspaces.

Theorem 1.4 (Sali, [13, Theorem 1.4]). Let W be any of the following reflection
groups.

1. An for n = 3, 4 . . .
2. Bn for n = 3, 4, . . .
3. Cn for n = 3, 4, . . .
4. Dn for n = 4, 5, . . .
5. E6, E7, F4, H3

Then the orbit X = {xw
0 | w ∈ W} for a corner vector x0 is a rigid spherical

m2-design if and only if it is tight.
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There were two cases left open, namely the group E8 and the isometry group
H4 of the four dimensional regular polytope, the 600-cell. In this paper, we
investigate the case of the group E8 and H4, and prove the following theorems.

Theorem 1.5. Let W (E8) be the reflection groups of E8. Then the orbit X =
{xw

0 | w ∈ W (E8)} for a corner vector x0 is a rigid spherical 7-design if and
only if it is tight (i.e. x0 = v1).

Theorem 1.6. Let W (H4) be the reflection group H4. Then the orbit X =
{xw

0 | w ∈ W (H4)} for a corner vector x0 is a rigid spherical 11-design if and
only if it is the 600-cell (i.e. x0 = v1).

2 Group E8

Space R8

Dynkin diagram

t t t t t t tα1 α2 α3 α4 α5 α6 α7

t
α8

Exponents 1, 7, 11, 13, 17, 19, 23, 29.
Reflection Group The order is 214 35 52 7.

Fundamental Roots Corner vector
α1 = [−2, 2, 0, 0, 0, 0, 0, 0] v1 = [−1, 1, 1, 1, 1, 1, 1, 1]
α2 = [0,−2, 2, 0, 0, 0, 0, 0] v2 = [0, 0, 1, 1, 1, 1, 1, 1]
α3 = [0, 0,−2, 2, 0, 0, 0, 0] v3 = [1, 1, 1, 3, 3, 3, 3, 3]
α4 = [0, 0, 0,−2, 2, 0, 0, 0] v4 = [1, 1, 1, 1, 2, 2, 2, 2]
α5 = [0, 0, 0, 0,−2, 2, 0, 0] v5 = [3, 3, 3, 3, 3, 5, 5, 5]
α6 = [0, 0, 0, 0, 0,−2, 2, 0] v6 = [1, 1, 1, 1, 1, 1, 2, 2]
α7 = [0, 0, 0, 0, 0, 0,−2, 2] v7 = [1, 1, 1, 1, 1, 1, 1, 3]
α8 = [1, 1, 1, 1, 1,−1,−1,−1] v8 = [1, 1, 1, 1, 1, 1, 1, 1]

By computer search, using GAP, we get the orbits of vi for i = 1, 2, . . . , 8
as following.
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Cardinality Vectors
v1 240 22 06, D 18

v2 6720 2 1205, 16 02, D (3/2)2 (1/2)6

v3 60480 6 23 04, 43 05, 42 24 02, E 35 13, D 5 32 15

v4 241920 4 14 03, 25 03, 13 22 3 02,
E 24 14, E (5/2)3 (1/2)5, E (5/2)2 (3/2)3 (1/2)3, D (7/2) (3/2)3 (1/2)4

v5 483840 (10) 25 02, 62 43 03, 63 23 02, 8 43 22 02,
E 53 35, E 62 42 24, E 7 52 32 13, D 9 34 13

v6 69120 3 15 02, 23 12 03, E 22 16, E (7/2) (1/2)7, E (5/2) (3/2)3 (1/2)4

v7 2160 4 07, 24 04, E 3 17

v8 17280 2 14 03, E 18, E (3/2)3 (1/2)5, D (5/2) (1/2)7

The full list of vectors is obtained by applying arbitrary permutations and signs
to the vectors in the table, except that if the vector is prefixed by an E (resp.
D) then an even (resp. odd) number of minus signs are required.

These orbits are spherical 7-designs in S7 because the exponent m2 = 7.
By Fischer-type inequality, a spherical 7-designs in S7 has at least 240 points.
Therefore the orbit of v1, which is the E8 root system, is tight 7-design in S7.
We shall find the subset Y in Lemma 1.1 to prove that other orbits are non-rigid.
Indeed, the orbit of vi for i = 2, 3, . . . , 8 contains the E8 root system which is
tight 7-design in S7. The E8 root system, which contained in the orbit, has the
following fundamental roots.
The orbit of v2 The orbit of v3

α1 = [−2,−1,−1, 0, 0, 0, 0, 0] α1 = [−6,−2,−2,−2, 0, 0, 0, 0]
α2 = [0, 1, 2,−1, 0, 0, 0, 0] α2 = [0, 4, 4, 4, 0, 0, 0, 0]
α3 = [0, 1,−1, 2, 0, 0, 0, 0] α3 = [2,−6,−2, 2, 0, 0, 0, 0]
α4 = [1/2,−3/2, 1/2,−1/2,−3/2,−1/2,−1/2, 1/2] α4 = [0, 2, 2,−4,−4,−2,−2, 0]
α5 = [0, 0, 0, 0, 1, 0, 1,−2] α5 = [0, 0, 0, 0, 2, 2, 6,−2]
α6 = [0, 0, 0, 0, 0, 1, 1, 2] α6 = [0, 0, 0, 0, 0, 4,−4, 4]
α7 = [0, 0, 0, 0, 0, 1,−2,−1] α7 = [0, 0, 0, 0, 2,−6, 2, 2]
α8 = [0, 1,−1,−1, 0,−1,−1, 1] α8 = [0, 2,−4, 2, 0,−2,−4,−2]
The orbit of v4 The orbit of v5

α1 = [−4,−1,−1,−1,−1, 0, 0, 0] α1 = [−10,−2,−2,−2,−2,−2, 0, 0]
α2 = [1/2, 3/2, 5/2, 5/2, 3/2,−3/2,−1/2, 1/2] α2 = [2, 2, 2, 6, 6, 4,−4,−2]
α3 = [1/2,−3/2,−3/2,−1/2, 3/2, 5/2, 1/2,−5/2] α3 = [0, 0, 4,−4,−2, 2, 8, 4]
α4 = [0, 1, 0, 0,−1, 1, 1, 4] α4 = [1, 1,−1, 5,−3,−7,−5, 3]
α5 = [0, 1, 1,−3, 1,−2, 0,−2] α5 = [0, 0, 2,−2,−2, 2, 2,−10]
α6 = [0, 0, 1, 2,−3, 2,−1,−1] α6 = [0, 2,−8, 2, 4, 0, 4, 4]
α7 = [0, 1,−3, 0, 2,−1,−2, 1] α7 = [0, 0, 2,−2,−6, 6,−6, 2]
α8 = [1/2,−5/2,−3/2, 5/2,−1/2,−3/2, 3/2, 1/2] α8 = [1,−7, 1,−3, 5,−1,−3, 5]
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The orbit of v6 The orbit of v7

α1 = [−7/2,−1/2,−1/2,−1/2,−1/2,−1/2,−1/2,−1/2] α1 = [−4, 0, 0, 0, 0, 0, 0, 0]
α2 = [1, 0, 0, 0, 1, 2, 2, 2] α2 = [2,−2,−2,−2, 0, 0, 0, 0]
α3 = [0, 0, 1, 2, 1,−2,−2, 0] α3 = [0, 0, 0, 4, 0, 0, 0, 0]
α4 = [0, 0, 1, 0,−2, 1, 2,−2] α4 = [0, 0, 2,−2,−2,−2, 0, 0]
α5 = [0, 1, 0,−2, 2, 1,−2, 0] α5 = [0, 0, 0, 0, 0, 4, 0, 0]
α6 = [0, 1,−2, 1, 0,−2, 2, 0] α6 = [0, 0, 0, 0, 2,−2,−2,−2]
α7 = [0, 0, 0, 1,−2, 2,−2, 1] α7 = [0, 0, 0, 0, 0, 0, 0, 4]
α8 = [1/2,−5/2, 1/2,−1/2,−3/2,−3/2, 1/2, 3/2] α8 = [0, 2,−2, 0, 0,−2, 2, 0]
The orbit of v8

α1 = [−5/2,−1/2,−1/2,−1/2,−1/2,−1/2,−1/2, 1/2]
α2 = [1/2,−1/2, 3/2, 1/2, 1/2, 1/2, 3/2,−3/2]
α3 = [0, 1,−2, 0, 1, 1,−1, 0]
α4 = [0, 0, 1, 1,−1, 0, 1, 2]
α5 = [0, 0, 1, 0, 1,−1,−2,−1]
α6 = [0, 1,−1,−1, 0,−1, 2, 0]
α7 = [0, 0, 0, 1,−2, 1,−1,−1]
α8 = [1/2,−3/2,−1/2,−3/2,−1/2, 3/2, 1/2, 1/2]

It is well known that the E8 root system is linear combination of the fun-
damental roots with integer coefficients all of the same sign (all non-negative
or all non-positive). Moreover, by seeing [6, PLATE VII], we easily get the E8

root system which is contained in the orbit. Therefore the orbits of the group
E8 are non-rigid spherical 7-designs except the E8 root system.

3 Group H4

This group is the isometry group of the 600-cell acting on R4.
Space R4

Dynkin diagram

t t t tα1 α2 α3 α4

5

Exponents 1, 11, 19, 29
Reflection Group The order is 14400.
Fundamental roots Corner vectors

α1 = [−2, 2, 0, 0] v1 = [3 −
√

5, 1 +
√

5, 1 +
√

5,−1 −
√

5]
α2 = [0,−2, 2, 0] v2 = [2 − 2

√
5, 2 − 2

√
5,−4, 4]

α3 = [0, 0,−2,−2] v3 = [10, 10, 10,−6
√

5]
α4 = [1, 1, 1,

√
5] v4 = [4, 4, 4,−4]

We get the orbits of vi for i = 1, 2, 3, 4 as following.
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Cardinality Vectors
v1 120 42 02, E 23 (2

√
5), D (1 +

√
5)3 (3 −

√
5)

D (−1 +
√

5)3 (3 +
√

5)
v2 720 42 (−2 + 2

√
5)2, D 2 (2

√
5)2 (−4 + 2

√
5), E 22 6 (−4 + 2

√
5)

02 (6 − 2
√

5) (2 + 2
√

5), E (7 −
√

5) (3 −
√

5) (1 +
√

5)2

D(5 −
√

5)2 (3 +
√

5) (−1 +
√

5), E (−1 +
√

5)2 (3 +
√

5) (−3 + 3
√

5)
D (3 −

√
5)2 (−1 + 3

√
5) (1 +

√
5)

v3 1200 02 (20) (4
√

5), D (10)3 (6
√

5), E (10) (2
√

5) (10 − 4
√

5) (10 + 4
√

5)
0 (4

√
5)2 (8

√
5), (10 − 2

√
5)2 (10 + 2

√
5)2, E (10) (2

√
5) (6

√
5)2,

E (5 + 3
√

5)3 (15 − 3
√

5), E (15 −
√

5) (−5 + 3
√

5) (5 +
√

5) (5 + 5
√

5)
D (15 +

√
5) (−5 + 5

√
5) (5 −

√
5) (5 + 3

√
5), E (15 + 3

√
5) (−5 + 3

√
5)3

D(5 +
√

5)2 (−5 + 7
√

5) (5 + 5
√

5), E (5 −
√

5)2 (5 + 7
√

5) (−5 + 5
√

5)
v4 600 8 03, 44, 0 4 (−2 + 2

√
5) (2 + 2

√
5), E 2 (2

√
5)3, D 22 6 (2

√
5)

E (3 +
√

5)2 (5 −
√

5) (−1 +
√

5), E (3 −
√

5)2 (5 +
√

5) (1 +
√

5)
D (1 +

√
5)3 (−1 + 3

√
5), E (−1 +

√
5)3 (1 + 3

√
5)

These orbits are spherical 11-designs in S3 because the exponent m2 = 11.
The orbit of v1 is the 600-cell which has 120 points. Boyvalenkov and Danev [8]
proved that uniqueness of the 120 points spherical 11-design in S3. Of course,
the uniqueness is stronger than the rigidity. The 600-cell is the first reported
rigid non-tight t-design for t ≥ 3 and d ≥ 2.

Each orbit of vi for i = 2, 3, 4 contains the 600-cell. Moreover the following
proposition holds in the case of the group H4.

Proposition 3.1. Let W (H4) denote the reflection group H4. Every W (H4)-
orbit is disjoint union of orthogonal transformations of the 600-cell.

Proof. There exists the normal chain, such that

W (H4) ◃ D(W (H4)) ◃ N ◃ {±I4}.

Here, D(W (H4)) :=
⟨
x−1y−1xy | ∀x, y ∈ W (H4)

⟩
is the derived subgroup of

W (H4) and N is isomorphic to Z2 ·A5 (non-splitting semi-direct product) where
A5 is alternating group on five symbols. The cardinality of D(W (H4)) is 7200
and that of N is 120.

Let qi be the dimension of the space of N -invariant harmonic polynomials
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of degree i. The harmonic Molien series of N is

∞∑
i=0

qiλ
i =

1
|N |

∑
g∈N

1 − λ2

det (I4 − λg)
(1)

=
1 − λ2

120
{ 1
(1 − λ)4

+
1

(1 + λ)4
+

30
(1 + λ2)2

(2)

+
20

(1 − λ + λ2)2
+

20
(1 + λ + λ2)2

+
12

(λ − exp (πi/5))2(λ − exp (−πi/5))2

+
12

(λ − exp (2πi/5))2(λ − exp (−2πi/5))2

+
12

(λ − exp (3πi/5))2(λ − exp (−3πi/5))2

+
12

(λ − exp (4πi/5))2(λ − exp (−4πi/5))2
}

= 1 + 13λ12 + 21λ20 + 25λ24 + 31λ30 + · · ·

Therefore every orbit xN := {xw | w ∈ N} is spherical 11-design in S3 for any
x ∈ S3.

By Fischer-Type inequality, if X is spherical 11-design in S3, then the car-
dinality of X is at least 112. Thus the stabilizer subgroup Nx of any single
point x ∈ S3 is trivial. Since 120 points spherical 11-design in S3 is unique,
every N -orbit is the 600-cell. The orbit xW (H4) is disjoint union of N -orbits.
Therefore this proposition is proved.

Thus the orbits of the group H4 are non-rigid spherical 11-designs except
the 600-cell.

In the case of the group E8, if the E8 root system is removed from the orbit
of the corner vectors, then the remaining set is also spherical 7-design in S7.
The reflection group of E8 does not have the subgroup like N which appeared
in proof of the Proposition 3.1.

Problem 3.1. Let vi be corner vectors for i = 2, 3, . . . , 8 and W (E8) denote
reflection group E8. Is the orbit X := {vw

i | w ∈ W (E8)} disjoint union of
orthogonal transformations of the E8 root system?

By using computer, we checked that the orbits of vi for i = 2, 7, 8 are disjoint
union of orthogonal transformations of the E8 root system.

Remark:
(i) In the case of group D4, one of the orbit of corner vectors is a cross polytope
which is a tight 3-design in S3. The orbits of corner vectors are disjoint union
of orthogonal transformations of the cross polytope.
(ii) In the case of groups An(n ≥ 3), one of the orbits of corner vectors is a
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regular simplex which is a tight 2-design in Sn−1. Some orbits of corner vectors
are not disjoint union of orthogonal transformations of the regular simplex.
(iii) In the case of groups Bn(n ≥ 3), Cn(n ≥ 3) and Dn(n ≥ 5), one of the orbits
of corner vectors is a cross polytope which is a tight 3-design in Sn−1. Some
orbits of corner vectors are not disjoint union of orthogonal transformations of
the cross polytope.
(vi) In the case of group H3, one of the orbits of corner vectors is the icosahedron
which is a tight 5-design in S2. Some orbits of corner vectors are not disjoint
union of orthogonal transformations of the icosahedron.
(v) In the case of group E6, one of the orbits of corner vectors is a tight 4-
design in S5. Some orbits of corner vectors are not disjoint union of orthogonal
transformations of the tight 4-design.
(iv) In the case of group E7, one of the orbits of corner vectors is a tight 5-
design in S6. Some orbits of corner vectors are not disjoint union of orthogonal
transformations of the tight 5-design.

Acknowledgements. The author wishes to thank Professor Eiichi Bannai
for suggesting this research problem and providing useful informations.
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