
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An Efficient Prover for Elementary Formal
Systems

Harada, Naoyuki
Department of Informatics, Faculty of Information Science and Electrical Engineering :
Graduate Student

Arikawa, Setsuo
Department Informatics, Faculty of Information Science and Electrical Engineering, Kyushu
University

Ishizaka, Hiroki
Department of Artificial Intelligence, Kyushu Institute of Technology

https://doi.org/10.15017/1474990

出版情報：九州大学大学院システム情報科学紀要. 2 (1), pp.1-8, 1997-03-26. 九州大学大学院システ
ム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学研究科報告

第2巻 第1号 平成9年3月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.2, No.1, March 1997

 An Efficient Prover for Elementary Formal Systems

Naoyuki HARADA* , Setsuo ARIKAWA** and Hiroki ISHIZAKA***

 (Received December 24, 1996)

Abstract: The elementary formal system(EFS, for short) is a kind of logic programs over the
domain of strings. The EFS's can define various classes of formal languages, and a prover, i.e., a
resolution procedure, for EFS's works as a uniform recognizer of such various classes of languages .
The basic operation of the procedure is the unification as in the ordinary resolution. This paper
deals with a prover for a special subclass of EFS's called regular EFS's that defines exactly the
same class as context-free languages in the Chomsky hierarchy. The prover searches derivation
trees for refutations. This paper first introduces a subclass of regular EFS's, called variable-
separated EFS's, for which the prover becomes efficient, proves that the newly introduced EFS's
are equivalent to the regular EFS's in their language defining power, and shows an experimental
result on parsing some simple Japanese sentences.

Keywords: Elementary formal systems, Formal languages, Parsing algorithm, Unification algo-
rithm

 1. Introduction

 The elementary formal system (EFS, for short)
 Smullyan invented') to develop his recursive func-

 tion theory is a kind of logic programs over the do-

 main of strings of characters. The EFS's can define

 various classes of formal languages, and a resolution

 procedure for EFS's works as a uniform recognizer
 of such various classes of languages.

 In the formal language theory, several classes of

 automata such as finite automata, pushdown au-

 tomata, linear bounded automata, and Turing ma-

 chines are used as recognizers of such classes of lan-

 guages. Their basic mechanisms are different from
 one to another. Hence, we need to change the au-

 tomata depending on the classes of languages we

 are interested in. However, as far as EFS's are con-

 cerned, we do not need to change the basic devices.

 We may just use the resolution principle as a uni-

 form device.

 Several subclasses of EFS's have been considered;

 variable-bounded EFS's, length-bounded EFS's,

 regular EFS's and linear EFS's and so on4) s>

 Among them the regular EFS's equivalent to the

 class of context-free grammars are the most impor-

 tant in discussing programming languages').

 We implemented the prover, i.e., the resolution

 procedure, for regular EFS's. It is a kind of rec-
 ognizers of the formal languages. Given a regular

* Department of Informatics, Graduate Student

** Department of Informatics

* * * Department of Artificial Intelligence, Kyushu Institute

of Technology

EFS and a string, the prover determines whether

the string is proved by the regular EFS's, or not. In
fact, the prover searches for a refutation in a tree,
a derivation tree, produced from the EFS and the
string.

 In case ill-formed EFS's are given, the prover
does not work efficiently. The inefficiency is mainly
due to consecutiveness of variables in clauses. The
consecutive variables spread many failed branches
which can not be a refutation in a derivation tree.

Hence it takes a lot of time to search such trees for
refutations.
 To get rid of consecutive variables in clauses, we

propose a new subclass of EFS's called variable-
separated EFS's by putting a restriction on the

clauses in the regular EFS's. In a variable-separated
EFS, any pattern in the heads of clauses must start
and end with some constant symbols, and variables
in the term must be separated from each other.

 In this paper first we recall some basic definitions

on EFS's necessary for our discussions. In Section 3
we define derivations for EFS's and derivation trees.
In Section 4, we introduce the variable-separated
EFS's, and prove that the power of them is the same

as that of regular EFS's although they are defined
by posing some restrictions on the regular EFS's.
Thus our prover for variable-separated EFS's can
be applied to all context-free languages. In Section
5 we give an experimental result on parsing some

simple Japanese sentences.

 2. Elementary Formal Systems

 We start with recalling the basic notions on

EFS's. Let E, X, and H be mutually disjoint sets,
and let E and H be finite. We refer to E as alphabet,
and to each element of it as symbol which will be de-
noted by a, b, c, ..., to each element of X as variable,
denoted by x, y, z, xl, x2i ... and to each element
of H as predicate symbol, denoted by p, q, ql, q2i ...,

each of which has an arity. A+ denotes the set of
all nonempty words over a set A.

Definition A term is an element of (E U X)+.
Each term is denoted by 7, T, 71, 7r2, ... , Tl, T2,
A ground term of S is an element of E+. Terms are

also called patterns.

Definition An atomic formula (or atom, for short)
is an expression of the form p(Tl , ..., Tn) , where p is
a predicate symbol in H with arity n and Ti , ..., Tn

are terms. The atom is ground if all T1, ..., Tn are

ground.
 Clauses, empty clauses (E), ground clauses and
substitutions are defined in the ordinary way2) .

Definition A definite clause is a clause of the form

A f- B1i ..., Bn (n > 0).

Definition An elementary formal system (EFS,

for short) S is a triplet (E, H, F), where F is a finite
set of definite clauses, which are sometimes called
axioms of S.

 We denote a substitution by {x1 := T1, ..., xn :=
Tn}, where xi are mutually distinct variables. We
also define

p(Tl, ..., Tn)9 = p(T19, ..., Tne),
 (A f- Bi, ..., Bm)9 = AO <- (B10, ..., Bme),

 for substitution 9, an atom p(T1i ..., Tn) and a
 clause A +--- B1, ..., Bn,,.

Definition Let S = (E, H, F) be an EFS. We
 define the relation F F- C for a clause C of S induc-

 tively as follows:
 (1) IfF9D, then FI-D.

 (2) If F H D, then F H D9 for any substitution
 0.

 (3) IfFHA*-B1,...,Bn and FHBnf--,then
r I- A 4-- B1, ..., Bn-i.

 C is provable from F if F H C.

Definition For an EFS S = (E, H, F) and p E H
with arity n, we define

L(S,p) = {(al, ..., an) E (E+)n F H p(al, ..., an) H

 In case n = 1, L(S,p) is a language over E. A
language L C E+ is definable by EFS or an EFS
language if such S and p exist.

 Now we give definition of regular EFS's which can
define context-free languages.

Definition Let o(x, 7r) be the number of all oc-
currences of a variable x in term 7. A pattern 7
is regular if o(x, ir) < 1 for any variable x in 7. A
definite clause C is regular if C is of the form

P(7) g1 (xi), ..., gn(xn),

 and 7 is regular. An EFS S = (E, H, F) is regular
if each clause in F is regular.

Theorem 2.1 (Arikawa et al.5)) A language L
is definable by regular EFS if and only if L is a

context-free language.

Example 2.1 An EFS S = ({a, b}, {p}, F) with

p(axb) <- p(x), F =
p(ab) 4--

is regular. It defines a context-free language
L(S,p) = {anbn I n > 11.

 3. Derivations and Refutations for
 EFS's

 EFS's have an aspect of logic programs. Hence
a resolution procedure for EFS's can be considered
and works as a device for recognizing formal lan-
guages. In this section, we discuss the derivations

 and refutations for EFS's.

 Definition Let a and ,Q be a pair of terms or
 atoms. Then a substitution 0 is a unifier of a and

/3 if a9 = 00.

 Definition A goal clause (or goal, for short) of
 EFS S is a clause of the form

Bl, ... Bn (n > 0).

Definition If clauses C and D are identical except
renaming of variables, that is, C = DO and Co- = D
for some substitutions 0 and a, we say D is a vari-
ant of C and write C - D.

 We assume a computation rule R to select an
atom from a goal.

Definition Let S be an EFS, G be a goal of S,
and v(C) be the set of all variables in a clause C. A
derivation from G is a (finite or infinite) sequence of

triplets (Gi, Bi, Ci) (i = 0, 1, ...) which satisfies the
following conditions:

 (1) Gi is a goal, 0, is a substitution, Ci is a vari-
 ant of an axiom of S, and Go = G.

 (2) v(Ci) n v(Ci) = 0 for every i and j (i j),
 and v(Ci) n v(Gi) = 0 for every i.

 (3) If Gi is — Ai, ..., Ak and Am is the atom se-
 lected by R, then Ci is A F-- B1, ..., Bq, and ei
 is a unifier of A and Am, and G1+1 is

(E- Al i ..., Am-1 B1, ..., Bq, Am+1, ..., Ak) 6i.
Am is a selected atom of Gi, and Gi+l is a re-

 solvent of Gi and Ci by 9i.

Definition A refutation is a finite derivation end-
ing with the empty goal E.

 Now we show a theorem, which asserts that a

ground atom A is provable from EFS if and only if
there is a refutation from F-- A. Let S = (E, H, F) be
an EFS, and B(S) be the set of all ground atoms,

i.e., the Herbrand base of S. Then we define the
following sets.

SS(S) = {A E B(S) there exists a refutation
 from — A},

 PS(S) = {A E B(S) F H A}.

Theorem 3.1 (Arikawa et al.) SS(S) = PS(S)
for every EFS S.

Example 3.1 For an EFS S = ({a, b}, {p}, F)
with

 p(axy) F- p(x),p(y) }
F = p(ab)

 p(b) E-

a refutation from — p(aabb) is illustrated by Fig.1,

where the computation rule R selects the leftmost
atom from every goal.

 Fig.1 A refutation

 There may exist two or more derivations from a

goal. In the above example, if we use a substitu-
tion {xo := a, yo := bb} instead of the substitution

{ xo := ab, yo := b}, we can get another derivation.
Now we consider the derivation tree which expresses
all such derivations together.

Definition Let S be an EFS, and G be a goal

of S. Then the derivation tree from G is defined as
follows:

 (1) Each node of the tree is a goal.
 (2) A root node of the tree is G.

 (3) Let " A1, ..., Am, ..., A (k > 1) be a node,
 and Am be a selected atom. If A f- B1, ..., Bq

 is a clause of S and 0 is a unifier of A and Am,
 then a child of the node is

F- (Ai, ..., Am-1 ~ Bi, ..., Bq, Am+l, ..., Ak)0.

 (4) A node of empty goal does not have any chil-
 dren.

 A derivation tree in example 3.1 is illustrated by
Fig.2.

 4. An Efficient Prover for EFS's

 Given a set of axioms and a ground goal, the

prover outputs "yes" and a refutation from the
goal if any, otherwise it outputs "no". The prover
searches a derivation tree for the empty goal by a
depth-first-search. Hence if we can reduce branch-
ings in the derivation tree, we can make the prover
more efficient. A branching is caused by the follow-
ing steps in derivations:

Fig.2 A derivation tree

 1. Selecting an axiom whose head can be unified
 with the goal. Two or more clauses may be

 selected as in the ordinary logic programming.
 2. Selecting an unifier. Unlike the ordinary logic

 programming two or more unifiers may exist for
 a pair of two terms, which is due to:

 (a) Consecutiveness of variables in a head of
 the selected axiom. For example, in unify-

 ing two atoms p(abba) and p(axy), there
 exist two unifiers {x := b, y := ba} and

{x := bb, y := a}.
 (b) Selecting a location of constant strings

 in the goal which are substrings of the
 term in the head of the axiom. Some

 constant strings in an axiom may appear
 in several locations in a goal. For exam-
 ple, in unifying p(abba) and p(xby), a con-

 stant string b in xby locates twice in abba,
 and two unifiers {x := a, y := ba} and

{x := ab, y := a} are obtained.

 The number of branchings depends on the num-

ber of axioms in Case 1, and on the length of a term
in a goal in Case 2. The number of axioms is fixed,

while the lengths of the terms vary depending on the

goals. The branchings due to Case 1 are common to
all the logic programming. In this paper we try to
reduce the branchings due to Case 2. However, we

can not cope with the branchings due to Case 2(b),
because the number of locations where the constant
strings in the head of the selected atom appear de-

pends on the input strings in the given goal which
may range all over the E+. Hence only the way we

can take is to reduce the branchings due to Case

2(a). We solve this problem by transforming the

given EFS's to EFS's with a good property. First
we introduce a notion of such good EFS's, and show
that they are equivalent to the original ones in lan-
guage defining power.

Definition A regular EFS S = (E, H, F) is
variable-separated if the term in the head of each
clause in F is of the form

axial ... xrictn, (a, ai E E+, xi E X, n > 0).

 In the variable-separated EFS's, every variable
must be surrounded by constant strings on both
sides, by virtue of which we can reduce the branch-
ings due to Case 2(a). The variable-separated EFS's
are a special class of regular EFS's. However, they
are equivalent to the unrestricted ones. We prove
this in the rest of this section.

 By a p-clause we mean an axiom with predicate
symbol p on its head. Then we can easily prove the
following lemma.

Lemma 4.1 Let S = (E, H, F) be a regular EFS.
Let p(alxa2) E— Ai, q(x), A2 be an axiom in F
and q(/31) — Bi, ... , q(/3r) <— Br be the set
of all q-clause in F, where ai E (E U X)* and
Qi E (EUX)+, and Ai, Bi are finite (possibly empty)
sequences of atoms. Let S' _ (E, H, F') be a reg-
ular EFS obtained from S by deleting the axiom
p(aixa2) 4- Ai, q(x), A2 from F and adding the ax-
ioms p(ai,Qia2) E- A1, Bi, A2(1 < i < r). Then
L(S, p) = L(S', p)•

 We need two more lemmas.

Lemma 4.2 Let S = (E, H, F) be a regular EFS,

{p(xa3) p(x), A31 1 < j < r} be the set of p-
clauses such that p is the leftmost predicate symbol

in the body of an axiom in S, and {p(13i) E— Bi I 1 <
i < s} be the remaining p-clauses in S. Construct
an EFS 5' = (E, H U {q}, F') by replacing all the
p-clauses with the following clauses:

 p(i3) f- Bi
p(8 ai) 4— Bi, Aj
p(j3ixc) *— Bi, q(x), Ai
q(ai) — Ai
q(ajak) F-- Ai, Ak
q(aixak) 4-- Ai, q(x), Ak

(1<i<s, 1<j,k<r)

Then L(S,p) = L(S', p).

Proof We first prove that if w E L(S, p) then
w E L(S', p).

Suppose a goal — p(w) is given in S. If p(13i)
Bi is selected at the first step, it is also selected in
a refutation from — p(w) in S'. Next we consider
the case that p(xai) — p(x), Ai is selected. The
predicate symbol of leftmost atom in a resolvent is
p so that the axiom of this form can be selected
many times, say n times, until the axiom of the
form p(0i) — Bi is selected. Let On, ... , 61 be the
unifiers used in these n resolutions. Then the left-
most atom with a predicate symbol p is replaced
with B30 by selecting p(13i) E- Bi and a unifier
0. The resolvent, i.e., the goal at this point, is
<- Bi9, Ai191, ... , AiOn.

 These resolutions in S can be traced in S' in the
following way. If n = 1, p(33ia3) — Bi, Ai is se-
lected in a refutation from E-- p(w) in S'. If k
is an even number, q(ai) <- Ai is selected after
p(j3ixai) <- Bi, q(x), A3 is selected, and then ax-
ioms of the form q(aixak) <--- Ai, q(x), Ak are se-
lected (n - 2)/2 times in the refutation. If n is
an odd number, q(aiak) <-- Ai, Ak is selected af-
ter p(/3ixai) — Bi, q(x), Ai is selected, and then
axioms of the form q(aixak) - Ai, q(x), Ak are se-
lected (n - 3)/2 times.

 The other parts of refutaions in S are exactly
the same as those in 5'. Thus the refutations in
S can be translated as those in 5'. Hence we have
L(S,p) C L(S', p). The converse can be proved in
a similar way. O

Lemma 4.3 A similar statement to Lemma 4.2 is
valid for p-clauses of the form p(aix) <- Ai, p(x).

 By using these lemmas we can show the following
theorem.

Theorem 4.1 For any regular EFS S and any pred-
icate symbol p, there exists a variable-separated

EFS S' and a predicate symbol p' in S' such that
L(S,p) = L(S',p')•

Proof Let S = (E, H, F) be a regular EFS and let
H = {pi, ... , p.,,t}. First we transform S into an
EFS in which clauses of the form

pi(xiaxk) 4 -pi(xj),A,pk(xk),

are its axioms only if i < j, k, where a E (E U
X) * , and A is a finite sequence of atoms.

 This transformation is carried out from pi-clauses
to pm-clauses in the following way. Suppose the
clauses have been transformed so that for any i

(1 < i < 1), p2(x3axk) 4— pi (xi), A, pk(xk) is an
axiom only if i < j, k. Now let us transform the
pl-clause. If a pt-clause is either of the forms:

pl (xj a) 4 Pi (xj), A,
pi(axk) 4— A, pk(xk) (1 > j, k),

we introduce a new set of clauses by replacing pi (xi)
and pk(xk) with bodies of p3-clauses and pk-clauses
according to Lemma 4.1. By repeating this process
at most 2(1-1) times, we obtain clauses of the form:

pi(xj,a'xk') (xj'),A',pk'(xk') (1 <j',k'),

where both ends of the terms in the head may pos-
sibly be constant symbols. If 1 = j' or 1 = k', the
pl-clauses are replaced according to Lemma 4.2 and
4.3, introducing a new predicate symbol ql.

 By the above process, we have clauses only of the
forms:

pi(al'Ya2) 4- A,
pi(xj"'a2) <-p3(x3),A,
pi(al'Yxk) 4— A,pk(xk),
pi(xi7xk) 4— p3(x3), A, pk(xk),
qi ('Y) F- A,
gi('Yxi'Y') 4- A,pi(xi), A',

 (i < j, k, al, a2 E E, 'y, ry' E (E U X')*),

where X' consists of variables introduced when
Lemma 4.2 and 4.3 are applied, and A, A' are finite
sequences of atoms whose predicate symbols are in
H U

 Both ends of terms in the heads of pm-clauses
are constant symbols, because m is the largest in-
dex of p. By using Lemma 4.1, we transform all
the pi-clauses from m - 1 down to 1 until constant
symbols appear at the both ends of terms in the

heads. Then we obtain clauses of the forms:

 pi(ai'ya2) — A,
qi(-y) F— A,
gi('Yxi'y') 4- A, pi(xi), A'.

 Now we transform pi-clauses with bodies into

variable-separated clauses, by introducing new

predicate symbol ri and replacing bodies of pi-
clauses with ri (xi) . Then all of the pi-clauses are
transformed into variable-separated clauses of the
forms:

pi(aixia2) `— ri(xi),
qi(y) 4- A,
gi('Yxi'Y') f— A, pi(xi), A',
ri (-y) — A.

 Finally, we deal with qi- and ri-clauses. We can
show that indices of predicate symbols in the bodies
of any qi- and ri-clauses are less than those in their

heads. Since all the predicate symbols in the bod-
ies of qi-clauses are pi for some i, we can transform

qi-clauses into variable-separated clauses according
to lemma 4.1. Applying this process to the clauses
with q2, ... , q,1z, ri, ... , r?,,, as heads in this order, we

can transform all the clauses into variable-separated
clauses. Thus we have a variable-separated EFS S'
such that L(S, p) = L(S', p'). ^

Example 4.1 Let S = ({a, b}, {pi) p2, p3}, F) be a
regular EFS with the following F:

Pi (xy) 4- p2 (x), p3 (y),
p2 (ax) <— p2 (x),
P2 (a) 4—,
P3(0) 4— P3 (y),
p3(b)<—•

The EFS S defines a regular language L(S, pi) =

far ribn m, n > 1}. Let us transform S into a
variable-separated the regular EFS S'. The indices
of predicates in the body of the first axiom is greater
than the index in its head. Hence we start with the

axiom p2 (ax) *- p2 (x) and p3 (yb) — p3 (y), and ap-

ply Lemma 4.2 and 4.3. Then we have the following
set of clauses:

Pi (xy) F— p2 (x), p3 (y),

p2 (a) <—,p3 (b) —,
P2 (aa) E--,p3 (bb) —,
p2(axa) — q2(x),p3(byb) 4- q3(y),

q2 (a) 4—,q3(b) 4—,
q2(aa) ,q3(bb) 4--,
q2 (axa) 4- q2(x),q3(byb) 4- q3 (y) •

 We now apply Lemma 4.1 to the pi-clause. Then
we have the desired set of clauses each of which is
a variable-separated clause:

pi (ab) F—,pi (aabyb) 4— q3 (y),
pi (abb) —, pi (axab) — q2(x),
pi (abyb) q3(y), pi (axabb) 4— q2(x),
pi (aab) —,pi(axabyb) — q2(x), q3(y),
pi (aabb) —,
P2 (a) 4—,P3 (b) 4-,
p2 (aa) 4—, p3 (bb) —,
p2(axa) q2(x),p3(byb) q3(y),
q2 (a) 4—,q3(b) E—,
q2 (aa) 4-,q3(bb) -,
q2(axa) q2(x),q3(byb) q3 (y)

 As a more practical example, we have trans-
formed all the Pascal grammar, which can be
described in a regular EFS, into an equivalent
variable-separated EFS. Due to limitation of space,
we do not go into further detail.

 By giving the prover a variable-separated EFS
which is equivalent to the original regular EFS, we
can reduce not only the number of branchings in the
derivation tree but also the height of the tree, i.e.,
the length of the longest branch from the root to a
leaf. Note here that given a ground goal, in general,
a derivation tree for a regular EFS may be infinite.
In fact, in the derivation for a regular EFS, if an ax-
iom which does not contain any constant symbol is
selected, the total length of terms in the resolvent, a
new goal, does not decrease at all. In the worst case
that an axiom p(x) E-- q(x) is selected and another
axiom q(x) F— p(x) exists, the tree becomes infinite.
However, the trees for our variable-separated EFS's
are always finite.

 In this paper we are mainly interested in the refu-
tations starting with ground goals. In such refuta-
tions the heights of trees depend on the lengths of

ground goals given to the prover.
 Now we compare the heights of derivation trees

for regular EFS's and those for variable-separated
EFS's equivalent to them. Here we deal with reg-
ular EFS's for which every derivation tree from a

ground goal is finite, that is, the pathological case
mentioned above may not happen.

Inthissectionweshowhowtheproverfbr

variable-separatedEFS,sworkse田cientlybyanex-

ample.Thef()llowingarearegularEFSanda

variable-separatedEFSwhichdefinethesamesim-

pleJapanesesentences.

The"は","が"and"を","に"belowareJapanese

postpositionalparticleswhichchange(pro)nouns

intothesubjectivecasesandtheobjectivecases,

respectively.The"あ な た","彼","彼 女"and"彼

ら"areJapanesestemsofpronounswhichmake

pronounswhichcorrespondto,fbrexample,"you",
"he"

,"she"and"they",respectively,fbllowedby

thepostpositionalparticles"は"or"が".The

meaningsoftheotherJapanesewordsareshown

inthecomments.

 Let n be the length of an input string, i.e., a term
in the ground goal given to the prover. For a reg-
ular EFS the length of the term in the derivation
tree decreases by at least one at every step of the
derivation. Hence, the height of the derivation tree
is n in the worst case. On the other hand, for a
variable-separated EFS, the length decreases by at
least two at every step, because the both ends of the
term in each clause are constant symbols. Hence,
the height of the tree does not exceed n/2. This
shows that we can make the prover faster if we use
the variable-separated EFS's instead of the regular
EFS's.

 5. An Experimental Result
 In this section we show how the prover for

variable-separated EFS's works efficiently by an ex-
ample. The following are a regular EFS and a
variable-separated EFS which define the same sim-
ple Japanese sentences.
The "G", "bY and "", "Yr below are Japanese
postpositional particles which change (pro)nouns
into the subjective cases and the objective cases,
respectively. The "Z cc t ", "R" "'RA' and "R
6" are Japanese stems of pronouns which make
pronouns which correspond to, for example, "you" ,
"he" , "she" and "they", respectively, followed by
the postpositional particles "a" or " bY . The
meanings of the other Japanese words are shown
in the comments.

 1. A regular EFS S with the following 36 axioms.

sentence (XYZ)<-subject(X),pred(Y),

period(Z)
subject (XYZ)<-noun(X), post (Y), comma (Z)
subject (WXYZ)<-modifier(W), noun (X),

post (Y), comma (Z)
pred(X)<-verb(X)
pred(X)<-adj (X)
pred(XY)<-modifier(X), verb (Y)
pred(XY)<-modifier(X),adj(Y)
modif ier (X) <-adj (X)
modifier(XY)<-noun(X), post (Y)
noun (tc t) <-

 noun (T) <-
 noun (C) <-

 noun (fA6)<-
 noun (fC)<- /* noun(dog)<- */

noun (,)<- /* noun(bird)<- */
 noun() <- /* noun(flower)<- */

noun ()C)<- /* noun(sky)<- */

　　noun(自 由)〈 一　 　 /*no㎜(freedom)<一 　 */

　　noun(海 岸)〈 一　 　 /*noun(beach)〈 一　 　 */

　　post(は)<-

　　post(カ §)〈-

　　post(を)〈-

　　post(に)〈-

　　adj(お お き な)<一 　 /*adj(big)<一 　 　 　 */

　　adj(ひ ろ い)〈 一　 　 /*adj(wide)く 一　 　 　 */

　　adj(あ お い)〈 一　 　 /*adj(blue)〈 一　 　 　 */

　　adj(き れ い な)〈 一　 /*adj(beaut　 iful)<一*/

　　adj(ち い さ い)〈 一　 /*adj(little)<一 　 　 */

　　verb(飛 ぶ)<一 　 　 /*verb(fly)〈 一　 　 　 */

　　verb(走 る)<一 　 　 /*verb(run)<一 　 　 　 */

　　verb(植 え る)<一 　 /*verb(plant)〈 一　 　 */

　　verb(見 る)〈 一　 　 /*verb(see)<一 　 　 　 */

　　verb(放 す)〈 一　 　 /*verb(release)<一 　 */

　　verb(降 る)<一 　 　 /*verb(fall)<一 　 　 */

　　comma(,)〈-

　　period(.　)〈-

2.Avariable-separated　 EFS　 S'with　 506,　 some

　 of　which　 are　 listed　 below.

　　sentence(あ な たX,　 Y.)<-post(X),pred(Y)

　　sentence(彼X,　 Y.)〈-P。st(X),pred(Y)

　　sentence(彼 女X,　 Y.)<-post(X),pred(Y)

　　sentence(彼 らX,　 Y.)<-post(X),pred(Y)

　　sentence(犬X,　 Y.)〈-post(X),pred(Y)

　　sentence(鳥X,　 Y.)〈-post(X),pred(Y)

　　sentence(花X,　 Y.)〈-post(X),pred(Y)

　　sentence(大 空X,　 Y.)〈-post(X),pred(Y)

　 sentence(自 由X,　 Y.)<-post(X),pred(Y)

　 sentence(海 岸X,　 Y.)<-post(X),pred(Y)

　　　　　　　　　　　:

　 adj(お お き な)<-

　 adj(ひ ろ い)<-

　 adj(あ お い)<-

　 adj(き れ い な)<-

　 adj(ち い さ い)<-

　 verb(飛 ぶ)<-

verb(走 る)<-

verb(植 え る)<-

verb(見 る)<-

verb(放 す)〈-

verb(降 る)〈-

　 comma(,)〈-

　 period(.　)<一

We made an experiment on Sun SPARC station 10

by giving these two EFS's and following four goals

with Japanese sentences to the prover, and obtained

tlleresult,sinthetable.

1。 ←-selltellce(大 空 を 飛 ぶ)

/*←selltellce(Flyillthesky.)*/

2.←selltellce(彼 女 は,鳥 を 放 す.)

/*←-sellteIlce(Shereleasesabird・)*/

3.t-一 一s()llt.ence(ち い さ い 犬 が,海 岸 を 走 る.)

/*←selltellce(Alittledogrunsonthebeach.)*/

1.←-selltellce(彼 女 が 植 え た 赤 い 花 が,

庭 の 花 壇 で き れ い に さ い て い る.)

/*←selltence(Flowerssheplantedareinfull

bloo111iIltheflowerbedinthegarden.)*/

Sentence Regular EFS Var-separated EFS

 10.17 sec0.60 sec

 20.44 sec1.04 sec

 32.42 sec1.62 sec

 4318.89 sec1.90 sec

 ular EFS's into equivalent variable-separated EFS's

in the process of proving the theorem. However, it is

not always efficient. In fact, there has been observed

that even a small regular EFS with just five axioms

may be transformed into a variable-separated EFS

with more than a thousand axioms. To make the

procedure efficient is one of the future problems we
should solve.

 We conclude this paper by noticing that our

notions and methods can be directly applied to

context-free grammars, and hence the prover also

works as a top-down parser for context-free gram-

mars.

 Acknowledgments

 We would like to thank E. Hirowatari and S. Mat-

sunaga for their valuable comments.

The sentences No.2 and No.3 have been accepted by

the prover, while the rest have been rejected. From

this table we can see that the variable-separated

EFS S' makes the prover much faster than the orig-

inal regular EFS.

 6. Concluding Remarks

 In this paper, we have introduced a notion of

variable-separated EFS's. Then we have proved

that these two classes of EFS's are equivalent to

each other in expressive power, and shown that the

variable-separated EFS's make the prover for regu-

lar EFS's at least twice as fast as the original regular

EFS's.

 We have also given a procedure to transform reg-

 References

1) J.E.Hoperoft and J.D.Ullman. Introduction to Automata
 Theory, Languages, and Computation. Addison-Wesley

 Publishing Company, 1979.
2) J.W.Lloyd. Foundations of Logic Programming(second

 edition). Springer-Verlag, 1987.

3) R.M.Smullyan. Theory of Formal Systems. Princeton
 Univ. Press, Princeton, 1961.

4) S.Arikawa, S.Miyano, A.Shinohara, T.Shinohara, and
 A.Yamamoto. Algorithmic learning theory with elemen-

 tary formal systems. IEICE Transactions on Informa-

 tion and Systems, Vol. E75-D, No. 4, pp. 405-414, 1992.
5) S.Arikawa, T.Shinohara, and A.Yamamoto. Learning el-

 ementary formal systems. Theoretical Computer Sci-

 ence, Vol. 95, pp. 97-113, 1992.

