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INTRODUCTION

In Asia, drought is a major abiotic stress, affecting 
over 20% of the total rice–(Oryza sativa L.) cultivated 
areas (Pandey and Bhandari, 2008).  In Vietnam, over 
100.000 hectares of rice in the central provinces are 
affected by severe drought, and an equivalent to 500,000 
tons of paddy has been lost (MARD, 2010).  Uncertain 
patterns of drought stress occur in most prime rainfed 
rice environments (Serraj et al., 2009).  Under prolonged 
or severe drought conditions, flowering time is an impor-
tant determinant of grain yield.  The limitation of plant 
growth imposed by low water availability is mainly due 
to reduction of plant carbon balance, which is largely 
dependent on photosynthesis.  For this reason, plant pho-
tosynthesis responses to water stress have been the sub-
ject of study for decades, (Flexas and Medrano, 2002; 
Lawlor and Cornic, 2002).  Moreover, recent reports have 
indicated that drought stress can cause a series of physi-
ological and biochemical responses, such as stomatal clo-

sure, suppression of cell division and elongation, and inhi-
bition of photosynthesis (Shinozaki and Yamaguichi, 
2007). 

Higher yield of hybrid rice over inbred rice and the 
parent under unfavorable environments has been inves-
tigated, including rainfed drought–prone lowland fields 
and soil problems (Virmani, 2003).  Previously, a positive 
heterosis for photosynthesis was obtained under high 
temperature condition and radiation, due to the higher 
stomatal conductance and also the higher non–photo-
chemical quenching (Pham et al., 2005).  Some recent 
studies have shown that hybrid rice shows more adapta-
bility to stressful environments over conventional inbred 
rice (Li et al., 2009). Villa et al. (2012) has evaluated 
hybrid rice produced from cytoplamic male sterility 
(CMS) female lines under well–watered lowland, drought 
conditions, and the relative performance of hybrids which 
were not systematically compared with that of inbred 
parents.  Thermo–sensitive male sterile line (TGMS), 
which exposed pollen sterility under high temperature 
but fertility under low temperature, has been used effi-
ciently as a female parent to produce F1 hybrid rice in 
tropical areas (Pham et al., 2004).  Drought tolerance of 
inbred parents is considered as a crucial factor for devel-
opment of drought–tolerant hybrids (Luo, 2010).
Therefore, the objectives of this study were to evaluate 
heterosis for photosynthetic characters and dry matter 
accumulation of hybrids produced from TGMS line, com-
pared to their male parents (upland rice) under drought 
stress at flowering stage. 
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MATERIALS AND METHODS

Plant materials
Seven cultivars of inbred upland rice were used as 

male parents, a thermo–sensitive genic male sterile line 
TGMS 103s (released from Vietnam) as female parent 
and their 7 F1 hybrids (Table 1).

Rice Planting
Seeds of the F1 hybrid and parent cultivars were incu-

bated and sown at different time for synchronizing head-
ing time in the seedling bed (60×35×8 cm).  Seedlings 
at the 3–4– leaf stage were transplanted singly into Wager 
pot (0.03 m2) containing 5 kg of dry foaming soil, one 
seedling per pot.  The experiment was laid out in ran-
domly complete block design (Gomez and Gomez, 1984) 
in autumn season in 2010 in greenhouse at faculty of 
Agronomy, Hanoi University of Agriculture.

Fertilization
Total fertilizer was applied with N, P2O5 and K2O at 

the rate of 0.48, 0.36 and 0.36 (g per pot), respectively.  
Basal dressing for one pot with N, P2O5 and K2O was at 
the rate of 0.16, 0.18 and 0.12 g, respectively.  Top dress-
ing at 7 days after transplanting (DAT) and 14 DAT with 
N, P2O5 and K2O at the rate of 0.08, 0.18 and 0.08 g per 
pot, respectively.  Final dressing at the panicle initiation 
stage (20–18 days before heading) was applied with N 
and K2O at the same rate of 0.06 g per pot.

Drought treatment
At booting stage (five to three days before flowering), 

20 plants of each F1 hybrid and the respective parent 
were randomly selected for water withdrawn (drought 
treatment) in compared to other twenty well–watering 
(control).  Tension meter was installed into the pots to 
measure soil potential.  When the soil water potential 
reached –60 kPa, photosynthetic characteristics were 
measured.  After that, water was re–applied in the 
drought treatment pots, photosynthetic parameters were 
measured after 5 days of recovery.

Measuring
At flowering (under drought treatment) and ripen-

ing stage (drought recovery), four plants of each F1 hybrid 

and the respective parent under both drought and con-
trol conditions were selected for specific photosynthetic 
characters.  For each plant, two top–fully flag leaves were 
selected for measuring CO2 exchange rate (CER), tran-
spiration rate (Tr), inter cellular CO2 concentration (Ci) 
and stomatal conductance (Gs) using a portable photo-
synthesis gas exchange system (LICOR 6400, the USA) 
at temperature of 30˚C, photosynthetic photon flux den-
sity (PPFD) of 1500 μmol m–2 s–1, CO2 concentration of 
370 μmol mol–1 and relative humidity of 60%.The plants 
on which photosynthesis was measured were also selected 
for drying at 80˚C in 48 h to constant weight for total dry 
matter accumulation. 

Analyses consisted of photosynthesis–derived cal-
culations and statistical comparisons

Water use efficiency was calculated as: WUE = CER/
Tr (µmol CO2/ mmol H2O).

Heterosis over the best parent (Hb) and that over 
the mean of parents (abbreviated to mid–parent) (Ht) 
were calculated according to the following formula;

　
F1 – Mid –parent

Ht (%) = —————————  ×100
　　　　　  Mid –parent

　  F1 – best parent
Hb (%) = —————————  ×100

　　　　　    best parent

Data were analyzed by SAS (Full name of software 
manufacturer, 1990).  The t–test procedure was used to 
examine the difference between F1 hybrid and the 
respective male parent and mid–parent at different stage 
under both drought and control conditions.  Best parent 
was considered as the parent with the higher value of 
each parameter. 

RESULTS

Under well– watering condition (control), the aver-
age value of CO2 exchange rate (CER) was higher in the 
F1 hybrids than that in male parents at flowering stage, 
but the significant difference was not obtained at ripen-
ing stage (Table 2).  In contrary, the average value of CER 
was higher in the male parents (7.6 μmol m–2 s–1) than 
that in the F1 hybrids (2.5 μmol m–2 s–1) under drought 
condition at flowering stage, but that value was higher in 
F1 hybrids under recovery condition.  At flowering stage, 
all F1 hybrid rice showed significantly negative heterosis 
for CER under drought condition with the heterosis over 
mid–parent (Ht) value ranged from –83.7% in 103S/TN13 
to –30.1% in 103S/TN19, but which was not found in 
well–watered conditions (Table 3).  At ripening stage, all 
F1 hybrids showed positive heterosis for CER over both 
mid–parent (average Ht=23.0%) and best parent (aver-
age Hb=18%) under recovery condition, whereas it was 
not observed under control condition. 

At the flowering stage, a significant and positive cor-
relation was found between CER and stomatal conduct-
ance in F1 hybrids (r=0.85**) and male parents (r=0.89**) 

Table 1.  Plant materials, male parents and F1 hybrids, used in 
this research

Male parent F1 hybrids

Name Code Original Code

Beo Dien TN2 Viet Nam Upland rice 103S/TN2

Ep hat tron TN11 Viet Nam Upland rice 103S/TN11

IR71525 TN13 IRRI  Upland rice 103S/TN13

CT6510–24–1–2 TN15 IRRI Upland rice I 103S/TN15

WAB96–1–1 TN17 IRRI Upland rice 103S/TN17

ULPI–7 TN19 IRRI Upland rice 103S/TN19

Nep Bao lac TN23 Viet Nam Upland rice 103S/TN23
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under drought condition.  In contrast, CER was nega-
tively correlated with inter cellular CO2 concentration 
(Ci) in all F1 hybrids and their parents (r=–0.52*) (Fig. 
1).  When data was calculate separately, the CER was 

significantly and positively correlated with transpiration 
rate in male parents (r=0.86**), but the correlation was 
not significant in the F1 hybrids (r=0.27). 

At the ripening stage, a significant and positive cor-

Table 2.  The CO2 exchange rate (CER; µmol CO2 m
–2 s–1) in F1 hybrid and parent rice under drought 

and recovery conditions

F1 hybrids and parents Flowering Ripening

Drought Control Recovery Control

F1 hybrids 103S/TN2 2.1 15.8 14.2 7.1

103S/TN11 2.5 20.3 9.8 8.1

103S/TN13 1.7 22.1 14.0 8.4

103S/TN15 1.2 22.6 13.0 10.3

103S/TN17 1.4 15.4 14.0 14.2

103S/TN19 3.4 17.9 11.3 10.3

103S/TN23 1.8 19.7 9.9 8.2

Average 2.0 19.1 12.3 9.5

Male parents TN2 7.2 16.0 11.9 10.2

TN11 9.7 16.2 9.8 10.4

TN13 12.4 15.7 12.2 6.5

TN15 6.5 14.2 11.0 11.2

TN17 12.0 15.3 10.6 9.2

TN19 3.9 13.8 10.3 10.7

TN23 1.8 15.3 7.5 7.0

Average 7.6 15.2 10.5 9.3

Female parent 103S 5.9 21.8 9.5 11.1

LSD 0.05 3.63 2.80 2.69 3.02

Table 3.  Heterosis for CER in F1 hybrid rice under drought and recovery conditions

F1 hybrids Heterosis (%)
Flowering Ripening

Drought Control Recovery Control

103S/TN2 Ht –68.0* –16.4* 32.4* –33.2*

Hb –70.9* –27.4* 18.8* –35.7*

103S/TN11 Ht –68.3* 6.8 1.8 –25.0*

Hb –74.5* –6.8 0.4 –27.3*

103S/TN13 Ht –83.7* 18.0* 29.3* –4.2

Hb –88.7* 1.7 14.8* –23.8*

103S/TN15 Ht –80.0* 25.5* 26.8* –7.3

Hb –81.0* 3.7 18.2* –7.9

103S/TN17 Ht –85.9* –16.7* 39.5* 39.7*

Hb –90.0* 1.0 32.2* 27.7*

103S/TN19 Ht –30.1* 0.7 15.0* –5.0

Hb –42.0* –17.7* 10.6* –6.8

103S/TN23 Ht –52.2* 6.5 16.3* –8.8

 Hb –68.9* –9.3 4.4 –25.8*

Average Ht –66.9 3.5 23.0 –6.3

Hb –73.7 –7.8 14.2 –14.2

Note: Ht: heterosis over mid–parent; Hb: heterosis over best parent; *: Significant at the 
probability of 0.05 by t–test.



224 P. V. CUONG et al.

Fig. 1.	 Correlation of CO2 exchange rate (CER) with stomatal con-
ductance (Gs), inter cellular CO2 concentration (Ci) and 
transpiration rate (Tr) in F1 hybrids (black round symbol), 
male parents (while round symbol) and female parent 
(black angle symbol) under drought condition. Note: *, **; 
Significant at the probability of 0.05 and 0.01 levels, 
respectively.

Fig. 2.	 Correlation of CO2 exchange rate (CER) with stomatal con-
ductance (Gs), inter cellular CO2 concentration (Ci) and 
transpiration rate (Tr) in F1 hybrids (black round symbol), 
male parents (while round symbol) and female parent 
(black angle symbol)  under recovery condition. Note: *, 
**; Significant at the probability of 0.05 and 0.01 levels, 
respectively.

Table 4.  The water use efficiency (WUE; µmol CO2 mmol–1 H2O) in F1 hybrid and parent rice under 
drought and recovery conditions

F1 hybrids and parents Flowering Ripening

Drought Control Recovery Control

F1 hybrids 103S/TN2 2.5 1.8 1.6 1.3

103S/TN11 2.0 2.9 1.5 1.2

103S/TN13 2.4 2.5 1.6 1.2

103S/TN15 2.0 2.7 1.4 1.4

103S/TN17 2.5 2.1 1.8 2.1

103S/TN19 2.3 2.0 1.6 1.4

103S/TN23 1.6 2.2 1.5 1.3

Average 2.2 2.3 1.6 1.4

Male parents TN2 1.9 2.5 2.1 1.7

TN11 1.5 3.0 1.8 1.6

TN13 2.0 2.3 2.5 2.1

TN15 2.1 2.7 2.0 1.8

TN17 2.0 2.2 1.9 2.1

TN19 2.6 2.9 2.5 1.9

TN23 1.2 2.6 1.8 1.4

Average 1.9 2.6 2.1 1.8

Female parent 103S 1.7 2.7 2.1 1.4

LSD 0.05 0.27 0.31 0.27 0.20
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relation was found between CER and stomatal conduct-
ance in all F1 hybrids and male parents (r=0.64*) under 
drought recovery (Fig. 2).  In contrast, the CER was nega-
tively correlated with Ci in all F1 hybrids and their par-
ents (r=–0.52*) (Fig. 2).  CER was significantly and pos-

itively correlated with transpiration rate in all F1 hybrids 
and male parents (r=0.70*). 

At flowering stage, the average value of water use 
efficiency (WUE) in F1 hybrids was higher than that in 
the male parents under drought condition.  In contrary, 

Table 6.  Dry matter accumulation (g hill–1) in F1 hybrid and parent rice under drought and recov-
ery conditions

F1 hybrids and parents Flowering Ripening

Drought Control Recovery Control

F1 hybrids 103S/TN2 22.4 28.3 33.0 31.8

103S/TN11 20.9 24.4 29.7 31.3

103S/TN13 20.9 26.7 30.4 27.4

103S/TN15 23.9 26.3 30.1 30.8

103S/TN17 23.3 27.4 32.7 35.9

103S/TN19 20.9 28.5 34.8 25.4

103S/TN23 24.5 33.4 33.6 36.1

Average 22.4 27.9 32.0 31.2

Male parents TN2 18.8 21.7 25.1 27.1

TN11 20.5 23.7 29.9 29.5

TN13 23.6 26.4 30.7 38.2

TN15 18.7 20.3 26.1 27.1

TN17 17.1 18.9 28.7 31.9

TN19 18.3 21.2 26.8 35.6

TN23 26.4 31.3 31.8 35.2

Average 20.5 23.4 28.4 32.1

Female parent 103S 22.0 23.3 26.0 25.6

LSD 0.05 1.65 3.09 2.98 2.68

Table 5.  Heterosis for WUE in F1 hybrid rice under drought and recovery conditions

F1 hybrids Heterosis (%)
Flowering Ripening

Drought Control Recovery Control

103S/TN2 Ht 40.5* –31.0* –21.4* –18.1*

Hb 32.8* –28.7* –22.4* –23.7*

103S/TN11 Ht 29.2* –0.2 –23.0* –22.8*

Hb –20.4* –6.4 –17.4* –26.6*

103S/TN13 Ht 23.7* –0.7 –29.9* –33.8*

Hb 8.0 6.8 –35.6* –44.7*

103S/TN15 Ht 7.6 2.1 –32.0* –13.3

Hb –3.4 2.4 –31.8* –23.2*

103S/TN17 Ht 25.6* –15.4* –7.9 19.7*

Hb 9.1 –7.2 –3.8 –0.4

103S/TN19 Ht 10.2 –27.8* –30.0* –12.9

Hb –9.4 –30.2* –35.9* –23.6*

103S/TN23 Ht 13.7 –17.1* –20.0* –5.3

 Hb –2.3 –16.2* –14.0* –4.0

Average Ht 21.5 –12.9 –23.5 –12.4

Hb 2.1 –11.4 –23.0 –20.9

Note: Ht: heterosis over mid–parent; Hb: heterosis over best parent; *: Significant at the 
probability of 0.05 by t–test.
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the value was higher in male parents under well–water-
ing condition (Table 4).  At ripening stage, the average 
value of WUE was lower in the F1 hybrids than that in 
male parents under both conditions. 

At the flowering stage, a significant and positive het-
erosis over mid–parent (mean Ht=21.5%) for WUE was 
observed in all F1 hybrids under drought condition, 
whereas the heterosis value was negative under control 
conditions (mean Ht=–11.4%) (Table 5).The significant 
and positive heterosis for WUE under drought treatment 
was observed in four F1 hybrids (103S/TN2, 103S/TN11, 
103S/TN13 and 103S/TN17).  At ripening stage, a negative 
heterosis for WUE was observed in all F1 hybrids. 

At flowering stage, the average value of dry matter 
accumulation (DM) was higher in F1 hybrids and in male 
parents under both drought and control conditions 
(Table 6).  At ripening stage, that value was higher in F1 
hybrids under drought recovery condition, whereas the 
difference was not observed under well–watering condi-
tion.  None of F1 hybrids showed significant and positive 
heterosis over the best parent (Hb) for DM under drought 
treatment (Table 7).  However, three of them (103S/TN2, 
103S/TN15 and 103S/TN19) showed significant and posi-
tive Hb for this traits under drought recovery (Hb= 
15.4%– 29.8%).  The mean Ht value for this parameter in 
F1 hybrids was lower under drought (6.0%) than that 
under control condition (19.6%) at flowering stage.  In 
contrary, the heterosis value was higher in the recovery 
condition (17.9%) than that in the control condition 
(9.2%). 

DISCUSSION

To survive under drought stress, plants have evolved 
a series of intricate mechanisms to trigger a suite of physi-
ological, cellular, and photosynthetic responses governed 
by genotype interacting with environment (Shinozaki 
and Yamaguchi, 2007; Fujita et al., 2006).  This study to 
examined responses of photosynthesis and dry matter 
production to a drought environment at heading for the 
hybrid progeny of drought tolerant male parent (upland 
cultivars) and female parent paddy rice (TGMS 103S line).  
The findings showed much lower photosynthetic rate in 
all F1 hybrids than that in the respective male parents 
under drought conditions.  This is in agreement with 
Flexas et al. (2002) regarding reduced photosynthesis to 
compare with those in the parental lines.  Drought influ-
ences photosynthesis through either pathway regulation 
by stomatal closure and decreasing flow of CO2 into mes-
ophyll tissue (Chaves, 1991; Chaves et al., 2003; Ort et 
al., 1994; Flexas et al., 2004) or by directly impairing 
metabolic activities (non–stomatal inhibition) (Farquhar 
et al., 1989).  In this study, non–stomatal inhibition may 
occurred first in the F1 hybrid rice, compared to diffusive 
limitation through stomatal closure in male parent lines, 
which showed decreased in Ci during drought stress.  It 
also has been shown that non–stomatal inhibition (meta-
bolic activities) may occur first, causing a temporary 
increase in internal CO2 concentration, which generates 
stomata to close (Briggs et al., 1986).  In addition, it has 
been reported that drought stress causes an increase in 
Ci (Siddique et al., 1999; Kicheva et al., 1994).  During 
onset of drought, stomatal conductivity declines before 

Table 7.  Heterosis for dry matter accumulation in  F1 hybrid rice under drought and recovery con-
ditions

F1 hybrids Heterosis (%)
Flowering Ripening

Drought Control Recovery Control

103S/TN2 Ht 9.8 25.8* 29.3* 20.8*

Hb 1.9 21.4* 27.0* 17.3

103S/TN11 Ht –1.6 4.0 6.1 13.7

Hb –5.0 3.3 –0.9 6.1

103S/TN13 Ht –8.3 7.3 7.3 –14.1

Hb –11.4* 1.1 –0.9 –28.3*

103S/TN15 Ht 17.6 20.6* 15.5* 17.0

Hb 8.7 12.8 15.4* 13.6

103S/TN17 Ht 19.4* 29.5* 19.4* 24.9*

Hb 6.0 17.3 13.8 12.4

103S/TN19 Ht 3.7 28.0* 31.7* –16.8

Hb –5.0 22.3* 29.8* –28.6*

103S/TN23 Ht 1.1 22.1* 16.1* 18.9*

 Hb –7.4 6.6 5.5 2.6

Average Ht 6.0 19.6 17.9 9.2

Hb –1.7 12.1 12.8 –0.7

Note: Ht: heterosis over mid–parent; Hb: heterosis over best parent; *: Significant at the 
probability of 0.05 by t–test.
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reduction in photosynthesis and the suppression of pho-
tosynthesis during the stress is mainly due to the reduc-
tion of CO2 diffusion (Lawlor, 2002).  In our F1 hybrid 
rice, non–stomatal limitation such as oxidative damage 
to chloroplast may be responsible for the decline in pho-
tosynthesis as was also claimed in the previous reports 
(Zhou et al., 2007; Ji et al., 2012).

The similarity in performance of heterosis for CO2 
exchange rate and mesophyll conductance in F1 hybrid 
rice in both well–irrigated and drought–stress conditions 
partly disclosed the important contribution of mesophyll 
conductance over stomatal conductance in the regula-
tion of photosynthesis.  In the research of Flexas et al. 
(2002) on grapevines under drought stress, it was found 
that during early water stress, stomatal conductance 
played a predominant role and later contributed equally 
to mesophyll conductance after acclimation.  In this study, 
it appears that in F1 hybrid rice, mesophyll conductance 
may be governing CO2 exchange rate from the beginning 
point.  Greater stomatal closure led to strong reduction in 
transpiration rate in F1 hybrid rice compared to male 
parent lines.  The decrease in CO2 exchange rate com-
bined with strong reduction in transpiration rate caused 
a change in the heterosis value for water use efficiency 
under drought, but there was no difference under well–
watered conditions.  Although CO2 exchange rate signifi-
cantly decreased, dry matter accumulation still could be 
maintained during recovery.  Strong recovery of dry mat-
ter accumulation may be due to the ability of F1 hybrid 
rice to use CO2 more effectively during drought stress.

Thus, using upland male parents to produce F1 
hybrids with the decrease in photosynthesis during 
drought, but much better performance in recovery stage 
appears to be an effective approach to produce drought 
tolerant rice hybrids.
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