九州大学学術情報リポジトリ Kyushu University Institutional Repository

On the ideal generated by complex cobordism classes of projective space bundles over CP²

鎌田, 正良 九州大学教養部数学科

https://doi.org/10.15017/1449083

出版情報:九州大学教養部数学雑誌. 19, pp.31-36, 1993-12. 九州大学教養部数学教室 バージョン: 権利関係: Math. Rep. 19, 1993.

On the ideal generated by complex cobordism classes of projective space bundles over CP^2

Masayoshi KAMATA

Dedicated to Professor Seiya Sasao on his sixtieth birthday

(Received Aug. 24, 1993)

1. Let $F_{MU_*}(x,y) = \sum a_{ij}^{MU} x^i y^j (\in MU_*[[x,y]])$ be the universal formal group law over the complex cobordism ring MU_* . For the formal group law $F(x,y) = (x+y-2axy)/(1-(a^2+b^2)xy)$ with real numbers a, b, we have a ring homomorphism of MU_* into the real numbers field R

$$\varphi_{a,b}: MU_* \longrightarrow R$$

which is called the multiplicative genus associated with the formal group law F(x, y) (cf. [1], [2], [3], [6]). In [2] we showed that the ideal I generated by elements α in $MU_* \otimes Q$ which satisfy $\varphi_{\frac{\delta}{2}, \sqrt{2\delta}}(\alpha) = 0$ for any rational number δ is contained in the ideal J in $MU_* \otimes Q$ generated by cobordism classes of complex projective space bundles over the complex projective 2-space CP^2 . The aim of this paper is to prove that the ideal I coincides with the ideal J.

2. Let q(x) be a formal power series in R[[x]]. The symmetric power series $q(t_1)q(t_2)\cdots q(t_n)$ is described by elementary symmetric polynomials $\sigma_1, \sigma_2, \cdots, \sigma_n$ of variables t_i . Let

$$P_q(\sigma_1, \sigma_2, \cdots, \sigma_n) = q(t_1)q(t_2)\cdots q(t_n).$$

For an *n*-dimensional complex vector bundle ξ over X, define the cohomology class $P_q(\xi) \in H^*(X; R)$ by

$$P_q(c_1(\xi), c_2(\xi), \cdots, c_n(\xi))$$

where $c_i(\xi) (\in H^{2i}(X))$ is the *i*-th Chern class of ξ . Let M be a weakly almost complex closed manifold. The Whitney sum $\tau'(M) = \tau(M) \oplus \varepsilon^k$ of the tangent bundle $\tau(M)$ and a suitable k-dimensional real trivial vector bundle ε^k is equipped with the complex structure. We then evaluate $P_q(\tau'(M))$ on the fundamental class [M] to get a multiplicative genus

$$\Phi_q: MU_* \longrightarrow R$$

$$\Phi_q([M]) = \langle P_q(\tau'(M)), [M] \rangle.$$

For a formal group law f(x, y), let l(x) be the formal power series in R[[x]] with the leading term x which satisfies l(f(x, y)) = l(x) + l(y). This is called the logarithm of f(x, y). The formal power series

$$q(x) = \frac{x}{l^{-1}(x)}$$

induces the multiplicative genus

$$\Phi_a: MU_* \longrightarrow R$$

which coincides with the multiplicative genus $\varphi : MU_* \longrightarrow R$ associated with the formal group law f(x, y). The logarithm for the formal group law $(x + y - 2axy)/(1 - (a^2 + b^2)xy)$ is given by

$$l(x) = \int_0^x \frac{1}{1 - 2ax + (a^2 + b^2)x^2} dx$$

and the formal power series q(x) provided to the multiplicative genus $\varphi_{a,b}$ is given by

$$q(x) = x(a + b\cot bx).$$

The values of the multiplicative genus $\varphi_{a,b}$ for the complex cobordism class of complex projective n-spaces CP^n are easily computed as follows:

PROPOSITION 1. If
$$\alpha = a + b\sqrt{-1}$$
 and $\beta = a - b\sqrt{-1}$, then
 $\varphi_{a,b}([CP^n]) = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}.$

and

$$\varphi_{a,0}([CP^n]) = (n+1)a^n.$$

Proof. We see the logarithm l(x) of $\varphi_{a,b}$ to be

$$l(x) = \int_0^x \frac{1}{(\alpha - \beta)x} \left(\frac{1}{1 - \alpha x} - \frac{1}{1 - \beta x}\right) dx$$

=
$$\int_0^x \sum_{n=1}^\infty \frac{\alpha^n - \beta^n}{\alpha - \beta} x^{n-1} dx$$

=
$$\sum_{n=1}^\infty \frac{\alpha^n - \beta^n}{n(\alpha - \beta)} x^n .$$

Since

$$l(x) = \sum_{n=0}^{\infty} \frac{\varphi_{a,b}([CP^n])}{n+1} x^{n+1}$$
 [4],

the proposition follows.

Let ξ be an n-dimensional smooth complex vector bundle over an oriented closed manifold M. The tangent bundle $\tau(CP(\xi))$ over the complex projective space bundle $CP(\xi)$ associated with ξ is described as follows:

$$\tau(CP(\xi))\oplus 1_C \cong \pi^*\tau(M)\oplus \bar{\eta}_{\xi}\otimes \pi^*\xi,$$

where $\bar{\eta}_{\xi}$ is the conjugate bundle of the canonical line bundle η_{ξ} over $CP(\xi)$ and $\pi: CP(\xi) \longrightarrow M$ is the projection. By virtue of the splitting principle of complex vector bundle we describe the total Chern class $c(\pi^*\xi)$ as

$$c(\pi^*\xi) = (1+x_1)\cdots(1+x_n).$$

Let $z = c_1(\bar{\eta}_{\xi})$. In [5] Ochanine investigates

$$P_{q}(\bar{\eta}_{\xi} \otimes \pi^{*}\xi) = q(z+x_{1}) \cdots q(z+x_{n}) \\ = \frac{z+x_{1}}{l^{-1}(z+x_{1})} \cdots \frac{z+x_{n}}{l^{-1}(z+x_{n})}$$

to get that the coefficient of z^{n-1} in this polynomial is

$$\sum_{i=1}^{n} \prod_{k \neq i} \frac{1}{l^{-1}(x_k - x_i)}.$$

PROPOSITION 2. For the logarithm of $(x + y - 2axy)/(1 - (a^2 + b^2)xy)$

$$l(x) = \int_0^x \frac{1}{1 - 2ax + (a^2 + b^2)x^2} dx.$$

we have

$$\sum_{i=1}^n \prod_{k\neq i} \frac{1}{l^{-1}(x_k - x_i)} = \frac{\alpha^n - \beta^n}{\alpha - \beta},$$

where $\alpha = a + b\sqrt{-1}$ and $\beta = a - b\sqrt{-1}$.

Proof. We get

$$\frac{1}{l^{-1}(u)} = a + b\cot bu.$$

Masayoshi KAMATA

Write

$$G_k(y_1, y_2, \cdots, y_k) = \sum_{i=1}^k \prod_{j \neq i} \cot(y_j - y_i).$$

Then

$$G_2(y_1, y_2) = 0$$
 and $G_3(y_1, y_2, y_3) = -1.$

Applying $\cot \alpha \cot \beta = \cot(\alpha - \beta)(\cot \beta - \cot \alpha) - 1$, we have

$$G_{k}(y_{1}, \dots, y_{k})$$

$$= \cot(y_{k-1} - y_{k}) \{G_{k-1}(y_{1}, \dots, y_{k-2}, y_{k}) - G_{k-1}(y_{1}, \dots, y_{k-2}, y_{k-1})\}$$

$$-G_{k-2}(y_{1}, \dots, y_{k-2}).$$

By inductive reasoning it follows that $G_k(y_1, \dots, y_k)$ is constant and in the sequel we obtain

$$G_k(y_1, y_2, \cdots, y_k) = -G_{k-2}(y_1, y_2, \cdots, y_{k-2})$$

 \mathbf{and}

$$G_{2t}(y_1, y_2, \cdots, y_{2t}) = 0$$

 $G_{2t+1}(y_1, y_2, \cdots, y_{2t+1}) = (-1)^t.$

We utilize these results to calculate the following:

$$\sum_{i=1}^{n} \prod_{k \neq i} (a + b \cot b(x_k - x_i))$$

$$= na^{n-1} + \{\sum_{i_1 < i_2} G_2(bx_{i_1}, bx_{i_2})\}a^{n-2}b + \cdots$$

$$+ \{\sum_{i_1 < \cdots < i_s} G_s(bx_{i_1}, \cdots, bx_{i_s})\}a^{n-s}b^{s-1} + \cdots$$

$$= na^{n-1} - \binom{n}{3}a^{n-3}b^2 + \cdots + (-1)^t \binom{n}{2t+1}a^{n-2t-1}b^{2t} + \cdots$$

$$= \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

PROPOSITION 3. Let ξ be an n-dimensional smooth complex vector bundle over a weakly almost complex closed manifold M. Then

$$\varphi_{a,b}([CP(\xi)]) = \varphi_{a,b}([M])\varphi_{a,b}([CP^{n-1}]).$$

34

Proof. Let $q(u) = u(a + b \cot bu)$. Then

$$\begin{split} \varphi_{a,b}([CP(\xi)]) &= \langle \pi^* P_q(\tau(M)) P_q(\bar{\eta}_{\xi} \otimes \pi^* \xi) , \ [CP(\xi)] \rangle \\ &= \langle \pi^* P_q(\tau(M)) \frac{\alpha^n - \beta^n}{\alpha - \beta} z^{n-1} , \ [CP(\xi)] \rangle \\ &= \frac{\alpha^n - \beta^n}{\alpha - \beta} \langle z^{n-1} \pi^* P_q(\tau(M)) , \ [CP(\xi)] \rangle \end{split}$$

The fundamental homology class of $CP(\xi)$ is the dual of $\pi^*([M]^*)z^{n-1}$, where $[M]^*$ denotes the fundamental cohomology class of M. Thereby we have

$$\varphi_{a,b}([CP(\xi)]) = \frac{\alpha^n - \beta^n}{\alpha - \beta} < P_q(\tau(M)), [M] > .$$

This and Proposition 1 complete the proof of Propositon 3. \Box

For a rational number δ , we have the multiplicative genus $\varphi_{\frac{1}{2}\delta,\frac{\sqrt{3}}{2}\delta}: MU_* \longrightarrow Q$, where Q is the field of rational numbers, and so we obtain the main theorem.

THEOREM 4. The ideal J in $MU_* \otimes Q$ generated by cobordism classes of complex projective space bundles over CP^2 conicides with the ideal I in $MU_* \otimes Q$ consisting of cobordism classes α which satisfy

$$\varphi_{\frac{1}{2}\delta,\frac{\sqrt{3}}{2}\delta}(\alpha) = 0$$

for any rational number δ .

Proof. Let ξ be a smooth complex vector bundle over CP^2 with dim $\xi = n$. It follows from Proposition 1 and Proposition 3 that

$$\varphi_{\frac{1}{2}\delta,\frac{\sqrt{3}}{2}\delta}([CP(\xi)]) = \varphi_{\frac{1}{2}\delta,\frac{\sqrt{3}}{2}\delta}([CP^{2}])\varphi_{\frac{1}{2}\delta,\frac{\sqrt{3}}{2}\delta}([CP^{n-1}]) = 0$$

and $J \subset I$. On the other hand in [2] we proved $I \subset J$. Hence I = J.

Masayoshi KAMATA

References

- F. HIRZEBRUCH, T. BERGER AND R. JUNG: Manifolds and Modular forms, Max-Plank-Institute f
 ür Mathematik, Bonn, 1992
- [2] M. KAMATA: The multiplicative genus associated with the formal group law $(x + y 2axy)/(1 (a^2 + b^2)xy)$, to appear in Osaka J. Math.
- [3] P. S. LANDWEBER: Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. vol.1326, Berlin Heiderberg New York : Springer, 1988.
- [4] S. P. NOVIKOV: The method of algebraic topology from the viewpoint of cobordism theories (Russian), Izvestija Akademi Nauk SSSR Serija Matematičeskaja 31 (1967), 855-951.
- [5] S. OCHANINE: Sur les generes multiplicatifs definis par des integrales elliptiques, Topology 26 (1987), 143-151.
- [6] D. QUILLEN: On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.

Department of Mathematics College of General Education Kyushu University 01 Ropponmatsu Fukuoka 810 Japan