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1. Let Fyy,(2,y) = Lalf’2z'y (e MU,[[z,y]]) be the universal formal
group law over the complex cobordism ring MU,. For the formal group law
F(z,y) = (z +y — 2azy)/(1 — (a® + b*)zy) with real numbers a, b, we have a ring
homomorphism of MU, into the real numbers field R

Yap: MU, — R

which is called the multiplicative genus associated with the formal group law
F(z,y) (cf. [1], [2], [3], [6])- In [2] we showed that the ideal I generated by
elements a in MU,®Q which satisfy ¢, 55 (@) = 0 for any rational number § is
contained in the ideal J in MU,®Q geznezrated by cobordism classes of complex
projective space bundles over the complex projective 2-space CP2. The aim of
this paper is to prove that the ideal I coincides with the ideal J.

2. Let g(z) be a formal power series in R[[z]]. The symmetric power series
q(t1)g(t2) - - - g(t,) is described by elementary symmetric polynomials 01,09, -, 0y,
of variables ¢;. Let

Py(01,02,--+,00) = q(t1)q(t2) - q(ta)-

For an n-dimensional complex vector bundle £ over X, define the cohomology class
Py(¢§) € H*(X; R) by

PQ(CI(€)> 02(5)7' o 7cn(€))

where ¢;(£)(€ H*(X)) is the i-th Chern class of £. Let M be a weakly almost
complex closed manifold. The Whitney sum 7/(M) = 7(M)@®eF of the tangent
bundle (M) and a suitable k-dimensional real trivial vector bundle £* is equipped
with the complex structure. We then evaluate P,(7'(M)) on the fundamental class
[M] to get a multiplicative genus
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®,: MU, — R
0y([M]) = <Py('(M)), [M]> .
For a formal group law f(z,y), let i(z) be the formal power series in R[[z]]

with the leading term z which satisfies I[(f(z,y)) = I(z) + I(y). This is called the
logarithm of f(z,y). The formal power series

induces the multiplicative genus
®,: MU, — R

which coincides with the multiplicative genus ¢ : MU, — R associated with
the formal group law f(z,y). The logarithm for the formal group law (z + y —
2azy)/(1 — (a® + b*)zy) is given by

z 1
)= [ d
(=) 0 1-2az+ (a?+ b?)x? *
and the formal power series g(z) provided to the multiplicative genus ¢, is given
by
q(z) = z(a + beot bz).

The values of the multiplicative genus ¢, for the complex cobordism class of
complex projective n-spaces C'P™ are easily computed as follows:

ProPOSITION 1. Ifa=a+by/—1 and B =a —by/—1, then

n+l _ An+l
‘pa,b([CPn]) = - IB

a-p

and

ao([CP"]) = (n + 1)a".
Proof. We see the logarithm {(z) of ¢, to be

z 1 1 1
=) = /(; (a—ﬁ)m(l—az—l—ﬁx)dx
3 z O© an_ﬁn w1
= /0 ;———a_ﬁ z" ldz
o Q" — ("

= Z—(&—-_T)x".

n=1 n
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Since

l(a:) - - (pa,b([CPn])mn-l—l [4],

= n+l

the proposition follows. a

Let £ be an n-dimensional smooth complex vector bundle over an oriented
closed manifold M. The tangent bundle 7(CP({)) over the complex projective
space bundle CP(£) associated with £ is described as follows:

T(CP(€))®1lc = 1 1(M) @7 Q7*E,

where 7j¢ is the conjugate bundle of the canonical line bundle 7 over CP(§) and
7 : CP(£) — M is the projection. By virtue of the splitting principle of complex
vector bundle we describe the total Chern class ¢(7*¢) as

(€)= (14+z) - (1+2z,).
Let z = ¢1(7¢). In [5] Ochanine investigates

Py(ne@7"¢) = q(z+z1) - q(2 + za)
Z2+T z2+z,

"z +z) 1Yz +z,)

to get that the coefficient of 27! in this polynomial is

PROPOSITION 2.  For the logarithm of (z + y — 2azy)/(1 — (a® + b%)zy)

z 1
! =/ dz.
(@) 0o 1-2az + (a? + b?)z? *
we have
S = = s
Y ey —z) oa—f°

i=1k#i

where a = a4+ by/—1 and B = a — by —1.

Proof. We get
= a + bcot bu.

1
)
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Write .
Gk(yly Y2y, yk) = Z H COt(yj - yt)

i=1 ji
Then
G2(y1,y2) =0 and G3(y17y27y3) = -1

Applying cot acot § = cot(a — 8)(cot B — cot a) — 1, we have

Gr(y1, - Uk)
= cot(Ye—1 — Ye){Gr-1(¥1, *, Yr-2,Yk) — Gro1(¥1," - Yh—2, Yt—1)}
—Gr—2(y1, -+ Yk-2)-

By inductive reasoning it follows that G(y1, - -, yx) is constant and in the sequel
we obtain

Gk(yl; Yo, ?yk) = _Gk—Z(yh Y2, ayk-—Z)

and
Gau(y1, 92, -, y2) =0

G2t+1(y1>y2) T ,y2c+1) = (—l)t-

We utilize these results to calculate the following:

Zn: [1(a + beot b(zy, — z;))

i=1 k#1
= na" 4+ { Y Gy(bz,,bziy)}a" 2+ - -
11 <tz
+{ E Gs(bxil gt ,bmés)}an_sbs_l + e
11 < <4
n—1 n n—-31.2 t n n—2t—112t
= - b e -1 b o
na (3)a + -+ (-1) <2t+1)a +
a — g"

a—p
Od

PROPOSITION 3.  Let & be an n-dimenstonal smooth complex vector bundle
over a weakly almost complex closed manifold M. Then

Pap([CP(E)]) = @ap([M])pap([CPY]).
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Proof. Let g(u) = u(a + bcot bu). Then

Pap([CP(E)]) = <" Py(m(M))Py(e®7"€), [CP(€)]>

_ <7r*Pq(T(M))a; :gn 1 [CP(E)] >
- 0‘; = gn <z B,(r(M)), [CP(€)]>

The fundamental homology class of CP(£) is the dual of 7#*([M]*)z""! | where
[M]* denotes the fundamental cohomology class of M. Thereby we have

an_ﬂn

a—p
This and Proposition 1 complete the proof of Propositon 3. O

ap([CP(E)]) = <Py(m(M)), [M]> .

For a rational number §, we have the multiplicative genus ¢, »5, : MU, —
272
Q, where @ is the field of rational numbers, and so we obtain the main theorem.

THEOREM 4.  The ideal J in MU, Q®Q generated by cobordism classes of
complex projective space bundles over CP? conicides with the ideal I in MU, ®Q
consisting of cobordism classes a which satisfy

(p%&;/z_ig(a) = O

for any rational number §.

Proof. Let £ be a smooth complex vector bundle over CP? with dim ¢ = n.
It follows from Proposition 1 and Proposition 3 that

0355\ [CPO)) = 01, £,(CPH)y, 5,((CP* 1)) = 0

and J C I. On the other hand in [2] we proved I C J. Hence I = J. 0
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