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   1. Let FMU, (x, y) = aiMUxiyi (E MU* [[x, y]]) be the universal formal 

group law over the complex cobordism ring MU*. For the formal group law 
F(x, y) = (x + y — 2axy)/(1 — (a2 + b2)xy) with real numbers a, b, we have a ring 
homomorphism of MU* into the real numbers field R

cpa,b : MU* R

which is called the multiplicative genus associated with the formal group law 

F(x, y) (cf. [ 1 ], [ 2], [ 3], [6]).  In [2]  we showed that the ideal I generated by 
elements a in MU*®Q which satisfy cp6,b (a) = 0 for any rational number b is 

2' 2 

contained in the ideal J in MU* ®Q generated by cobordism classes of complex 

projective space bundles over the complex projective 2-space CP2. The aim of 
this paper is to prove that the ideal I coincides with the ideal J. 

   2. Let q(x) be a formal power series in R[[x]]. The symmetric power series 

q(t1)q(t2) • • • q(tn) is described by elementary symmetric polynomials al, O2, • • • , Qn 
of variables ti. Let

Pq(o.1, 0-2, • • • , (7n) = q(t1)q(t2) ... q(tn).

For an n-dimensional complex vector bundle over X, define the cohomology class 

Pq() E H*(X; R) by

Pq(ci(S), C2(0, ... , cn( ))

where ci () (E H2i (X)) is the i-th Chern class of . Let M be a weakly almost 
complex closed manifold. The Whitney sum Ti(M) = T(M) ®Ek of the tangent 
bundle T(M) and a suitable k-dimensional real trivial vector bundle sk is equipped 
with the complex structure. We then evaluate Pq(T'(M)) on the fundamental class 

[M] to get a multiplicative genus



 (1)q: MU*  --+R 

(1)q([M]) = <Pq(T (M)) , [M]> .

   For a formal group law f(x, y), let 1(x) be the formal power series in R[[x]] 
with the leading term x which satisfies l(f(x, y)) = 1(x) +1(y). This is called the 
logarithm of f(x, y). The formal power series

q(x) = -------x 1-1(x)

induces the multiplicative genus

4)q : MU* ---4 R

which coincides with the multiplicative genus cp : MU* —p R associated with 

the formal group law fix, y). The logarithm for the formal group law (x + y — 
2axy)/(1 — (a2 + b2)xy) is given by

1(x) = —1(a2b2)X2 ----------------------- dx   fox       12ax +a+bx

and the formal power series q(x) provided to the multiplicative genus cpa,b is given 
by

q(x) = x(a + b cot bx).

The values of the multiplicative genus cpa,b for the complex cobordism class of 
complex projective n-spaces CPn are easily computed as follows:

PROPOSITION 1. If a = a + b and 0 = a — b , then 

an-+-1 — /3n+1 cpa,b( [CPT —---------a _ Q

and

cpa,o([CPn]) = (n + 1)an.

Proof. We see the logarithm 1(x) of cpa,b to be

1(x) = ( —/3)x1—cx1—/3x1---------(--------1-1---------)dx 
      J x 00 an — on 

xn-ldx 
        0n-1a _,(3  

         0o an —an 
                    x 

               n-1 n(a — a)



Since

 l(x)  _  coa,b([CPn])  xn+i[4], 
                                 n—on + 1

the proposition follows. ^

   Let be an n-dimensional smooth complex vector bundle over an oriented 

closed manifold M. The tangent bundle r(CP(e)) over the complex projective 
space bundle CP(e) associated with is described as follows:

r(CP(E))®1c ti *T(M)®ik®r*e,

where fie is the conjugate bundle of the canonical line bundle rie over CP(e) and 
it : CP(e) —* M is the projection. By virtue of the splitting principle of complex 
vector bundle we describe the total Chern class c(1r*) as

c(1r*0 = (1 + x1) ... (1 + xn).

Let z = ci(i ). In [5]  Ochanine investigates

Pq(fk®ir*e) = q(z + xi) ... q(z + xn) 

_ z+xl z+xn _ 
1-1(z + x1)...1-----------------------1(z + xn)

to get that the coefficient of zn-1 in this polynomial is

n 

EII------------11\ 
i=1kcil(xk — xi)

PROPOSITION 2. For the logarithm of (x + y — 2axy)/(1 — (a2 + b2)xy)

1(x) _ _------------------------1(a2 b2)X2                                 dx.     J
o 12ax +a+bx        ()

we have n1 an _ pn 
E II 
i-1 k#il-1(xk _ xi)—a _

where a=a+b and 0 = a — b\r-i..

Proof. We get
1  

= a + b cot bu. 
1-1(u)



Write
 k 

 Gk(yl,y2,...)yk) = Eflcot(y; — y2). 
i=1 .j#i

Then

G2(y1, y2) = 0 and G3(yl, y2, y3) = —1.

Applying cot a cot 0 = cot(a - /3)(cot p — cot a) - 1, we have

Gk(yl,•••,yk) 

 = COt(yk-1 — yk){Gk-1(y1) • • • , yk-2, yk) — Gk-1(Y1). • • yk-2, yk-1)} 
—Gk-2(yl, • • • , yk-2)•

By inductive reasoning it follows that Gk(y1, • • • , yk) is constant and in the sequel 
we obtain

Gk(y1,y2,..•,yk) = —Gk-2(yl,y2,.••,yk-2)

and

G241, y2, • •• , y2t) = 0 

G2t+1(y1) y2, • • ' , y2t+1) = (-1)t.

We utilize these results to calculate the following:

E fJ(a + bcot b(xk - xi)) 
2=1 k#i

nan-1 + { G2(bx21, bx22)}an-2b + .. • 
21 <i2

EGs(bx21, • • • , bx28)}an-sbs-1 + .. • 
21 <...<is

= nan-1 - n an-3b2 + ... + (_1)t n an-2t-1b2t + 
                        2t + 1

an —3n 

a — ,Q

PROPOSITION 3. Let be an n-dimensional smooth complex vector bundle 
over a weakly almost complex closed manifold M. Then

coa,b([cP(e)I) = cpa,b([M])coa,b([CPn-11)



Proof. Let q(u) = u(a + b cot bu). Then

 cPa,b([CP(1)]) _ <7r*Pq(T(M))pq(f ®7r*e) , [CP(e)] > 

          = < r*Pq(T(M)) an
a— /3—/3n zn-1 , [CP()] > 

               11,33nan-1=an<z7rPq(T(M)) , [CP( )] >

The fundamental homology class of CP() is the dual of ?r*([M]*)zn-1 , where 

[M]* denotes the fundamental cohomology class of M. Thereby we have

(Pa,b([CP(S)]) =an — On<Pq(r(M)), [M]> . 
               a—/3

This and Proposition 1 complete the proof of Propositon 3. ^

   For a rational number 6, we have the multiplicative genus Sp2it)—                                                         b : MU*-- 
Q, where Q is the field of rational numbers, and so we obtain the main theorem.

   THEOREM 4. The ideal J in MU* ®Q generated by cobordism classes of 
complex projective space bundles over CP2 conicides with the ideal I in MU*®Q 
consisting of cobordism classes a which satisfy

coi6 2 8(a) = 0

for any rational number 6.

   Proof. Let be a smooth complex vector bundle over CP2 with dim = n. 

It follows from Proposition 1 and Proposition 3 that

vis,4b([CP(e)]) = cPZs,48([CP2])cP0,46([CPn-1]) = 0

and J C I. On the other hand in [2]  we proved I C J. Hence I = J. ^
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