九州大学学術情報リポジトリ
Kyushu University Institutional Repository

On the ideal generated by complex cobordism classes of projective space bundles over CP＾2

鎌田，正良

九州大学教養部数学科
https：／／doi．org／10．15017／1449083

出版情報：九州大学教養部数学雑誌．19，pp．31－36，1993－12．九州大学教養部数学教室 バージョン：
権利関係：

On the ideal generated by complex cobordism classes of projective space bundles over $C P^{2}$

Masayoshi Kamata
Dedicated to Professor Seiya Sasao on his sixtieth birthday

(Received Aug. 24, 1993)

1. Let $F_{M U_{*}}(x, y)=\sum a_{i j}^{M U} x^{i} y^{j}\left(\in M U_{*}[[x, y]]\right)$ be the universal formal group law over the complex cobordism ring $M U_{*}$. For the formal group law $F(x, y)=(x+y-2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$ with real numbers a, b, we have a ring homomorphism of $M U_{*}$ into the real numbers field R

$$
\varphi_{a, b}: M U_{*} \longrightarrow R
$$

which is called the multiplicative genus associated with the formal group law $F(x, y)$ (cf. [1], [2], [3], [6]). In [2] we showed that the ideal I generated by elements α in $M U_{*} \otimes Q$ which satisfy $\varphi_{\frac{\delta}{2}, \frac{\sqrt{3} \delta}{2}}(\alpha)=0$ for any rational number δ is contained in the ideal J in $M U_{*} \otimes Q$ generated by cobordism classes of complex projective space bundles over the complex projective 2 -space $C P^{2}$. The aim of this paper is to prove that the ideal I coincides with the ideal J.
2. Let $q(x)$ be a formal power series in $R[[x]]$. The symmetric power series $q\left(t_{1}\right) q\left(t_{2}\right) \cdots q\left(t_{n}\right)$ is described by elementary symmetric polynomials $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}$ of variables t_{i}. Let

$$
P_{q}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right)=q\left(t_{1}\right) q\left(t_{2}\right) \cdots q\left(t_{n}\right)
$$

For an n-dimensional complex vector bundle ξ over X, define the cohomology class $P_{q}(\xi) \in H^{*}(X ; R)$ by

$$
P_{q}\left(c_{1}(\xi), c_{2}(\xi), \cdots, c_{n}(\xi)\right)
$$

where $c_{i}(\xi)\left(\in H^{2 i}(X)\right)$ is the i-th Chern class of ξ. Let M be a weakly almost complex closed manifold. The Whitney sum $\tau^{\prime}(M)=\tau(M) \oplus \varepsilon^{k}$ of the tangent bundle $\tau(M)$ and a suitable k-dimensional real trivial vector bundle ε^{k} is equipped with the complex structure. We then evaluate $P_{q}\left(\tau^{\prime}(M)\right)$ on the fundamental class $[M]$ to get a multiplicative genus

$$
\begin{gathered}
\Phi_{q}: M U_{*} \longrightarrow R \\
\Phi_{q}([M])=<P_{q}\left(\tau^{\prime}(M)\right),[M]>.
\end{gathered}
$$

For a formal group law $f(x, y)$, let $l(x)$ be the formal power series in $R[[x]]$ with the leading term x which satisfies $l(f(x, y))=l(x)+l(y)$. This is called the logarithm of $f(x, y)$. The formal power series

$$
q(x)=\frac{x}{l^{-1}(x)}
$$

induces the multiplicative genus

$$
\Phi_{q}: M U_{*} \longrightarrow R
$$

which coincides with the multiplicative genus $\varphi: M U_{*} \longrightarrow R$ associated with the formal group law $f(x, y)$. The logarithm for the formal group law $(x+y-$ $2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$ is given by

$$
l(x)=\int_{0}^{x} \frac{1}{1-2 a x+\left(a^{2}+b^{2}\right) x^{2}} d x
$$

and the formal power series $q(x)$ provided to the multiplicative genus $\varphi_{a, b}$ is given by

$$
q(x)=x(a+b \cot b x)
$$

The values of the multiplicative genus $\varphi_{a, b}$ for the complex cobordism class of complex projective n -spaces $C P^{n}$ are easily computed as follows:

Proposition 1. If $\alpha=a+b \sqrt{-1}$ and $\beta=a-b \sqrt{-1}$, then

$$
\varphi_{a, b}\left(\left[C P^{n}\right]\right)=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}
$$

and

$$
\varphi_{a, 0}\left(\left[C P^{n}\right]\right)=(n+1) a^{n}
$$

Proof. We see the logarithm $l(x)$ of $\varphi_{a, b}$ to be

$$
\begin{aligned}
l(x) & =\int_{0}^{x} \frac{1}{(\alpha-\beta) x}\left(\frac{1}{1-\alpha x}-\frac{1}{1-\beta x}\right) d x \\
& =\int_{0}^{x} \sum_{n=1}^{\infty} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} x^{n-1} d x \\
& =\sum_{n=1}^{\infty} \frac{\alpha^{n}-\beta^{n}}{n(\alpha-\beta)} x^{n}
\end{aligned}
$$

Since

$$
l(x)=\sum_{n=0}^{\infty} \frac{\varphi_{a, b}\left(\left[C P^{n}\right]\right)}{n+1} x^{n+1}
$$

the proposition follows.
Let ξ be an n-dimensional smooth complex vector bundle over an oriented closed manifold M. The tangent bundle $\tau(C P(\xi))$ over the complex projective space bundle $C P(\xi)$ associated with ξ is described as follows:

$$
\tau(C P(\xi)) \oplus 1_{C} \cong \pi^{*} \tau(M) \oplus \bar{\eta}_{\xi} \otimes \pi^{*} \xi
$$

where $\bar{\eta}_{\xi}$ is the conjugate bundle of the canonical line bundle η_{ξ} over $C P(\xi)$ and $\pi: C P(\xi) \longrightarrow M$ is the projection. By virtue of the splitting principle of complex vector bundle we describe the total Chern class $c\left(\pi^{*} \xi\right)$ as

$$
c\left(\pi^{*} \xi\right)=\left(1+x_{1}\right) \cdots\left(1+x_{n}\right)
$$

Let $z=c_{1}\left(\bar{\eta}_{\xi}\right)$. In [5] Ochanine investigates

$$
\begin{aligned}
P_{q}\left(\bar{\eta}_{\xi} \otimes \pi^{*} \xi\right) & =q\left(z+x_{1}\right) \cdots q\left(z+x_{n}\right) \\
& =\frac{z+x_{1}}{l^{-1}\left(z+x_{1}\right)} \cdots \frac{z+x_{n}}{l^{-1}\left(z+x_{n}\right)}
\end{aligned}
$$

to get that the coefficient of z^{n-1} in this polynomial is

$$
\sum_{i=1}^{n} \prod_{k \neq i} \frac{1}{l^{-1}\left(x_{k}-x_{i}\right)}
$$

Proposition 2. For the logarithm of $(x+y-2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$

$$
l(x)=\int_{0}^{x} \frac{1}{1-2 a x+\left(a^{2}+b^{2}\right) x^{2}} d x
$$

we have

$$
\sum_{i=1}^{n} \prod_{k \neq i} \frac{1}{l^{-1}\left(x_{k}-x_{i}\right)}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

where $\alpha=a+b \sqrt{-1}$ and $\beta=a-b \sqrt{-1}$.
Proof. We get

$$
\frac{1}{l^{-1}(u)}=a+b \cot b u
$$

Write

$$
G_{k}\left(y_{1}, y_{2}, \cdots, y_{k}\right)=\sum_{i=1}^{k} \prod_{j \neq i} \cot \left(y_{j}-y_{i}\right)
$$

Then

$$
G_{2}\left(y_{1}, y_{2}\right)=0 \quad \text { and } \quad G_{3}\left(y_{1}, y_{2}, y_{3}\right)=-1
$$

Applying $\cot \alpha \cot \beta=\cot (\alpha-\beta)(\cot \beta-\cot \alpha)-1$, we have

$$
\begin{aligned}
& G_{k}\left(y_{1}, \cdots, y_{k}\right) \\
& =\cot \left(y_{k-1}-y_{k}\right)\left\{G_{k-1}\left(y_{1}, \cdots, y_{k-2}, y_{k}\right)-G_{k-1}\left(y_{1}, \cdots y_{k-2}, y_{k-1}\right)\right\} \\
& \quad-G_{k-2}\left(y_{1}, \cdots, y_{k-2}\right)
\end{aligned}
$$

By inductive reasoning it follows that $G_{k}\left(y_{1}, \cdots, y_{k}\right)$ is constant and in the sequel we obtain

$$
G_{k}\left(y_{1}, y_{2}, \cdots, y_{k}\right)=-G_{k-2}\left(y_{1}, y_{2}, \cdots, y_{k-2}\right)
$$

and

$$
\begin{aligned}
G_{2 t}\left(y_{1}, y_{2}, \cdots, y_{2 t}\right) & =0 \\
G_{2 t+1}\left(y_{1}, y_{2}, \cdots, y_{2 t+1}\right) & =(-1)^{t}
\end{aligned}
$$

We utilize these results to calculate the following:

$$
\begin{aligned}
& \sum_{i=1}^{n} \prod_{k \neq i}\left(a+b \cot b\left(x_{k}-x_{i}\right)\right) \\
& =n a^{n-1}+\left\{\sum_{i_{1}<i_{2}} G_{2}\left(b x_{i_{1}}, b x_{i_{2}}\right)\right\} a^{n-2} b+\cdots \\
& \quad+\left\{\sum_{i_{1}<\cdots<i_{s}} G_{s}\left(b x_{i_{1}}, \cdots, b x_{i_{s}}\right)\right\} a^{n-s} b^{s-1}+\cdots \\
& \quad=n a^{n-1}-\binom{n}{3} a^{n-3} b^{2}+\cdots+(-1)^{t}\binom{n}{2 t+1} a^{n-2 t-1} b^{2 t}+\cdots \\
& = \\
& \quad \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
\end{aligned}
$$

Proposition 3. Let ξ be an n-dimensional smooth complex vector bundle over a weakly almost complex closed manifold M. Then

$$
\varphi_{a, b}([C P(\xi)])=\varphi_{a, b}([M]) \varphi_{a, b}\left(\left[C P^{n-1}\right]\right)
$$

Proof. Let $q(u)=u(a+b \cot b u)$. Then

$$
\begin{aligned}
\varphi_{a, b}([C P(\xi)]) & =<\pi^{*} P_{q}(\tau(M)) P_{q}\left(\bar{\eta}_{\xi} \otimes \pi^{*} \xi\right),[C P(\xi)]> \\
& =<\pi^{*} P_{q}(\tau(M)) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} z^{n-1},[C P(\xi)]> \\
& =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}<z^{n-1} \pi^{*} P_{q}(\tau(M)),[C P(\xi)]>
\end{aligned}
$$

The fundamental homology class of $C P(\xi)$ is the dual of $\pi^{*}\left([M]^{*}\right) z^{n-1}$, where $[M]^{*}$ denotes the fundamental cohomology class of M. Thereby we have

$$
\varphi_{a, b}([C P(\xi)])=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}<P_{q}(\tau(M)),[M]>
$$

This and Proposition 1 complete the proof of Propositon 3.
For a rational number δ, we have the multiplicative genus $\varphi_{\frac{1}{2} \delta, \frac{\sqrt{3}}{2} \delta}: M U_{*} \longrightarrow$ Q, where Q is the field of rational numbers, and so we obtain the main theorem.

ThEOREM 4. The ideal J in $M U_{*} \otimes Q$ generated by cobordism classes of complex projective space bundles over $C P^{2}$ conicides with the ideal I in $M U_{*} \otimes Q$ consisting of cobordism classes α which satisfy

$$
\varphi_{\frac{1}{2} \delta, \frac{\sqrt{3}}{2} \delta}(\alpha)=0
$$

for any rational number δ.
Proof. Let ξ be a smooth complex vector bundle over $C P^{2}$ with $\operatorname{dim} \xi=n$. It follows from Proposition 1 and Proposition 3 that

$$
\varphi_{\frac{1}{2} \delta, \frac{\sqrt{3}}{2} \delta}([C P(\xi)])=\varphi_{\frac{1}{2} \delta, \frac{\sqrt{3}}{2} \delta}\left(\left[C P^{2}\right]\right) \varphi_{\frac{1}{2} \delta, \frac{\sqrt{3}}{2} \delta}\left(\left[C P^{n-1}\right]\right)=0
$$

and $J \subset I$. On the other hand in [2] we proved $I \subset J$. Hence $I=J$.

References

[1] F. Hirzebruch, T. Berger and R. Jung: Manifolds and Modular forms, Max-Plank-Institute für Mathematik, Bonn, 1992
[2] M. Kamata: The multiplicative genus associated with the formal group law $(x+y-2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$, to appear in Osaka J. Math.
[3] P. S. Landweber: Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. vol.1326, Berlin Heiderberg New York : Springer,1988.
[4] S. P. Novikov: The method of algebraic topology from the viewpoint of cobordism theories (Russian), Izvestija Akademi Nauk SSSR Serija Matematičeskaja 31 (1967), 855-951.
[5] S. Ochanine: Sur les generes multiplicatifs definis par des integrales elliptiques, Topology 26 (1987), 143-151.
[6] D. Quillen: On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.

Department of Mathematics
College of General Education
Kyushu University 01
Ropponmatsu Fukuoka 810
Japan

