Note on Stein neighborhoods of C^k x R^l

Kazama, Hideaki Department of Mathematics, College of General Education, Kyushu University

https://doi.org/10.15017/1449039

出版情報:九州大学教養部数学雑誌.14(1), pp.47-55, 1983-12.九州大学教養部数学教室 バージョン: 権利関係: Math. Rep. XIV-1, 1983.

Note on Stein neighborhoods of $C^k \times R^1$

Hideaki KAZAMA (Received September 16, 1983)

Introduction

In §1 we investigate properties of Stein neighborhoods of $C^k \times R^l := \{(z, z)\}$ $w \in C^k \times C^l$; Im $w_i = 0, 1 \leq i \leq l$ in $C^k \times C^l$ (Theorem 1). As a consequence we show that $C^* \times R^i$ has no Stein neighborhood bases in $C^* \times C^i$ (Corollary 1). We take an open neighborhood $U := \{(z, w) \in C^2; |\operatorname{Im} w| < (1+|z|)^{-1}\}$ of $C \times R$. In §2 we find a $\bar{\partial}$ -closed (0,1)-form which is not $\bar{\partial}$ -exact in any open neighborhood of $C \times R$ in U (Lemma 5). Let $U = \{\Delta_i\}$ be an open covering of C and $f_{ij}(z, t)$ real analytic functions in $(\Delta_i \cap \Delta_j) \times \mathbf{R}$ so that f_{ij} is holomorphic in $z \in (\varDelta_i \cap \varDelta_j)$ and $f_{ij} + f_{jk} = f_{ik}$. Such f_{ij} are called Cousin data depending on the parameter $t \in \mathbf{R}$. We say that $\{f_i\}$ is a solution for Cousin data f_{ij} , if $\{f_i\}$ satisfies the following properties. (i) $f_i: \Delta_i \times R \rightarrow C$ is real analytic and holomorphic in $z \in A_i$. (ii) $f_{ij} = f_j - f_i$ in $(A_i \cap A_j) \times R$. We ask whether there exists a solution $\{f_i\}$ for given Cousin data f_{ij} . By the result of [1] and [2] we have $\{g_i\}$ satisfies the following statements (i) $g_i: \Delta_i \times R \to C$ is of class C^{∞} and holomorphic in $z \in \Delta_i$. (ii) $f_{ij} = g_j - g_i$ in $(\varDelta_i \cap \varDelta_i) \times R$. In §2, using the $\bar{\partial}$ -closed (0,1)-form obtained in Lemma 5, we make Cousin data depending real analytically on the parameter $t \in \mathbf{R}$ which have no solutions (Proposition 2 and Theorem 2). In §3 we treat the Cauchy-Riemann equation $\frac{\partial}{\partial \bar{z}} f(z,t) = g(z,t)$ when g(z,t) is real analytic Piccinini [9] showed that for some g(z, t) the above equation in $C \times R$. As an application of Lemma 5 and proposition 2 has no global solution. we shall give another proof of the Piccinini's result (Theorem 3).

1. Stein neighborhoods of $C^k \times R^l$ in $C^k \times C^l$

We use the following notations throughout this paper. We put ||a||: =max{ $|a_i|$; 1 $\leq i \leq m$ } for an *m*-tuple $a = (a_1, \dots, a_m)$. And the notation {equalities and inequalities involving functions h_1, \dots, h_m } denotes the set of

all points in the intersection of the domains of definition of h_1, \dots, h_m satisfying the given equalities and inequalities. Let $z = (z_1, \dots, z_k)$ be the coordinate of C^k and $w = (w_1, \dots, w_l)$ the coordinate of C^l .

We recall the following lemma by [7] which is also implicitly due to [6, Lemma 9].

LEMMA 1. Let $\pi: S \rightarrow C^k \times C^i$ be a (unramified Riemann) domain of holomorphy over $C^k \times C^i(k, l \ge 1), d_r := \{(w_1, \dots, w_l) \in C^i; |w_j - a_j| < r_j, 1 \le j \le l\}$ where $r = (r_1, \dots, r_l), r_j > 0$ and $(a_1, \dots, a_l) \in C^i$ and let $\varepsilon = (\varepsilon_1, \dots, \varepsilon_l)$ for $\varepsilon_j \ge 0$ ($1 \le j \le l$). Further assume there exist an open subset V_1 of S and $\delta > 0$ such that $\pi | V_1$ is biholomorphic into $C^k \times C^i$ and $\pi(V_1) \supset (C^k \times d_r) \cup \{ ||z|| < \delta \} \times d_{r+\varepsilon}$, where $d_{r+\varepsilon} := \{ |w_j - a_j| < r_j + \varepsilon_j, 1 \le j \le l \}$. Then there exists an open subset V_2 of S with $V_1 \subset V_2$ such that $\pi | V_2$ is biholomorphic into $C^k \times C^i$ and $\pi(V_2) \supset C^k \times d_{r+\varepsilon}$.

We may assume $a_1 = \cdots = a_l = 0$. Let $f \in H^0(S, \mathcal{O}_s)$. PROOF. Then f can be expanded in the power series: $f|(\pi|V_1)^{-1}(C^k \times A_r)(x) = \sum_{\nu, \mu} a_{\nu\mu}(z \cdot \pi)$ $(x))^{\nu}(w \cdot \pi(x))^{\mu}$, where $(z \cdot \pi(x))^{\nu} = (z_1 \cdot \pi(x))^{\nu_1} \cdots (z_k \cdot \pi(x))^{\nu_k}$ and $(w \cdot \pi(x))^{\mu} = (z_1 \cdot \pi(x))^{\nu_k}$ Then the power series $F(z, w) := \sum_{\nu, \mu} a_{\nu\mu} z^{\nu} w^{\mu}$ $(w_1 \cdot \pi(x))^{\mu_1} \cdots (w_l \cdot \pi(x))^{\mu_l}.$ converges in $(C^k \times A_r) \cup \{ ||z|| < \delta \} \times A_{r+\varepsilon}$. We put $D_d := (\{ ||z|| < d \} \times \{ |w_j| < r_j, d \} > 0 \}$ $1 \leq j \leq l\}) \cup (\{||z|| < \delta\} \times \{|w_j| r_j + \varepsilon_j, 1 \leq j \leq l\}) \text{ for } d > \delta,$ The envelope of holomorphy of D_d is the smallest logarithmically convex complete Reinhardt domain \hat{D}_d :={||z||<d, |w_j|<r_j+\varepsilon_j, \log |w_j|-\log r_j<-\frac{\log d-\log ||z||}{\log d-\log \delta}(\log r_j+\varepsilon_j)-This implies that $\bigcup_{d>\delta}$ $\log r_j$ which contains D_d (for instance see [10]). Since F can be continued holomorphically to \hat{D}_d for any d $\hat{D}_{d} = C^{k} \times \mathcal{A}_{r+\varepsilon}.$ $>\delta$, hence F converges in $C^* \times A_e$. We can find an open subset V_2 of S with the required properties, for $\pi: S \rightarrow C^k \times C^l$ is a domain of holomorphy (for instance see [6, Theorem 18, p. 55]).

PROPOSITION 1. Let D be an open and connected Stein subset of $C^* \times C^i$. If there exists a non-empty open subset V of C^i such that $C^* \times V \subset D$, then one can find a Stein open subset V* of C^i so that $D = C^* \times V^*$.

PROOF. Let $(z^1, w^1) \in D - \mathbb{C}^k \times V$. We take a fixed point $(z^0, w^0) \in \mathbb{C}^k \times V$ and a continuous curve $(z(t), w(t)) : [0, 1] \to D$ such that $(z(0), w(0)) = (z^0, w^0)$ and $(z(1), w(1)) = (z^1, w^1)$. We put $\delta := \inf \{d((z(t), w(t)), \partial D);$

48

$$\begin{split} 0 &\leq t \leq 1 \}, \text{ where } d((z(t), w(t)), \partial D) \text{ is the distance from } (z(t), w(t)) \text{ to the} \\ \text{boundary of } D. \text{ Then } \bigcup_{0 \leq t \leq 1} \{ \|z - z(t)\| < \delta/\sqrt{k+l}, \|w - w(t)\| < \delta/\sqrt{k+l} \} \subset D. \\ \text{We choose } 0 &= t_0 < t_1 < \cdots < t_s = 1 \text{ so that} (z(t_{i+1}), w(t_{i+1})) \in \{ \|z - z(t_i)\| < \delta/\sqrt{k+l} \} \subset D. \\ \|w - w(t_i)\| < \delta/\sqrt{k+l} \} \text{ for } 0 \leq i \leq s-1. \\ \text{Since } (z(0), w(0)) \in C^k \times V \text{ and} \\ \{ \|z - z(0)\| < \delta/\sqrt{k+l}, \|w - w(0)\| < \delta/\sqrt{k+l} \} \subset D, \text{ there exists } \varepsilon > 0 \text{ such that} \\ C^k \times \{ \|w - w(0)\| < \varepsilon \} \cup \{ \|z - z(0)\| < \delta/\sqrt{k+l}, \|w - w(0)\| < \delta/\sqrt{k+l} \} \subset D. \\ \text{Then by Lemma 1 we have } C^k \times \{ \|w - w(0)\| < \delta/\sqrt{k+l} \} \subset D. \\ \text{We put } \delta_1 := \min\{ \|w - w(t_1)\| \} \\ -w(t_1)\|; \|w - w(0)\| = \delta/\sqrt{k+l} \} > 0. \\ \text{Then } C^k \times \{ \|w - w(t_1)\| < \delta/\sqrt{k+l} \} \subset D. \\ \text{Repeating this argument on } t_i \\ (2 \leq i \leq s), \text{ finally we have } C^k \times \{ \|w - w^1\| < \delta/\sqrt{k+l} \} \subset D. \end{split}$$

We regard \mathbf{R}^{l} as the real analytic submanifold $\mathbf{C}^{l} \cap \{ \operatorname{Im} w_{j} = 0, 1 \leq j \leq l \}$ of \mathbf{C}^{l} .

LEMMA 2. Let G be a non-empty open subset \mathbb{R}^{l} and D a Stein open neighborhood of $\mathbb{C}^{k} \times \mathbb{G}$ in $\mathbb{C}^{k} \times \mathbb{C}^{l}$. Then, for any $u^{0} = (u_{1}^{0}, \dots, u_{l}^{0}) \in \mathbb{G}$, there exists an open neighborhood $V(u^{0})$ of u^{0} in \mathbb{C}^{l} such that $\mathbb{C}^{k} \times V(u^{0})$ $\subset D$.

First we prove the lemma in the case l=1. PROOF. In this case we may suppose $G = \{u \in R; a \le u \le b\}$, where $-\infty \le a \le b \le \infty$ and D is a Stein open neighborhood of $C^k \times G$ in $C^k \times C$. We denote by D_1 the connected Then D_1 is component of $\{(z, w) \in D; \text{ Re } w \in G\}$ which intersects $C^* \times G$. also a Stein open neighborhood of $C^k \times G$ in $C^k \times C$. We put $D_1(+1) := D_1$ $\cup C^{k} \times \{w; \text{Im}w > 0, \text{Re } w \in G\}, D_{1}(-1) := D_{1} \cup C^{k} \times \{w; \text{Im}w < 0, \text{Re } w \in G\}.$ Let $D_1(+1,t) := \{(z,w); (z,w) \in D_1(+1), a+t < \text{Rew} < b-t\} \text{ for } 0 < t < (b-a)/2.$ It is easy to check that $D_1(+1,t)$ is a locally Stein open subset of C^2 . By the result of [3] $D_1(+1) = \bigcup_{0 < \infty} D_1(+1) = \bigcup_{0 < \infty} D_1$ Then $D_1(+1, t)$ is a Stein open set. $L_{1\leq (b-a)/2}$ $D_{1}(+1,t)$ is also a Stein open set. Similary we can show that $D_1(-1)$ is also a Stein open set. Let $u^{\circ} \in G$. We put $\varepsilon := (1/2) \min \{u^\circ\}$ Then $C^k \times \{w \in C; |w + (u^0 + \sqrt{-1}\varepsilon)| < \varepsilon\} \subset D_1(+1)$ and there $-a, b-u^{0}$. exists δ such that $0 < \delta < \varepsilon$ and $\{ ||z|| < \delta \} \times \{ |w-u^0| < \delta \} \subset D_1 \subset D_1 (+1) \}$. This means that $C^k \times \{w \in C; |w - (u^0 + \sqrt{-1}\varepsilon)| < \varepsilon\} \cup \{||z|| < \delta\} \times \{|w - (u^0 + \sqrt{-1}\varepsilon)| < \varepsilon\}$

 $<\sqrt{\epsilon^2+\delta^2}$ $\subset D_1 \subset D_1(+1)$. By Lemma 1 we have $C^k \times \{|w-(u^0+\sqrt{-1}\epsilon)|$ $<\sqrt{\epsilon^2+\delta^2}\} \subset D_1(+1)$ and then

(1.1) $C^k \times \{\operatorname{Im} w \leq 0, |w-u^0| < \sqrt{\varepsilon^2 + \delta^2} - \varepsilon\} \subset D_1.$

Similarly, since $C^k \times \{ | w - (u^0 - \sqrt{-1}\varepsilon) | < \varepsilon \} \subset D_1(-1) \text{ and } \{ ||z|| < \delta \} \times \{ | w - (u^0 - \sqrt{-1}\varepsilon) | < \sqrt{\varepsilon^2 + \delta^2} \} \subset D_1(-1)$, we have, by Lemma 1, $C^k \times \{ | w - u^0 | < \sqrt{\varepsilon^2 - \delta^2} - \varepsilon \} \subset D_1(-1)$ and then

(1.2) $C^k \times \{ \operatorname{Im} w \geq 0, |w-u^0| < \sqrt{\varepsilon^2 + \delta^2} - \varepsilon \} \subset D_1.$

From (1.1) and (1.2) we complete the proof of the lemma in the case l=1. Next we assume l=2. Let $u^0 = (u_1^0, u_2^0) \in G \subset \mathbb{R}^2$. We choose $\gamma > 0$ so that $G_1:=\{u=(u_1, u_2); (u_1, u_2) \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \subset G \text{ and } \{||z|| < \gamma\} \times \{(w_1, w_2); u_1, u_2\} \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \subset G \text{ and } \{||z|| < \gamma\} \times \{(w_1, w_2); u_1, u_2\} \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \subset G \text{ and } \{||z|| < \gamma\} \times \{(w_1, w_2); u_1, u_2\} \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \subset G \text{ and } \{||z|| < \gamma\} \times \{(w_1, w_2); u_1, u_2\} \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \subset G \text{ and } \{||z|| < \gamma\} \times \{(w_1, w_2); u_1, u_2\} \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \subset G \text{ and } \{||z|| < \gamma\} \times \{(w_1, w_2); u_1, u_2\} \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \subset G \text{ and } \{||z|| < \gamma\} \times \{(w_1, w_2); u_1, u_2\} \in \mathbb{R}^2, |u_i-u_i^0| < \gamma \ i=1, 2\} \in \mathbb{R}^$ $(w_1, w_2) \in C^2$, $|w_i - u_0^i| < \gamma \ i=1, 2 \in D$. For $u_2 \in R$ satisfying $|u_2 - u_2^0| < \gamma$. we put $D(u_2) := \{(z, w_1) \in C^k \times C; (z, w_1, u_2) \in D, |\operatorname{Re} w_1 - u_1^0| < \gamma\}$ and for $\theta =$ $\pm 1 \quad D(\boldsymbol{u}_2, \boldsymbol{\theta}) := D(\boldsymbol{u}_2) \cup C^k \times \{ \boldsymbol{w}_1 \in C; \boldsymbol{\theta} \operatorname{Im} \boldsymbol{w}_1 \ge 0, |\operatorname{Re} \boldsymbol{w}_1 - \boldsymbol{u}_1^{\boldsymbol{\theta}}| < \gamma \}.$ Then $D(u_2,$ θ) is a domain of holomorphy for $\theta = \pm 1$ and $u_2 \in \mathbb{R}$ satisfying $|u_2 - u_2^0| < \gamma$. And we have $C^k \times \{w_1 \in C; |w_1 - (u_1 + \sqrt{-1}\gamma/3)| < \gamma/3\} \subset D(u_2, +1)$ and $\{||z|| < \gamma/3\} \subset D(u_2, +1)\}$ γ > $\langle w_1 \in C; | w_1 - (u_1 + \sqrt{-1}\gamma/3) | < 2\gamma/3 \rangle \subset D(u_2, +1)$ for $(u_1, u_2) \in \{(u_1, u_2) \in (u_1, u_$ R^2 ; $|u_1 - u_1^0| < \gamma/3$, $|u_2 - u_2^0| < \gamma$. By Lemma 1 we obtain $C^* \times \{w_1 \in C; |w_1 \in C\}$ $-(u_1+\sqrt{-1}\gamma/3)|<2\gamma/3\}\subset D(u_2,+1) \text{ for } (u_1,u_2)\in\{(u_1,u_2)\in R^2; |u_1-u_1^0|<\gamma/3\}$ Similarly for $\theta = -1$ we have $C^k \times \{w_1 \in C; |w_1 - (u_1 - \sqrt{-1})\}$ 3, $|u_2 - u_2^0| < \gamma$. $\gamma/3$ $|< 2\gamma/3 | \subset D(u_2, -1)$ for $(u_1, u_2) \in \{(u_1, u_2) \in \mathbb{R}^2; |u_1 - u_2^0| < \gamma/3, |u_2 - u_2^0| < \gamma/3\}$ Put $U_1 := \{w_1 \in C; |\operatorname{Re} w_1 - u_1^0| < \gamma/3, |\operatorname{Im} w_1| < \gamma/3\}.$ γ . Then $C^* \times U_1 \times \{u_2\}$ $\in \mathbf{R}; |u_2-u_2^0| < \gamma \in D.$ Consider the domains $D^* := \{(z, w_1, w_2) \in D; w_1 \in U_1, w_2\}$ $|\operatorname{Re} w_2 - u_2^{\theta}| < \gamma \}$ and for $\theta = \pm 1$ $D^*(\theta) := D^* \cup C^* \times U_1 \times \{w_2 \in C; \theta \operatorname{Im} w_2 \geq 0, |\operatorname{Re} w_2 \geq 0\}$ $w_2 - u_2^0 | < \gamma \}.$ Then $D^*(\theta)$ is a domain of holomorphy for $\theta = \pm 1$. Since $C^{k} \times U_{1} \times \{ |w_{2} - (u_{2}^{0} + \sqrt{-1}\theta\gamma/2)| < \gamma/2 \} \subset D^{*}(\theta) \text{ and } \{ ||z|| < \gamma \} \times U_{1} \times \{ |w_{2} - (u_{2}^{0} + \sqrt{-1}\theta\gamma/2)| < \gamma/2 \} \subset D^{*}(\theta) \}$ $+\sqrt{-1}\theta\gamma/2$ $|<\gamma\}\subset D^*(\theta)$, by Lemma 1 we have $C^*\times U_1\times\{|w_2-u_2^{\theta}|<\gamma/2\}\subset$ D*. This completes the proof of the lemma in the case l=2. For $l\geq 3$ we can prove the lemma similarly to the case l=2.

The following theorem is a consequence of Proposition 1 and Lemma 2.

THEOREM 1. Let G be a non-empty open and connected subset of \mathbf{R}^{ι} . Then D is a Stein open and connected neighborhood of $\mathbf{C}^{*} \times G$ in $\mathbf{C}^{*} \times \mathbf{C}^{\iota}$ if and only if there exists a Stein open and connected neighborhood V of G in \mathbf{C}^{ι} such that $D = \mathbf{C}^{*} \times V$.

Putting $G := \mathbf{R}^{i}$ in Theorem 1, we have a corollary of Theorem 1.

COROLLARY 1. If $k, l \ge 1$, then $C^* \times R^{\iota}$ has no Stein neighborhood bases in $C^* \times C^{\iota}$.

PROOF. Take the open neighborhood $U := \{(z, w); \sum_{j=1}^{t} |\operatorname{Im} w_j| \leq (1 + \sum_{i=1}^{t} |z_i|)^{-1}\}$ of $C^k \times R^l$ in $C^k \times C^l$. Then there is no open and non-empty subset V of C^l such that $C^k \times V \subset U$. This means by Theorem 1 that we cannot find a Stein open neighborhood D of $C^k \times R^l$ so that $C^k \times R^l \subset D \subset U$.

2. The first Cousin problems depending real analytically on a parameter

Let $\{U_i\}$ be a Stein open covering of Stein manifold X and $g_{ij}(z, t): U_i \cap U_j \times \mathbb{R} \to \mathbb{C}$ be of class \mathbb{C}^{∞} and holomorphic in $z \in U_i \cap U_j$ so that $g_{ij} + g_{ik} = g_{ik}$. Then g_{ij} are called Cousin data depending differenciably on the parameter $t \in \mathbb{R}$. By the result of [1] and [2] we have $H^p(X, \mathcal{O}^F) = 0$ ($p \ge 1$), where F denotes the Frechet space of all \mathbb{C}^{∞} functions on \mathbb{R} and \mathcal{O}^F is the sheaf of germs of F-valued holomorphic functions on X. Then we get $\{g_i: U_i \times \mathbb{R} \to \mathbb{C}; g_i \text{ are of class } \mathbb{C}^{\infty} \text{ in } U_i \times \mathbb{R}$ and holomorphic in $z \in U_i\}$ so that $g_{ij} = g_j - g_i$; in other words, the first Cousin problem on X depending differenciably on the parameter t has a solution.

In this section we consider the first Cousin problem depending real analytically on a parameter.

In the rest of this paper we denote by (z, w) the coordinate of C^2 .

LEMMA 3. Let V be a connected and simply connected open subset of C^2 with $C \times \{\operatorname{Im} w \leq 0\} \subset V$ and $V(z) := \{w; (z, w) \in V\}$ for $z \in C$. Then $C \times \bigcup_{z \in C} V(z)$ is the envelope of holomorphy of V.

Let $\pi: \widehat{V} \to \mathbb{C}^2$ be the envelope of holomorphy of V with the PROOF. injection $i: V \rightarrow \hat{V}$. We take a point $w^* \in \bigcup_{z \in C} V(z)$. Then we have $z^* \in C$ such that $(z^*, w^*) \in V$. Let $T := \{z(t), w(t)\} \in V; t \in [0, 1]\}$ be a continuous curve from $(z(0), w(0)) = (0, -\sqrt{-1}) \in C \times \{\text{Im } w \le 0\} \subset V$ to (z(1), w(1)) = $(z^*, w^*).$ Using the result of Lemma 1 and applying the technique of the proof of proposition 1 to the curve T, we have an open subset W^* of \hat{V} with $i(V) \subset W^*$ and an open neighborhood V^* of $\{\text{Im } w \leq 0\} \cup \{w(t); t \in [0, \infty]\}$ 1]} in C so that W^* is mapped homeomorphically onto $C \times V^*$ by π . Since V is simply connected, the subset $(\pi|_w^*)^{-1}(T)$ doesn't depend on the choice of curves in V from $(0, -\sqrt{-1})$ to (z^*, w^*) and then we have an open subset W of \hat{V} with $i(V) \subset W$ which is mapped homeomorphically onto $C \times \bigcup_{z \in C}$ V(z). For $C \times \bigcup_{z \in C} V(z)$ is a domain of holomorphy, we have the assertion of the lemma.

LEMMA 4. Let D be a connected and simply connected open neighborhood of $C \times R$ in C^2 and $D(z) := \{w; (z, w) \in D\}$ for $z \in C$. Then $C \times \bigcup_{z \in C} D(z)$ is the envelope of holomorphy of D.

Let $\pi: \hat{D} \rightarrow C^2$ be the envelope of holomorphy of D with PROOF. Since $j(D) \cup (\hat{D} - \pi^{-1}(C \times R))$ is pseudoconvex and the injection $i: D \rightarrow D$. $j(D) \cup (\hat{D} - \pi^{-1}(C \times R)) \subset \hat{D}$, we have $\pi^{-1}(C \times R) \subset j(D)$. In the following argument θ denotes +1 or -1. We put $\hat{D}(\theta) := \pi^{-1}(C \times \{\theta \operatorname{Im} w < 0\}) \cup j(D)$. We make a Riemann domain $D^*(\theta)$ out of the disjoint union $\hat{D}(\theta) \cup C \times \{\theta\}$ To do so we identify $p \in \hat{D}(\theta)$ and $(z, w) \in C \times \{\theta \operatorname{Im} w > 0\}$ if p $\operatorname{Im} w > 0$. The map π extends to $D^*(\theta)$ if we define it as $\in i(D)$ and $\pi(p) = (z, w)$. the identity on $C \times \{\theta \operatorname{Im} w > 0\}$. Easily we can check that $D^*(\theta)$ is p_{γ} -convex in the sense of $\lceil 3 \rceil$. Since any holomorphic function in $D \cup C \times \{\theta \operatorname{Im} w$ >0} can be continued holomorphically to $D^*(\theta), D^*(\theta)$ is the envelope of holomorphy of $D \cup C \times \{\theta \operatorname{Im} w > 0\}$. Note that $D \cup C \times \{\theta \operatorname{Im} w > 0\}$ is simply connected. Applying Lemma 3 to $D^*(\theta)$ for each $\theta = \pm 1$, we complete the proof of the lemma.

We have the following fundamental lemma in the rest of this paper.

LEMMA 5. Let $U := \{(z, w) \in C^2; |\operatorname{Im} w| < (1+|z|)^{-1}\}$. Then there exists a $\overline{\partial}$ -closed C^{∞} form Ψ of type (0,1) on U such that for any open neighborhood V of $C \times R$ in C^2 with $V \subset U = \Psi|_V$ is not $\overline{\partial}$ -exact in V.

PROOF. We put $U(n) := \{w; |\operatorname{Im} w| < (1+n)^{-1}\}$ and take a holomorphic function $f_n(w)$ in U(n) which has no holomorphic continuation through any boundary point of U(n) for $n=1, 2, \cdots$. Let Π be the projection $C^2 \in (z, w)$ $\rightarrow w \in C$. Since $T_n := \{(z, w) \in U; \Pi(z, w) \oplus U(n)\} \cup \{(z, w) \in U; |z-n| \ge 1/2\}$ and $\{n\} \times U(n)$ are disjoint and closed in U, we can find a C^{∞} function ϕ_n : $U \rightarrow [0,1]$ so that $\phi_n = 0$ in a neighborhood of T_n in U and $\phi_n = 1$ in a neighborhood of $\{n\} \times U(n)$ in U. We take $\Psi(z, w) := \sum_{n=1}^{\infty} (z-n)^{-1} f_n(w) \bar{\partial} \phi_n$ which is a well-defined (0.1)-form of class C^{∞} in U. We obtain $\bar{\partial} \Psi = 0$. We assume that there exist an open neighborhood V of $C \times R$ in C^2 with $V \subset U$ and a C^{∞} function ψ on V such that $\Psi|_V = \bar{\partial} \psi$. Putting $G_n(z) := (z - n)^{-1}(1 - \exp 2\pi \sqrt{-1}z)$, we get a C^{∞} function $F(z, w) := \sum_{n=1}^{\infty} G_n(z) f_n(w) \phi_n$ $(z, w) - (1 - \exp 2\pi \sqrt{-1}z) \psi(z, w)$. We have $\bar{\partial} F = (1 - \exp 2\pi \sqrt{-1}z) (\sum_{n=1}^{\infty} (z - n)^{-1} f_n(w) \bar{\partial} \phi_n - \bar{\partial} \psi) = 0$. Then F is holomorphic in V and $F(n, w) = -2\pi$

52

 $\sqrt{-1}f_n(w)$. We take a connected and simply connected open neighborhood V^* of $C \times R$ in C^2 with $V^* \subset V$ and put $V^*(z) := \{w; (z, w) \in V^*\}$. By Lemma 4 there exists a holomorphic fuction F^* in $C \times \bigcup_{z \in C} V^*(z)$ such that $F^*|_V = F$. If *n* is sufficiently large, $\bigcup_{z \in C} V^*(z) - U(n) \neq \phi$. Since $F^*(n, w)$ is holomorphic in $w \in \bigcup_{z \in C} V^*(z)$, this contradicts that f_n cannot be continued holomorphically beyond U(n).

Let $\mathscr{U} = \{ \Delta_i; i \in I \}$ be a locally finite open coverring of C and $f_{ij}(z, t)$ (complex valued) real analytic functions in $(\Delta_i \cap \Delta_j) \times \mathbf{R}$ which are holomorphic in $z \subset \Delta_i \cap \Delta_j$. If $f_{ij} + f_{jk} = f_{ik}$ in $(\Delta_i \cap \Delta_j \cap \Delta_k) \times \mathbf{R}$, then f_{ij} are called Cousin data depending real analytically on the parameter t. If there exist real analytic functions f_i in $\Delta_i \times \mathbf{R}$ such that f_i are holomorphic in $z \in \Delta_i$ and $f_{ij} = f_j - f_i$, we say that $\{f_i\}$ is a solution for the Cousin data f_{ij} .

PROPOSITION 2. Let $\mathcal{U} = \{ \varDelta_i ; \varDelta_i \subseteq C, i \in I \}$ be a locally finite open covering of C. Then there exist Cousin data f_{ij} for \mathcal{U} depending real analytically on the parameter $t \in \mathbf{R}$ without solutions.

We put $d_i := \sup \{|z|; z\}$ PROOF. Let U and Ψ be as in Lemma 5. $\in \Delta_i$ and $U_i := \{(z, w); z \in \Delta_i, |\operatorname{Im} w| < (1+d_i)^{-1}\}.$ Since U_i is a Stein open subset of U, we have a C^{∞} function φ_i in U_i so that $\bar{\partial}\varphi_i = \Psi$. Let $\varphi_{ij} := \varphi_j$ $- \varphi_i$ in $U_i \cap U_j$ and $f_{ij} := \varphi_{ij} | (\Delta_i \cap \Delta_j) \times \{ \operatorname{Im} w = 0 \}.$ Then f_{ij} are Cousin data depending real analytically on the parameter $t \in \mathbf{R}$, where $t := \operatorname{Re} w$. Suppose Since $f_i(z, t)$ is real analytic in $\Delta_i \times R$ and holo- $\{f_i\}$ is a solution for f_{ij} . morphic in $z \in I_i$, there exist an open neighborhood V_i of $I_i \times R$ in \mathbb{C}^2 and a holomorphic function F_i in V_i such that $F_i|_{Ai \times R} = f_i$. Hence we have an open subset V of U so that $C \times R \subset V \subset (\bigcup_{i \in I} U_i) \cap (\bigcup_{i \in I} V_i)$ and $\emptyset_{ij} = F_j - F_i$ in $V_i \cap V_j \cap V$. $\Psi|_{v} = \bar{\partial} \Phi.$ This contradicts the statement of Lemma 5.

Let $\mathscr{U}^* = \{ \Delta_a^*; \alpha \in A \}$ be a refinement of \mathscr{U} . Then we get a mapping $\rho: A \to I$ so that $\Delta_a^* \subset \Delta_{\rho(\alpha)}$ for $\alpha \in A$. Let \mathscr{V} , $\{ \mathcal{O}_i \}$, $\{ f_{ij} \}$ be as in the proof of Proposition 2. Assume that the Cousin data $f_{\alpha\beta}^* := f_{\rho(\alpha)\rho(\beta)} | \Delta_{\alpha}^* \cap \Delta_{\beta}^*$ for U^* has a solution $\{ f_{\alpha}^* \}$. Then there exist an open neighborhood W_{α}^* of $\Delta_{\alpha}^* \times \mathbb{R}$ in \mathbb{C}^2 and a holomorphic function H_{α} in W_{α}^* such that $H_{\alpha} | \Delta_{\alpha}^* \times \mathbb{R} = f_{\alpha}^*$. Then we have an open neighborhood V of $\mathbb{C} \times \mathbb{R}$ in \mathbb{C}^2 so that $\mathcal{O}_{\rho(\alpha)\rho(\beta)} = \mathcal{O}_{\rho(\beta)} - \mathcal{O}_{\rho(\alpha)} = H_{\beta} - H_{\alpha}$ in $W_{\alpha}^* \cap W_{\beta}^* \cap V$. Putting $\Lambda := \mathcal{O}_{\rho(\alpha)} - H_{\alpha}$, we have a \mathbb{C}^∞ function Λ on V so that $\overline{\partial} \Lambda = \mathbb{V}$. This contradicts the conclusion of Lemma 5.

Then we have the following theorem.

THEOREM 2. Let A be the vector space of all real analytic functions on **R** endowed with the natural locally convex topology and \mathcal{O}^A the sheaf of germs of A-valued holomorphic functions on C. Then $H^1(C, \mathcal{O}^A)$: = ind lim $H^1(\mathfrak{U}, \mathcal{O}^A) \neq 0$, where \mathfrak{U} runs through the set of all locally finite open coverings of C.

PEMARK. Let F be a Frechet space and \mathcal{O}^F the sheaf of germs of F-valued holomorphic functions on a Stein space. Then $H^i(X, \mathcal{O}^F) = 0$, $i \ge 1$ ([1], [2]).

3. Piccinini's result for Cauchy-Riemann equations depending real analytically on a parameter

As an application of Proposition 2 we can give another proof of Piccinini's theorem ([9]).

THEOREM 3. There exists a real analytic function g(z,t) in $C \times R$ such that one cannot find a real analytic function f(z,t) in $C \times R$ satisfying $\frac{\partial}{\partial \bar{z}} f(z,t) = g(z,t)$ in $C \times R$.

PROOF. Let f_{ij} be the Cousin data as in the proof of Proposition 2. We denote by \mathscr{A} the sheaf of germs of real analytic functions on $C \times R$. Then, by the result of [4] and [8] we have $H^1(C \times R, \mathscr{A}) = H^1(\{\mathcal{A}_i \times R\}, \mathscr{A}) = 0$. There exists $\{g_i \in H^0(\mathcal{A}_i \times R, \mathscr{A})\}$ such that $f_{ij}(z, t) = g_j(z, t) - g_i(z, t) - g_i(z, t)$ in $(\mathcal{A}_i \cap \mathcal{A}_j) \times R$. Since $\frac{\partial f_{ij}}{\partial \bar{z}} = 0$, we have a real analytic function $g(z, t) = \frac{\partial g_i(z, t)}{\partial \bar{z}} = g(z, t)$ in $C \times R$. If we find a real analytic function f(z, t) in $C \times R$ so that $\frac{\partial f(z, t)}{\partial \bar{z}} = g(z, t)$ in $C \times R$, then we have a solution $\{f_i := g_i - f\}$ for Cousin data f_{ij} depending real analytically on t. This contradicts the statement of Proposition 2.

REMARK. In Theorem 3 we can replace $\frac{\partial f(z,t)}{\partial \bar{z}} = g(z,t)$ by $\frac{\partial f(z,t)}{\partial z}$ = g(z,t) and $(\partial^2/\partial x^2 + \partial^2/\partial y^2)f(z,t) = g(z,t)$, where $z = x + \sqrt{-1}y$.

54

RREMARK. Let g(z, t) be a real analytic function in $C \times R$ and D_n : $= \{|z| < n\}$ for $n=1, 2, \cdots$. We put $f_n(z, t) := (2\pi\sqrt{-1})^{-1} \iint_{D_n} g(\zeta, t)/(\zeta - z)$ $d\zeta \wedge d\bar{\zeta}$ for $(z, t) \in D_n \times R$. Then $\partial f_n/\partial \bar{z} = f$ in $D_n \times R$. We can show that f_n is real analytic in $D_n \times R$ and $f_m - f_n(m > n)$ is holomorphic in $z \in D_n$. By the result of [2, Theorem C] the restriction map $H^0(C, \mathcal{O}^F) \to H^0(D_n, \mathcal{O}^F)$ has a dense image, where F denotes the Frechet space of all C^{∞} functions in R and \mathcal{O}^F is the sheaf of germs of F-valued holomorphic functions on C. Applying this approximation theorem to the local solution $\{f_n\}$, we have a C^{∞} function $f^*(z, t)$ in $C \times R$ so that $f^*(z, t)$ is real analytic in z and $\frac{\partial f^*(z, t)}{\partial \bar{z}} = g(z, t)$ in $C \times R$. This implies that we cannot have Oka-Weil approximation property for holomorphic functions with values in the locally convex space of all real analytic functions in R.

References

- [1] E. BISHOP: Analytic functions with values in a Frechet space, Pacific J. Math. 12(1962), 1177-1192.
- [2] L. Bungart: Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Amer. Math. Soc. 110(1964), 317-344.
- [3] F. DOCQUIER and H. GRAUERT: Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140(1960), 94-123.
- [4] H. GRAUERT: On Levi's problem and the imbedding of real-analytic manifolds, Ann. Math. 68(1958), 460-472.
- [5] R.C. GUNNING and H. ROSSI: Analytic functions of several complex variables, Englewood Cliffs, N.J.: Prentice Hall, Inc., 1965.
- [6] J. KAJIWARA and H. KAZAMA: Continuation and quotient representation of meromorphic functions, Mem. Fac. Sci. Kyushu Univ. 25(1971), 10-20.
- [7] H. KAZAMA: $\bar{\partial}$ cohomology of (H, C)-groups, Forthcoming in Publ. R. I. M. S., Kyoto Univ.
- [8] B. MALGRANGE: Faisceaux sur des variétés analytiques réelles, Bull. Soc math. France 85(1957), 231-237.
- [9] L. C. PICCININI: Non surjectity of $\partial^2/\partial x^2 + \partial^2/\partial y^2$ as an operator on the space of analytic functions on R^3 , Lecture Notes of the Summer College on Global Analysis, Trieste, August 1972.
- [10] Y.-T. SIU: Every Stein subvariety admits a Stein neighborhood, Inventiones Math. 38(1976), 89-100.