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1. Introduction. 

   T. Hida [1] has proposed the problem that " what properties has the 
stationary process x(t)—x(t,(,), which satisfies the formal equation 

(1. 1)D"x(t) =E(t), 
where D—d/dt, 0<a<1 and E(t) is a white noise ". K. Yosida [2] had 
interpreted and studied the operators such as D", which proposed by A. 
V. Balakrishnan [3], as the fractional powers of infinitesimal generators 

of the semi-groups of bounded linear operators gt (t>0) on a Banach 

space X into X. 

   In this note, we shall interprete and study the operators such as D" , 
(D+(3I)", (D+8I)-", as the special cases of shift-commutative linear 

operators which are defined by T. Seguchi [4] and [5] . And then we 

shall refer to the properties of stationary processes which satisfy the 

stochastic functional equations concerning to the operators such as above 

S-C.L.Op.s of Riemann-Liouville type.

2. Preliminaries. 

DEFINITION 2. 1. Let F be the all complex- (or real-) valued functions 

defined on R' , and let (A, D, (rt) t ER) be such that: 

   (1) (vt)tER is the shift operator defined on F; i, e. for any fE F and 
for any t E R

rtf(•) —fC• +t).

1) R-(—co, 00) : "the set of all real numbers".



   (2) D is a non-trivial complex (or real) linear sub-space of F,  i. e. 

D (0), and satisfies the condition 

  (L 1)rtDCD, for any t E R. 

   (3) A is a linear operator defined on D and satisfies the condition 

  (L 2)ADCF=..(rt)2). 

   (4) Between the linear operator A and the shift rt, the condition 

   (L 3) for any f E D and for any t E R 

rt(Af)°A(rtf)

holds. 

   Then we shall call the linear operator A is the shift-commutative linear 

operator (S-C.L.Op.) defined on D w.r.t. r, . The notation A means the 
class of all S-C.L.Op.s defined above and (A) means the domain D of 

A EA.

   Let A E 11, and A f(t)E (A f) (t) be the value of A f at t, then the fol-

lowing relations hold; there exist two functions such that for any A 

Esaf(A)=-(,l; et- E,`(A), AER) and z E 9(A)—(z; ez Ea-(A), zEC)3', 

(2. 1) Aei2t-_etxtGn(A), Aezt==eztCA(z), for every t E R.

   DEFINITION 2. 2. The above two functions GA (A) and CA (z) are called 

the generating function (g. f.) and the characterizing function (c. f.) of S-C. L. 

Op. A E A, respectively. 

   Let us use the following notations : 

-" the space of all rapidly decreasing functions in the sense of L. 

        Schwartz [6] ".

M _{,u;JIco(A)12p(dA)<oo, for every coE. ', non-negative measures) .
Mk = {;J dA)/(1 +A2)k<, it E M).
L2(p;.v2)=—(f;JIf(A)(A) I2,a(dA)<oo, for every co E.9°}.
L2(12; k)E f; Jlo I f(A) 12/(1+A2)kp(dA)<00).
.n( P)=—" the basic probability space". 

L2(S2) —(x; E[ I x(w)12] <co)• 

C—" the totality of (weakly) stationary distributions".

2) ..si(*) means the domain of a operator " * ", 
3) C means "the set of all complex numbers".



 5°--" the totality of (weakly) stationary processes", 

                                          (xE ; PxE Mk) • 

XR—(x(t, co), tER; wESl). 

Xy —(x(So, co), co E ; co E Sl). 

X—XR or X ,, if we need not to distinguish X,z and X,. 

L2 (X) —L2 (X) CL2 (S2).4) 

L2 (X ; a, b) —L2 (X R ; a, b) or L2 (X, ; a, b) , L2 (X ; t) --_L2 (X ; —00, t) , 

L2(XR ; a, b)—L2 (x(t, w), a<t<b ; w E 2), 

L2 (X,y ; a, b) —L2 (x(co, to), So E ab ; w E 2) , 

ab-(cp; car. (co)E[a, b], to E.9'). 

A_=:"S-C.L.Op.s which are dependent only on the past". 

N,=(A ; G,,(A) =0). 

dZx(A)—dZx(A, (0)—"the corresponding orthogonal random measure to x" . 

,ux—,ux(dA)—" the corresponding spectral measure to x ". 

Fa(t)—" the continuous primitive of e-atf(t) as the function of t ",

(2.2)[Q/(D—al)]f(t)=—QJoe"u f(t)du,

where a, 8E C, 0 and

10 eau r f(t)du=—J t ea(t-s) (s)ds=--eatF'a(t)

 0 

  eau r-uf(t) du =e""-s) f(s)ds, ifNE.

—I:e au r,, f(t)du =rt ea(t-s)f(s)ds, if Jie a<0, 
—eatFa(t) ,if Re a=0.

(2. 3)(1/ [ (D—aI) (D—al) ])f(t)--(1/b) 10 eau sin bu 7_, f(t)du,
where a=a -I- ib (a, b E R, 0) .

   DEFINITION 2.3. Let Tt(t E R) be the shift operator on C~, such that for 

any x E S, for every co E SP and for every t E R the relation

Ttx(co)=x(r-0co)

holds, where rt is the shift defined on F. 

   Let K(t) be a right continuous step-function defined on R, and has 

finite jumping points, i. e.

4) L2(*) means the L2-space generated by " * " .



K(t) =—
tnjkn,S`Jkn1<cc,  knER or C, n=1, 2,•••.    st n

And for any x E G and for every co E 9', let us put

(2. 4) Ax(oo)- ~,,Ttnx(c9)kn = E x(r -tc)kn = ! x(r ico)dK(t). 
     nn JJ -

The all these operators A such as above will be called the shift-commuta-

tive linear operators on C, and are denoted class As . 

   PROPOSITION 2.1 (Proposition 3.1. 1).5, If the above operator A on de-

fined by (2. 4) is corresponding to the S-C.L.Op. A E A such that, for any f E F

(2.5) Af(•)— rtnf(•)kn=~f(.+tn)kn= Jf(•+s)dK(s)= 1:sf(.)dK(s). 
   nn

Then we have the following results: 

(1°) G, and C„ of A E A defined above are given by

GAM= etdtnkn =J:,,etxtdK(t),

CA(z) =Zeztnkn=8 ez1dK(t). 
  n-~

(2°) Especially, if x Ethen for the corresponding usual stationary process 

x E , A x(t) is given by

Ax(t) _~, rtnx(t)k„=Ex(t+t„)kn= JX(t+ s)dK(s) Jzsx(t)dK(s).
   DEFINITION 2.4. If x E has the orthogonal random measure and the 

spectral measure dZ and p respectively, and if S-C. L. Op. A E A has the 

g.f. G, E L2(,u ; 9'), then the corresponding S-C. L. Op. A in to A EA is 

defined by, for every co E .7

(2. 6)Ax(co) = f-.(,9,-(p)(A)GA(A)dZ(A).
The domain of A in is denoted by 9'(A) — (x; GA E L2(px ; 9')), The 

class of all operators A in defined above and whose domain in S is 

not empty, is called the shift-commutative linear operators (S-C.L.Op.^) in C~ 

and denoted by A.

   REMARK. Here we are treating the weakly stationary processes, i. e. 

stationary process x is regarded as a point of the closed linear sub-mani-

fold of the Hilbert space L2(SQ). Hence, in its representation (2.6), it

5) The inside of ”( )” shows the the number of result in T. Seguchi [4].



will be in question that the difference of measure zero. Here we wish to 

point out that the above definition of Ax give the answer to this question. 

That is, as the g. f.  G, of S-C. L. Op. A is uniquely determined by the 

operator A, hence the representation (2. 6) is unique, and even if G,,—Gr 

(PO (in this case Ax(c0)=f (5-0 (A)GA (A) dZx(A) = (-9 49) (A)Gr(A) dZx(A) 
=Tx(co) is considered as the same point in L'(12)) , we must consider 
that Ax/Tx.

   PROPOSITION 2.2. (1°) If x E CS has an orthogonal random measure dZx and 

a spectral measure px, then for any A E A satisfying GA E L2 (px ; .°), expressions

Ax(co) =1 .C9-co) (A)G,, (A)dZZ(A),

(2. 7)r,,x(4P) = J-_(-g"co) (A) I G,, (A) I Z,ax(dA),
hold, for every co E .V, where rAX(c9) is the covariance distribution of Ax. 

(2°) Especially, if XE l , and G, E L2(px ; 0), then for the corresponding usual 
stationary process x E to x E 5,, the following expressions hold:

(2.8)Ax(t)=I ~ei.itGA(A)dZX(A),

 (2. 9)rAx(t) = J:etiGA(A) 12ux(dA),
where dZx and are those of x E o. 

   PROPOSITION 2.3 (Theorem 3. 4. 4). Let A, T, 4 E.A. (or A), then we have 

(1°) if 4=aA+b[ then G,=aG,,+bGf and C,=aC,,+bCr• 

(2°) if 4= AT then G, =GAGr=GrG,, and C, =C,,Cr=CrCA, 

   (3°) if there exists the inverse operator A-1 E A (or A), then GA-1 = 1/G,, and 
CA-1 = 1/CA, where A-1 is an operator such that A A-1=I (identity operator).

PROPOSITION 2.4. (1°) If A E A is given by

Af(•) Jaz-sf(•)dK(s),
then A E A corresponding to the above A EA can be expressed by

Ax(So) = Jb T sx (So) dK(s) = Jb x(r, ) dK(s), 
aa



where K E  BV[a, b]"(—co<a<b<+oo), xE_g(A). 

   (2°) Especially, when x E C~°, then

Ax(t)_— r_Sx(t)dK(s) = f ax(t—s)dK(s).

   PROPOSITION 2. 5 (Theorem 4. 2. 3). (1°) Let x and y satisfy the equa-

tion 

                                Ay=x, 

where A E A_. Then for every t E R 

L2( Y ; t) DL2 (X ; t) 

holds. 

   (2°) Furthermore, if there exists the inverse operator A -1 E A_., then 

L2( Y ; t) =L2 (X ; t) 

holds, for every t E R. 

   PROPOSITION 2. 6 (Theorem 5. 2. 1). Let x E So, t be a differentiation in the 

sense of random distribution of a homogeneous orthogonal random measure di and 

A E A. Then 

   (1°) the relation 

(2. 10)Ax= t 

holds if and only if the conditions (G 1) NA-0 and (G 4°) 1/G,, E 12(m; 0)7) are 

satisfied. 

   (2°) any x E So satisfying (2. 10) is given by uniquely

x(co) = A-1E (CO= J: (--cv) (A)dE(A)/G4(A),
where di is the homogeneous orthogonal random measure of E Si. 

   (3°) x E S°, corresponding to x E So, is represented by

x(t)— -- eutdi(A)/GA(A),

rx(t) = eixt/ GA(A)12dA.

6) BV [a, b] means "the all real- or complex-valued functions of bounded variations 
 in [a, b] ." 

7) m means "the usual Lebesgue measure on R", i, e. m(dt)-d t.



   The above all notations, notions, definitions and propositions are in 

T. Seguchi  [4]  , or can be easily proved.

3. S-C.L.Op.s of Riemann-Liouville type belonging to 11.

   [V] S-C.L.Op. (D+ 01)-". 

   We shall first consider the case that the operator A defined by the 

following form: For a<0, 0>0 (a, (3 E R)

(3. 1)Af(t)-1/T (a)J(t_s)1etf(s)ds 

=1/r (a) I ua-'e-8uT-uf(t)du• 

0

   The following formula holds, for any a<0 (a E R), and z E C such as 

he z>0

(3. 2) e-ztta-'dt=r(a)/za.

If we put f(t)_-ettt(A E R), we have from (3. 1)

Aetxt =VT (a)ft(t—s)a-le-"-s>eiAsds

=etxt/r(a)r°°ua->e-(Q+Zx>u du 

               0 = et/ (0+iA).

   Hence, from the above formula, we can see that the operator A be-

longs to the class A of S-C.L.Op.s and the g.f. of A is GA(A)=(61+ j) -" 

   If a=1 then we can easily assure the operator A defined by (3.1) is 

the operator (D+ 8I)', which is given by (2.2). Hence, we shall denote 

the operator A defined by (3.1) A—(D-{-(9I)-".

[21 S-C.L.Op. (D+ aI) a. 

   Next, we shall consider the following case; 0<a<1, 8<0 (a, Q E R). 

Using the formula (3. 2) and

(3.3)r(1-a)=-af'(—a), 0<a<1, 

we have



 (3.4) t u-a-1(1—e-(a+i" )du

--1/a [u-a(1—e-4"+td)u) ] J— [ (Q+iA)/a] J~u-ae-(a+la>udu 
00

_ — [(a+iA)/a] J~ u(1-a)-1e-(8+t.Uudu
_ — [(Q+iA)/a] [1'(1—a)]/0+iA)1-a 

_— {P(1—a)/a] (Q+iA)a 

=r(—a)(N+iA)a.

   On the other hand, if we put u=t—s, from (3.4)the following for-

mula holds:

(3.5)  u-a-'(1—e-(8+12'u)du

_ (t—s)-a-1(1—e-(8+t1)(t-s>)ds

=e-idtJ(t_s)_a_1(et_e_$(t_s)etAs)ds.
Hence, from (3. 4) and (3. 5), if we consider the operator A such that

(3. 6) Af(t)-1/T(— a) it (t—s)-a_1 [f(t)—e-a(t-s)f(s)]ds
=1/r(—a) Ju-a-o(1—e-aur_u)f(t)du,

then, putting f(t)—eiAo, we get

(3. 7) Aetlt_1/T(—a) Jt (t—s)-a-1(etu_e-a(t-s)etxs)ds
—e{at/T(—a) (t—s)-a-1(1—e-(0+tz1(t-s>)ds

=etxt(Q+iA)a .

   The formula (3.7) shows that the operator A defined by (3.6) is be-

longing to the class A and its g. f, is (i2+13)a, In accordance with [1°], 

we shall denote the above operator A—(D+(3I)a.

{31 S-C.L.Op. Da. 

If f(t) be the function such that the right hand side of formula (3. 6) 

is meaningful, and let 0<a<1, then we have



 (3.8) lirn 1/r(—a)J (t—s)-a-'[f(t)—e-au-s'f(s)]ds 
,3to

=1/r(—a)Jt (t—s)-a-'[f(t)—f(s)]ds

=1/F(—a)J:u-a-'(I—r_u)f(t)du.
Let the operator, which is defined by the right hand side of (3. 8), be Da, 

then from (3.7) we can easily see that

Da =et.it(iA)a.

Hence we see that D" E A, GDa(A) _ (6l)", CDa(z) =za. We shall call the 

operator Da the differential operator of order a. 

[41 For general a E R, there exists an integer n such that a= n+a' 

(0<a'<l). Then above three operators are given by the followings:

(1) (D+0I)-af(t)_(D+01)-n(D+QI)-a At) 

+ (2) (D+QI)"f(t)—(D+(3I)n(D+QI)""f(t), 

(3) Daf(t)=Dn Da'  f(t),

where if n>0, (D+(3I)-'Z, (D+ OW and Dn are given by the definition of 

differential operator D and the integral operators (2.2) and (2.3) and 

Proposition 2.3, and if n>0, the operator D-n is defined as the following; 

let F(t) be a continuous primitive of f(t) at t, satisfying F(0) =0 and let 

D-'f(t)—F(t), then from Proposition 2.3 we can see that D-n_D 'D '•••D'. 
---

n -

[51 From Proposition 2.3 and [11—[41 [4°] in this section, we can easily 
see that for any a E R 

   (1) [(D+01)a] -i=(D+QI)-a, 

  (2) [(D+(QI)-a] (D+ OW, 

  (3) (D") =D-a

4. S-C.L.Op.s of Riemann-Liouville type belonging to A. 

   From the preceding Section 3, Definition 2.4 and Propositions 2.2 and 

2.4, we can immediately obtain the followings: 

[11 For any x E such as (bi -{-- 8)--" E L2 (,ux ; 9'), a>0, 8>0 (a, Q E R)



 (4.  1) (D+Q:I) "x(cP)I('.-(p) (A) (IA+Q)-"dZZ(A)

1/F(a) J~ u"-'e-"T_„x(co)du 

0

 1/F(a) J~ u"-'e-fi„x(rt,cp) du. 

0

   [20] For any such as (iA+Q)” E L''(px; '), 0<a<1, 19>0 (a, Q E 
R)

(4.2)(D+ I)"x(c.): (Y-y9)(A)(iA+Th"dZZ(A)

=1/F(-a) u-"-'(I—e-auT -u)x(cp)du

—1/ T ( ~x) u "--1 [x(So) — e-,4ux(rucP) ] du .

[30] For any XE such as (iA)" E 1,2(p, ; 9') , 0<a<1 (a E R)

(4. 3)D"x(co)=J- .(9co) (A) (iA) "dZx(A)
=1 /F(-a)J: u-"-1(I—T_u)x(cp)du
=1/F(-a)J00- u-a-1 [x(co) —x(ruco)] du.

   [40] The results of preceding Section 3, [40] and [50] are all obtain-
ed for the S-C.L.Op.s in except the case D-" (a>0). And for x E C~, 

from Proposition 2.2 the results are trivial, furthermore, for the covari-

ance functions or covariance distributions the results are trivial from 

Proposition 2.2 and Definition 2.4, hence we shall omit to show the results. 

As for the operator D" (a>0), from Proposition 2.3, the following relation 

is not satisfied ;

(D")-1=D-",

(This relation does not hold in the case of D" E A, but in the Section 3, 
we defined formally that D 'f(t)—F(t). In this case, from Proposition 2.3 

the definition of (D") 1 can not possible, as GD"(A) has a zero on pure 

imaginary axis, i. e. GD"(0)=0 hence the relation (D")-1=D-" does not 

hold from Proposition 2.3.)



5. Applications to the functional equations.

   Let us consider the following stochastic functional  equations  : 

(5. 1) (D+(3I)-"y=x, a<0, 3>0 (a, Q E R), 

(5. 2) (D+ 9I)"y=x, 0<a<1, 3<0 (a, (3 E R), 

(5. 3)Day= x,0<a<1, (a E R), 

where x and y E C~. 

   The above equations are meanigful if and only if the following rela-

tions 

(5. 1)'(iA+(3) -"dZy(A) =dZx(A), 

(5.2)'(a+(3)"dZy(A)=dZZ(,i), 

(5. 3)'(i,i) «dZy = dZx (A) 

hold for any A E R. Then from the preceding Section 4, [4'], we can see 

for the equations (5. 1) and (5. 2) the following relations hold: 

(5. 1)"y=((D+(3I)-") 'x=(D+(31)"x 

(5. 2)"y=((D+QI)")-,x=(D+QI)-"x. 

Furthermore, from the definitions of above operators (D+ ‘31)" and (D+ 

W) -a (Section 4, [1'] and [2']) and Proposition 2.5, we can obtain the 
following result :

(5. 4)(D+(3I)-"=((D+QI)")-1 E A_, 

(5.5)(D+(3I)"=((D+QI)-a)-1 EA_, 

(5. 6)L2 (Y ; t) =L2 (X ; t) , for every t E R.

The other results are obtained from Section 4 in T. Seguchi [4] .

6. Applications to the representations of certain stationary processes . 

  Now let us consider the following stochastic functional equations

(6.1)(D+ W)-ax=e, a>0, 13)'0 (a, Q E R), 

(6. 2) (D+(3I)"x= 0<a<1, 3>0 (a, (3 E R), 

(6. 3) D"x=,0<a<1 (a E R),

where x E 0, E which is the differentiation in the sense of random 

distribution of the homogeneous orthogonal random measure d~ .



   From Proposition 2.6 the equations (6. 1),  (6.  2) and (6. 3) are mean-

ingful if and only if the conditions

(6. 4)1/(iA+13)"" E L2(m ; 0), NA=0, 

((3>0, a'ER, AER)

are satisfied, where A is (D+0.1)-' in (6. 1) , (D+01)" in (6. 2), D" in (6. 3) 

and a'=aor—a, a>0. 

   But the last condition of (6. 4) is not satisfied in the case of D", hence 

the equation (6. 3) is not meaningful. 

   For (6. 2), if 1/2<a<1 the conditions of (6. 4) are all satisfied and 

otherwise the first condition of (6. 4) is not satisfied. Hence the equation 

(6. 2) is meaningful if and only if the case that 1/2<a<1. 

   For (6.1), the first condition of (6. 4) is not satisfied, hence the 

equation (6.1) is not meaningful. 

   From the above discussions, finally, among the above equations, only 

the equation (6. 2) is meaningful in the case 1/2<a<1, 0>0 (a, OE R). In 

this case, we can obtain, from Section 3, [51 and Propositions 2.2, 2.5, 2.6, 

the following results : (1) There exists unique solution of equation (6. 2) and 

is represented by

(6. 5)x(v) = (D+QI) -"$(co)

=1/P(—a)
Ju"(I—e-iiuT-u)i(v)du 

                0

= J- ( g9) (A) (iA+(3)-"di(A),

where dZ(A) is the homogeneous orthogonal random measure corresponding to the 

white noise , and the covariance distribution of x is given by

(6. 6)rx(49) =L(--co) (A) I iA+l1-2"dA.
(2) Let x E f be the stationary process corresponding to the solution x E C~0 of 
the equation (6. 2), then we have, from Proposition 2.2 and Definition 2.4

(6. 7)x(t) =1/P(—a)fu-"-'(I—e-sur-u)de(u)
=1. : el (iA+Q)-"de(A),



 (6.  8) rx(t) =f-el" iA+(3 -2 dA

where dE is that of relation (6. 5). (3) Furthermore, in this case, the Paley-Wiener's 

condition is satisfied in addition to the conditions (6. 4), by the same way as Pro-

position 2.6, we can see that the canonical representation of x E satisfying the 

equation (6. 2) is the first term of the expression (6. 7).
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