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   § 1. Introduction and preliminaries. 
   W. Feller (1), (2] treated generally, with many interesting examples, 

recurrent events in a sequence of repeated trials each of which can result 

only in denumerably many events. The present paper is also concerned 

with the same problems of a recurrent event 6 as Feller's, but this paper 

exclusively deals with the case where probability un that 6 occurs at the 

n-th trial satisfies certain difference equations.

1.1. Formulation of problems. We take up a sequence of infinite trials 

each of which can result only in at most denumerably many events. The 

state space may be assumed to be S= (1, 2,...), without loss of generalities, 

in such case as above. Two probabilities that a certain event 5" occurs 

in this sequence of infinite trials are defined as follows : 

(1.1.1) un=P(5 occurs at the n-th trial) 

(1. 1. 2) fn=P(5 occurs for the first time at the n-th trial) 

n-1, 2, • . • , and for convenience we put uo =1, and fo = 0. 

   The following definitions are supposed to be known conceptions to rea-

ders, as they are explained in the following parts of Feller [1], Chapter 

XIII. 

 (1) 6 is a recurrent event: p. 282, Definition 1, 

 (2) Recurrent event 6 is persistent or transient: p. 283, Definition 2, 

 (3) Recurrent event 5 is periodic or non periodic : p. 284, Definition 3. 

   Readers may also refer to interesting examples of recurrent events of 

various kinds given in the foregoing chapter of Feller [1]. 

   Now we take an interest in the following two cases, where (un) , corres-

ponding to the recurrent event 5, satisfies each of the difference equations

 1) For example: 5=(1, 2, 3, 4) (set), 5=(1, 2, 3, 4) (sequence), =(E1, E1, E2,)=((1, 
2), (1, 2), (2, 3)) (sequence of sets), etc..



given below. 

 CASE  ( I : where (un) satisfies a difference equation
                                    k 

(I)1a,un_,=0, n>k+1, 
i=o

CASE (II) : where (us) satisfies a difference equation

(II) n>k±1. 
=o

We assume in either case that (a)0, 1. t. k and p (=0) are known cons-

tants, and that ao =1. 

The problems which we should take up here are 

(1) investigating the properties of a recurrent event 5 corresponding to the 

equation (I) or (II) (for instance, whether 5 is transient or persistent ; if 

persistent, the calculations of mean recurrence time p= n fn and its vari-
                                                                                                     n=I 

ance a2— ; (n—,u)2fn ; etc.) 
n=1 

(2) seeking the conditions for the existence of persistent recurrent event 5 cor-

responding to the equations (I) or (II), 

(3) showing interesting examples relating Cases [I) and (II] ; investiga-
ting the behavior of (un) as n.--co and other probabilistic problems. 

1.2. Known results. Given below are known results to be used to stu-

dy the above problems. The generating function of sequences (un) and (f,1) 

defined in (1. 1. 1) and (1. 1. 2) are represented as follows :

(1.2.1)

(1.2. 2)

U(s)- snun 
n=o

F(s) = Snfn. 
           n=0

1°) If E fn=1, then 
n=1

(1.2. 3)

(1.2. 4)

p= E nfn=lim F'(s) 
n=1st1

a2— j (n—p)zfn=lim F"(s)+p—p2. 
n=1st1

2°) If 5 is a recurrent event, the following relations hold, 

(1. 2. 5)un=fo un+f1 un_1+fz un_2+...-} fn uo, 

(1.2. 6)U(s)=1/(1—F(s)), Isj <1. 

3°) For 5 to be transient, it is necessary and sufficient that u= j un is 
                                                                                                                           n=0 

finite (i.e. u=U(1)<- -oo). Furthermore, the following relation holds,

f E fn= (u-1)/u<1. 
     n=U



 4°) Let  5 be persistent and non-periodic, then us tends to 1/p, as n->oo, 

where ,u is given by (1.2. 3), and if ,e2=-+ oo, us--->0. 

 5°) If 6 is persistent and has period A >1, then u2n' tends to A/,u as 

n'--co, and un = 0 for every n not divisible by A. 

 6°) If sY (multiplicity rY) (v=1, 2, • • • , m) denotes the root of the charac-

teristic equation

(1. 2. 7)A(s) =skA(s-1)= ~a, sk-'=0 
                                                                   i=o

of the equation (I), then the general solutions of the equation (I) and (II) 

are respectively given by

(1. 2.8)u= (c 1±c 2 n+cy3 n2+...+cy,.y nr9-1)4, 
                                 Y=1

                                                               `, (1. 2. 9)un= (c1+c2n+CY3n2+...±cY rynrY-1)sn+p/(Ua3). 
   Y=11=0

The function A(s) in the equation (1. 2. 7) is given in Lemma 2.1.1 which 

will appear later.

1.3. Summary. In next section we shall first take up the Case (I] 

and get necessary conditions for existence a recurrent event corresponding 

to the equation (I), formulas to calculate the mean recurrence time p and 

its variance a2, behavior of (us) as n--oo and a sufficient condition of exis-

tence of non-periodic persistent recurrent event corresponding to the equ-

ation (I), etc.. 

   In § 3, we shall investigate the same matters as § 2 in the Case [II), 

and get the results corresponding to that of § 2. Furthermore interesting 

examples will be shown. 

   In § 4, we shall remark that using the results of § 2 and § 3 problems 

which are treated as related problems for recurrent events in Feller [1] 

and (2], can be investigated and almost every Feller's results may be ob-

tained in our case.

   § 2. Case [I]. 

2.1. The following are to be discussed in this section under the assump-

tion that (us) , corresponding to a certain recurrent event 5 , which was 

defined in (1.1. 1) satisfies the equation
                                     k 

(I)ja; un_;=0, n>k+1. 
                                              i=0

(i) The condition for 5 to be persistent or transient.



(ii) The calculations of p and  a2 when 6 is persistent. 

(iii) The necessary condition for the existence of a recurrent event 5 

corresponding to the equation (I). 

(iv) Some remarks when 6 is a periodic recurrent event. 
There may be other simpler methods for the proofs of lemmas and the 

development of discussion, but consideration has been taken here to make 

the necessary conditions in (iii) as strong as possible. 

First we derive the following lemma. 

LEMMA 2.1.1. For generating function U(s) of (un) which satisfies the equation 

(I), the following relation holds: 

(2.1.1)U(s) A(s)=H(s), I s I <1 

where

 (2. 1. 2)A(s)=i1  snan, 
                                                           n=0

               ~k~n`k (2.1. 3)                       H(s)—,GJSnUun_, a,=>j snhn 
n=0 n=0n=0

and

                                                      n 

(2.1. 4) hn=Ja,un_1= };u;an_,, n=0, 1, 2, ... ,k. 
J=0i=0

         nn 

PROOF. If we add the equations nn_j= un_!, n=0, 1, 2, ••• , k, 
J=0i=0

before the equation (I), and multiply the both sides of n-th equation by s" 

and sum up by all n, then we get the relation (2. 1. 1), where A(s), H(s) 

and (hn) are given by (2. 1. 2), (2.1.3) and (2. 1. 4).Q.E.D. 

As A(s) and H(s) in the relation (2. 1. 1) are the polynomials of degree 

at most k in s, they can be expressed as follows ;
kk 

(2. 1. 5)A(s)=j(s-1)nA(n)(1)/n!=;(s-1)nAn 
n=0n=0

   kh 

(2.1.6)H(s)= (s-1)nH(n)(1)/n!= (s-1)nHn 
n=0n=0

where 

(2.1. 7) An= A(")(1)/n!=   i (v)ai, andHn=H(n)(1)/n !=J(1:,,)h,, n=0, 1, 2, ••• ,k. 
       y=ny=n 

   Now let (A, l) and (H, m) (1, m=0, 1, 2, ••• , k) be the following condi-

tions :

(A, 1) Ao=A1=A2=...=A,-1=0, A,/O, 

(H, m) Ho ••• 1=0, H„,0. 

 LEMMA 2.1.2. Under conditions (A, 1) and (H, m), we have



          k

m k 
 (2.1.8)U(s)= nn(s-1)nHn/>(s-1)nA,,.            =n=t

 Hence 

1°) if 1<m, then lirn U(s)=0, 
s?1 

2°) if l=m, then 

        (i) 0<lim U(s)<+co, when AIHt>0, 
stl 

(ii) —oo<lim U(s)<O, when AIH,<0, 
si1 

3°) if l>m, then 

         (i) lirn U(s)=00,when (-1)t-mAiHm>0, 
sil 

         (ii) lirn U(s)=—oo, when (-1)1-mAjHm<0. 
sr1

PROOF. We can derive U(s)=H(s)/A(s), IsI <1, from (2. 1. 1). Substi-

tute (2. 1. 5) and (2. 1. 6) into it, and we easily get 1°), 2°) and 3°) from 

conditions (A, 1) and (H, m).Q.E.D. 

Now, we get U(s)>1 (0<s<1) from the definition of (tin), so that 1°) ; 

2°), (ii) and 30), (ii) are contradictions. Furthermore, we must assume that 

Ht/ A1>1 in the case of 2°), (i). Therefore, for the existence of a recurrent 

event 6 corresponding to the equation (I), one of the following two 

conditions must be satisfied : 

(T')1 (A, 1) and (H, 1) hold and H/1A1>1, 

(P')1 (A, 1) and (H, m) (l>m) hold and (-1)1-mHm/A1>0. 

   LEMMA 2.1.3. 1°) If condition (T')1 holds, the following expression is made 

possible,
                                                                   k 

(2. 1. 9) F(s) =1— A(s)/H(s) =1—,(s-1)y-1Ay/~; (s-1)°-1Hy

(2.1.10)lim F(s)=1— Ai/Hi. 
st1 

2°) If condition (P')1 holds, the following expression is made possible,
                                                k 

(2.1.11) F(s)=1—A(s)/H(s)=1-1(s-1)°-1Ay/ (s-1)y-mHy 
y=1y=m

(2.1.12)limF(s)=E fn=1, 
511n=1

(2.1.13) p_ E n.fn=0At/Ht-1, 
n=1,

ifm=l-1, 
ifm<l-1,

(2. 1. 14) c2=li SmF"(s)+,u—p2={2(A1H1—Al+1H1-1)—A1Ht-1—Ai)/Hl-1, if m=1-1. 
PROOF. As the existence of recurrent event 5 corresponding to equ-

ation (I) is assumed in this section, generating function F(s) of (fn) corres-

ponding to 5 is, from (1. 2. 4), represented as follows ;



 F(s)=1-1/U(s)=1-A(s)/H(s).

Substitute (2. 1. 5) and (2. 1. 6) into the above formula and take conditions 

(T')1 and (P')1 into consideration, and we get (2. 1. 9) and (2. 1. 11) in accor-

dance with the respective conditions. Furthermore, if s T 1, we get (2. 1. 

10) and (2. 1. 12). Differentiating (2. 1. 11) under condition (P')1i we get

(2. 1.15) F(s)
-A1H m(l-m)(s-1)1-m-1+ •••+const.(s-1)2(k-m-1) 

H4+2HmHm+1(s-1)+•••+const.(s-1)2(k-m)

Hence we have (2. 1. 13) from § 1. 2, 1°). 

   Furthermore, when m=l-1, differentiating (2. 1. 15) once more, we have

(2.1.16)
F"(s) _ 2A1H1_1H1-2A1+1H7_1+(s-1) (polynomial of degree at most 4(k-l)) 

Ht_1+(s-1) (polynomial of degree at most 4(k-l)+3)

Hence we have (2. 1. 14) from § 1. 2, 1°).Q.E.D. 

When condition (T')1 holds, and if Hi/ Ai=l, it is derived from (2. 1. 10) 

of Lemma 2.1.3 that liin F(s)= E fn=1-A1/H1=0. Since fn>0 (n=1, 2, •••) 
stln=0 

it follows that fn = 0 (n=1, 2, •••).  It means that recurrent event 5 never 

occurs in a finite trial. Accordingly the case where H1/ A1=1 is meaningless, 

so that this case is excluded. Hence, in order that 6 may be a transient 

recurrent event, condition 

(T)1 (A, 1) and (H, 1) hold and H1/A,>1 
must be satisfied, instead of (T')1. 

When condition (P')1 is satisfied, we know from (2. 1. 12) that 5 is a 

persistent recurrent event. But as (2. 1. 3) is obtained as a result of the 

calculation of p- En fn, it is required from § 1. 2, 1°) that p>1 is satisfied. 

Accordingly in order that 5 may be a persistent recurrent event, condi-

tion 

(P)1 (A, 1) and (H, 1-1) hold and 1> A,>0 
must be satisfied, instead of (P')1.

From the preceding, we get the following theorem. 

THEOREM 2. 1.1. When probabilities (us) corresponding to recurrent event 5 

satisfy the equation
                            n 

(I)ja, un-,=0, aQ=1, n>k+1, 
=0

the conditions (T)1 or (P)1 should be satisfied. 

Furthermore 

1°) if condition (T)1 is satisfied, then 5 is a transient recurrent event, and



(2.  I.  17)f= ± fn=1—Al/Hl, 
                                                             n=1

2°) if condition (P)1 is satisfied, then 5 is a persistent recurrent event, and mean 

recurrence time p and its variance a' are always existent in the following forms: 

(2. 1. 18)ft= —Ar/H1-1 
and

(2.1.19)a2— {2(A~HI—A1f1H1 1)—A1HI_1—Al}/H1_1.

   Some remarks on periodic case. Let us suppose that (un), corresponding to 

periodic recurrent event 5 with period A, satisfies equation (I). Then (un) 
is such that

(2.1.20)
0<u,tn,<1, n'=0, 1, 2, ••• , 

u.tn'+y=0, v=1, 2, ••• , A-1; n'=0, 1, 2, .

   Therefore it is required to satisfy the following equations instead of 

equation (I),

(2.1.21)

k' 

= — ~ a13 u„„, _,)=0, n'> k' +1, 
J=1

k'-1 

ay u.ln•+y=— Ea1• udcn'—J)=0, v=1, 2, ••• , A-1; n'>k', 
                   J=0

where we suppose k=Ak'. 

 As stated in § 2. 1, (un) and its behavior are known by equation (I), and 

A(s) and H(s). In a periodic case, however, it is enough for only (u1n.) and 

its behavior to be known, so that we may well consider the upper expres-

sions alone of (2. 1. 20) and (2. 1. 21). Consequently if we assume A to be 

one unit time and put t4A)-u,ln, then discussions can be reduced to a non-

periodic case :

(I)A

(2.1.22)

(2.1.23)

where 

(2.1.24)

k' 

Ea„ un'2;=0, n>k'+1, 
J=0

k' 

A1(s) _ E snadn, 
n=0

k' nk' 

E snEax; un1?1 r snhnl' 
n=0 J=0n=0

        n 

hnx>=Jai1 un23, n=0, 1, 2, ••• ,k', 
        J=o

and we may have the same results as were showed or shall be showed 

later, by taking § 1. 2, 5°) etc. into considerations. Accordingly, we shall 

only consider the case of non-periodic in the following § 2.2. 

Furthermore the following is to be noted, when coefficient (an) of the



equation (I) is periodic (i.e.  a1n. may be not 0, n'=0, 1, 2, ••• , k'=k/A ; an=0, 

k>n±An'), the lower expression of (2. 1. 21) never fails to hold. Therefore, 

when we discuss a periodic recurrent event, we may discuss the problem 

as a non-periodic case as stated above. However, attention is to be paid 

(especially after § 2. 2) to the fact that there are cases where non-periodic 

recurrent event exists even when (an) is periodic.

2.2. We shall discuss, without the existence of recurrent event 6 as a 

premise, the following matters when the equation
                                    k 

(I)1a, un_;=0, n>k+1 
i=o

satisfies condition (P)1. 

  (i) The behavior of (un), especially as n-3oo, 

   (ii) A sufficient condition for the existence of a recurrent event 5 cor-
responding to the equation (I). 

                                                                                           F 

   It is to be noted that since (P)1 holds, it follows that AM=an=O. 
n=0 

Furthermore, we introduce the following condition regarding A(s) : 

(R), The absolute values of the roots of equation A(s)=0 excepting 1 are larger 

than 1.2) 

   First we derive the following lemma. 

   LEMMA 2.2.1. If (an) and (un) (n=0, 1, 2, • • • ,k) are so given as to satisfy 

conditions (P), and (R),, then (un) which satisfies the equation (I) is convergent as 

n— co and

(2.2. 1) un— —HI_1/Ai.

   PROOF. Condition (R), makes it possible by § 1. 2, 6°) that U(s) for ge-

neral solution (un) of the equation (I) is convergent at IsI <1. Condition 

(P), makes (A, 1) and (H, 1-1) hold, so that, from Lemma 2.1.2, the follow-
ing reduction is effected :

      kk 

(2.2.2) U(s)=H(s)/A(s)=i(s-1)f-'+111,/.i(s-1)'-1+'A3 
J=1-1 1=1

=P(s) +H(s)/A(s),

where H(s)/A(s) is irreducible rational function, and (degree of A(s)) 
= (degree of H(s)) +1 , and P(s) is a polynomial in s with degree at most 
k0= (degree of H(s)) — (degree of A(s)). 

   It is known that, from the fact that (A, 1) and (H, 1-1) hold and from

2) In a persistent periodic case, the condition (R), is not satisfied,



 (2.  2.  2), the roots of A(s) =0 are parts of roots of A(s) = 0 and s=1 is a sim-

ple root. Now let the root of A(s)=0 excepting s=1 be sy (multiplicity ry), 
v=1, 2, • • • , m, then H(s)/ A(s) can be decomposed into partial fractions as 

follows ; 

(2. 2. 3) H(s)/A(s)=H(s)/((s-1)(s—s1)r1(S—S2)r2...(s—s,,,)rm)

                    _•-1-.....L-9--r      y_sAyrrs  P01mpl ny~y          ,:±-0(—n1)(sySLy(n— s„n
where 0o1,pyl, py2, • • • , py ry (v =1, 2, • • • , m) are constants.

Therefore, (2.2.3) can be reduced, with (m)= (-1)n(nmmi1),in the
following form :

H(s)/A(s)=E Aole-1-Emnp+11nI-1p Syy+2n.fry-1AvrY                                     Sy•        n=0y=1 n=0~(O1)ry-1)Syy}sn•
From the above expression and (2. 2. 2) we have, for n>ko,

(2.2.4) un=p01±:iAyl  •~ n±1-\  (42 ... ~- n-! ry-1 Ayryl y=104+1•1/ Sp"(r.y-1)SyFry1•
Since is, 1 >1, un tends to p0i, as n-->oo, where p01 is given by

poi= lim(1—s)H(s)/A(s) = —H1_1/A1. 
      011

Q.E.D.

   In Lemma 2.2.1 we introduced condition (R)1 with regard to the equ-

ation A(s)=O. Now let us consider the sufficient conditions to satisfy (R)1. 

When A(s) satisfies condition (A, 1), 1>1, ak. 0 and s=1 is a root of equ-

ation A(s)=0 and its multiplicity is 1. If we put 

(2. 2. 5)A(s) =(s-1)1A*(s), 
then, since A*(s) is a polynomial in s with degree (k —1), we can put

(2.2. 6)
             k-1 

A*(s)=: ansn• 
              n=0

Especially when 1=1,

(2.2. 7)
         k - l

(kk~ A*(s)_~iLJ ai)s' , 
n=Oi=n+1

i.e. an= 2, ai (n=0, 1, 2, ••• , k-1). 
              i=n+1

   Because A*(s)=0 has not s=1 as its root, the sufficient conditions to satisfy 

condition (R)1, i.e. the sufficient conditions for the absolute value of arbitrary 

root sy of the equation A*(s)=0 to be larger than 1 are given by the follow-

ing 3) 
                                                             k-1 

1°) If (A, l) holds, then 111 <1a .1( I . Especially if (A, 1) holds, then 
i=1

3) See, for example, Fujihara [3], p.p. 484-493,



 k k-i 

 ail >I I  ai  r  , 
I=1 n=1 i=n+1

2°) If (A, 1) holds, then 4 >a*>•••>ak_1>0 or a: <a*<•••<ak _,<0. Espe- 

cially if (A, 1) holds, then 0<ak<ak-!-ak_1<•••<1;ai or 0>ak>ak±ak-1:-...> 
i=1 

   ai• 

i=1 

3°) If (A, 1) holds, then at (n=0, 1, 2, ••• , k—l) are the same sign and the 

least value of a l+1/ak_l, ak-,+2/a,*_, 3,••• , ao /a* is larger than 1. Especially 

                           k if (A, 1) holds, then; ai(n=1, 2, • • • , k) are the same sign and the least value 
                                     i-n 

                      \k1~1 Of (ak ak-1)/ak, (ak±ak-1 ak-2)/(aki_a,,l), ••• , (iia1)/(1hai) is larger than 1. 
                                         i=1i-2 

   Next, from equation (I) we can introduce (k, k)-matrix B1, such that

(2.2. 8)

b1 b2 ... bk_1 bk 
1 10 0 0 

     1 0

where bn= —an, (n=1, 2, ... , k). Then matrix B, can be regarded as the 

linear transformation from k-dimensional vector space into k-dimensional 

vector space. And that is equivalent to the equation (I), if we put

Un 

un-1 

un-k+1 /

(2.2. 9)

(n=k, 1, k--a-2, •••) and represent

un=B,un_1f n>k±1,

where it is noted that (bn) satisfies bn=1. 
n=1

   From the above considerations we have 

   LEMMA 2.2. 2. " If conditions (P)1 and (R)1 are satisfied, then 

lim B;= B, is existent and represented as

(2.2.10)

where 

(2.2. 11)

731=
N1 Q2-.19k 

       /] l1l2•••lk 

Al 12•••F7k

/~ k k Nn= bi/~ i ,1 bi (n=1, 2, ••• , k) 
i=n i=1

and (an) satisfies the relation

(2. 2.12)i 8,t= 1. 
                                                          n=1

PROOF. It follows from 14,- —Hl_1/Al- it (n-- co) that un tends to

 4) The authors would like to express our appreciation to Professor T. Tsuda for vari-
ous advices in this lemma.



 u` 
        1
.‘ =1im 

\u,

B; uk, as n—oo. Hence it is clear that B1= lim B; is existent,

and that, for arbitrary n, m>0, 

(2.2.13)BIBI=BIB;=B1 and BI=B1 
should hold. 

   Now if we put

B1=

811 812...811,/~'12•••81 N21822•••82k 

8k1 1 k2• • • 8kk

then it follows from B1B1=B1 that 8m1=8n;-Q; (1<j, m, n<k). Hence 

(2. 2. 10) holds.

Again it follows from B;=B1 that 8,=1.

Next, from B1=B1B1 we get 

191=191b1+192, 82-81b2 83, •• , 8k-1=81bk-1±8k and 8k=81bk•
                                                           k 

If we reduce the above equations, usingi;Q;=1 and >;b;=1, then we have 
;=1;=1 

(2. 2. 11).Q.E.D.

   The following lemma will be evident if we pay attention to um+n=Biun 

--'u=Bjun as m--oo . 

   LEMMA 2.2. 3. The following relation is effected between limiting value u of un 

(n=1, 2, •••), which satisfies the equation (I) under conditions (P)1 and (R)1, and 

un, un-1, ••• , un-k+1 (n>k±1) ; 

(2.2.14)12=81 un`82 un-1+•••±Nk un-k+1• 

   This result means that, when we consider in the k-dimensional space, all 

points un(n>k+1) are moving on the hyper-plane which is passing the point

u and its normal vector is Q

81 
N2 

.8ki

   From Lemmas 2.2.1.3, we come to the conclusion that 

   THEOREM 2.2.1. If (an) and (un) (n=0, 1, 2, ••• , k) are so given as to satisfy 

conditions (P)1 and (R)1, then (un) which satisfies the equation (I) tends to u as 

n-->oo. Besides, if we consider the linear transformation with (k, k) matrix B1 defined 

by (2. 2. 8) then the points (un; n>k±1) move on the hyper-plane, which passes 

the point u and whose normal vector is p, and converge to the point U.



   From Theorem  2.  2.1 the following theorem is derived. 

   THEOREM 2.2. 2. When (P)1 and (R)1 hold, there exists a non-periodic persistent 

recurrent event 6 corresponding to (un) which satisfies the equation (I). 

   PROOF. If we put u1= u2 = • • • = uk = u where u is a constant value such 

                                        k that 0<u<1, it is clear from1±bn=1 that un=it (n=1, 2,•••). 
n=1 

   Furthermore, F(s) is expressed as follows by F(s)-1-1/U(s),

F(s)=1-1/(1±iu5)=1—(1—s)/(1—(1—u)s) 

                     1

_~, u(1—u)n-1sn, I sk <1. 
n=1

00 

Hence we have fn=u (1—u)n-1, 0<fn<1 and Efn=1. Therefore, there exists 
n=1 

a persistent non-periodic recurrent event 5 which makes the above (un) and 

(f,,) be corresponding probabilities of (1. 1. 1) and (1. 1. 2). Q.E.D..

   § 3. Case (II). 
3.1. In this section the same matters as were treated in (i), (ii), (iii) 

and (iv) of § 2.1 will be discussed under the assumption that (un), corres-

ponding to a certain recurrent event 5, satisfies the equation

(II) Ea, un_;=p, n>k±1. 
=o

   Consideration has been taken also here so as to make the necessary 

condition of (iii) in particular as strong as possible in spite of the pos-

sibility of simpler proof of results and development of discussion.

   LEMMA 3.1.1. Generating function U(s) of (un), which satisfies the equation 

(II), satisfies the following relation, 

(3.1.1)U(s) A(s)=K(s), sl <1 

where A(s) mid H(s) are the same as (2. 1. 2) and (2. 1. 3), and 

(3.1.2)K(s)= H(s) psk+1/(1—s). 
   PROOF. We can prove this lemma in the same way as that of Lemma 

2.1.1. 

   As in § 2.1, A(s) and H(s) can be represented in (2.1. 5) and (2.1.6). 

The same symbols and assumptions or conditions as in § 2 are also emp-

loyed here. 

   In the same way as we get Lemma 2.1.2 from Lemma 2.1.1, we have, 

from Lemma 3.1.1, the following lemma. 

   LEMMA 3.1.2. If conditions (A, 1) and (H, m) are satisfied, then
                                                 k 

(3. 1. 3) U(s) =K(s)/A(s) = (psk+1—j (s-1)Y+1Hy)/(— (s-1)v+1Ay). 
            y=my=t



Hence we have 

 1°)  If  (-1)`pA1>0, then lim U(s)=co, 
s?1 

 2°) If (-1)'pAi<0, then lirn U(s)=—co. 
srl 

   The case of 2°) is contradictory for the same reasons as were stated 

immediately following Lemma 2.1.2 in § 2. 1. 

   As nothing but either 1°) or 2°) is possible in Case (II), we get the 

following corollary. 

   COROLLARY. If a recurrent event which corresponds to the equation (II) exists , 
then it is persistent. The necessary condition for it is that 

(P') I (A, 1) and (H, m) hold, and (-1)1 p Al>0. 

   LEMMA 3.1.3. If condition (P') u holds, then 

(3. 1.4) F(s)=1—(1—s) A(s)/ (psk+1 + (1— s) H(s)).-->1, (sT 1)

and

(3.1.5)
an/p, if (A, 0) holds, 

n=0 

0, if (A, l) (1>1) holds.

If (A, 0) holds, then 

(3.1. 6) a2=2A'(1)/p-2A(1) (p(k -}-1))—H(1))/p2±A(1)/p—A2(1)/p2. 

   PROOF. We get (3.1. 4) from 1°) in § 1.2 and (3.1.1), and it follows from 

p0 that litn F(s) =1. Differentiating (3.1. 4) we have 
sil 

(3.1.7)

F'(s)= (A(s)— (1—s)A'(s)) (psk+1+ (1—s)H(s)) +(1—s)A(s) (psk+1+(1—s)H(s))' {
psk+1± (1—s) H(s)) 2

From (3.1. 7) and § 1. 2, 1°) we have (3. 1. 5) which is a formula to obtain 

mean recurrence time p. Furthermore, if (A, 0) holds and we differentiate 

(3.1. 7) again and employ (1. 2. 4) in § 1. 2, 1°), then we get (3. 1. 6) which 

is a formula to obtain a2.Q.E .D. 

   If 5 is a non-periodic persistent recurrent event, then it may be sup-

posed that arn F'(s) = lim 1/un>1, so that the necessary condition for the 
existence of a recurrent event corresponding to the equation (II) is

(P)II(A, 0) and A(1)/p=kan/p >1 hold, 

                                      0

where the case when an equality holds is a trivial one, i.e. (f,=) = (0, 1, 0, 0, ...). 

   From the preceding, we have the following theorem. 

   THEOREM 3.1.1. When probabilities (un) corresponding to a recurrent event 5



satisfy the equation 

(II)  ja, un_;=p, n>k±1, 
i=0

the condition (P) II should be satisfied. 

   Hence, in this case the recurrent event 5 is only persistent, and mean recurrence 

time p and its variance aL are always existent in the following forms:

(3.1.8) 

and

    ~k~ P=jan/P 
It

(3.1. 9) a2=2A'(1)/p-2A(1) (p(k+1) —H(1))/p2-}-A(1)/p-A`(1)/p2. 

respectively. 

   Remarks on periodic case. We don't know whether a periodic recurrent 

event 5, which corresponds to the equation (II), exists or not. However, 

when there exists a periodic recurrent event 5 with period A, then discus-

sions can be reduced to a non-periodic case by considering A to be one unit 

time and putting un'—u,n. Accordingly, we shall consider only the case of 

non-periodic hereafter. 

3.2. In the same way as in § 2. 2, we shall discuss, without the exis-

tence of recurrent event 5 as a premise, the following two matters when 

the equation

(II)ja~ un-3=P n>k+1, 
J=0

satisfies the condition (P) II . 

  (i) The behavior of (un) , especially as n-oo. 

 (ii) A sufficient condition for the existence of a recurrent event 5 

which corresponds to equation (II). 

   Here, too, we introduce the following condition regarding the roots of 

equation A(s)=0. 

(R)1 The absolute values of the roots of A(s) =0 are larger than 1.5)

   First we derive the following lemma. 

   LEMMA 3. 2.1. If an (n=0, 1, 2, • • • , k) and p satisfy conditions (P) II and (R) 1, 

then (un) which satisfies the equation (II) is such that

(3. 2. 1)lim un=p/(}; a,). 
                    n~aoi=0

   PROOF. Lemma 3.1.1 holds even now as it is a result independent of 

recurrent event E. Condition (R) II makes it proved by general solution of

5) In a persistent periodic case, the condition (R) II is not satisfied.



the equation (II), which was given by  (1.  2. 9) in § 1. 2, 6°), that U(s) for 

(u„), an arbitrary solution of the equation (II), is converged at sj <1. 
Hence we have 

(3. 2. 2) U(s) =K(s)/A(s) =C(s)/ ((1—s)A(s)) ,

where

                                                   k+1 

(3.2.3) C(s)=(1—s) H(s)--psk+1=;(s-1)vcy, cy=C(v)(1)/n t 
v=o

From (P)1, A(1)0 and from p 0, C(1)0, so that we have
  k+1k 

U(s)=j(s-1)vcy/—~;(s-1)v+lAy 
  v0v=0

 kk 

=—ck+l/Ak—(co +i(s-1)y(cVAk—ck+lAv -1)/Ak)/j (s-1)v+1Ay. 
    v=1v=1

The denominator of the reduced second term of the above expression has 

s=1 as its simple root, and it is evident from (R)1 that the absolute values 

of the other roots are larger than 1. 

   Let the latter roots be denoted as sv (multiplicity ry), (v=1, 2, • • • ,m), 

and if we reduce the preceding expression into partial fractions expansion 

in the same way as (2. 2. 3), then we have

U(s)=—c,,/ 24„+ 1)01(1—s)+(pvl/(sy—s)-1 ...+ p„,,,/(Sy—s)r,) 
v=1

—ck+1/Ak+poi2 sn+LJ (P1/s()(—s/sy)n+...+(pvey/Syy) 
          n=ov=1n=on

x±(ny)(—s/sv)n), <1<min. IssJ.
Furthermore, in the same way as calculated § 2. 2, for n>1,

un= pol+yl(pyi/sr-i(n0)+pv2/Sy+211)+...± pvey/Sy+rv(nrrY 1 ))
Hence if n--co, as Is, I >1, we have 

                                                                             k 

           un-->p01=lim(1—s) U(s)=co/Ao=C(1)/A(1) =p/(~; an). Q.E.D. 
    stln=o 

   Next, as in § 2.2, from the equation (II) we can introduce (k+1, k+1) 
-matrix B1, such that

(3.2.3) B1=

1 0 0 ••• 0 
1 b1 bz • • • qk 

 1 O 
0 • . ' 1 0

where bn=—an, n=1, 2, ..., k. Then B1 can be regarded as the linear 

transformation from (k±1)-dimensional vector space into (k+1)-dimen-

sional vector space, which is equivalent to equation (II), if we put



 un=

~p 

un 

un-1 

un-k+1

(2.2. 4)

(n=k, k+1, k+2,•••) and represent

un+1=Bilun, n>k+1.

   From Lemma 3.2.1, if (P) II and (R) II hold, then it follows that as 

n-->oo, un converges to u (0<u<1). This makes the following lemma hold in 

the same manner as in the case of Lemma 2.2.2. 

   LEMMA 3.2. 2. Udern the conditions (P) u and (R) II, 

1°) lim BII = BII exists, and for any integers n, m>0 

(3.2. 5)BII Bp =BIIBII =BII, and 131=13u.

2°) Matrix BII is given by

(3.2. 6) BII =

' 1 

1/ anO 
    n=o 

1/~~~~     .GJ an 
n=0

   Lemma 3.2.2, as well as Theorem 3.1.1 and Lemma 3.2.1, shows that 

(un), which satisfies the equation (II), tends to p/j an independently of the 
n=0 

existence of a recurrent event corresponding to it, and that its limiting 

value is independent of (u1, u2t • • • , uk). Furthermore, it is known as a result 

of Lemma 3.2.2, that (un) tends to u as n-->co. 

   From Lemmas 3.2.1 and 3.2.2, we came to the conclusion that 

   THEOREM 3. 2.1. If (an) n=o,1,,,,..;k and p of the equation (II) are so given as to 

satisfy the conditions (P)/ and (R)/, then (un) which satisfies the equation (II) 

              k tends to p/'a, as n-->oo, and this limiting value is independent of initial values (u1, 
i=0 

u29 •.. • uk)•

   Furthermore, we have 

   THEOREM 3. 2. 2. If {an) n=0,1,2,.. ,k and p are so given as to satisfy the condi-

tions (P) II and (R) Q, then there exists a non periodic persistent recurrent event 5 

corresponding to the equation (II).

   PROOF. From the condition (P) 1, excepting the trivial case un=u=p/ 

  a,=1, we have 0<p/J a,<1. Hence if we put un=u=pj' a,, n=1, 2, ••• , k, 
i=01=0i=0 

then we easily see from the equation (II) un=u, n=1, 2, ••• , and U(s) 

=1+Eusn (where u0=1). 
n=1



We define the function F(s) formally by

 F(s)=1-1/U(s)=1-1/(1+iusn)=1—(1—s)/(1—(1—u)s) 
n=1

=E u(1—u)n-1sn, i si <1, 
n=1

and if we consider F(s) is the generating function of (fn), then we get 

fn=u (1—u)n-1, n=1, 2, •• . Hence

0<fn<1, n=1, 2, ••• , and Z fn=1. 
                                               n=1

   Therefore, there exists a persistent non-periodic recurrent event 5 

which makes the above (un) and (fn) be corresponding probabilities of 

(1.1.1) and (1.1.2).Q.E.D. 

3.3. Examples. Here we take up a case of independent trials which is 

the special case treated in this paper. 

   Now let us assume that P((i)) =p,>0 for each i E S, and that the recur-

rent event 5* be denoted by one finite pattern (E1i Ez, • • • , EM) (where E1c S , 

j=1, 2, • • • , M) or finite sum of such finite patterns. It is known by Naka-

yama (5) that all the above types of recurrent events are persistent and 

such a recurrent event 5* can be decomposed into

i.e. the sum of recurrent events of the mutually disjoint recurrent events 

such as 5;_ (i;1, 42, • • • , (JO, j=1, 2, • • • , N, and moreover by Kitagawa and 

Seguchi (4), § 3 that if the mean recurrence times of 5* and 6, is denoted 

by p and p; (j=1, 2, ••• , N) respectively the following relation holds :
N 

1/p= 1/!~1• 
1=1

   Therefore, if we calculate the mean recurrence time p and its variance 

a2 of the following type of a recurrence event 5=(i1 , iz, ••• , iM) then for 
any recurrent event 8* as above, at least the mean recurrence time of 5* 

can be calculated. Hence we take up the following examples. 

   EXAMPLE 1 (General case). Let the recurrent event 5 be denoted by 

the pattern 5 = (iif iz, • • • , iM) then the equation which is satisfied by (un) 
corresponding to the recurrent event 6 is given by

M-1 

ja; un_;=p, n>M 
i=o

where



P=P11Pi2...PiM 

 a0=1

ai= {Pii+1 P11+'2... PiM, if (ii, i2i ... , i,) = (iM-i+1, iM-1-2, ... , iM) 

 0if (i1, 12, ... ,ii) / (M +1, iM +2, ..• , 1M) 

                   j=1, 2, ... , M-1.

As u0=1, u1=0, u2=0, ••• , um-i=0, uM=p, we get

                    M-1 

A(1)=H(1)= ~an. 
n=0

Hence from Theorem 3.2.1, we get

N-1 

P=E an/P 
n=0

M-1M-1M-IM-IM-1 

62=2jnan/P-2LJan(PM—L ..Ian)/PZ+1;an/P—(jan)2/P2 
n=1n=1n=1n=0n=0

M-1M-1M-1 

=2Enan/P+0 --2M)Ean/P+CEan)2/p2. 
 n=1n=0n=0

   Though following examples are included by Example 1, but more easi-

ly can be calculated the p and az. Hence we take up as our examples. 

    EXAMPLE 2. Case where i1= i2 = • • • = iM = i. 

   This case has already been solved in Feller (1), Chapter VIII, because 

it is regarded as the case of the success run of length M in the sequence 

of Bernoulli trials. 

   However, we will calculate p and c2 in our own way. The equation 

which (un) satisfies is such that
M-1 

>_]P' un-i=PM, n>M, 
i=0

where p=pi, and thus the condition of Theorem 3.1.1 holds. 

   As A(s)=H(s)=(1—pMsM)/(1—ps), we get A(1)=H(1)=(1—pM)/q and 

A'(1)=(—MpMq+p(1—pM))/q2, where q=1—p. 

Therefore,

p=A(1)/PM= (1—PM)/(pMq) 

6'2=2A'(1)/PM-2A(1)(pMM—H(1))/P2M+A(1)/pM—A2(1)/P2M 

=1/(qpM) 2 — (2M+1)/(qPM) —P/q2.

   EXAMPLE 3. Case where max (j ; iI = ii) < (M/2).6> In this case, for any 

1<k<M-1 (i1, i2, ••• , ik)*(iM-k+1, tM-k+2> ••• > iM)• Hence the equation which 

(un) satisfies is such that

6) [ ] is the notation of Gauss.



 un=
P~1Pi2...P -P, n>M 

0, n<M.

Therefore we get A(s) = H(s)= 1, A' (s) = 0 and 

p=A(1)/p=1/p 

a2=2A'(1)/p-2A(1)(pM—A(1))/p2 A(1)/p—A2(1)/p2 

=-2M/p+1/p4-1/p2.

   § 4. Appendix. 

   We have discussed the cases where (tin) corresponding to recurrent 

event 5 satisfies the equations (I) or (II), and obtained (1) the necessary 

conditions for the existence of recurrent event 5 correspending to the equ-

ation (I) or (II) are (T)1 or (P)1 in Case [I), and (P) II in Case [II), (2) if 

(T)1 is satisfied, then (if recurrent event exists) 5 is a transient recurrent 
event, (3) if (P)1 or (P) II is satisfied, then (if recurrent event exists) 5 is 

a persistent recurrent event and always means recurrence time p and its 

variance a2 exists, (4) the formula which calculate p and a2, (5) another 

attendant results. 

   Feller (1) and [2) proceeds to discuss probabilistic behaviors relating 

the number Nn of occurrences of 5 in n trials and number T(''' of trials up 

to and including the r-th occurrence of 5 , their probability distributions and 

asymptotic behaviors as n-9oo, and especially various limit theorems, etc.. 

Where the existence of mean recurrence time p and its variance a2 is an 

essential condition, and the values of p and a2 are playing an important role. 

   As were stated in the first part of this section, it has been proved that 

p and a2 exist when the recurrent event 5 corresponding to equation (I) or 

(II) is persistent, and the formula to calculate the values of p and a2 have 
also been obtained. Accordingly most of the results in Feller C1) and (2) 

which hold with regard to T('' and Nn, hold in our cases, too. Consequently 

it is possible by means of the substitution of the values of p and a2 to 

concrete reductions of Feller's various calculative results. No further 

mentions shall be made in this regard, which is only too evident as long 

as we avail ourselves of the results of Feller [1) and (2].
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