九州大学学術情報リポジトリ Kyushu University Institutional Repository

Development of high performance MgB2 superconducting wires

葉, 術軍

https://doi.org/10.15017/1441201

出版情報:九州大学,2013,博士(工学),課程博士 バージョン: 権利関係:全文ファイル公表済

Abstract

 MgB_2 is expected to be used in no-helium conditions to replace metallic superconductors that are operating in a liquid helium environment. Low cost is the most important advantage of MgB_2 to be used as a practical superconducting wire. Currently, there have already been products using MgB_2 superconductor, but the cost per unit length and unit superconducting current density of these products are not so low because the critical current properties of these MgB_2 wires are not high enough to operate in the expected condition. The expected condition for MgB_2 wire operation is at ~20 K using a cryocooler or liquid hydrogen. The main work of this thesis is to enhance the critical current properties for MgB_2 wires at 20 K and 5 T.

Internal-Mg-diffusion (IMD) process produces higher density MgB₂ layer than that of Powder-in-tube (PIT) process, thus IMD MgB₂ wires have higher critical current properties. However, un-reacted B particles were observed in the MgB₂ layer of IMD-processed wires fabricated with low quality B powder (325-mesh, 99%). In chapter 2, I found that some Mg powder addition is effective to decrease the un-reacted B particles and enhance the critical current density (J_c) values. On the other hand, Mg powder addition also formed voids in MgB₂ layer and these voids decreased the J_c values. If the amount of Mg powder in the B layer is increased, the Mg rod diameter should be decreased simultaneously in order to maintain a Mg:B ratio of 1:2, corresponding to stoichiometric MgB₂. Consequently I developed a new hybrid method for fabricating MgB₂ wires by a combination of IMD and PIT processes. The MgB₂ layer thickness is larger and the diameter of the central hole is smaller than those of a conventional IMD processed wire, thus MgB₂ area fraction is higher. The proposed method also achieves a much higher MgB₂ layer density, and thus a much higher J_c , than those obtained by the PIT method. The combination of these factors leads to the enhanced engineering critical current density (J_c) value. The new method introduced in chapter 2 is developed for the low quality B powder, but it is also effective for nano-sized B high quality powders used in chapter 5 and in chapter 6 because it could be effectively used to decrease the B-rich region caused by these nano-sized powders.

The multi-filamentary superconducting wires are important for practical applications. In chapter 3, we succeeded in fabricating IMD-processed 37-filamentary MgB₂ wires. SiC-added 37-filamentary MgB₂ wires show the highest J_c value (7.6 x 10⁴ A/cm² at 4.2 K and 10 T) among all of the IMD-processed MgB₂ wires fabricated under the same conditions (mono-filamentary and 7-filamentary). The short Mg diffusion distance of 37-filamentary IMD-processed MgB₂ wires decreases un-reacted B particles. This is the main factor to raise the J_c values. The successful fabrication of 37-filamentary wires indicates that the IMD process can be used to fabricate MgB₂ wires for large-scale applications.

It was reported that the co-addition of SiC and ethyltoluene is effective in the PIT-processed MgB_2 wires. Accordingly, it may be also effective in the IMD-processed MgB_2 wires. In chapter 4, I have carried out the SiC and ethyltoluene, toluene, or dimethylbenzene co-addition to IMD-processed MgB₂ wires. The J_c properties are enhanced by the toluene and dimethylbenzene, but not so good for ethyltoluene.

The researchers in Ohio State University and Hyper Tech Company used a special plasma-synthesized 2% carbon-coated B powder (Special Materials Inc., SMI powder) to fabricate thin IMD-processed MgB₂ wires (diameter: 0.55 mm). They obtained high J_c and J_e for different samples. The small diameter of the wire is considered to decrease the Mg diffusion distance, which leads to an improved reaction between Mg and B, thus a high J_c is obtained. I also tried this B powder, however, I could not obtain good results as theirs. After investigating the B powder, I found that many BCl₃ (source material for this B powder) exists in the B powder. Since dimethylbenzene dissolve BCl₃, and our experiments in chapter 2 also showed dimethylbenzene enhanced the J_c of IMD-processed MgB₂ wires, I used the dimethylbenzene to remove BCl₃ from the B powder. The dimethylbenzene decreased the BCl₃ in B powder and then I obtained J_c values higher than Ohio state university in chapter 5. For both Ta- and Fe-sheathed wires, the highest J_c value was about 1.2 x 10⁵ A/cm² at 4.2 K and 10 T, and the J_e of 5.3 x 10³ A/cm² at 20 K and 5 T, which are the highest values reported for MgB₂ wires to date.

The carbon-coated nano-sized B powder is responsible to obtain the high J_c and J_e for IMD-processed MgB₂ wires. However, the C-coating process using plasma method is not easy, thus it is expensive. Furthermore, this B powder is unstable because BCl₃ exists. Therefore, I tried a new B powder added with an aromatic hydrocarbon (coronene, C₂₄H₁₂) as a carbon source, which is described in chapter 6. The similar level of high J_c and J_e values to the carbon-coated B powders in chapter 5 were obtained. The J_c properties are expected to be further enhanced by optimizing the coronene-coating and heat treatment conditions. It is easy to obtain this coronene-coated B powder is stable. And the amount of carbon addition is also easily controlled. Using the new B powder with C₂₄H₁₂ coating we can expect to fabricate high performance MgB₂ wires for large-scale practical applications with low cost.