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Abstract

A prior distribution is considered over all discrete distributions on positive
integers. The sample from this prior yields a random partition of integers. We
consider the case in which the distribution of the random partition is described
by the Gibbs form. We give the distributions of the residual fractions of residual
allocation model based on the size-biased permutation of a prior distribution.

Key Words and Phrases: Prior distribution, Gibbs partition, residual allocation model, size-

biased permutation.

1. Introduction

Let N = {1, 2, · · · } and Nn = {1, 2, · · · , n} for n ∈ N. We denote a random discrete
distribution on N by P and the random sample of size n from P byX1, X2, · · · , Xn. Thus,
X1, X2, · · · , Xn are independent and identically distributed according to the discrete
distribution P given P. We say i and j are equivalent and write i ∼ j if Xi = Xj for
i, j ∈ Nn. This equivalence relation ∼ generates a random partition Πn of Nn. The
number Kn of non empty subsets in Πn is also a random variable. Now we denote
the elements of P by P1, P2, · · · . Since X1, X2, · · · , Xn are independent and identically
distributed given P, we have for each particular partition (A1, A2, · · · , Ak) of Nn and
ni = |Ai|(i = 1, · · · , k)

P (Πn = (A1, A2, · · · , Ak),Kn = k) =
∑

(j1,··· ,jk)

E

[ k∏
i=1

Pni
ji

]

where the sum is over all permutations of k positive integers. The right-hand side is
symmetric function of positive integers n1, n2, · · · , nk. We denote the right-hand side by
p(n1, n2, · · · , nk), which is called exchangeable partition probability function (EPPF).

For the elements of P, P1, P2, · · · , their size-biased permutation is denoted by
P̃1, P̃2, · · · (for the size-biased permutation, see Appendix 3.1.1).

Using the size-biased permutation, one representation of EPPF p is given by

p(n1, · · · , nk) = E
[
P̃n1−1
1 (1− P̃1)P̃

n2−1
2 · · · (1− P̃1 − · · · − P̃k−1)P̃

nk−1
k

]
. (1)

∗ Emeritus Kagoshima University, Take 3–32–1–708 Kagoshima 890-0045 Japan. tel +81–99–250–7536



42 H. Yamato

We put

W1 = P̃1, Wj =
P̃j

1− P̃1 − · · · − P̃j−1

(j = 2, 3, · · · ), (2)

then 0 ≤W1,W2, · · · ≤ 1 and we can write

P̃1 =W1, P̃j = (1−W1) · · · (1−Wj−1)Wj (j = 2, 3, · · · ).

This is a residual allocation model, where the residual fractions W1,W2, · · · may not be
independent. The function p(n1, · · · , nk) can be written as

p(n1, · · · , nk) = E
[
Wn1−1

1 (1−W1)
n−n1Wn2−1

2 (1−W2)
n−n1−n2 × · · ·

×W
nk−1−1
k−1 (1−Wk−1)

n−n1−···−nk−1Wnk−1
k

]
(See, for example, Pitman (1995, 2003)).

The sequence of random partitions Πn of Nn (n ≥ 1), which are stated above, is
consistent and exchangeable. That is, the distribution of the random partition of Nn
obtained from Πn+1 by discarding n+ 1 is equal to the one of Πn and the distribution
of Πn is invariant under permutation of Nn, for n = 1, 2, · · · .

As a representation of EPPF p, we consider Gibbs form

p(n1, · · · , nk) = Vn,k

k∏
j=1

wnj (3)

for positive integers n1, · · · , nk satisfying n1+· · ·+nk = n and some nonnegative weights
wj and Vn,k (k = 1, · · · , n).

By the consistency and exchangeability of Πn, n ≥ 1, for j = 1, 2, · · · , wj of (3) is
given by

wj = (1− α)[j−1] for −∞ < α < 1, (4)

where x[r] = x(x+1) · · · (x+r−1). The weights V1,1 = 1 and Vn,k satisfies the backward
recursion

Vn,k = (n− αk)Vn+1,k + Vn+1,k+1, (−∞ < α < 1).

Or wj = 1 (j = 1, 2, · · · ), V1,1 = 1 and Vn,k satisfies the backward recursion

Vn,k = kVn+1,k + Vn+1,k+1

(Gnedin and Pitman (2006)). In the latter case of wj = 1 (j = 1, 2, · · · ), the EPPF p
does not depend on the values of the n1, · · · , nk. Therefore we exclude this case and
consider the case of −∞ < α < 1 hereafter.

If we take Vn,k = θk/θ[n] (θ > 0), then EPPF p gives Ewens’ sampling formula

p(n1, · · · , nk) =
θk

θ[n]

k∏
j=1

(nj − 1)!. (5)

W1,W2, · · · are independent and have the same beta distribution Be(1, θ). The dis-
tribution of the corresponding P̃1, P̃2, · · · is well-known as GEM distribution (see, for
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example, Johnson et al. (1997)).

If we take Vn,k = θ[k:α]/θ[n] (0 ≤ α < 1, θ > −α), then EPPF p gives Pitman’s
sampling formula

p(n1, · · · , nk) =
θ[k;α]

θ[n]

k∏
j=1

(1− α)[nj−1], (6)

where θ[k;α] = θ(θ+α)(θ+2α)(θ+(k−1)α). W1,W2, · · · are independent and eachWj has

the beta distribution Be(1−α, θ+jα). The distribution of the corresponding P̃1, P̃2, · · ·
is known as the two-parameter GEM distribution (see, for example, Pitman (2003) and
Yamato et al. (2001)).

The characterization of the Gibbs form (3) with (4) is given by Gnedin and Pitman
(2006): Each exchangeable Gibbs partition of a fixed type α ∈ (−∞, 1) given by (3)
with wj = (1−α)[j−1] is a unique probability mixture of extreme partitions of this type,
which are
(I) PD(α,m|α|) partitions with m = 0, 1, · · · ,∞ for α ∈ (−∞, 0),
(II) PD(θ) partitions with θ ∈ [0,∞) for α = 0,
(III) PK(ρα|t) partitions with t ∈ [0,∞) for α ∈ (0, 1).

PD(α,m|α|) partitions of (I) is a random partition based on a sample from the m-
dimensional Dirichlet distribution. PD(θ) partitions of (II) is Ewens’ sampling formula
given by (5). The ρα (0 < α < 1) of (II) is Lévy density ρα(x) = αx−α−1/Γ(1− α) and
Pitman’s sampling formula (6) is a special case of (III). The matters related with PD
and PK are explained in Appendix.
The purpose of this paper is to give the distributions of the residual fractionsW1,W2, · · ·
associated with P̃1, P̃2, · · · which is given by (2) for the three cases of (I), (II) and (III),
which are given in the next section.

2. Properties of Residual Fractions

We discuss the distribution of (W1,W2, · · · ) given by (2) for the three cases of (I),
(II) and (III) of Section 1.

Case (I) The Poisson-Dirichlet PD(α,m|α|) is the symmetric Dirichlet distribution

with parameter |α| on the m−dimensional simplex {(x1, · · · , xm+1) : xi ≥ 0,
∑m+1
i=1 xi =

1}. In case ofm = 0, PD(α,m|α|) degenerates to 1. Thus form = 0, the residual fraction
W1 is equal to 1. For m ≥ 1, W1,W2, · · · ,Wm+1 are independent, Wj (j = 1, · · · ,m)
has the beta distribution Be(|α|+1, (m−j+1)|α|) andWm+1 = 1 (see, Appendix 3.1.2).
Under the mixing distribution γ on N, W1,W2, · · · take the following form;
(i) with probability γ(0) , W1 = 1
(ii) with probability γ(m) (m = 2, 3, · · · ), W1 has Be(|α|+ 1,m|α|), W2 has beta (|α|+
1, (m− 1)|α|) , ... , Wm has Be(|α|+ 1, |α|) and Wm+1 = 1.
We show the distributions of W1,W2, · · · by the form of table as follows.



44 H. Yamato

Table: Distributions of W ′s

PD W1 W2 W3 W4 · · · Prob.
P (|α|, 0|α|) 1 γ(0)
P (|α|, 1|α|) Be(|α|+ 1, |α|) 1 γ(1)
P (|α|, 2|α|) Be(|α|+ 1, 2|α|) Be(|α|+ 1, |α|) 1 γ(2)
P (|α|, 3|α|) Be(|α|+ 1, 3|α|) Be(|α|+ 1, 2|α|) Be(|α|+ 1, |α|) 1 γ(3)

...
...

...
...

...
...

...

The marginal distribution of W1 is as follows; W1 is equal to 1 with probability
γ(0) and has the beta distribution Be(|α|+1, j|α|) with probability γ(j) for j = 1, 2, · · · .
That is, with the probability 1− γ(0), W1 has the density

gW1(w1) =
∞∑
j=1

w
|α|
1 (1− w1)

j|α|−1

B(|α|+ 1, j|α|)
γ(j)

1− γ(0)
,

where B is the beta function such that B(ν, ω) =
∫ 1

0
uν−1(1− u)ω−1du. For r ≥ 2, the

marginal distribution of Wr is as follows; Wr is equal to 1 with probability γ(r−1), and
has the beta distribution Be(|α|+1, (j−r+1)|α|) with probability γ(j) for j = r, r+1, · · · .
That is, with probability γ∗(r) = γ(r) + γ(r + 1) + · · · , Wr has the density

gWr (wr) =

∞∑
j=r

w
|α|
r (1− wr)

(j−r+1)|α|−1

B(|α|+ 1, (j − r + 1)|α|)
γ(j)

γ∗(r)
.

With probability γ(0) + · · ·+ γ(r − 1), Wr is not defined.
Especially, we consider the case in which α = −1 and γ is Poisson distribution

with parameter λ(> 0). W1 is equal to 1 with probability with e−λ. With probability
1− e−λ, W1 has the density function

gW1(w1) =
[2 + λ(1− w1)]λw1e

−λw1

1− e−λ
, 0 < w1 < 1.

W2 is equal to 1 with probability with λe−λ. With probability 1− (1 + λ)e−λ, W2 has
the density function

gW2(w2) =
λw2e

−λw2

1− (1 + λ)e−λ
, 0 < w2 < 1,

and W2 is not defined with probability e−λ. f∗W2
(w2) is a truncated Gamma distribu-

tion (Johnson (1994), p.380). W3 is equal to 1 with probability with λ2e−λ/2. With
probability 1− (1 + λ+ λ2/2)e−λ, W3 has the density function for 0 < w3 < 1

gW3(w3) =
[λ2(1− w3)

2 − 2λ(1− w3) + 2− 2e−λ(1−w3)]w3(1− w3)
−3e−λw3

1− (1 + λ+ λ2/2)e−λ
,

and W3 is not defined with probability (1 + λ)e−λ.

Case (II) In this case the distribution of (P1, P2, · · · ) is given by mixing the
Poisson-Dirichlet distribution PD(0, θ) with the distribution ν(θ) on [0,∞). Since PD(θ)
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partitions is Ewens’ sampling formula, given θ, W1, W2 · · · are independent identically
distributed with the beta distribution β(1, θ), θ > 0. The conditional distribution func-
tion of Wi given θ, GW (t|θ) = P (0 ≤Wi ≤ t|θ) = 1− (1− t)θ (0 < t < 1). Thus, in this
case (II), the distribution function and density of Wi (n = 1, 2, · · · ) are given by

GW (w) = 1−
∫ ∞

0

(1−w)θν(dθ) and gW (w) =

∫ ∞

0

θ(1−w)θ−1ν(dθ) (0 < w < 1) (7)

Similarly, for 0 < wi < 1 (i = 1, · · · , n) the joint distribution function and density of
W1, · · · ,Wn are given by

P (0 ≤W1 ≤ w1, · · · , 0 ≤Wn ≤ wn) = Eθ
[
P (0 ≤W1 ≤ w1|θ) · · ·P (0 ≤Wn ≤ wn|θ)

]
= Eθ

[(
1− (1− w1)

θ
)
· · ·

(
1− (1− wn)

θ
)]

=

∫ ∞

0

(
1− (1− w1)

θ
)
· · ·

(
1− (1− wn)

θ
)
ν(dθ)

and

gW1,··· ,Wn(w1, · · · , wn) =

∫ ∞

0

gW1|θ(w1|θ) · · · gW1|θ(wn|θ)ν(θ)

=

∫ ∞

0

θn[(1− w1) · · · (1− wn)]
θ−1ν(dθ),

respectively. Thus we have

Proposition 2.1. (Case (II)) The distribution function and density of Wi (i =
1, 2, · · · ) are given by (10). For 0 < wi < 1 (i = 1, · · · , n), the joint distribution function
and density of W1, · · · ,Wn are given by

P (0 ≤W1 ≤ w1, · · · , 0 ≤Wn ≤ wn) =

∫ ∞

0

(
1− (1− w1)

θ
)
· · ·

(
1− (1− wn)

θ
)
ν(dθ),

and

gW1,··· ,Wn(w1, · · · , wn) =
∫ ∞

0

θn[(1− w1) · · · (1− wn)]
θ−1ν(dθ),

respectively.

We note that these distributions of the residual fractionsW ’s gives also the distributions
of residual fractions W ’s associated with size-biased permutation of random proportions
of mixtures of Dirichlet process. (P1, P2, · · · ) having PD(0, θ) (=PD(θ)) gives random
probabilities of Dirichlet process with parameter θH, H is any continuous distribution
(Ferguson (1973)). Therefore, mixing PD(0, θ) with respect to θ by a distribution ν(θ)
on [0,∞) corresponds to mixing Dirichlet process of parameter θH with respect to the
total mass θ by a distribution ν(θ) on [0,∞), which yields the mixture of Dirichlet
process (Antoniak (1974), Cerquetti (2008)). The random proportions of mixtures of
Dirichlet process depend only on the total mass θ. Thus, the distributions of W ’s of
the Proposition 2.1 gives the distributions of residual fractionsW ’s associated with size-
biased permutation of random proportions of mixtures of Dirichlet process.
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As an example, for the distribution of θ we choose the gamma distribution having
the density ν(dx) = (x/b)c−1e−x/b/bΓ(c)dx, where x > 0 and b, c > 0. Its Laplace
transform is Eθe

−θs = 1/(1 + bs)c, s > −1, where the expectation is taken with respect
to the random variable θ. Then, the distribution function of Wi is

GW (t) = 1− Eθe
−θ[− log(1−t)] = 1−

[
1− b log(1− t)

]−c
, 0 < t < 1.

We have also

P (b log(1−W ) ≤ x) = 1− P (W ≤ 1− ex/b) = (1− x)−c, x < 0.

The density function of Wi is

gW (t) =
bc[

1− b log(1− t)
](c+1)

(1− t)
, 0 < t < 1.

In case of b = c = 1, that is the exponential distribution e(1), for 0 < t < 1

GW (t) = 1−
[
1− log(1− t)

]−1
, gW (t) =

1[
1− log(1− t)

]2
(1− t)

.

The joint distribution function of any Wi and Wj (i ̸= j) is for 0 < t1 < 1, 0 < t2 < 1

P (0 ≤Wi ≤ t1, 0 ≤Wj ≤ t2) = Eθ[P (0 ≤Wi ≤ t1|θ)P (0 ≤Wj ≤ t2|θ)]
= Eθ

[(
1− (1− t1)

θ
)(
1− (1− t2)

θ
)]

= 1− 1

[1− b log(1− t1)]c
− 1

[1− b log(1− t2)]c

+
1

[1− b log(1− t1)(1− t2)]c
.

For any j1 ̸= · · · ̸= jl (l = 2, 3, · · · ), we have also

P
(
b log(1−Wj1) ≤ x1, · · · , b log(1−Wjl) ≤ xl

)
= Eθe

−θ(−[x1+···+xl]/b) = (1− x1 − · · · − xl)
−c, x1, · · · , xl < 0.

Case (III) Here, we use the notations of Appendix 3.2. We suppose that T have
stable density fα and the Lévy density is given by ρα(x) = αx−α−1/Γ(1 − α). As the
mixing distribution on [0,∞), we consider a continuous distribution γ. From (14) of
Appendix, the density of W1(= P̃1) is given by

gW1(w1) =

∫ ∞

0

α(w1t)
−α

Γ(1− α)

fα((1− w1)t)

fα(t)
γ(dt).

In general, from (12) of Appendix, the joint density of (T,W1, · · · ,Wn) is given by

gT,W1.··· ,Wn(t, w1, · · · , wn) =
( α

Γ(1− α)

)n
t−nα

× fα((1− w1) · · · (1− wn)t)×
[
w1(1− w1)

n−1w2(1− w2)
n−2 · · ·wn

]−α
.
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Therefore, given T = t, the conditional density of (W1, · · · ,Wn) is given by

gW1,··· ,Wn|T (w1, · · · , wn|t) =
( α

Γ(1− α)

)n
t−nα

[
w1(1−w1)

n−1w2(1−w2)
n−2 · · ·wn

]−α
× fα((1− w1) · · · (1− wn)t)

fα(t)
.

Thus we get the following.

Proposition 2.2. In case of Case (III), for n = 1, 2, · · · , the joint density of
(W1, · · · ,Wn) is given by

gW1,··· ,Wn(w1, · · · , wn) =
( α

Γ(1− α)

)n[
w1(1− w1)

n−1w2(1− w2)
n−2 · · ·wn

]−α
×

∫ ∞

0

t−nα
fα((1− w1) · · · (1− wn)t)

fα(t)
γ(dt). (8)

Example 1 (Pitman’s sampling formula) As the mixing distribution, we take

γ(t) = C−1
α,θt

−θfα(t),

where Cα,θ = Eα(T
−θ) = Γ( θα +1)/Γ(θ+1). From this expectation, we get the relation

Eα(T
−(θ+2α)) = Γ( θ+2α

α + 1)/Γ(θ + 2α + 1) For the right-hand side of the integral (7)
with n = 2, we do the change of variable x = (1 − w1)(1 − w2)t and use this relation.
Thus, in this example, we get

gW1,W2(w1, w2) =
1

B(1− α, θ + α)
w−α

1 (1− w1)
θ+α−1

× 1

B(1− α, θ + 2α)
w−α

1 (1− w1)
θ+2α−1

which shows that W1 has β(1− α, θ + α), and W2 is independent of W1 and has β(1−
α, θ + 2α). In general, it is well-known that W1,W2, · · · are independent and Wj has
β(1− α, θ + jα) (j = 1, 2, · · · ), as stated in Section 1.

Example 2 As the mixing distribution, we consider

γ(t) = fλα(t) = fα(t) exp{λα − λt}, λ ≥ 0. (9)

From (8), in this example, the joint density of (W1, · · · ,Wn) (n = 1, 2, · · · ) is given by

gW1,··· ,Wn(w1, · · · , wn) =
( α

Γ(1− α)

)n
eλ

α[
w1(1− w1)

n−1w2(1− w2)
n−2 · · ·wn

]−α
×
∫ ∞

0

t−nαe−λtfα((1− w1) · · · (1− wn)t)dt.

Especially, for α = 1/2,

f1/2(t) =
1

2
√
π
t−

3
2 e−

1
4t .
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Using the Bessel function of the 3rd kind

Kλ(z) =
1

2

(z
2

)λ ∫ ∞

0

t−λ−1 exp
{
− t− z2

4t

}
dt (z > 0)

we have

gW1,··· ,Wn(w1, · · · , wn)

=
λ

n+1
4

2
n−1
2 π

n+1
2

eλ
1
2 (w̄1 · · · w̄n)−

n+5
4

(
w1 · · ·wn
w̄1w̄2

2 · · · w̄nn

)− 1
2

Kn+1
2

(√
λ

w̄1 · · · w̄n

)
,

where w̄ = 1− w. Thus we have the following Proposition.

Proposition 2.3. We take the distribution γ given by (9) as the mixing distribu-
tion. Then, the joint density of the residual fractions W1,W2, · · · ,Wn (n = 1, 2, · · · ) is
given by

gW1,··· ,Wn(w1, · · · , wn) =
( α

Γ(1− α)

)n
eλ

α[
w1(1− w1)

n−1w2(1− w2)
n−2 · · ·wn

]−α
×
∫ ∞

0

t−nαe−λtfα((1− w1) · · · (1− wn)t)dt.

Especially, for α = 1/2, we have

gW1,··· ,Wn(w1, · · · , wn)

=
λ

n+1
4

2
n−1
2 π

n+1
2

eλ
1
2 (w̄1 · · · w̄n)−

n+5
4

(
w1 · · ·wn
w̄1w̄2

2 · · · w̄nn

)− 1
2

Kn+1
2

(√
λ

w̄1 · · · w̄n

)
. (10)

We note that (10) with n = 1 gives

f(w1) =

√
λ

π
e
√
λ 1
√
w1(1− w1)

K1

(√
λ

1− w1

)
,

which is equal to the density of P̃1 given by (64) of Pitman (2003).

We state the relation between this proposition and the random probabilities ob-
tained by normalizing the generalized Gamma process. For the mixing distribution γ(t),
it holds that

PK(ρα, γ) = PK(ρλα), ρλα(s) =
α

Γ(1− α)
s−1−αe−λs

(Pitman (2003) and Cerquetti (2007)). It means that Poisson-Kingman distribution
PK(ρα, γ) considered in Example 2 is equal to Poisson-Dirichlet distribution PK(ρλα).
This distribution is given by the Poisson process with the Lévy density ρλα and therefore
corresponds to the jumps of the generalized Gamma process with the intensity ρλα (Lijoi
et al. (2008)).

Thus we know that for the random probabilities P obtained by normalizing the
generalized Gamma process with the intensity ρλα, the distributions of their residual
fraction W1,W2, · · · are given by the above proposition. Especially, (10) gives the dis-
tributions of the residual fraction W1,W2, · · · for Normalized inverse Gaussian process
(Lijoi et al. (2005)).
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3. Appendix

3.1. Size-biased permutation

We give the definition of size-biased permutation and explain size-biased permuta-
tion of symmetric Dirichlet distribution.

3.1.1. Size-biased permutation

For the elements of P, P1, P2, · · · , we consider their size-biased permutation by
P̃1, P̃2, · · · . Let N1, N2, · · · be a sequence of random variables which take the value in
N ∪ {∞} and satisfy the following property:

P (N1 = i|P = (P1, P2, · · · )) = Pi, i = 1, 2, · · · .

For any r ∈ N and distinct j1, · · · , jr ∈ N, if P1, P2, · · · have at least r positive elements,

P (Nr = jr|P = (P1, P2, · · · ), N1 = j1, · · · , Nr−1 = jr−1) =
Pjr

1− P1 − · · · − Pjr−1

or, if P1, P2, · · · have less than r positive elements,

P (Nr = ∞|P = (P1, P2, · · · )) = 1.

The size-biased permutation (P̃1, P̃2, P̃3, · · · ) of (P1, P2, P3, · · · ) is given by

(P̃1, P̃2, P̃3, · · · ) = (PN1 , PN2 , PN3 , · · · ),

where we let P∞ = 0 (see, for example, Gnedin (1998)).

3.1.2. Size-biased permutation of symmetric Dirichlet distribution

Suppose that (P1, P2, · · · , Pm+1) have m + 1-dimensional Dirichlet distribution
with parameter β(> 0), where P1 + P2 + · · · + Pm+1 = 1. On the residual fractions
W1,W2, · · · ,Wm,Wm+1(= 1) of their size-biased permutation (P̃1, P̃2, · · · , P̃m+1), it is
well-known that W1,W2, · · · ,Wm are independent and Wj has the beta distribution
Be(β + 1, (m − j + 1)β) for j = 1, · · · ,m (see, for example, Patil and Taillie (1977),
Kingman 1993)).

We explain an outline of this fact. Using PN1 = P̃1 of Appendix 3.1.1, we can write
(PN1

, P1, · · · , PN1−1, PN1+1, · · · , Pm+1) =
(
PN1

, (1− PN1
)P′), where

P′ =

(
P1

1− PN1

, · · · , PN1−1

1− PN1

,
PN1+1

1− PN1

, · · · , Pm+1

1− PN1

)
,

PN1 = W1 and P′ are independent. PN1 = W1 has the beta distribution Be(β + 1,mβ)
and P′ has m-dimensional Dirichlet distribution with parameter β. We have the same
discussion for P′. By repeating the same discussion, we get the result.

3.2. Poisson-Kingman distribution

We quote about the Poisson-Kingman distribution and the related matters from
Pitman (2003) and Perman et. al (1992).
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3.2.1. Poisson-Kingman distribution

We denote the elements of P by P1, P2, · · · with the descending orders P1 ≥ P2 ≥
· · · . We give the distribution of (P1, P2, · · · ), using an inhomogeneous Poisson process

with Lévy measure Λ. Suppose that
∫ 1

0
xΛ(dx) < ∞ and Λ[1,∞) < ∞. Let J1 ≥ J2 ≥

· · · ≥ 0 be the random length of the ordered points of the process and put T =
∑∞
i=1 Ji.

We assume that the Lévy measure Λ has a density ρ(x) and T has a strictly positive
and continuous density on (0,∞). Then the Laplace transform of T can be written as

E(e−λT ) =

∫ ∞

0

e−λtf(t)dt = e−ψ(λ),

where ψ(λ) =
∫∞
0

(1−e−λx)ρ(x)dx. We put Pi = Ji/T (i = 1, 2, · · · ). The distribution of
(P1, P2, · · · ) is called the Poisson-Kingman distribution with Lévy density ρ and denoted
PK(ρ). For the conditional distribution PK(ρ|t) of (P1, P2, · · · ) given T = t and a
probability distribution γ on (0,∞),

PK(ρ, γ) =

∫ ∞

0

PK(ρ|t)γ(dt)

is called the Poisson-Kingman distribution with Lévy density ρ and mixing distribution
γ and denoted PK(ρ, γ).

3.2.2. Joint distribution of T and W ’s

For the joint distribution of T and W1,W2, · · · associated with P1, P2, · · · , the
following are obtained by Theorem 2.1 of Perman et al. (1992): Let T have the density
f and Lévy measure Λ has the density ρ. The joint density of (T,W1,W2) is

gT,W1,W2(t, w1, w2) = Θ(w1t)Θ(w̄1w2t)f(w̄1w̄2t), (w̄ = 1− w, Θ(x) = xρ(x))

and for every n ≥ 1 there are similar product formula for the n + 1 dimensional joint
densities of (T,W1, · · · ,Wn).

Thus, if T have the stable density f and Lévy density is given by ρα = αx−α−1/Γ(1−
α), then the joint density of (T,W1, · · · ,Wn) is

fT,W1.··· ,Wn(t, w1, · · · , wn) =
( α

Γ(1− α)

)n
t−nα

× fα((1− w1) · · · (1− wn)t)×
[
w1(1− w1)

n−1w2(1− w2)
n−2 · · ·wn

]−α
. (11)

3.2.3. Poisson-Dirichlet distribution

In case of ρ(x) = θx−1e−x (θ > 0), T has a gamma distribution whose density given
by f(t) = tθ−1e−y/Γ(θ). The PK(ρ) with this ρ is the Poisson-Dirichlet distribution with
parameter θ, PD(0, θ) or PD(θ).

Now we consider T with stable distribution whose Laplace transform is given by
E[e−λT ] =

∫∞
0
e−λtfα(x)dx = exp(−λα) (0 < α < 1), where fα is the density of T . The

Lévy density corresponding to this Laplace transform is

ρα(x) =
αx−α−1

Γ(1− α)
. (12)
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In the PK(ρα|t), the distribution of P̃1 has the density

f̃α(p|t) =
α(pt)−α

Γ(1− α)

fα((1− p)t)

fα(t)
(0 < p < 1). (13)

For parameter 0 < α < 1, θ > −α and the above Lévy density ρα(x),

Vn,k(t) =
αkt−n

Γ(n− kα)fα(t)

∫ t

0

sn−kα−1fα(t− s)ds (14)

=
αkt−kα

Γ(n− kα)fα(t)

∫ 1

0

yn−kα−1fα(t(1− y))dy.

If we take the continuous distribution γ on [0,∞) as the mixing distribution, Vn,k can
be written as

Vn,k =

∫ ∞

0

αkt−n

Γ(n− kα)fα(t)

∫ t

0

sn−kα−1fα(t− s)dsγ(dt). (15)

We consider the mixing distribution γ given by γα,θ(dt) = C−1
α,θt

−θfα(t)dt. The
PK(ρα, γα,θ) is the Poisson-Dirichlet distribution with parameter (α, θ), PD(α, θ).

3.3. Another representation of Lévy density

We consider as the Lévy density of 3.3.1, instead of ρα(x) = αx−α−1/Γ(1 − α),
positive (α, δ)-stable density

ρα,δ(x) = δ2αρα(x), δ > 0

(see, Barndorff-Nielson Shephard (2001) and Cerquetti (2007)) . For this Lévy density
ρα,δ and the mixing distribution γ, the Poisson-Kingman distribution is given by

PK(ρα,δ, γ) =

∫ ∞

0

PK(δ2αρα|t)γ(dt).

Using the relation PK(cρα|t) =PK(ρα|c−1/αt) ((55) of Pitman (2003)) to the above
equation, we have

PK(ρα,δ, γ) =

∫ ∞

0

PK(ρα|τ)G(dτ), G(x) = γ((δ2α)1/αx).

Therefore, the Poisson-Kingman distribution with Lévy density ρα,δ and mixing distri-
bution γ is equal to the Poisson-Kingman distribution with Lévy density ρα and mixing
distribution G, that is PK(ρα,δ, γ) =PK(ρα, G).
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