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Atsushi Nagai (Nihon University)

Abstract

We generalize our recent results on Sobolev inequalities to multi-variable
case. In particular, investigating Green function of biharmonic operator on a
disk, we find the best constant of the corresponding Sobolev inequality. This
is a joint work with Yoshinori Kametaka of Osaka University and Alexander
P. Veselov of Loughbourough University.

1 Introduction

The Sobolev inequality

||u||Lq(Ω) ≤ C||∇u||Lp(Ω), u ∈ WM,p(Ω), Ω ⊂ RN (1)

played crucial roles in the development of modern theory of differential equations. In

our recent papers [3, 5], we find a systematic approach of finding the least constant

C0 of Sobolev inequality (1) in a special case

q = ∞, p = 2, N = 1, Ω = (a, b) ⊂ R,

or equivalently,

(
sup

a<x<b
|u(x)|

)2

≤ C

∫ b

a

|u(M)(x)|2dx. (2)

Details are given in Figure 1. By investigating Green function for a given boundary

value problems of ODE, the best constant C0 and the best function u0(x) which

attains “=” in the Sobolev inequality is given as follows:

C0 = sup
y

G(y, y) = G(y0, y0), u0(x) = G(x, y0).

We also generalize our results to discrete case [8], Lp case [6], estimate of |uj(x)| [7].

In this paper, we consider the multi-variable version of the Sobolev inequality start-

ing from boundary value problem of biharmonic operator ∆2 = (∂2
x +∂2

y)
2 on a disk.
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Figure 1: Procedures to find the best constant

2 Green function for biharmonic operator on a

disk

We consider the following boundary value problem for biharmonic operator on a

disk:




∆2u = f(x) (x = (x1, x2), |x| < R)

u(Rξ) = 0 (|ξ| = 1)

Du(x)
∣∣∣
x=Rξ

= 0 (|ξ| = 1)

(1)

where

∆ = ∂2
x1

+ ∂2
x2

= r−2(D2 + ∂2
θ ), D = x1∂x1 + x2∂x2 = r∂r

x1 = r cos θ, x2 = r sin θ.

The solution is given by

u(x, y) = u(x1, x2, y1, y2) =

∫

|y|<R

G(x, y)f(y)dy

⇔u(r, θ) =

∫ R

0

∫ 2π

0

G(r, s, θ, ϕ)f(s, ϕ)dϕsds (y1 = s cos ϕ, y2 = s sin ϕ),



where G = G(x, y) = G(r, s, θ, ϕ) is Green function given by [2]

G(r, s, θ, ϕ) = G(r, s, θ − ϕ) =
rs

8

∫ ρ1

ρ0

{ρ + ρ−1 − (ρ1 + ρ−1
1 )}Q(ρ, ξ · η)ρ−1dρ

ξ = x/|x|, η = y/|y|, ξ · η = cos(θ − ϕ)

ρ0 = R−2rs, ρ1 =
r ∧ s

r ∨ s

Q(r, λ) =
1

2π

1− r2

1− 2λr + r2

It should be noted that Q(r, λ) is a generating function of Chebysheff polynomials.

Next we derive corresponding Sobolev inequality together with its best estimate.

We start with the sesquilinear form, which is proved to be an inner product of certain

Hilbert space H later.

(u, v)H :=

∫

|x|<R

(∆u)(∆v)dx.

Then we have

(u(·), G(·, y))H =

∫

|x|<R

(∆u(x))(∆G(x, y))dx

=

∫

|x|<R

u(x)(∆2G(x, y))dx

+

∫

|x|=R

{( ∂

∂n
u(x))∆G(x, y)− u(x)(

∂

∂n
∆G(x, y))}dx

where we have used Gauss-Green theorem. Considering that ∆2G(x, y) = δ(x− y),

we obtain

(u(·), G(·, y))H = u(y) +

∫

|x|=R

{( ∂

∂n
u(x))∆G(x, y)− u(x)(

∂

∂n
∆G(x, y))}dx.

In the above expressions, ∂/∂n denotes

∂ψ

∂n
= ∇ψ · n = cos θ

∂ψ

∂x1

+ sin θ
∂ψ

∂x2

=
∂ψ

∂r
.

From the above discussions, we have the following theorem.

Theorem 1 Let H be Hilbert space defined by

H =
{

u(x) = u(r, θ)
∣∣∣

∫

|x|<R

|u(x)|2dx,

∫

|x|<R

|∆u(x)|2dx < ∞,

u(R, θ) = 0, ∂ru(r, θ)|r=R = 0
}



which is equipped with an inner product

(u, v)H :=

∫

|x|<R

(∆u)(∆v)dx

Then G(x, y) is a reproducing kernel of H, in other words, the following two prop-

erties hold.

(i) G(x, y) ∈ H (|y| < R : fixed) ⇔ G(x, y)

∣∣∣∣
|x|=R

= ∂rG(x, y)

∣∣∣∣
|x|=R

= 0

(ii) (u(·), G(·, y))H =

∫

|x|<R

(∆u(x))(∆G(x, y))dx = u(y)

Concerning the best constant of Sobolev inequality, we have the following theo-

rem:

Theorem 2 There exists a positive constant C such that the following Sobolev in-

equality holds for any function u(x) ∈ H:

sup
|y|<R

|u(y)|2 ≤ C

∫

|y|<R

|∆u(y)|2dy. (2)

Among such C, the best constant C0 is given by

C0 = sup
0≤s<R

G(s, s, ϕ− ϕ) = G(0, 0, 0) =
R2

16π
.

If one replaces C by C0 in (2), the equality holds for

u0(y) = κ

(
−(y2

1 + y2
2) log

R2

y2
1 + y2

2

+ R2 − y2
1 − y2

2

)

Proof of Theorem 2 : Applying Cauchy-Schwarz inequality to the reproducing

relation (ii), we have

|u(y)| = |(u(·), G(·, y))H | ≤ ‖u‖H · ‖G(·, y)‖H

|u(y)|2 ≤ G(y, y)(u, u)H

sup
|y|<R

|u(y)|2 ≤ sup
|y|<R

G(y, y)

∫

|y|<R

|∆u(y)|2dy

which proves (2). Best constant C0 is given by

C0 = sup
|y|<R

G(y, y) = sup
0≤s<R

G(s, s, ϕ− ϕ)



From Kametaka formula, we have

G(s, s, 0) =
s2

16π

∫ 1

R−2s2

(ρ + ρ−1 − 2)
1− ρ2

1− 2ρ + ρ2
ρ−1dρ

=
s2

16π

[−ρ−1 − ρ
]1

R−2s2 =
1

16π

{
−2s2 + R2 +

s4

R2

}
=

1

16πR2
(R2 − s2)2

and therefore

C0 = sup
0≤s<R

G(s, s, ϕ− ϕ) = G(0, 0, 0) =
R2

16π

We finally find the best function which attains “=” in (2).

u0(y) = u0(s) = C lim
r→+0

G(r, s, θ − ϕ)

= C lim
r→+0

rs

∫ rs−1

R−2rs

(ρ2 + 1− sr−1ρ− rs−1ρ)
1− ρ2

1− 2ρ cos(θ − ϕ) + ρ2
ρ−2dρ

Putting ρ = rσ, dρ = rdσ,

u0(s) = C lim
r→+0

s

∫ s−1

R−2s

(r2σ2 + 1− sσ − r2s−1σ)
1− r2σ2

1− 2rσ cos(θ − ϕ) + r2σ2
σ−2dσ

= C s

∫ s−1

R−2s

{
lim

r→+0
(r2σ2 + 1− sσ − r2s−1σ)

1− r2σ2

1− 2rσ cos(θ − ϕ) + r2σ2
σ−2

}
dσ

= C

∫ s−1

R−2s

(−s2σ−1 + sσ−2)dσ

= C

(
−s2 log

R2

s2
+ R2 − S2

)
= C

(
−(y2

1 + y2
2) log

R2

y2
1 + y2

2

+ R2 − y2
1 − y2

2

)

3 Green function for biharmonic operator on a

3D sphere

We next consider the following boundary value problems for biharmonic operator

on a 3D sphere [4]:




∆2u = f(x) (x = (x1, x2, x3), |x| < R)

u(Rξ) = 0 (|ξ| = 1)

Du(x)
∣∣∣
x=Rξ

= 0 (|ξ| = 1)

(1)

where

∆ = ∂2
x1

+ ∂2
x2

+ ∂2
x3

, D = x1∂x1 + x2∂x2 + x3∂x3 = r∂r

x1 = r sin θ cos ϕ, x2 = r sin θ sin ϕ, x3 = r cos θ



Solution is given by

u(x, y) = u(x1, x2, x3, y1, y2, y3) =

∫

|y|<R

G(x, y)f(y)dy

⇔u(r, θ) =

∫ R

0

∫ π

0

∫ 2π

0

G(r, s, θ, θ̃, ϕ, ϕ̃)f(s, θ̃, ϕ̃)r sin2 θ̃dϕ̃dθ̃ds

where Green function G is given by

G(r, s, θ, θ̃, ϕ, ϕ̃) =
(rs)

1
2

8

∫ ρ1

ρ0

{ρ + ρ−1 − (ρ1 + ρ−1
1 )}Q(ρ, λ)ρ−

1
2 dρ

ξ = x/|x|, η = y/|y|,
λ = ξ · η = sin θ sin θ̃ cos(ϕ− ϕ̃) + cos θ cos θ̃

ρ0 = R−2rs, ρ1 =
r ∧ s

r ∨ s

Q(r, λ) =
1

4π

1− r2

(1− 2λr + r2)
3
2

The following theorem shows that the Green function is a reproducing kernel of

a certain Hilbert space.

Theorem 1 Let H be Hilbert space defined by

H =
{

u(x) = u(x1, x2, x3) = u(r, θ, ϕ)
∣∣∣

∫

|x|<R

|u(x)|2dx,

∫

|x|<R

|∆u(x)|2dx < ∞,

u(R, θ, ϕ) = 0, ∂ru(r, θ, ϕ)|r=R = 0
}

which is equipped with an inner product

(u, v)H :=

∫

|x|<R

(∆u)(∆v)dx

Then G(x, y) is a reproducing kernel of H, in other words, the following two prop-

erties hold.

(i) G(x, y) ∈ H (|y| < R : fixed) ⇔ G(x, y)

∣∣∣∣
|x|=R

= ∂rG(x, y)

∣∣∣∣
|x|=R

= 0

(ii) (u(·), G(·, y))H =

∫

|x|<R

(∆u(x))(∆G(x, y))dx = u(y)

Taking the similar procedures as 2D case, we have the following theorem:



Theorem 2 There exists a positive constant C such that the following Sobolev in-

equality holds for any function u(x) ∈ H:

sup
|y|<R

|u(y)|2 ≤ C

∫

|y|<R

|∆u(y)|2dy. (2)

Among such C, the best constant C0 is given by

C0 = sup
0≤s<R

G(s, s) = G(0, 0) =
R

16π
.

If one replaces C by C0 in (2), the equality holds for

u(y) = C

(
R−

√
y2

1 + y2
2 + y2

3

)2
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