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Abstract. A set of vectors all of which have a constant (non-zero) norm value in an
Euclidean lattice is called a shell of the lattice. Venkov classified strongly perfect lattices
of minimum 3 (Réseaux et “designs” sphérique, 2001), whose minimal shell is a spherical
5-design. This note considers the classification of integral lattices whose shells of norm 3
are 5-designs.
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INTRODUCTION

Let L be an Euclidean lattice, which is a discrete vector space over Z. The squared norm of a vector
of the lattice is called the norm of the vector. Then, the set s,,(L) of vectors of the lattice L which take
the same value m for their norm is called the shell of the lattice, i.e. s, (L) := {z € L; (x,x) = m}.
Moreover, the shell of minimum min,e oy (x, ) of the lattice L is called the minimal shell, which is
denoted by S(L).

Definition 0.1 (Spherical design [3]). Let X be a non-empty finite set on the Euclidean sphere S9!,
and let ¢ be a positive integer. X is called a spherical t-design if
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for every polynomial f(x) = f(x1,...,24) of degree at most t.

For every nonempty shell s,,,(L) of a lattice L, a normalization X = ﬁsm(L) is considered, where

X is a finite set on an Euclidean sphere. A lattice, whose minimal shell is a spherical 4-design (i.e. a
5-design), is said to be strongly perfect.
B. B. Venkov proved the following theorem:

Theorem 1 (Venkov [9], Theorem 7.4). The strongly perfect lattices that are integral and of minimum 3
are O1, Oz, O16, Og2, and Oz3. Furthermore, the minimal shell is a spherical T-design only for the case
of the lattice Oa3.

Now, as an expansion of the above theorem, we prove the following theorem:
Theorem 2. Let L be an integral lattice. If its shell of norm 3 is a spherical 5-design, then L is isometric
to one of the following nine lattices:

(1) Z", whose minimum is equal to one.
(2) Aig2,1, Mg22 and Mg 2,3, whose minima are equal to two.
(3) O1, O7, O16, Os2, and Oz3, whose minima are equal to three.

The definitions of the lattices in the above theorems are given in the next section. The remaining
sections are devoted to the proof of Theorem 2.
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1. DEFINITIONS OF THE LATTICES IN THEOREM 2

1.1. Lattices of minimum 3.

Lemma 1.1 (Venkov [9], Lemma 7.1). Let L be an even integral lattice of dimension n > 2 and of
minimum 4, and let e be a minimal vector of L. Denote by p the orthogonal projection on the hyperplane
H=ce', put L/ ={x € L| (e,r) =0 (mod 2)}, and let L. = p(L."). Suppose that one of the following
two assumptions holds:

(1) There is x € L such that (e,z) =1 (mod 2);
(2) We have (y,e) =0 (mod 2) for ally € L, and L contains a vector x such that (e,z) =2 (mod 4).

Then, L. is a odd integral lattice of minimum at least 3, and we have det(L.) = det(L) under assumption
(1) and det(L.) = + det(L) under assumption (2).

We denote by A,, the laminated lattices for 2 < n < 24 (See Conway-Sloane [2], Ch. 6). Note that A,
is isometric to v/2E,, for n = 6, 7, 8, that Ai¢ is isometric to the Barnes- Wall lattice BW1g, and that Aoy
is the Leech lattice. Then, we set O; = v/3Z. We denote by Oy (resp. Os3) the projected L. associated
with the laminated lattice Ag (resp. As4). Finally, we denote by Oss (resp. Oipg) the orthogonal of O
(resp. O7) in Oag.

We have det(O;) = det(O22) = 3, det(O7) = det(O16) = 64, and det(O23) = 1; thus Oz3 is unimodular.

The theta series of each lattice have the following form:

©0, =14+2¢° +2¢” +2¢°7+2¢" +---
B0, =1+56¢° +126¢" + 576 ¢" + 756 ¢° + 1512 ¢! 4 2072 ¢'2

+ 4032 ¢'° + 4158 ¢*¢ + 5544 ¢'° + 7560 ¢*° + 12096 ¢** + 11592 ¢** + - - -
O0,, = 1 +512¢ +4320¢* 4 18432 ¢° + 61440 ¢° + 193536 ¢”

+ 522720 ¢® 4+ 1126400 ¢° + 2211840 ¢*° + 4584960 ¢'* + 8960640 ¢'2 + - - -
©0,, = 1+ 2816 ¢> + 49896 ¢* + 456192 ¢° + 2821632 ¢° + 13229568 ¢”

+ 50332590 ¢® + 163175936 ¢° + 467596800 ¢'° + 1214196480 ¢'*

+ 2900976144 ¢*% + - - -
O0,, = 1 +4600¢> + 93150 ¢* + 953856 ¢° + 6476800 ¢° 4 32788800 ¢”

+ 133204500 ¢ + 458086400 ¢° + 1384998912 ¢'° 4 3771829800 ¢**

+ 9403968600 ¢*2 + - - -

Since Os3 is unimodular, we also have that ©¢,, = 03°—46 03°Ag, where Ag = 1603607 and 0; for i = 2,3,4
are known as Jacobi’s theta functions. (See [2], [6])

Let X be a nonempty finite set on the Euclidean sphere S9~1 (C R%). We denote the distance set of
X by A(X) = {(z,y); z,y € X,z # y}; then we call X an s-distance set if |[A(X)| = s. Now, X is
said to be a (d, n, s, t)-configuration if X C S9! is of order n(:= |X|), a s-distance set, and a spherical
t-design. The following table contains the (d, n, s, t)-configuration of each shell of norm m of the lattice:

Or Os6

m d n s t d n s t
3 7 56 3 5 16 512 4 5
4 7 126 4 5 16 4320 6 7
5 16 18432 8 5
6 16 61440 10 7
7 7 576 7 5 16 193536 12 5
8 7 756 8 53 16 522720 14 7
9

10

11 7 1512 11 5

12 7 2072 12 5
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022 023
m d n s t d n s t
3 22 2816 4 5 23 4600 4 7
4 22 49896 6 5 23 93150 6 7
5 22 456192 8 5 23 953856 8 7
1.2. Lattices of minimum 2. Let ¢1,...,e16 be an orthonormal basis of R'®. We denote some vectors
e1+---+e €g+---+e¢
fllzlis—l—zfg, f2:251+u

2 2 ’
fai=¢e1+e5+e9+ €13,

fo=e1+estes+er, f[si=ec1+estegten, fei=e1+ez+eztes.

Now, we define the following three lattices

(2) Aig21 = ((A1)'C, f1, fo, f3, fa, f5s fo),
(3) Aig22 = ((D1)*, f1, f2, f3),
(4) Aig2,3 .= ((Ds)?, f1, f2),

where we put root systems in the above definitions as (A1) := {#(e9;_1 T e9:); 1 < i < 8}, (Dy)? =
(eite); 1<i<j<45<i<j<89<i<j<12o0rl3<i<j< 16}, and (Dg)? :
{f(e;+e);1 <i<j<8or9<i<j< 16}. Then, we have (41)'¢ C (Dy)* C (Ds)? and
Aig21 C Mig2,2 C Aig,2,3. Furthermore, we have

(5) Aig23=~NMNg22U(e1+e5+Ng22) and Ajgoo =ANg21U (61 +e3+ Nig21)-
Remark 1.1. We denote some other vectors

fri=e1+extestes, fa:=c1+eatestes, foi=e1+ertertes,
flo:=e1+textegte, fiii=ertextenten, fizi=etertegten,

fiz==¢e1+e2+e15 + €16

Then, we can write

O16 = (V2A1)'C, f1, f2, 3, fu. f5, fos f7, fss fo, fr0, f11s fi2s fis),
and we have (v/2A41)'6 := {£2¢,; 1 <4 <16} C (A1)'% and Oy C Ayg2.1. Furthermore, we have

(6) A16.21 = O16 U (g1 + 2 + O1p).

We have det(Ai6,2,1) = 16, det(A16,2,2) = 4, and det(A16,2,3) = 1; thus Aq6 2,3 is unimodular.
We obtain the theta series of the lattices by numerical calculation as the following form:
Onyezn = 1+32¢% +1024¢° + 8160 ¢* + 36864 ¢° + 127360 ¢° + 387072 ¢"
+ 1016288 ¢% + 2252800 ¢° + 4564416 ¢'° 4+ 9169920 ¢** + 17395328 ¢12 + - - -
Oigzs = 1+ 96¢% + 2048 ¢* + 15840 ¢* + 73728 ¢° + 259200 ¢° + 774144 4"
+ 2003424 ¢8 + 4505600 ¢° + 9269568 ¢'° + 18339840 ¢! + 34264704 ¢*% + - - -
Onyezs = 1 +224¢% + 4096 ¢° + 31200 ¢* + 147456 ¢° + 522880 ¢° + 1548288 ¢”
+ 3977696 ¢° + 9011200 ¢° + 18679872 ¢*° + 36679680 ¢'* + 68003456 ¢'2 + - - -

Since Ag,2,3 is unimodular, we also have that ©y,,, , = 03° — 320§ As.
The following table is the (d,n, s, t)-configuration of each shell of norm m of the lattice:
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Aig2.1 Ai6,2,2 Aigas

m d n s t d n s t d n s t
2 16 32 2 3 16 96 4 3 16 224 4 3
3 16 1024 6 5 16 2048 6 5 16 4096 6 5
4 16 8160 8 3 16 15840 8 3 16 31200 8 3
5 16 36864 10 5 16 73728 10 5 16 147456 10 5
6 16 127360 12 3 16 259200 12 3 16 522880 12 3
7 16 387072 14 5 16 774144 14 5 16 1548288 14 5
8 16 1016288 16 3 16 2003424 16 3
9 16 2252800 18 5

1.3. Lattice of minimum 1. We have det(Z") = 1, thus Z” is unimodular.
The theta series of the lattices have the following form:

Ozr =14 14q+ 84¢% +280¢> + 574 ¢* + 840 ¢° + 1288 ¢° + 2368 ¢”
+ 3444 ¢® 4 3542 ¢° + 4424 ¢™° + 7560 ¢'" + 9240 ¢ + - --

Since Z" is unimodular, we also have Oz = 65.
For the spherical design from each shell of Z”, the following facts are already known:

Theorem 1.2 (Pache [7], parts of Theorem 25 and Proposition 26).
(1) Forn =2, all the nonempty shells of Z™ are spherical 3-designs.
(2) The following shells are spherical 5-designs:
s, (Z) m=2a, a2zl
s (Z7) m=4%8b+3), a,b>0.

(3) Forn > 2 and 1 < m < 1200, the nonempty shells of norm m of Z™ are not spherical 5-designs,
except for the above cases.

Remark 1.2. Z7 and O; have 8 (g) = 280 and 8 - 7 = 56 vectors of norm 3, respectively. Then, as
a natural question, can we write s3(Z") as a disjoint union of configurations isometric to s3(O7)? The
answer is no.

There are 30 subsets of s3(Z") which are isometric to s3(O7). However, any 3 such subsets are not disjoint.
Here, we can choose 2 disjoint subsets, for example, (+1,+1,0,41,0,0,0)¢ and (£1,0,+1,41,0,0,0)¢,
where “+” indicates that we take all possible sign changes, and C' indicates that we take any cyclic shifts.

Remark 1.3. Note that all the lattices in this section are 3-lattices, which are generated by some vectors
of norm 3.

Let L be an integral lattice of dimension n, whose shell of norm 3 is a spherical 5-design. By X := s3(L)
the shell of norm 3 is denoted. The argument of Theorem 2 (3) is just equivalent to Theorem 1. Thus,
we may suppose min(L) equal to 1 or 2.

2. ON SPHERICAL DESIGNS

Theorem 2.1 (Venkov [9], Theorem 3.1). Let X € S"~1 be a finite set, and t be a positive integer. By
e (resp. o) the greatest even (resp. odd ) integer which is at most t is denoted. Then, X is a spherical
t-design if and only if there is a constant c. such that, for every a € R™, we have the two equations

(7) Z(x,a)e = co(a,)’? and Z(m,a)o =0.

zeX zeX

If the above two equations hold, by repetition of the Laplacian A, we always have the formulae

Z(fc,a)k = ci(o,a)®?  and Z(m,a)l =0
zeX reX
for any even k£ < e and any odd [ < o, where the notation A, refers to derivation with respect to the
variable y. We also have
1-3:5---(k—=1)

Ck:n(n+2)-~-(n+k:—2)| .
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In this paper, the finite sets on spheres from shells of Euclidean lattices are considered. Then, every
set is antipodal, thus the second equation always holds. Also, 5-designs from vectors of norm 3 are also
considered here. Thus it is necessary and sufficient to consider the following two equations:

0 > (0= a,a)

reX
4 27|)(| a. o 2
) Yt = ool

Again, let X be the shell of norm 3 of the lattice L. For any vectors zg € X, we denote n; := |{z €
X ; (wg,z) = i}| for i = 0,1,2. By the above equations, taking o = g, we have

A 3T 153 o B —19) 3(25 — n)
dn(n + 2) T T 2n(n+2) 8n(n + 2)

Note that these results do not depend on the choice of zg.

(10) nog = |X| + 157 ng = |X| — 6.

3. MINIMUM OF LATTICES

Let t € S(L) be a minimal vector of the lattice L. Since (z £t, 2 +t) — (¢,t) = (x,x) £ 2(z,¢) > 0 for
any z € X, we have |(z,t)| < 1(2,2) = 2 (cf. [9], Lemma 6.10). Thus, we have

(11) (z,1) € {0,£1}.

Then, we denote p; := [{z € X ; (x,t) = i}| for i = 0,1. By the equalities (8) and (9), taking o = ¢, we
have

(12) (t,1) =

(cf. [9], Lemma 7.11)

n+ 2 2(n—1) n+ 2
27y =
9 Po n | |a P1 6n

X

If min(L) = 1, by the first equation, the dimension of the lattice L is equal to 7. By [8], there are only
two 3-lattices whose shells of norm 3 are spherical 5-designs, which are O; and Z”. Here, a 3-lattice is an
integral lattice which is generated by vectors of norm 3. If we consider the lattice L’ which is generated
by s3(L), then L’ is a 3-lattice such that s3(L') = s3(L). Thus, |X| is equal to 56 or 280.

Let | X| = 56; then ng = na = 0 by the equality (10). Since py > 0 and p; > 0, we can take some
elements z1,x2 € X such that (z1,t) =0, (x2,t) =1, and (z1,22) = £1. Then, z1 F (z2 —t) is a vector
of norm 3, i.e. 1 F (z2 — ) € X, and we have (x1 F (x2 —t), 1) = 2. This contradicts ny = 0.

Let | X| = 280; then we have L D L' ~ Z7. Since L is integral, we have L ~ Z7.

In conclusion, if min(L) = 1, then we have L ~ Z7.

Now, the remaining case is when min(L) = 2.
If min(L) = 2, by the equations (10) and (12), we have the following equations:

) 3
13 =16 =-|X = —|X]|.
(13) n=16, po=c|X|, p1=£IX]
65 15 3
Since n; and p; are nonnegative integers,
(15) 256 | |X| and |X|>512.

Furthermore, for any z¢ € X, if v € X satisfies (zg,x) = 2, then 29 — x € s2(L) and (xg — z,z9) = 1.
On the other hand, if y € so(L) satisfies (zg,y) = 1, then g —y € X and (z¢ —y, z¢) = 2. Thus, we have

(16) {y € s2(L); (wo,y) = 1} = Hz € X5 (20, ) = 2} = na,
where this number does not depend on the choice of xy. Then, we have
ny | X| =y € s2(L) ;5 (wo,y) = 1} x |X|
=Kz e X5 (w,90) = 1} X [s2(L)| = p1[s2(L)].
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Thus, we have

(17) [s2(0)] = 761X - 32

4. INTERSECTION NUMBERS

Let «, 8,7 € A(X), where A(X) = {(z,y);z,y € X,z # y} is a distance set. Then, we choose a pair
of vectors x,y € X such that (x,y) = v, and denote

(18) Pya,8) = [{z € X; (z,2) = o, (2,9) = B}

If this number is uniquely determined for any choice of the pair x, y, then it can be called the intersection
number. Since X is antipodal, we have P, (a, 3) = Py (8, a) and P,(c, §) = Py(—a, —3) = P_ (o, —3).

In this section, the intersection numbers Ps(a, 3) are considered. Now, a pair of vectors x,y € X such
that (z,y) = 2 is chosen. Then, we have z—y € so(L). For any z € X, we have (r—vy, 2) = (z,2)—(y,2) €
{0, 41} by the relation (11). Here, we have Ps(«, 5) = 0 for every a, 8 such that |a— 3| > 1. Furthermore,
it is clear that P»(3,3) = 0 and P»(2,3) = 1. This can be denoted

ay = P2(272), ag = PQ(LQ), as = Pg(l, 1), a4 = PQ(O, 1), as = PQ(0,0)
We have
ng =2a4+as, ny=az+az+ay, ng=1+a;+as.

By the equations (8) and (9), taking o« =  + y and @ = z — y, we obtain four relations for ay,...,as.
Finally, we have
9

P2(272) |X| ’ P2(1 2)

128‘
\X| +2, P(0,0) =

256

P (0,1) = |X| —24.

128 128

Now, for any element yo € so(L), there exists g € X such that (zg,y0) = 1. Then, we have
20— Yo € X and (g — yo,x0) = 2. Let y € so(L) satisty (yo,y) = 1, then yo — y € s2(L) and
(z0,y) =0 or 1, because (xg,y0 —y) = 1 — (x0,y) € {0,£1} by (11). If (zg,y) = 1, then g —y € X and
(zo,20 —y) = (xo — Yo, o — y) = 2. Thus, we have

{y € 52(L) 5 (%o, 9) = 1, (w0, y) = 1}| = {z € X5 (w0, %) = (20 — o, 7) = 2}| = P2(2,2).

On the other hand, if (zg,y) =0, then yo —y € X and (yo,y0 — ¥) = (%0, %0 — y) = 1. Thus, we have

|{y € 32(L) ; (yan) =1, (1‘07y) = 0}| = |{y € 82(L) ; (y0=y) =1, (CC()7y) = 1}‘ = P2(272)'

In conclusion, we have

(19) 1y esa(D); (wy) =1} = gl XI =8, Iy € salL): (o) =0} = [ X] ~ 18,

128

These relations imply that so(L) is a spherical 3-design.
In addition, we have the following fact:

Lemma 4.1 (see [7]). Let L be an integral lattice. Then, its shell so(L) of norm 2 is a root system.

Furthermore, irreducible root systems have been classified; they are A, for n > 1, D,, for n > 4, and
E, for n = 6,7,8 (see [1]). Orthogonal unions of irreducible root systems which satlsfy the conditions
(15), (17) and (19) result only in the following nine cases:

(20) sa(L) ~ (A1)'%, (A2)%, (Aa)*, (As)?, Ase, (Da)*, (Ds)?, Dis, or (Es)>.

In the next section, each case is examined. Finally, only the three cases so(L) = (A1), (D4)*, and (Dg)?
will have to be considered, and obtain lattices Aig 2,1, A1g2,2, and Ayg 2 3, respectively.
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5. CLASSIFICATION OF LATTICES

5.1. The case of sy(L) = (A;)'S.

We put (A;)'6 = {£v/2¢;; 1 < i < 16} with an orthonormal basis {ei}1<i<i6 of R, Consider a
vector zo € X. We write xg = (ay,...,a16) € X, then we have (z,v/2¢;) = v/2a; € {0,£1}, thus we have
a; € {0,£1/y/2}. In addition, we have (z,z) = a? + --- + a5 = 3 by definition. Thus, six coordinates
are +1v/2 and ten coordinates are 0.

If a; = 1/4/2, then the ith coordinate of 29 — v/2¢; is equal to —1/y/2. Thus, in the lattice which
is an additional group, we take all possible sign changes of nonzero coordinates of x¢g. We write Ty =
V2(la1l, - .., |ae|), then we define equivalence classes X := {Z; x € X}, where we regard T as a equivalence
class. Each class has 2° vectors by sign changes. Since |X| = 1024, we have 16 classes.

Take =1 € Tg, and let [ := (Tg,71). In this case, we have ny = 500, n; = 255, and ny = 6.
Firstly, since (x1,z9) € {0,+1,£2}, we have | = 0,2,4. We write m;’ := |{z € Tg; (z,20) = i}| and
my;" = |{x € T1; (x,m0) = i}| for i = 0, 1,2. Then, we have my’ = 20, m;’ = 15, and my’ = 6. Secondly,
since my’ = ngy, we need m; 2" = 0, thus we have [ = 0,2. Finally, we have mg ¢” = 64, ma” = 32, and
ng = 20 + 32 x 15 for 16 equivalent classes, so we have [ = 2.

Now, if we regard X as an incidence matrix of a block design (cf. matrix (21)) , we can consider
a 2-(16,6,2) (t-(v,k,\)) design. By Gibbons [4], we have just three equivalence classes for this block
design. Furthermore, if we regard the three classes as a basis for a linear code of Fi%, then we obtain
three linear codes whose parameters are respectively [v, k, d] = [16, 6, 6], [16,7,4], and [16, 8,4]. Moreover,
when [v, k,d] = [16,7,4] and [16,8, 4], we have more than 16 code words of length 6 which correspond
to the equivalence classes of X. For example, the following is an incident matrix of a 2-(16,6,2) block
design from which we obtain [16, 6, 6]-linear code of F16:

11000 0O0O0O1O0T1O0T1TO0T1O0
1100 0 0 O0O0OOT1TO01O01 01
1010101011 0O0O0O0O0O0
1 01 001010011 O0O0O0O0
1P 0011001 0O0O0O0T1TT1TO0TO0
1001 0 1 1 0O0O0OO0O0OO0O0OT11
01101001 O0O0O0O0O0O0T1T71
(21) 0110011 0O0O0OO0O0T1T1TCO0SFO0
0101101 0O0O0T1T1TO0TO0O0O0
010101011 10O0O0O0O0O0
0 01 100O0O0OT1O0OT1O0O0T1O01
06011 00O0O0OO0O1O0T1T1TO0T1FPO0
000011 0O01O0O011O001
0o 00011 0O0O0O1 100110
o0 0O0O0OO0O1110O01O0110O0
Lo o0 00 0110110100 1]

Thus, we can determine the lattices L for which s3(L) is spherical 5-design and so(L) = (A1) uniquely
up to isometry.
Now, let {e;}1<i<16 be another orthonormal basis of R'®, and take an isometry which maps

(22) \/5621‘_1 — €9;_1 +€9; and \[2622' > €9;_1 — €9; for every 1 <7 < 8.

Then, this isometry leads the definition of Ajg2 1 in Section 1 from the above lattice which corresponds
to the matrix (21). Actually, from the first and fourth row of the above matrix, we have the following
correspondences:

e1+ex+eg+e; +e13+ e o fy e +M
V2 2o 2 ’
€1 +e3+es+er+eg+ e €1+ +eg
— fi=———"+¢5.
V2 2

5.2. The cases of sy(L) = (A2)%, (A4)%, (4s)?, Ass.

We can write A, = {£e; F¢;; 1 <i<j<n+1}. We take zp € X. If there exists y € A,, such
that (zg,y) = 1, then we may assume y = &1 — e without loss of generality. Furthermore, we write
my’ = |{y € A, ; (x0,y) = 1}|. Now, we consider several distinct cases, namely (i) y = £(e1 — £2), (i7)
y=1=%(e1—¢€;), (62 —&;) for 3<i<n+1, and (19i) y =x(g; —¢;) for 3<i<j<n+1
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For the second case (ii), we have (zg,e1 — ;) — (z0,82 — &;) = (xp,e1 — €2) = 1. If we have (xg,e1 —
g;) = —1, then (xzg,e2 — ;) = —2, contradicting the relation (11). Thus, (zg,e1 —&;) = 0,1 and
(xo,e9 — €;) = 0, —1; just one of (xg,e1 — &;) and (xg,e2 — €;) is nonzero. Moreover, half of the vectors
of this case are orthogonal to xg.

For the third case (ii¢), we have (29, e;—¢;) = —(x0,€1—€i) + (20,61 —¢;). (z0,€;—¢;) is nonzero if and
only if just one of (x,e1—¢;) and (xg,e1—¢;) isequal to 1. We put D := [{3 < ¢ < n+1; (xo,e1—¢;) = 1},
then 2D(n — 1 — D) of vectors of this case are not orthogonal to z.

In conclusion, we have m;" =1+ (n—1)4+ D(n —1— D) = (n — D)(D 4 1). Note that m;’ is even if
n is even.

Recall that [{y € s2(L); (x0,y) = 1}| = ng, and note that this number for s3(L) must be a combination
of the numbers m;’ for each A,. However, if n = 2,4, 8,16, then we have ny = 9,15,27,51, where all of
them are odd. These facts are contradictory. Thus, we can omit these cases, when so(L) = (A,,)'6/™ for
n > 1.

5.3. The cases of sy(L) = (Dy4)*, (Dg)?, D1s.

Following the procedure of the previous section, we write D,, = {£e; £¢;, £e;, Fe;; 1 <i<j < n}
for an orthonormal basis of R™. We take z¢y € X, then we assume (xg,e; + £2) = 1 if some vector of D,
is not orthogonal to xg. Furthermore, we write m;" := |{y € D,,; (z0,y) = 1}|. Now, we consider several
distinct cases, namely (i) y = £(e1 +¢€2), (it) y = £(e1 £ &), £(e2 t&;) for 3 < i < n, (i) y = £(e; £ ¢5)
for 3<i<j < n,and (i) y = £(e1 —e2).

For the second case (ii), we have (xg,e1 £ ;) + (x0,62 F&;) = 1. As in the section above, half of the
vectors of this case are orthogonal to xg.

For the fourth case (iv), we put D := (zg,€1 +€;) + (x0,€1 — €;) = (x0,2¢1) for any 3 < i < n, which
does not depend on i. If D = 0, then (xg,e2 + ;) + (20,2 — &;) = 1; thus we can take e5 instead of &;
without loss of generality. We may assume D =1, 2.

If D = 1, then (zg,&1—¢2) = 0. For the third case (ii%), we have (2o, e;%¢;) = (xo,e1+€:) —(T0,€1EE;).
Thus, just one of (zo,&; +¢;) and (xo,e; — €;) is zero. Moreover, half of the vectors of the case (iit) are
orthogonal to xg. In conclusion, we have my’ =1+2(n—2)+ (n—2)(n —3)/2+0=n(n—1)/2.

If D = 2, then (z9,e1 — €2) = 1. For the third case (iii), we have (vg,&; £ ¢;) = (vo,1 + &;) —
(o,e1 £ €;) = 0. Then, all of the vectors of the case (iii) are orthogonal to zy. In conclusion, we have
mi’'=14+2n—2)+0+1=2(n—1).

(Da)* (Ds)? Dss
D 1 2 1 2 1 2
my’ 6 6 28 14 120 30

Recall that |{y € s2(L); (x0,y) = 1}| = na, and note that this number must be the sum of the numbers
my’. If n = 4,8, 16, then we have ny = 18,42, 90, respectively. Then, there remain some possibilities such
that ny = 6 + 6 + 6 for the case of s3(L) = (D4)* and ny = 28 + 14 for the case of s3(L) = (Dg)?. On
the other hand, ny # m;’ for the case of so(L) = D1g; thus we can omit this case.

Now, we write g = (a1,...,0n,an41,-..,a16), where each a; for 1 < ¢ < n is the coordinate of ¢;
used for D,,. Then, we have (z¢,¢; £ ¢;) = a; £ a;, thus we can calculate each a; from the values of
(LE(), E; + é‘j).

If D = 1, then we have |a;] = % for every 1 < i < n. Furthermore, for 2a;e; + 2a;e; € Dy,
xo — (2a:&; + 2aj¢e;) is also a vector of norm 3, where both signs of the ith and jth coordinates are
different from those of zy. Similarly, we have every element whose even signs are different from xy. Here,
we write

Ly :={(£1,...,£1)/2 € R™; the number of “—” is even},
L3 :={(£1,...,£1)/2 € R™; the number of “—” is odd},
then the lattice L includes either Lo X {(ap41,-..,a16)} or Lg X {(ant1,--.,a016)}-
If D = 2, then we have |a;| = 1 for some 1 < i < n and a; = 0 for every 1 < j < n such that i # j.

Furthermore, for 2a;e; and a;e; £ €5 € Dy, 0 — 2a;6; and xo — (aze; €;) is also a vector of norm 3.
Here, we write

Ll = {ié‘l, ey :t&n},
then the lattice L includes Ly x {(an+t1,-..,a016)}-
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On the other hand, if x( is orthogonal to D,,, then a; = 0 for every 1 < ¢ < n. Here, we write
Lo :={(0,...,0) e R"};
then we can say that the lattice L includes Lo X {(an+1,--.,a16)}-

5.3.1. The case of s3(L) = (D4)*. We have L; ~ Ly ~ L3 ~ Z*, where each vector is of norm 1. Thus,
s3(L) D Ly X Liy x Ly X L;, , where i, = 0 for just one k and this set has 512 vectors. Since |s3(L)| = 2048,
s3(L) includes four such sets. Then, we write

LI = (Lil,l X Li1,2 X Lil,s X Li174) U (Li2,1 X Liz,z X Li2,3 X Li2,4)
U (Lis, X Liyy X Ly X Liy ) U (Liy, X Liyy X Ly, X L

3,1 13,2 13,3 14,3 i4,4)?
where I = (7;1’17 N ,Z'4’4).

Firstly, for every yo € Dy, we have py = 384 and [{x € L;;, x L, , X L;, , x Ly, , ; (x,90) = 1}| =0
or 128. Thus, we have that just one of 41 j, %2 i, i3k, t4,% is zero for each 1 < k£ < 4. We may assume that
i1,4 = i23 = i32 = 14,1 = 0, without loss of generality. Secondly, we consider the inner product (x1,z2)
for 1 € L;, and 9 € Lj,. We have the fact that (z1,22) = 0,£1 if iy = ji # 0, that (z1,22) = £1/2
if i # ji and iy - ji # 0, and that (x1,22) = 0 if iy - jr = 0. Thus, we have 4;, , # ij, 5 for 1 <k <4
if j1 # ja. Furthermore, {i1 k, 424,93k, %45} = {0,1,2,3} for 1 < k < 4. Finally, there is an isometry
which maps L; to Ly for every 1 < i < 4 and some 1 < ¢’ < 4. Thus, for every pair I = (i1,1,...,%4,4)
which satisfies 7;174 e 7;2,3 =139 = Z.471 =0 and {i17k,i27k,i3,k,i47k} e {O, 1,2, 3} foreach 1 < k<4, Lyis

isometric to the following set:
(Ly X Ly x Ly X Ly) U (Lg x L3 x Ly x Ly)
U (L1 x Lo X Lg x La) U (Lo x L1 x L3 x L3)
C (fi+ (D)"Y U (fi = fs+ (Da)")
U (fa+ (D)) U(f2 = fs + (Da)*).

Thus, we can determine s3(L) uniquely up to isometry, which generates A1 22 in Section 1.

5.3.2. The case of sa(L) = (Dg)?. Every vector of Ly is of norm 1, and every vector of Ly and Ls is of
norm 2. Thus, s3(L) D Ly x L; or L; x Ly for some 4, j = 2,3, where each set has 2048 vectors. Similar
to the previous section, we have

Li’j = (Ll X Lz) U (LJ X Ll)
When we consider an isometry which changes the sign of one fixed coordinate of each vector, then this
maps Lo to L3 and stabilizes L;. Thus, for every ¢,j = 2,3, L; ; is isometric to the following set:

(La x L1) U (L1 x La) C (f1 4 (Ds)*) U (f2 + (Ds)?)

Thus we can determine s3(L) uniquely up to isometry, which generates Ajg 23 in Section 1.

5.4. The case of s3(L) = (Es)?. Similar to the case of so(L) = (Ds)?, we write Fg = {+e; +¢;, £&; F
g3 1 <i<j<8U{(teg £---+eg)/2; the number of ‘— is even} for an orthonormal basis of R®.
We take zyp € X, then we assume that (zg,e1 + €2) = 1 if such an element exists. Furthermore, we
write my’ := |{y € Fs; (x0,y) = 1}|. We consider several distinct cases; namely (i) y = £(e1 + &2), (%)
y==(e1te;),£(eate) for 3<i <8, (#4) y=%(e; £¢;) for 3<i < j<8, () y==(e1 —e2), (v)
y==x(e1+eatest---+eg)/2, and (vi) y=+(e1 —eg ezt - teg)/2.

The cases (i), (ii), (iii), and (vi) are similar to the case of s3(L) = (Dg)?. Note that (29,1 +¢;) = 0,1
and (z9,e2 £¢;) = 0,1, and we put D := (zg,€1 + ;) + (20,61 —&;) € {1,2}.

For the fifth case (v), we have (xg,e1+¢e2) = (2o, (e1+e2tes3t- - -+eg)/2)+(x0, (e1+2FesF- - -Feg)/2).
Thus, half of the vectors of this case are orthogonal to zg.

If D = 2, we have (zg,e1 — €2) = 1. The sixth case (vi) is similar to the case (v), and half of the
vectors of this case are orthogonal to xg. We have m;’ =1+ 124+ 0+ 1+ 16 + 16 = 46.

If D =1, just one of (x¢,e;+¢;) and (20, €, —¢;) is zero for the case (ii7). We may assume (zg,e3+€4) =
(xo,e5+¢€6) = (x0,e7+es) = 1 without loss of generality. Firstly, when the sign of £3 is equal to that of g4,
then we have (xg,e3+¢e4) = (20, (Xe1Feateztestest- - -teg)/2)— (w0, (o1 Fea—e3—egtest- - -+eg)/2);
thus half of such vectors are orthogonal to xy. Secondly, when ‘the sign of €3 is not equal to that of €4’
and ‘the sign of €5 is equal to that of eg’, then (xg,e5 + €g) = (x0,(de1 Fea ez Feqa+e5+egter F
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€g)/2) — (xo, (£e1 Feg 3 Feqa — 5 — €6 £ &7 F £5)/2), thus half of such vectors are orthogonal to .
Finally, when ‘the sign of €3 is not equal to that of 4" and ‘the sign of €5 is not equal to that of ¢g’, then
(z0,e7+¢8) = (0, (Le1 FeatesFeatesFeg+er+es)/2) — (o, (o1 FeatesFeates Feg—e7—¢38)/2);
thus half of such vectors are orthogonal to zg. In conclusion, we have m;’ = 1+12+154+04+16+ 16 = 60.

Recall that |{y € sa(L) ; (wo,y) = 1}| = n2 = 90, thus we cannot write ns as a sum of m;’, so we can
omit this case.

Remark 5.1. In the argument of Section 5.1, from the lattice Ajg21, we obtain a 2-(16,6,2) block
design which generates [16, 6, 6]-linear code of F1%. Conversely, it determines the lattice A6 21 uniquely.

On the other hand, there are two more equivalence classes of 2-(16,6,2) block designs. Note that
we obtain the lattices A1g22 and Ajg 2,3 from the two equivalence classes which generate [16,7,4] and
[16, 8, 4]-linear codes of F1%, respectively.
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