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Abstract 
 

   To improve the accuracy of signal analysis and processing for the 
underground microseismic waves, an optimal basis function is indispensable in 
the wavelet packet transform (WPT). Based upon the microseismic wave groups 
monitored in a deep coal mine, wavelet bases in the Daubechies, Symlets and 
Coiflets families were screened, and the optimal wavelet packet basis was 
strictly determined by its reconstruction capability on the original wave and its 
conservation capability on its characteristic components. Signal reconstruction 
and conservation capabilities were evaluated by two parameters, root mean 
square error and correlation coefficient. The energy reserving capability of the 
optimal basis function was finally discussed to verify its superiority. The results 
turn out that the wavelet bases db1, sym4, sym5 and sym8 are more appropriate 
for the microseismic wave compared to others as their better signal 
reconstruction capability. Among them, basis sym5 is the optimal wavelet basis 
function for the microseismic wave. When processed by the wavelet basis sym5, 
the maximum energy components of waves are effectively reserved and the 
reconstructed characteristic components have the highest relevancy with that of 
the original wave. 

 
Keywords: Underground coal mining, Microseismic wave processing, WPT, 
Optimal basis function, Energy reserving capability 

 
 

 
   With the increase of the underground mining depth, more and more serious mining tremors 
occur and threaten the safe production. Except for the rock burst, microseism is also one kind of 
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these serious mining tremors. The researches on microseism play an important role in the 
prevention of many mining disasters 1,2), Recently, detail analysis to the microseismic wave is 
becoming one of the main research interests in the prevention of rock burst hazard. Especially, the 
spectrum analysis related to its time, frequency and energy is an important approach for mining, 
describing and responding the potential characteristics of waves 3,4). After the microseismic event, a 
large quantity of elastic energy releases and propagates in deep country rock in the form of body 
wave 5). Microseismic wave has some specialties such as the short duration, the sudden saltation, 
and the rapid attenuation 6,7). As the influence of long-distance propagation in deep rock, 
microseismic wave is mixed with much noise, which makes it getting quite complicated in signal 
components. And the noise components in microseismic wave bring difficulties to its process and 
analysis.  
   In the field of digital signal process, Fourier transform is the most classical processing method 
for the stationary signal 8). It transforms the signal from the time-domain to the frequency-domain, 
from which two key parameters, vibration peak and basic frequency, can be presented effectively 9). 
However, microseismic wave is a typical stochastic signal. Some of its characteristics cannot be 
roundly given by the Fourier transform. Especially, microseismic signal is non-stationary. It would 
be contrary to the theoretical basis of Fourier transform if this method is used in the non-stationary 
signal processing 10). Thus, J. Morlet, a French geophysicist, firstly proposed the concept of wavelet 
transform to public in 1984 based on years of researches on oil signal process. Y. Meyer and S. 
Mallat developed the wavelet theory and subsequently prompted it become an indispensable branch 
of applied mathematics 11). Wavelet transform is an important time-frequency analytical method in 
signal process. It decomposes the signal in both time and frequency domains. It has the favorable 
property of time-frequency localization, in which a resizable window, fixed in area yet alterable in 
shape, is applied. For the low-frequency components of signal, a wide time window is used to 
decrease the time resolution yet increase the frequency resolution, whereas for the high-frequency 
components of signal, a narrow time window is used to increase the time resolution yet decrease 
the frequency resolution. In other words, wavelet transform has the higher frequency resolution and 
the lower time resolution in the low frequency domain, while it has the higher time resolution and 
the lower frequency resolution in the high frequency domain. Because of this, wavelet transform is 
also honored as the 'mathematic microscope' and is capable of representing the local property of 
signal in time and frequency domains 12,13). Yet, weak frequency resolution in high-frequency 
domain and weak time resolution in low-frequency domain are the defects of wavelet transform. In 
practical application, improving the frequency resolution in high-frequency domain of 
microseismic wave is all the time expected. To address this problem, R. R. Coifman, V. 
Wickerhauser and Y. Meyer further developed Mallet’s wavelet algorithm and put forward the 
upgraded concept, WPT, around the year 1990 14). The basic idea of WPT is to finely decompose 
the high-frequency domain of signal as what is done in its low-frequency domain by wavelet 
transform. By the WPT, the frequency domain of signal is averagely divided in the required 
decomposing gradation, and the more subtle signal components are obtained. Besides, the time 
resolution in low-frequency domain of signal is also improved by the WPT. That is, the WPT 
decomposes any part of the signal with a higher resolution in time and frequency domains, which 
resolves the conflicts in time resolution and frequency resolution very well. Meanwhile, according 
to the signal features and analysis requirements, wavelet packet analysis can adaptively select the 
appropriate frequency band to match the signal frequency spectrum, which is precisely the 
advantage of WPT 15). 
   When doing the signal processing using the WPT, an extremely important precondition is the 
optimal determination of the wavelet packet basis function 16,17). Just as the effect of the processing 
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method, distinct basis function also leads to the different results. The more ideal results can be 
obtained based upon the application of the more advanced signal processing technique and the 
more reasonable basis function. It is generally recognized whether a basis function is an optimum 
or not determines the impartiality, objectivity and validity of the subsequent signal process 18,19). 
Many of wavelet bases have been created since then. Because of their outstanding effects, the basis 
function in the wavelet families of Haar, Daubechies, Mexihat, Biorthogonal, Morlet, Symlets, 
Coiflets and Meyer are the most commonly used in the practical engineering. Previous researches 
have proved that the wavelet bases in Daubechies, Symlets and Coiflets families are more 
appropriate for the signal processing of earthquake wave (seismic signal) and explosion wave (blast 
signal) 20,21). In consideration of the differences in their natural properties, the optimal basis 
functions that are suitable for the seismic wave and the blast wave cannot be directly applied into 
the signal processing of underground microseismic wave. Thus, it is necessary to determine an 
optimal wavelet packet basis function for the microseismic wave in this research. And as the signal 
process on microseismic wave has just been started in recent years, determination of its optimal 
wavelet basis is also quite important for the further researches. 
 

2. Wavelet Packet Basis Function and Specialty 
 
2.1 Wavelet function and transform 
   𝜓𝜓(𝑡𝑡) is a function expressed as 𝜓𝜓(𝑡𝑡) ∈ 𝐿𝐿1(𝑅𝑅) ∩ 𝐿𝐿2(𝑅𝑅), in which 𝐿𝐿1(𝑅𝑅) and 𝐿𝐿2(𝑅𝑅) are the 
function space consisted of absolutely integrable function and quadratically integrable one 
respectively. If ‖𝜓𝜓‖ meets the standardization condition ‖𝜓𝜓‖ = 1, and its Fourier transform 
𝜓𝜓�(𝜔𝜔) meets the following admissible condition, 

𝐶𝐶𝜓𝜓 = �
�𝜓𝜓�(𝜔𝜔)�2

|𝜔𝜔| 𝑑𝑑𝜔𝜔
𝑅𝑅

< +∞ ,                                                                                                (1) 

then, function 𝜓𝜓(𝑡𝑡) is defined as the basic wavelet or mother wavelet. Generally the basic wavelet 
is a band-pass function in time domain and compactly exists in both time and frequency domain. 
For any energy-limited function (𝑡𝑡) �𝑓𝑓(𝑡𝑡) ∈ 𝐿𝐿2(𝑅𝑅)�, its continuous wavelet transform is defined 
as  

𝑊𝑊𝑊𝑊𝑓𝑓(𝑎𝑎, 𝑏𝑏) =
1

�|𝑎𝑎|
� 𝑓𝑓(𝑡𝑡)𝜓𝜓∗ �

𝑡𝑡 − 𝑏𝑏
𝑎𝑎

� 𝑑𝑑𝑡𝑡
𝑅𝑅

= 〈𝑓𝑓,𝜓𝜓𝑎𝑎 ,𝑏𝑏〉 ,                                                      (2) 

where, 𝑊𝑊𝑊𝑊𝑓𝑓(𝑎𝑎, 𝑏𝑏) is the coefficient of wavelet transform. 𝜓𝜓∗(𝑡𝑡) is the complex conjugate of 
𝜓𝜓(𝑡𝑡) . Parameters a, b and t are continuous variable, which should be discretized as 𝑎𝑎 =

𝑎𝑎0
𝑗𝑗 (𝑎𝑎0 > 1)  and 𝑏𝑏 = 𝑘𝑘𝑎𝑎0

𝑗𝑗 𝑏𝑏0(𝑘𝑘 ∈ 𝑍𝑍)  in computerized application. Corresponding reconstructed 

expression of discrete wavelet transform is 

𝜓𝜓𝑗𝑗 ,𝑘𝑘(𝑡𝑡) = 𝑎𝑎0
𝑗𝑗 2⁄ 𝜓𝜓�𝑎𝑎0

−𝑗𝑗 𝑡𝑡 − 𝑘𝑘𝑏𝑏0� .                                                                                             (3) 

   This equation is known as the wavelet base function dependent on scale parameter a and 
translation parameter b. Discrete changing of these two parameters achieves the discrete wavelet 
transform. The value of 𝑎𝑎0 and 𝑏𝑏0 directly impact the precision of signal reconstruction. In order 
to ensure the signal precision and make wavelet transform adapt to signal nonstationarity, the 
binary discrete wavelet base (𝑎𝑎0 = 2, 𝑏𝑏0 = 1) is used in this research. The orthogonal wavelet 
transform is more and more adapted in the discrete wavelet transform, which can greatly cut down 
the calculated quantity on the premise of intact original signal. 
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2.2 Analytical approach of wavelet packet transform 
   In the wavelet multi-resolution analysis, Hilbert space 𝐿𝐿2(𝑅𝑅) is decomposed as the orthogonal 
sum of all wavelet subspace 𝑊𝑊𝑗𝑗 (𝑗𝑗 ∈ 𝑍𝑍), that is 𝐿𝐿2(𝑅𝑅) = ⨁𝑗𝑗∈𝑍𝑍𝑊𝑊𝑗𝑗 , according to different scale 2𝑗𝑗 . 
Subspace 𝑊𝑊𝑗𝑗  is a closure of wavelet function 𝜓𝜓(𝑡𝑡) . To achieve the purpose of improving 
frequency resolution, the wavelet subspace 𝑊𝑊𝑗𝑗  should be further decomposed based on the binary 
mode. Scale subspace 𝑉𝑉𝑗𝑗  and wavelet subspace 𝑊𝑊𝑗𝑗  (𝑉𝑉𝑗𝑗+1 = 𝑉𝑉𝑗𝑗 + 𝑊𝑊𝑗𝑗  in Hilbert space) are 
represented by a unified space as follows,  

� 𝑈𝑈𝑗𝑗
0 = 𝑉𝑉𝑗𝑗

𝑈𝑈𝑗𝑗1 = 𝑊𝑊𝑗𝑗
� ⟹ 𝑈𝑈𝑗𝑗+1

0 = 𝑈𝑈𝑗𝑗0⨁𝑈𝑈𝑗𝑗1 𝑗𝑗 ∈ 𝑍𝑍 .                                                                                   (4) 

   If 𝑈𝑈𝑗𝑗𝑛𝑛and 𝑈𝑈𝑗𝑗2𝑛𝑛  are the closure space of function 𝑢𝑢𝑛𝑛(𝑡𝑡) and 𝑢𝑢2𝑛𝑛(𝑡𝑡), respectively, and they 

meet the following dual-scale equation, 

�
𝑢𝑢2𝑛𝑛(𝑡𝑡) = √2�ℎ(𝑘𝑘)𝑢𝑢𝑛𝑛(2𝑡𝑡 − 𝑘𝑘)

𝑢𝑢2𝑛𝑛+1(𝑡𝑡) = √2�𝑔𝑔(𝑘𝑘)𝑢𝑢𝑛𝑛(2𝑡𝑡 − 𝑘𝑘)
� 𝑘𝑘 ∈ 𝑍𝑍,𝑛𝑛 = 1,2,3,⋯ ,                                          (5) 

then, 

𝑈𝑈𝑗𝑗+1
𝑛𝑛 = 𝑈𝑈𝑗𝑗2𝑛𝑛⨁𝑈𝑈𝑗𝑗2𝑛𝑛+1 .                                                                                                                  (6) 

   Based upon above relation, the orthogonal wavelet packet determined by base function 𝑢𝑢0(𝑡𝑡) 
is defined as: 

�

𝑊𝑊𝑗𝑗 = 𝑈𝑈𝑗𝑗−1
2 ⨁𝑈𝑈𝑗𝑗−1

3

𝑊𝑊𝑗𝑗 = 𝑈𝑈𝑗𝑗−2
4 ⨁𝑈𝑈𝑗𝑗−2

5 ⨁𝑈𝑈𝑗𝑗−2
6 ⨁𝑈𝑈𝑗𝑗−2

7

⋮
𝑊𝑊𝑗𝑗 = 𝑈𝑈𝑗𝑗−𝑘𝑘2𝑘𝑘 ⨁𝑈𝑈𝑗𝑗−𝑘𝑘2𝑘𝑘+1⨁⋯⨁𝑈𝑈𝑗𝑗−𝑘𝑘2𝑘𝑘+1−2⨁𝑈𝑈𝑗𝑗−𝑘𝑘2𝑘𝑘+1−1

⋮
𝑊𝑊𝑗𝑗 = 𝑈𝑈0

2𝑘𝑘⨁𝑈𝑈0
2𝑘𝑘+1⨁⋯⨁𝑈𝑈0

2𝑘𝑘+1−1 ⎭
⎪⎪
⎬

⎪⎪
⎫

 ,                                                                   (7) 

where, the function set 2(𝑗𝑗−𝑘𝑘) 2⁄ 𝑢𝑢2𝑘𝑘+𝑚𝑚 (2𝑗𝑗−𝑘𝑘𝑡𝑡 − 𝑙𝑙) (𝑙𝑙 ∈ 𝑍𝑍,𝑚𝑚 = 0,1,2,⋯ , 2𝑘𝑘 − 1) is a orthonormal 

basis of 𝑈𝑈𝑗𝑗−𝑘𝑘2𝑘𝑘+𝑚𝑚 . Wavelet packet function can be briefly expressed as 𝜓𝜓𝑗𝑗 ,𝑘𝑘 ,𝑛𝑛(𝑡𝑡) (𝑛𝑛 = 2𝑘𝑘 + 𝑚𝑚), in 

which parameters j, k, n represent the scale, displacement and frequency indicators, respectively. 
Compared to the wavelet function 𝜓𝜓𝑗𝑗 ,𝑘𝑘(𝑡𝑡), parameter n as the frequency representation in wavelet 
packet function overcomes a defect of poor frequency resolution in high frequency range of signal. 
The following Fig. 1 shows the wavelet packet decomposition in the third layer. For a specific 
signal, 2n frequency sub-bands can be obtained in the nth decomposition layer. The original signal 
can be completely reconstructed by these aequilate sub-bands. If the maximum frequency of 
original signal is f, the bandwidth of each frequency sub-band will be f/2n. Based on the deep signal 
decomposition, the signal components in different frequency bands will be clearly identified and 
analyzed in detail. In application, the signal decomposing gradation is decided based upon the 
specific requirements. 
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Fig. 1 Decomposition structure in frequency domain of signal by the WPT. In the filtering process at the basic 

level, the original signal, S, passes through two complementary filters (low-pass & high-pass) and 
emerges as two signals A1 and D1. Multi-level signal decomposition follows the some rules. 

 
2.3 Specialty of wavelet basis function 
   Compared to the standard Fourier transform, the wavelet basis functions are non-unique. All of 
the orthogonal, non-orthogonal, biorthogonal and linearly-dependent wavelet bases can be applied 
into the microseismic wave processing 22,23). However, different results are obtained spontaneously. 
To achieve the optimal determination, the basis function should be screened preliminarily based on 
the characteristics of the wavelets and the characteristics of the microseismic wave. Respective 
mathematical characteristics of the common wavelet packet bases are listed in the Table 1. 
 

Table 1 Characteristics of the basis functions in each wavelet family 24). 

 Families of the wavelet packet basis functions 
Haar Daubechies Biorthogonal Coiflets Symlets Morlet Mexihat Meyer 

Form of 
expression Haar dbN biorNr.Nd coifN symN morl mexh meyr 

Orthogonality Y Y N Y Y N N Y 
Biorthogonality Y Y Y Y Y N N Y 

Compact support Y Y Y Y Y N N N 

Support width 1 2N-1 

reconstruction: 
2Nr+1 

decomposition: 
2Nd+1 

6N-1 2N-1 finite finite finite 

Filter length 2 2N Max: 
(2Nr,2Nd)+2 6N 2N [-4, 4] [-5, 5] [-8, 8] 

Symmetry Y approximate N approximate approximate Y Y Y 
Order of 

vanishing moment 1 N Nr-1 2N N N N N 

* Y means the wavelet basis in relevant family has the corresponding specialty, whereas N is the opposite. 
 
   High characteristics of compact support, smoothness and symmetry of the wavelet packet bases 
are required for the signal reconfiguration of microseismic wave. Compact support can insure the 
excellent local features of the discrete orthogonal wavelet packet bases in space; the smoothness 
can result in the superior frequency resolution, and the symmetry can assure that wavelet bases 
have the filter characteristics in transformation, which can improve the signal fidelity. However, 
these three features usually cannot be met simultaneously in the WPT. Especially, the compact 
support and smoothness cannot be held at the same time. These characteristics lead to their distinct 
signal reconstruction capability and adaptability, and should be taken into consideration as 
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carefully and comprehensively as possible in application. Based on the characteristics of wavelet 
bases and the specialties of microseismic wave, the basis functions in Daubechies, Symlets and 
Coiflets families are preliminarily determined as the more appropriate wavelet bases for the 
microseismic wave. 
 

3. Case Study and Results 
 
3.1 Evaluation parameters for the optimal selection of wavelet basis 
   Whether a wavelet packet basis function is optimum or not for the microseismic wave is mainly 
determined by its reconstruction capability on the original signal and the conservation capability on 
the characteristic information of original signal (characteristic signal). The characteristic signal is 
obtained by reconstructing the coefficients of sampling data in the corresponding frequency domain. 
The optimal wavelet basis should have a better even the best capability to reconstruct the original 
wave and to retain the characteristic signal as much as possible 25,26). These two capabilities are 
evaluated by two parameters, the root mean square error (RMSE) of the reconstructed signal and 
the original signal, and the correlation coefficient (CC) of the characteristic signal and the original 
signal. RMSE value reflects the capability of reconstructing a signal using a wavelet basis, and is 
used for selecting the more appropriate basis function. The CC value implies the accuracy of the 
characteristic signal extracted from the original one by a specific wavelet, and helps to determine 
the optimal basis function. Expressions of the RMSE and the CC are defines as: 

 ( ) ( )
2

1

1

2
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=

NiSiSE
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i
rRMSE  ,     (8) 
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1
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N

i
CC iSiSiSiSr  ,    (9) 

where, ERMSE is the RMSE value and rCC is the CC value. N is the number of the sampling data in 
signal, and S, Sr and S  are the original signal, reconstructed signal and characteristic signal, 
respectively. In general, the less the RMSE value is, the better the reconstructed signal is; and the 
greater the CC value is, the higher the accuracy of the reconstructed signal is. 
 
3.2 Sampling wave group 
   To specify the optimal determination of the wavelet basis, a microseismic wave group is 
randomly selected from the data set and is used as the discussion object. The sampling rate of the 
checked wave object is 500Hz. Their waveforms are shown in the Fig. 2 and the corresponding 
location information is listed in the Table 2.  
   Figure 2 shows that, with the increase of propagation distance, microseismic waves hold the 
longer time duration and the lesser particle velocity. Arrival time of the P-wave is difficult to 
identify as the decrease of particle velocity and the arrival time difference between P-wave and 
S-wave becomes larger. When detected at almost the same distance, both waves are also greatly 
differing with each other in waveform and components as the distinction of propagation paths. It 
indicates that the selection of an optimal wavelet basis for the signal reconstruction and de-noise is 
particularly important. 
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Fig. 2 A typical microseismic wave group sorted upon the arrival time from early to late. These wave data was 

released from the same seismic event but monitored by nine wave detectors located in separate 
positions of underground deep rock environment. The length of wave propagation path changes from 
hundred meters to thousand meters. The fracture development degree of rock mass on these paths is 
quite high. 

 
Table 2 Location information of the wave detectors and Microseismic focus. 

Microseismic 
wave 

Wave detectors Microseismic 
focus 

distance (m) depth (m) depth (m) 
ms1 314.33 -858.2 

-911.1 

ms2 449.05 -824.7 
ms3 569.35 -885.2 
ms4 774.24 -959.1 
ms5 822.21 -717.6 
ms6 1115.80 -1076.1 
ms7 1064.03 -709.0 
ms8 1134.87 -1025.3 
ms9 1335.49 -672.0 

 
3.3 Comparison of signal reconstruction capability 
   Two screening approaches are always succinctly used for the optimal selection in some studies. 
One is the comparative analysis to the basis function in the same family but with the different filter 
length; another is the comparative analysis to the basis function with the same filter length but in 
the disparate family 27,28). Although these two approaches reduce the workload and save time 
effectively, they are not all-inclusive as much as possible. In other words, the wavelet bases cannot 
be compared comprehensively. So, in order to make the optimal selection more convictive, all of 
the wavelet bases in the Daubechies, Symlets and Coiflets families were compared in this study. 
Any discussion of wavelets begins with Haar wavelet, the first and simplest. Haar wavelet is 
discontinuous, and resembles a step function. It represents the same wavelet as Daubechies db1. I. 
Daubechies, one of the brightest stars in the world of wavelet research, invented what are called 
compactly supported orthonormal wavelets with extremal phase and highest number of vanishing 
moments for a given support width — thus making discrete wavelet analysis practicable. 
Associated scaling filters are minimum-phase filters. The Symlets are nearly symmetrical wavelets 
proposed by Daubechies as modifications to the db family. The properties of the two wavelet 
families are similar. Symlets wavelets are also compactly supported wavelets with least asymmetry 
and highest number of vanishing moments for a given support width. Wavelets in Coiflets family 
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are also built by I. Daubechies at the request of R. Coifman. The wavelet function has 2N moments 
equal to 0 and the scaling function has 2N-1 moments equal to 0. The two functions have a support 
of length 6N-1. Coiflets wavelets are also compactly supported wavelets with highest number of 
vanishing moments for both phi and psi for a given support width. Wavelet functions of members 
of these three families are shown in Fig. 3.  
 

 

Fig. 3 Wavelet basis functions of members in Daubechies, Symlets and Coiflets families. 
 
   After the decomposition and reconstruction processes of waves, the RMSE results of each 
microseismic wave decomposed by the different bases in different level (frequently-used level 1-8) 
are shown in the Fig. 4. 
 

 
Fig. 4 RMSE phase spectrum of the microseismic waves at different decomposition level. 

 
   Results indicate that the RMSE value generated from the Coiflets bases is averagely greater 
than that calculated from the Daubechies and Symlets bases. At the same decomposition level, 
RMSE value reaches to the minimum when the waves are reconstructed by the basis db1; and when 
decomposed by the same wavelet bases, the RMSE value also reaches to the minimum at the 
decomposition level 1. The RMSE phase spectrum indicates that only the results in the 
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decomposition level 1 is adequate for the optimal determination. Thus, the RMSE results of waves 
in the decomposition level 1 are compared as shown in the Fig. 5. 
 

 
Fig. 5 Comparison of the RMSE results at the decomposition level 1. 

 
   It indicates that the order of magnitude of the maximum RMSE is basically lower than 
1.0×10-13. In general, the greater the wave propagation distance is, the less the RMSE value is. The 
wavelet basis db1 has a better signal reconstruction capability for the remote wave. Secondary 
minimum RMSE value emerges when the waves are reconstructed by the bases sym5, sym8 and 
sym4. Thus, it indicates that the wavelet bases db1, sym5, sym8 and sym4 have the better signal 
reconstruction capability for microseismic waves, and the corresponding capability decreases in 
turn. 
 
3.4 Determination of optimal wavelet basis based on the conservation capability of 
characteristic signal 
   As mentioned above, the conservation capability of characteristic signal can be assessed by the 
CC value that helps to the final determination of the optimal wavelet basis. Thus, the CC results of 
original signal and reconstructed one calculated based upon these four bases are listed in the Table 
3. 
 

Table 3 CC results of each wavelet basis in transformation. 
Microseismic 

waves 
Wavelet packet bases 

db1 sym4 sym5 sym8 
ms1 0.9116 0.9475 0.9606 0.9601 
ms2 0.9703 0.9945 0.9942 0.9961 
ms3 0.974 0.9976 0.9986 0.9981 
ms4 0.9677 0.9964 0.9965 0.9983 
ms5 0.9805 0.9862 0.9862 0.986 
ms6 0.9662 0.986 0.9879 0.9908 
ms7 0.9828 0.9959 0.9974 0.9968 
ms8 0.9913 0.9989 0.9992 0.9992 
ms9 0.9718 0.9933 0.9956 0.9949 

Priority D C A B 
 
   CC results indicate that it is completely practicable when the microseismic waves are 
decomposed by the bases db1, sym4, sym5 and sym8. However, the wave reconstructed by basis 
sym5 has the highest relevancy with the original wave. Basis db1 has the worst conservation 
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capability for the characteristic signal, which is presumably related with the lower signal sampling 
frequency of the monitoring instrument. Bases sym5 and sym8 balance the requirements quite well. 
When the priority of RMSE and CC results of these basis functions is endowed with distinct weight 
value, the average weight of each wavelet basis is then listed in the Table 4. 
 

Table 4 Average weight of the alternative wavelet bases. 
 db1 sym4 sym5 sym8 

RMSE results 4 1 3 2 
CC results 1 2 4 3 

Average weight 2.5 1.5 3.5 2.5 
* Weight value: A — 4, B — 3, C — 2, D — 1. 
 
   Based upon the global weight value of each basis function and the screening principle, it can be 
found that sym5 is the optimal wavelet basis function for the specific microseismic waves. The 
optimal basis function should be given the highest priority in application. Using the optimal basis 
sym5, signal error of the reconstructed microseismic wave group is shown in the Fig. 6. It indicates 
that the magnitude of reconstruction error is quite small (lower than 1.0×10-13). That is, the 
reconstructed wave is almost exactly consistent with the original wave. Thus, it is entirely feasible 
for the microseismic wave to be decomposed and reconstructed using basis sym5 in the WPT. 
 

 
Fig. 6 Reconstruction error of the microseismic waves. 

 
4. Discussion on Energy Reserving Capability of the Optimal Wavelet Basis 

 
4.1 Energy representation of wavelet packet basis 
   Wavelet packet basis function is briefly expressed as ψj,k,n(t) (n=2k+m) in which parameters j, k, 
n represent the scale, displacement and frequency respectively. The frequency representation n 
overcomes the defect of wavelet transform that is the poor resolution in the high frequency domain 
of signal. After the decomposition of wave s(t) in WPT, following expression is defined at a 
specific decomposing level i, 
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where, fi,j(tj) (i = 1, 2, 3, ···; j = 0, 1, 2, ···, 2i-1) is the reconstructed wave in the decomposition level 
i and frequency bandwidth fmax/2i. Based upon the Parseval theorem 26,27), wavelet packet energy in 
each decomposing frequency band is calculated by 
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4.2 Energy reserving capability of the optimal basis 
   Conservation capability of the wavelet basis function on the characteristic information of the 
microseismic wave is mainly reflected in its reserving capability on the energy components of 
signal. To further verify the superiority of the optimal wavelet basis, the energy reserving capability 
of basis sym5 and the subordinate bases db1 and sym8 is compared in the frequency-energy 
changing curves, which is as shown in the Fig. 7. 
 

 
Fig. 7 Frequency-energy changing trends of the waves when transformed by bases sym5, db1 and sym8. 

 
   It indicates that the wavelet bases sym5 and sym8 have a higher energy reserving capability 
than basis db1 in the same frequency domain. To retain the same extent of energy components in 
waves (90% energy retaining rate is chosen as a criterion in the above figures), the lesser frequency 
band is adequate for the wavelets sym5 and sym8, whereas a broader frequency band is necessary 
for the basis db1. The frequency scale is unequal when energy retaining ratio reaches the same 
threshold. Noise components of the wave are filtered as many as possible, whereas the energy 
components are furthest reserved 28). Only the sampling data in half of Nyquist frequency domain is 
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adequate to achieve an effective reservation for the energy components. Frequency-energy 
correlation of each wave is a little different when the waves are transformed by different bases. But 
it is as close to the truth as possible. Meanwhile, the high energy components of waves mainly 
concentrate on the low frequency band. This frequency bandwidth becomes lower and narrower as 
the wave propagation distance increases. 
   Under the same energy reserving threshold, it is theoretically thought that the more energy 
components should be retained when a wave is decomposed and reconstructed by the basis db1 as 
its broader reserved frequency domain. That is, compared to the bases sym5 and sym8, the wave 
reconstructed by the wavelet db1 should have the higher relevancy with its original wave. However, 
CC results of the compressed signal and the original signal listed in the Table 5 deny this point 
apparently. It indicates that although the less energy components are retained, reconstructed wave 
still has a high relevancy with its original wave when the wave is transformed by bases sym5 and 
sym8. The relevancy is even greater than that induced from the wavelet db1. 
 

Table 5 Correlation coefficient results of the compressed waves and their original. 
Microseismic 

waves 
Wavelet packet bases 

db1 sym5 sym8 
ms1 0.9484 0.9491 0.9488 
ms2 0.9482 0.9492 0.9479 
ms3 0.9482 0.9495 0.9485 
ms4 0.9483 0.9493 0.9494 
ms5 0.9488 0.9618 0.9546 
ms6 0.9490 0.9612 0.9544 
ms7 0.9491 0.9497 0.9499 
ms8 0.9489 0.9490 0.9492 
ms9 0.9486 0.9507 0.9495 

 
   The compact support and the vanishing moment of wavelet bases increase steadily with the 
increase in filter length, which ensures the smoothness but lowers the local quality of waves. CC 
results calculated from the wavelet sym8 are approximate with that of basis sym5. However, the 
filter length of basis sym8 is a little longer than that of the basis sym5. In this case, the local quality 
of the microseismic wave will be decreased slightly during the signal reconstruction by the wavelet 
sym8. Thus, on this view, wavelet sym5 is the optimal basis function for the WPT of microseismic 
waves. Generally, the wavelets in Symlets family are improved basis functions of the Daubechies 
family. Their waveforms promote them to be more suitable for reconstructing the mining-induced 
microseismic wave. In the same support domain, the smoothness of Symlets bases is always better 
than that of the Daubechies bases. These specialties make the Symlets bases more suitable for the 
signal process and analysis of the microseismic waves. 
 

5. Application of the Optimal Wavelet Basis on the Wave Denoising Process 
 
   After the optimal wavelet basis is determined, the next consideration is just its application on 
the denoising process of the initial microseismic waves. During the monitoring process, the 
measured wave data is inevitably mixed with the noise components as the interference induced 
from the geomagnetic field, electric discharge and machinery operation 29). This interference 
decreases the accuracy and increases the ambiguity of the microseismic waves. Noise components 
play an adverse impact on wave analysis. Thus, denoising process appears particularly important to 
improve the wave reliability. In signal processing, denoising action to the initial signal is an 
important issue. Main purpose of the signal denoising process is filtering the high-frequency 
low-energy noise components but reserving the effective low-frequency high-energy wave 
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components. As the microseismic wave is one kind of the typical non-stationary signal, wavelet 
packet coefficients of the effective wave components and the random noise components present 
different characteristics. With the increase of the decomposition level, wavelet packet coefficients 
of the pure noise get smaller and smaller, whereas the wavelet packet coefficients of the effective 
signal get more and more obvious. Thus, the denoising process of the original microseismic wave 
can be achieved if only the wavelet packet coefficients of the effective signal are reserved. The 
maximal modulus value, the threshold value and the invariant translation are three commonly-used 
denoising methods in the current signal process. 
 

6. Conclusions 
 
   Following conclusions can be made based on the above results and discussions: 
   (1) Different wavelet basis has the different signal reconstruction capability and adaptability. 
The features of wavelet bases and the specialties of microseismic waves suggest that the basis 
function in Daubechies, Symlets and Coiflets families is more appropriate for the signal analysis 
and process of microseismic waves. Signal reconstruction capability generated from the Coiflets 
bases is averagely less than that reflected by the Daubechies and Symlets bases. Compared with 
other wavelet bases, basesdb1, sym4, sym5 and sym8 have the better reconstruction capability for 
the microseismic waves. Magnitude of the reconstruction error is quite infinitesimal, which is 
generally lower than 10-13. 
   (2) Among these four bases, db1 has the worst conservation capability for the characteristic 
signal, whereas the wave reconstructed by the sym5 has the highest relevancy with the original 
wave, and the maximum energy components can be effectively reserved. The longer the wave 
propagation distance is, the easier the energy concentration in low frequency domain is, and the 
noise components get greater and concentrate on the high frequency domain. Based upon the 
RMSE results, CC results and the comparison of energy reserving capability, the basis function 
sym5 is proved to be the optimal wavelet packet basis for the WPT of microseismic waves, and 
should be given the highest priority in application. 
   (3) Application of the results is mainly related to the decomposition, reconstruction, denoising 
and filtering of the initial microseismic waves. After the wave processing stage, the purified 
reconstructed waves can be applied into the further analysis and practice such as the spectral 
analysis, energy identification, wave energy attenuation, focus energy inversion, spatial attenuation 
zoning, hazard regional division, and other fields. Just for these reasons, the optimal determination 
of a wavelet basis function becomes quite important for the further researches. 
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