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Abstract. We give aWeierstrass type representation for semi-discrete minimal surfaces in Euclidean
3-space. We then give explicit parametrizations of various smooth, semi-discrete and fully-discrete
catenoids, determined from either variational or integrable systems principles. Finally, we state the
shared properties that those various catenoids have.
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1. Introduction

The well known minimal surface of revolution in R3 =
{(x1, x2, x3)t | xj ∈ R} called the catenoid, which we
refer to as the smooth catenoid here and which can be
parametrized by

x(u, v) =

coshu cos v
coshu sin v

u

 , v ∈ [0, 2π), u ∈ R, (1)

has a number of discretized versions. A fully discretized
version can be found in [11] by Polthier and the first au-
thor, which is defined using a variational approach, that is,
those surfaces are triangulated meshes that are critical for
area with respect to smooth variations of the vertex set.
A different approach for defining fully discrete catenoids,
using quadrilateral faces and based on integrable systems
methods, was found by Bobenko and Pinkall [1, 2]. Both
approaches apply to much wider classes of surfaces.
One can also consider semi-discrete catenoids, that is,

catenoids that are discretized in only one of the two param-
eter directions corresponding to u and v in (1). There are
now four choices for how to proceed with this, by choosing
either the u direction or v direction to discretize, and by
choosing to use either variational principles or integrable
systems principles to determine the discretizations. Again,
these approaches apply to much wider classes of surfaces.
Here we compare these various smooth, semi-discrete and

fully-discrete catenoids to see in what ways they do or do
not coincide. For the smooth and fully-discrete catenoids,
the parametrizations have already been determined, mak-
ing comparisons between them elementary. However, for
some of the semi-discrete cases, we will need to first es-
tablish those parametrizations here. In particular, we will
provide a Weierstrass representation for determining semi-
discrete minimal surfaces as defined by Mueller and Wall-
ner [9, 13]. Construction of the semi-discrete catenoids

in particular, via an integrable systems approach, can be
done either with this Weierstrass representation, or with-
out it (instead using the results by Mueller and Wallner).
However, the usefulness of the Weierstrass representation
comes when one wishes to consider the full class of semi-
discrete minimal surfaces based on an integrable systems
approach, as this representation gives a classification of
such surfaces in terms of semi-discrete holomorphic func-
tions. This Weierstrass representation can be regarded as a
restatement of the definition of such surfaces (Definition 4),
but in a more explicit form that tells us how the surface
is constructed from the given dual surface inscribed in a
sphere.

Once we have established this representation for semi-
discrete minimal surfaces (Theorem 2), we compare the
various types of catenoids (Theorem 1).

To make semi-discrete catenoids based on variational
principles, Machigashira [7] chose to discretize them in the
u direction. He then classified these surfaces and studied
their stability properties. The surfaces obtained by Machi-
gashira will be seen (Proposition 2) to be limiting cases of
the discrete catenoids found in [11].

From the point of view of architectural structures in the
shape of a semi-discrete catenoid, Machigashira’s catenoids
would involve producing circular-shaped flat pieces that
cannot be so efficiently made as cut-outs from planar
sheets, since there would be a large amount of waste ma-
terial. So from the architectural point of view, a more
efficient use of materials would be to discretize in the v
direction instead. Such semi-discrete catenoids are consid-
ered here as well.

To distinguish between various catenoids, we write the
superscript va (resp. in) when the catenoid is constructed
by a variational (resp. integrable systems) approach, and
write the subscript pd (resp. ps) when the catenoid has a
discrete profile curve (resp. smooth profile curve) and the
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associated authors
smooth catenoid (classically known surface)
BP in

pd,rd-catenoid Bobenko and Pinkall

PRva
pd,rd-catenoid Polthier and Rossman

Mva
pd,rs-catenoid Machigashira

MW in
pd,rs-catenoid Mueller and Wallner

MW in
ps,rd-catenoid Mueller and Wallner

Mva
ps,rd-catenoid (Machigashira analogue)

Table 1: Names of seven types of catenoids

subscript rd (resp. rs) when the catenoid is discrete (resp.
smooth) in the rotational direction. Thus, in total, we
consider the seven types of catenoids in Table 1.
For catenoids with discrete profile curves, we will assume

them to have a “neck vertex”. In other words, we assume
there exists a plane of reflective symmetry of the catenoids
that is perpendicular to the axis of rotation symmetry and
also contains one vertex of each profile curve. We note
that there do exist discrete catenoids that do not have this
neck-vertex symmetry.

Theorem 1. After appropriate normalizations, we have
the following:

1. PRva
pd,rd-catenoid profile curves and Mva

pd,rs-catenoid
profile curves are never the same, but PRva

pd,rd-
catenoid profile curves converge to Mva

pd,rs-catenoid
profile curves as the angle of rotation symmetry ap-
proaches 0.

2. BP in
pd,rd-catenoids and MW in

pd,rs-catenoids have the
same profile curves.

3. BP in
pd,rd-catenoid (MW in

pd,rs-catenoid) profile curves
and PRva

pd,rd-catenoid profile curves are never the

same, and BP in
pd,rd-catenoid (MW in

pd,rs-catenoid) pro-
file curves andMva

pd,rs-catenoid profile curves are never
the same.

4. The smooth catenoid and MW in
ps,rd-catenoid have the

same profile curve.

5. Mva
ps,rd-catenoid profile curves and the smooth

catenoid’s profile curve are never the same. Mva
ps,rd-

catenoid profile curves converge to the smooth
catenoid (MW in

ps,rd-catenoid) profile curve as the
angle of rotation symmetry approaches 0.

6. For all types of catenoids, the profile curves have ver-
tices lying on affinely scaled graphs of the hyperbolic
cosine function.

2. Notation for semi-discrete surfaces

To consider semi-discrete minimal surfaces from an inte-
grable systems approach, we set some notations in this
section.

Figure 1: Sketch of the proof of Remark 2

Let x = x(k, t) be a map from a domain in Z× R to R3

(k ∈ Z, t ∈ R). We call x a semi-discrete surface. Set

∂x =
∂x

∂t
, ∆x = x1 − x, ∂∆x = ∂x1 − ∂x,

where x1 = x(k + 1, t). The following definitions can be
found in [9], and are all naturally motivated by geometric
properties found in previous works, such as [1, 2, 3, 4, 5, 6,
8, 9, 13].

Definition 1. Let x be a semi-discrete surface.

• x is a semi-discrete conjugate net if ∂x, ∆x and ∂∆x
are linearly dependent.

• x is a semi-discrete circular net if there exists a circle
C passing through x and x1 that is tangent to ∂x, ∂x1
there (for all k, t).

Remark 1. If x lies in R2 ∼= C, circularity is equivalent
to the following condition: there exists a non-zero-valued
function s such that

∆x = is

(
∂x

∥∂x∥
+

∂x1
∥∂x1∥

)
, (2)

which follows from

∆x = is
∂x

∥∂x∥
−
(
−is

∂x1
∥∂x1∥

)
for some s ∈ R, in the setting shown in Figure 1.

Definition 2. Suppose x, x∗ are semi-discrete conjugate
surfaces. Then x and x∗ are dual to each other if there
exists a function ν : Z× R → R+ so that

∂x∗ = − 1

ν2
∂x, ∆x∗ =

1

νν1
∆x.

Definition 3. A semi-discrete circular surface x is isother-
mic if there exist positive functions ν, σ, τ such that

∥∆x∥2 = σνν1, ∥∂x∥2 = τν2, with ∂σ = ∆τ = 0.
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Remark 2. For circular semi-discrete surfaces, dualizabil-
ity and isothermicity are equivalent, by Theorem 11 in [9].
In particular, the ν, ν1 in Definitions 2 and 3 are the same.

Definition 4. A semi-discrete isothermic surface x is min-
imal if its dual x∗ is inscribed in a sphere.

3. Semi-discrete catenoids with
discrete profile curve

Take the following parametrization forMW in
pd,rs-catenoids:

x(k, t) =

f(k) cos tf(k) sin t
h · k


where f = f(k) and h are positive. Then, with f1 = f(k+
1),

∥∆x∥2 = (f1 − f)2 + h2,

∥∂x∥2 = f2.

One can check that x is isothermic by taking

ν = f, τ = 1 and σ =
(∆f)2 + h2

f · f1
.

We compute x∗ by solving

x∗ = − 1

ν2

∫
∂xdt = − 1

f

cos t
sin t
0

+−→c k,

where −→c k depends on k but not t. We now have

∆x∗ =
1

f · f1

∆f · cost
∆f · sint

0

+−→c k+1 −−→c k.

Therefore, x∗ is dual to x if

−→c k+1 −−→c k =
h

f · f1

0
0
1

 .

Without loss of generality, we can take −→c k as (0, 0, c(k))t

with

c(k + 1) = c(k) +
h

f(k)f(k + 1)
. (3)

For x to be minimal, we wish to have

∥x∗∥ ≡ constant

for some choice of c(0). Substituting Equation (3) into the
equation ∥x∗1∥ = ∥x∗∥, we obtain

f(k + 1) = hc(k)f(k) +
√
(hc(k)f(k))2 + f(k)2 + h2. (4)

Then we can recursively solve the system of difference equa-
tions (3)-(4).
In order to compare the other catenoids with MW in

pd,rs-
catenoids, we wish to reduce the above system of difference
equations to one equation.

Figure 2: a semi-discrete MW in
pd,rs-catenoid with dis-

cretized profile curve

Lemma 1. We have

f(k + 2) =
f(k + 1)2 + h2

f(k)
. (5)

Proof. By Equation (4),

c(k) =
f(k + 1)2 − f(k)2 − h2

2hf(k)f(k + 1)
. (6)

Inserting (6) into (3), we have

(f(k + 2) + f(k))(f(k + 2)f(k)− f(k + 1)2 − h2) = 0,

which implies (5).

Lemma 1 implies

f(1)f(−1) = f(0)2 + h2,

and then neck-vertex symmetry (in particular, f(1) =
f(−1)) gives

f(1)2 = f(0)2 + h2.

Then Equation (6) implies c(0) = 0. Without loss of gen-
erality, we can take f(0) = 1, and then the solution to
Equation (5) is

f(k) = cosh(arcsinh(h) · k).

4. Semi-discrete catenoids foliated by
discrete circles

Take the following parametrization forMW in
ps,rd-catenoids:

x(k, t) =

f(t) cosαkf(t) sinαk
t

 ,
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where f(t) and α are positive. We assume

f(0) = 1 and f ′(0) = 0. (7)

Then

∥∆x∥2 = 4f(t)2sin2
α

2
,

∥∂x∥2 = (f ′(t))2 + 1.

One can confirm that x is isothermic by taking

ν = f(t), τ =
(f ′(t))2 + 1

(f(t))2
and σ = 4 sin2

α

2
.

Now,

x∗ = −
∫

1

ν2
∂xdt =

− cosαk
∫

f ′

f2 dt

− sinαk
∫

f ′

f2 dt

−
∫

1
f2 dt


=

 cosαk
f

sinαk
f

ℓ(t)

+−→c k, (8)

where −→c k depends on k but not t, and ℓ(t) = −
∫ t

0
f(t)−2dt

depends on t but not k. We compute that

∆x∗ =
1

f

∆cosαk
∆sinαk

0

+−→c k+1 −−→c k.

Therefore, x∗ is dual to x if −→c k is a constant vector. For
x to be minimal, x∗ must be inscribed in a sphere and
therefore we can choose −→c 0 = (0, 0, c0)

t so that ∥x∗∥ is
constant. From (8) we have

1

f2
+

(∫ t

0

1

(f(t))2
dt− c0

)2

= constant.

Differentiation gives that∫ t

0

1

(f(t))2
dt =

f ′

f
+ c0

and

f ′′f − (f ′)2 = 1.

We find from (7) that

f(t) = cosh t.

Thus semi-discrete catenoids with smooth profile curves
and fixed α are unique up to homotheties. The picture in
Figure 3 is such a semi-discrete catenoid. In fact, we have
proven:

Proposition 1. The profile curve ofMW in
ps,rd-catenoids is

independent of choice of α.

Figure 3: a semi-discrete MW in
ps,rd-catenoid discretized in

the direction of rotation

5. Weierstrass representation for
semi-discrete minimal surfaces

We now give a Weierstrass representation for semi-discrete
minimal surfaces. First we define semi-discrete holomor-
phic functions.

Definition 5. A semi-discrete isothermic surface g is a
semi-discrete holomorphic function if the image of g lies in
a plane.

Remark 3. Semi-discrete holomorphic maps have the fol-
lowing property: With σ and τ as in Definition 3 (with x
replaced by g),

∥∆g∥2

∥g′∥ ∥g′1∥
=
σ

τ
, (9)

where g′ = ∂g. So we can think of τ and σ in the semi-
discrete case as an analogy to the (absolute values of the)
cross-ratio factorizing functions in the fully discrete case,
see [1, 2, 4, 5, 6, 12].

We introduce the following recipe for constructing semi-
discrete minimal surfaces.

Theorem 2 (Weierstrass representation). Let g be a semi-
discrete holomorphic function with data τ , σ, and ν as in
Definition 3. Then we can construct a semi-discrete mini-
mal surface by solving

∂x = −τ
2
Re

 1

g′

 1− g2

i(1 + g2)
2g

 ,

∆x =
σ

2
Re

 1

∆g

 1− gg1
i(1 + gg1)
g + g1

 .

(10)
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Conversely, any semi-discrete minimal surface is described
in this way by some semi-discrete holomorphic function g.

Proof. We start proving the first half of Theorem 2. Let g
be a semi-discrete holomorphic function such that |∆g|2 =
σνν1, |g′| = τν2 for some positive functions ν, σ, τ . Then

x∗ :=
1

1 + ∥g∥2

(
2g

−1 + ∥g∥2
)

∈ S2 ⊂ C× R = R3

is semi-discrete isothermic, because x∗ is the image of g
under the inverse of stereographic projection. Then

∂x∗ =
2

(1 + ∥g∥2)2

(
g′ − g′g2

g′ḡ + g′g

)
,

∆x∗ =
2

(1 + ∥g∥2)(1 + ∥g1∥2)

(
∆g −∆ggg1
∆gḡ1 +∆gg

)
.

It follows that

∥∂x∗∥2 =
4∥g′∥2

(1 + ∥g∥2)2
=

4τν2

(1 + ∥g∥2)2
,

∥∆x∗∥2 =
4∥∆g∥2

(1 + ∥g∥2)(1 + ∥g1∥2)
=

4σνν1
(1 + ∥g∥2)(1 + ∥g1∥2)

,

so we can take the data τ∗, σ∗, ν∗ for the isothermic surface
x∗ to be

τ∗ = τ, σ∗ = σ, ν∗ =
2ν

1 + ∥g∥2
.

Here σ∗ depends only on k, and τ∗ depends only on t. Then

−1

(ν∗)2
∂x∗ =

−1

2ν2

(
g′ − ḡ′g2

g′ḡ + ḡ′g

)
=

−τ
2∥g′∥2

(
g′ − ḡ′g2

g′ḡ + ḡ′g

)

= −τ
2

Re
(

1−g2

g′

)
+ iRe

(
i(1+g2)

g′

)
Re
(

2g
g′

)  = ∂x,

where we have identified C×R and R3 in the final equality.
Similarly,

1

ν∗ν∗1
∆x∗ =

σ

2∥∆g∥2

(
∆g − gg1∆g
g1∆g + g∆g

)

=
σ

2

Re
(

1−gg1
∆g

)
+ iRe

(
i(1+gg1)

∆g

)
Re
(

g+g1
∆g

)  = ∆x.

Thus if x solving (10) exists, x and x∗ are dual to each
other. A direct computation shows

∥∆x∥2 = σ

(
1 + ∥g∥2

2ν

)(
1 + ∥g1∥2

2ν1

)
,

∥∂x∥2 = τ

(
1 + ∥g∥2

2ν

)2

,

so x will be isothermic if it is circular. Since x∗ is inscribed
in a sphere, xmust then be a semi-discrete minimal surface.
Thus it remains to check existence and circularity of x.
To show existence of x, we need to show compatibility

of the two equations in (10), and this amounts to showing
that the two operators ∆ and ∂ in (10) commute, that is,

∂

σ
2
Re


1−gg1
∆g

i(1+gg1)
∆g

g+g1
∆g


 = ∆

−τ
2
Re


1−g2

g′

i(1+g2)
g′
2g
g′


 . (11)

One can compute

Left-hand side of (11)

=
σ

2
Re

 1

(∆g)2

 g2g′ − g′1 − g′g21 + g′

i(g′g21 + g′ − g2g′1 − g′1)
2g′g1 − 2gg′1


=

τ∥∆g∥2

2∥g′∥∥g′1∥
Re

 1

(∆g)2

 g2g′ − g′1 − g′g21 + g′

i(g′g21 + g′ − g2g′1 − g′1)
2g′g1 − 2gg′1


=
τ

2
Re

 ∆g

∥g′∥∥g′1∥∆g

 g2g′ − g′1 − g′g21 + g′

i(g′g21 + g′ − g2g′1 − g′1)
2g′g1 − 2gg′1


= −τ

2
Re

 1

g′g′1

 g2g′ − g′1 − g′g21 + g′

i(g′g21 + g′ − g2g′1 − g′1)
2g′g1 − 2gg′1

 .

= Right-hand side of (11).

The last task is to check that x is circular. By a rotation
and translation, we can assume that span{∂x, ∂x1,∆x} =
C×{0} for one edge xx1. We fix (k, t) = (k0, t0) arbitrarily,
and write x(k0, t0) simply as x. It suffices to show the
existence of s ∈ R such that (2) holds. Now,

g

g′
,
g1
g′1
,
g + g1
∆g

∈ iR.

Expressing g as g = reiθ in polar form, we have

r′ = r′1 = 0, r1e
iθ1 + reiθ = iρ(r1e

iθ1 − reiθ)

for some ρ ∈ R. Taking the absolute value of

r1(iρ− 1)eiθ1 = r(iρ+ 1)eiθ,

we find that r = r1. The left and right hand sides of
Equation (2) are real scalar multiples of

∆g − gg1∆g = r(1 + r2)(eiθ1 − eiθ),

i

(
g′ − g′g2

|g′ − g′g2|
+

g′1 − g′1g
2
1

|g′1 − g′1g
2
1 |

)

= i

(
iθ′r(1 + r2)eiθ

|iθ′r(1 + r2)eiθ|
+

iθ′1r1(1 + r21)e
iθ1

|iθ′1r1(1 + r21)e
iθ1 |

)
= ±(eiθ − eiθ1),

respectively, where we used the following lemma in the final
equality above. This lemma follows from Lemma 6 and
Theorem 11 in [9], because g is isothermic.

Lemma 2. We have the following property:

θ′ · θ′1 < 0.
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Therefore, we have

arg
(
∆g − gg1∆g

)
= arg

(
±i

(
g′ − g′g2

|g′ − g′g2|
+

g′1 − g′1g
2
1

|g′1 − g′1g
2
1 |

))
,

which implies (2). Now we prove the final sentence of The-
orem 2. Let x be a semi-discrete minimal surface and ψ be
stereographic projection ψ : S2 → C. Then by definition,
there exists a dual x∗ that is semi-discrete isothermic and
inscribed in S2. Take

g := ψ ◦ x∗,

then g is a semi-discrete holomorphic function (see Exam-
ple 1 of [9]). Setting

x∗ = (X1, X2, X3)
t, x∗1 = (X1,1, X2,1, X3,1)

t,

we have

g =
X1 + iX2

1−X3
, X2

1 +X2
2 +X2

3 = X2
1,1 +X2

2,1 +X2
3,1 = 1,

(X ′
1)

2 + (X ′
2)

2 + (X ′
3)

2 =
τ

ν2
,

1− (X1X1,1 +X2X2,1 +X3X3,1) =
σ

2νν1
.

Using the above equations and Definition 2, computations
give

−τ
2
Re


1−g2

g′

i(1+g2)
g′
2g
g′

 = −ν2
X ′

1

X ′
2

X ′
3

 = ∂x,

σ

2
Re


1−gg1
∆g

i(1+gg1)
∆g

g+g1
∆g

 = νν1

X1,1 −X1

X2,1 −X2

X3,1 −X3

 = ∆x. (12)

Thus g produces x via Equation (10), which completes
the proof.
Because the computation of (12) in particular is rather

laborious, we outline one part of that computation here:
Since

σ

∆g
= νν1[X1,1(1−X3)−X1(1−X3,1)

− i{X2,1(1−X3)−X2(1−X3,1)}],

we have

σ

2
Re

1− gg1
∆g

=
νν1

2(1−X3)(1−X3,1)
Re([X1,1(1−X3)−X1(1−X3,1)

− i{X2,1(1−X3)−X2(1−X3,1)}]
· [(1−X3)(1−X3,1)− (X1 + iX2)(X1,1 + iX2,1)])

=
νν1

2(1−X3)(1−X3,1)
[{X1,1(1−X3)−X1(1−X3,1)}

· {(1−X3)(1−X3,1)−X1X1,1 +X2X2,1}
− {X2,1(1−X3)−X2(1−X3,1)}

· (X1X2,1 +X1,1X2)]

=
νν1

2(1−X3)(1−X3,1)
{(1−X3)(1−X3,1)

· (X1,1 −X1 −X1,1X3 +X1X3,1)

−X1(1−X3)(X
2
1,1 +X2

2,1)

+X1,1(1−X3,1)(X
2
1 +X2

2 )}

=
νν1

2(1−X3)(1−X3,1)
{(1−X3)(1−X3,1)

· (X1,1 −X1 −X1,1X3 +X1X3,1)

− (1−X3)(1−X3,1)(1 +X3,1)X1

+ (1−X3)(1−X3,1)(1 +X3)X1,1}
= νν1(X1,1 −X1).

Example 1. The semi-discrete minimal Enneper surface,
has been given in [9]. We can also obtain that surface by
taking g(k, t) = k + it in Theorem 2.

Example 2. The MW in
pd,rs (resp. MW in

ps,rd) catenoid can
be constructed via Theorem 2 with

g(k, t) = ceαk+iβt (resp. g(k, t) = ceαt+iβk),

for the right choices of c, α, β ∈ R \ {0}.

6. Fully-discrete catenoids of
Bobenko-Pinkall

The fully discrete catenoids of Bobenko and Pinkall [1] can
be given explicitly by using the Weierstrass representation
for discrete minimal surfaces (in the integrable systems
sense), that is, we can use

x(q)− x(p) = Re

 apq
gq − gp

1− gqgp
i + igqgp
gq + gp

 (13)

with the choice of g as gp = gn,m = cec1n+ic2m, where
c, c1, c2 are nonzero real constants, and p = (n,m) and
q = (n + 1,m) or q = (n,m + 1), and apq is a cross ratio
factorizing function for g. This formulation can be found
in [1, 2, 4, 6, 12].

This choice of g has cross ratios

cr(gn,m, gn+1,m, gn+1,m+1, gn,m+1) =
− sinh2 c1

2

sin2 c2
2

.

So we can take apq = −α sinh2 c1
2 (resp. apq = α sin2 c2

2 ),
when q = (n + 1,m) (resp. q = (n,m + 1)). The value
α ∈ R \ {0} can be chosen as we like.

Taking the axis of the surface to be
0
0
t

∣∣∣∣∣ t ∈ R

 ,

and taking the vertex in the profile curve at the neck to be
f(0, 0) = (1, 0, 0)t, we can propagate to find the discrete
profile curve in the x1x3-plane. For this purpose, α = −2
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Figure 4: a (fully-discrete) BP in
pd,rd-catenoid

and c = −1 are suitable values. One can check that, for all
m ∈ Z,

x(0,m) =

cos(c2m)
sin(c2m)

0

 .

By (13), the discrete profile curve in the x1x3-plane is,
for all n ∈ Z,

x(n, 0) =

cosh(c1n)
0

n · sinh c1

 .

Again by (13), we obtain

x(n,m) =

cosh(c1n) cos(c2m)
cosh(c1n) sin(c2m)

n · sinh c1

 .

Setting ℓ = sinh c1, one profile curve of the BP in
pd,rd-

catenoid is as written in the upcoming Section 9. Note
that the profile curves do not depend on c2.

7. Fully-discrete catenoids of
Polthier-Rossman

The catenoids described in [11] are fully discrete and have
discrete rotational symmetry, thus the symmetry group is a
dihedral group. Taking the dihedral angle to be θ = 2πK−1

for a constant K ∈ N and K ≥ 3, the vertices of a profile
curve (when the x3-axis is the central axis of symmetry)
in the x1x3-plane can be taken to be points that are ver-
tically equally spaced apart with height difference between
adjacent vertices denoted as ℓ, and the x1 coordinates of
the vertices can be taken as x(n) = r · cosh(r−1aℓn), where
a = rℓ−1arccosh(1+r−2ℓ2(1+cos θ)−1). Here r is the waist
radius of the interpolated hyperbolic cosine curve. Taking

Figure 5: a (fully-discrete) PRva
pd,rd-catenoid

r = 1 without loss of generality, we can take one profile
curve to be

cosh(n · arccosh(1 + ℓ2(1 + cos θ)−1))
0
n · ℓ

 , n ∈ Z, (14)

so when we take the limit as θ → 0, we havecosh(n · arccosh(1 + 1
2ℓ

2))
0
n · ℓ

 .

A direct computation, as in the proof of the next propo-
sition, shows that this is exactly what was obtained by
Machigashira [7], although it was not described in terms of
the hyperbolic cosine function there, but rather by using
Chebyshev polynomials and Gauss hypergeometric func-
tions.

Proposition 2. The Mva
pd,rs-catenoid equals the limiting

case of the PRva
pd,rd-catenoids as θ → 0, and no PRva

pd,rd-
catenoid (with positive θ) will ever have the same profile
curve as the Mva

pd,rs-catenoid.

Proof. The vertices of an Mva
pd,rs-catenoid profile curve can

be written as Tn(1 + 1
2Λ

2)
0

n · Λ

 , (15)

where Tk can be defined by the recursion

T0(z) = 1, T1(z) = z, Tn(z) = 2zTn−1(z)− Tn−2(z)

for n ≥ 2. The Tn are called Chebyshev polynomials of the
first kind, and are described in [7]. Suppose, for the vertex
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on the profile curve where n = 1, we equate (14) and (15),
i.e. 1 + 1

2Λ
2

0
Λ

 =

1 + ℓ2(1 + cos θ)−1

0
ℓ

 . (16)

The third coordinate in (16) implies Λ = ℓ, and then
the first coordinate implies θ = 0. Then we would need to
check that all other corresponding vertices in (14) and (15)
also become equal.
Letting x denote the first coordinate of the profile curve,

the Mva
pd,rs-catenoid satisfies

x(n) = Tn(1 +
1
2Λ

2)

= 2(1 + 1
2Λ

2) · Tn−1(1 +
1
2Λ

2)− Tn−2(1 +
1
2Λ

2).

For the limiting PRva
pd,rd-catenoid (θ = 0), we would like

to see the same recursion for the first coordinate of the
profile curve. That is, we wish to have

cosh(n · arccosh(1 + 1
2ℓ

2))

= 2(1 + 1
2ℓ

2) cosh((n− 1) · arccosh(1 + 1
2ℓ

2))

− cosh((n− 2) · arccosh(1 + 1
2ℓ

2)),

and this is indeed true, which proves the proposition.

8. Another type of semi-discrete
catenoid

Consider the two discrete loops, for a constant K ∈ N,
K ≥ 3, cos(2πK−1)

sin(2πK−1)
±r


in the horizontal planes at height ±r. We consider a semi-
discrete catenoid (i.e. a surface with rotational symmetry
by angle 2πK−1 about the x3-axis) with those two loops
as boundary. This catenoid is comprised of K congruent
pieces, and each piece is foliated by horizontal line seg-
ments. One such piece would have two boundary curves
parametrized by

c1(t) =

x(t)0
t

 and c2(t) =

x(t) cos(2πK−1)
x(t) sin(2πK−1)

t

 (17)

in vertical planes, with t ∈ [−r, r] and with

x(r) = x(−r) = 1.

The area of this piece is

A =

∫ r

−r

x ·
√

2(1− cos(2πK−1)) + (sin(2πK−1))2(x′)2dt.

Then consider a variation x(t) → x(t, λ) with x(t, 0) = x(t)
and x(±r, λ) = 1, so λ is the variation parameter. Note
that we are only considering rotationally invariant varia-
tions here, as was done by Machigashira [7]. An interesting

question is whether we are also in effect considering vari-
ations that are not rotationally invariant as well, by some
semi-discrete version of the symmetric criticality principle,
see [10]. Set

x′ :=
∂x

∂t
, xλ :=

∂x

∂λ
, (x′)λ :=

∂2x

∂λ∂t
.

We wish to have that the following derivative with re-
spect to λ is zero, where c := cos(2πK−1) and s :=
sin(2πK−1) and D := 2(1− c) + s2(x′)2:

d

dλ
A(λ)

∣∣∣∣
λ=0

=

∫ r

−r

xλD + xx′(x′)λs
2

√
D

dt

∣∣∣∣
λ=0

=

∫ r

−r

(
x̂
√
D + s2x̂′

1

2

((x(t))2)′√
D

)
dt,

when x(t, λ) = x(t) + λ · x̂(t) + O(λ2). Then, using inte-
gration by parts, we wish to have, with x = x(t),

0 =

∫ r

−r

x̂

(
√
D − s2

2(1− c)((x′)2 + xx′′) + s2(x′)4
√
D

3

)
dt

= 2

∫ r

−r

x̂

(
(1− c)2

2− (1 + c)(xx′′ − (x′)2)
√
D

3

)
dt

for all variations. This implies

xx′′ − (x′)2 =
2

1 + c
,

and hence we obtain that

x = c1e
−c3t + c2e

c3t , c1 =
1

2(1 + c)c2c23
,

where c2, c3 are free constants. The conditions x(±r) = 1
imply c1 = c2 = (2 cosh(c3r))

−1, so we obtain

x(t) = 2c1 cosh(c3t) =
cosh(c3t)

cosh(c3r)
. (18)

Then automatically x′(0) = 0. From the above relations
amongst the cj , we obtain that

cosh2(c3r) =
c23(1 + c)

2
. (19)

Thus c3 is determined by r. These catenoids have been
determined by using a variational property, like theMva

pd,rs-
catenoids were, so we call them Mva

ps,rd-catenoids.
For r that allow for solutions c3 to (19), a profile curve of

an Mva
ps,rd-catenoid is c1(t) as in (17) with x(t) as in (18).

Rescaling this c1 by cosh(c3r) and appropriately rescaling
the parameter t, we find that this catenoid’s profile curve
can be parametrized ascosh

( √
2t√

1+cos 2π
K

)
0
t

 .
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Figure 6: a Mva
ps,rd-catenoid

9. proof of Theorem 1

We list parametrizations of the profile curves of the various
catenoids again here in Table 2.
Comparing all profile curves, we obtain the following

proof of Theorem 1:

Proof. The statements in items 1, 2, 4, 5 and 6 of Theo-
rem 1 are obvious, so we prove only item 3 here. By way of
contradiction, suppose BP in

pd,rd-catenoid profile curves and
Mva

pd,rs-catenoid profile curve can be the same. From the
parametrizations in Table 2,

cosh(arcsinhℓ) = 1 +
1

2
ℓ2. (20)

Since cosh(arcsinhℓ) =
√
1 + ℓ2, (20) implies ℓ = 0, which

does not occur. Similarly, suppose BP in
pd,rd-catenoid profile

curves and PRva
pd,rd-catenoid profile curve can be the same.

Then we have

cosh(arcsinhℓ) = 1 +
1

1 + cos 2π
K

ℓ2,

namely,

⇔
(

−2

1 + cos 2π
K

+ 1

)
ℓ2 =

(
1

1 + cos 2π
K

)2

ℓ4. (21)

The left-hand-side of (21) is negative and the right-hand-
side of (21) is positive, which is impossible.
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