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Abstract 

The paper deals with a statistical analysis aiming at quantitative characterization in the 

frequency domain of the strength of one-way cffcts and reciprocity between a pair of se­

ries in the presence of a third series, suggesting a unified frequency-domain method of 

statistical estimation and testing for the proposed partial measures of interdependency. 

In particular, the paper provides an estimation procedure of those measures based on a 

numerical canonical factori:;;-;ation method of spectral densities and proposes Monte Carlo 

Wald tests for those measures. The method is applicable to data generated by the sta­

tionary multivariate ARMA process. 

JEL classification: C12, C13, C32, C53 

Key Words: Canonical factorization; Granger non-causality; Measure of one-way effect; 

Measure of reciprocity; Partial interdependency; Prediction error; Vector ARMA model; 

Wald statistics. 

1 Introduction 

Detecting between a pair of time series causal directions and the extent of their effects and 

also testing non-existence of feedback relation between them constitute major focal points 

in multivariate time-series analysis since Granger (1963, 69) introduced the celebrated 

definition of causality in view of prediction improvement. Although the Granger causality 

concept allows straightforward interpretation as long as it is focused on a pair of time 
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series, the presence of a third series incurs interpretative complexities, since the third series 

may produce such confounding phenomena as spurious or indirect causality; see Granger 

(1980) and Hsiao (1982). For a proper graphical causal analysis to be conducted for a 

given set of time-series, we need a general methodology to identify the data generating 

process of those series as well as to estimate and test the extent of causality between a 

pair of vector processes in the presence of a third vector process. 

It is a merit of time-series interdependency analysis that it can characterize relations 

by means of such frequency-domain terms as long-run or short-run effects. With respect 

to interdependency (or causal dependency) analysis in the frequency domain, there are 

studies by Gel'fand and Yaglom (1959), Granger (1969), Sims (1972), Geweke (1982, 

1984) and Hosoya (1991, 2001) and Granger and Lin (1995). Hosoya (1991) introduced 

the concept of the measure of a series {y(t)} onc-sidcdly effecting another {x(t)} which 

is defined in terms of prediction improvement of {x(t)} due to the addition of the past 

values of the one-way effect component of {y(t)}, whereas Geweke defined the feedback 

measure in terms of the improvement due to addition of the past values of {y(t)} as a 

whole. Hosoya's measure has the merit that the equivalence relationship is established 

between the overall one-way effect measure of {y(t)} to {x(t)} and the integral of its 

associate frequency-wise measure; sec the proposition E.1 of Appendix A.l. Frequency­

domain analyses of causality seem more informative than time-domain counterparts, since 

it enables us not only to conduct significance testing of the Granger non-causality, but also 

to measure frequency-wise causal strength and to construct a variety of confidence inter­

vals of those measures; see Hosoya (1997a), Yao and Hosoya (2000) and Hosoya, Yao and 

Takimoto (2005) for large-sample Wald tests of the simple measures of interdependency 

and the allied confidence set construction. 

To deal with the third series presence problem, Hosoya (2001) characterized, in the 

frequency domain, the causal effect which one series produces onto another in the presence 

of a third series, introducing the idea of elimination from the pair of the subject-matter 

series the one-way effect of third series, and provided representations of the partial mea­

sures of interdependency based on the first approach of the two different approaches given 

respectively in Sections 2 and 3 of Hosoya (1991). The 2001 paper, however, assumed that 

a canonical factor of the joint spectral density in question is somehow available thanks 

to the assumed S:zcgo condition (2.1) given below, and did not discuss how to arrive at 
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numerically such a factor nor how to conduct statistical inference. The contribution of 

this paper is that, focused on the stationary vector ARMA model, it provides a compu­

tationally executable numerical procedure to estimate and test the partial measures of 

interdependency. 

The procedure of this paper is based on the second approach of Hosoya (1991) which 

turns out to be more suited for the VARMA model. Recent literature suggests that 

the VARMA model has better forecasting ability than the VAR model as far as macro­

economic time-series are concerned; see, for example, Athanasopoulos and Vahid (2008). 

To be specific, this paper gives a representation of the joint spectral density matrix of 

the pair of processes in which the third series one-way effect is eliminated, as well as the 

accompanying canonical factor matrix in numerically manageable forms respectively, so 

that the factori:zation algorithm of Hosoya-Takimoto (2010) for multivariate MA spectral 

matrices is usefully applied without much computational load. Based on the numrical 

estimation of the measures, the paper proposes an inference procedure using a type of 

Monte Carlo Wald test for the purposes of testing the extent of the partial measures of 

interdependency. 

As a precursory study, Brcitung and Candclon (2006) proposes a numerically practi­

cable test, proposing an eclectic approach in order to test the null hypothesis of partial 

one-way effect being equal to zero. Their approach is to estimate an AR-DL (autoregres­

sive distributed-lag) single-equation model involving the distributed lags of the causing 

series as well as a third-series or its one-way component of a third series and use the 

frequency-response function generated by the DL coefficient estimates of the causing se­

ries for the purpose of testing the frequency-wise non-causality; sec Brei tung and Candclon 

(2006, p.369) and also for an allied empirical study Gronwald (2009). While their F-tcst 

approach is computationally simpler, it does not include testing a specified non-null value 

of those measures, nor extends to higher dimensional models; see Remark 3.2. 

In contrast to Breitung and Candelon (2006) or Hosoya (1991, 2001) who did not 

address development of statistical estimation procedures of partial measures of interde­

pendency, this paper evaluates the partial measures of interdependency in the frequency 

domain exploiting the "full information" of the observed series, in the sense that we con­

struct the partial measures of interdependency based on the the full generating system 

of the observation time series involved and estimate those measures using the estimate of 
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the parameter of the full system. 

Spectral density matrix characterizes the frequency-wise dependency between indi­

vidual series constituting a multivariate time-series. Although it expresses the covariance 

between the frequency-wise spectrally decomposed factors of respective time-series, it does 

not characterize the time-lag or time-lead dependencies between the series involved. For 

the latter analysis, the spectrum knowledge is not enough, but the knowledge of canon­

ical factor matrix of the density matrix and the prediction theory based on the factor 

are needed. Consequently, canonical factorization of spectral density matrix constitutes 

a crucial step in the construction of predictors and in the evaluation of the prediction 

contents, having thus a variety of applications in time series analysis and control; Hosoya 

and Takimoto (2010) surveys the allied literature. Since the Granger concept is framed on 

the basis of the prediction error evaluation, the factorization procedure also constitutes 

an essential step in constructing allied measures. Rational spectrum estimation based on 

a set of finite observations has a wide range of applications in time-series analysis and it 

is often conducted based on a time-domain ARMA representation of the data generating 

process; see for typical examples Hannan-Rissanen (1982) and Hannan-Kavalieris (1984). 

The ARMA models fitting in the time domain automatically estimates a transfer function 

(or a canonical frequency-response function) of the data generating process. In case the 

spectral density to be used does not correspond to the direct observation process but to a 

derived one, however, a certain factori:;;-;ation algorithm for rational spectra is required. In 

particular, the construction of the measures introduced by Hosoya (1991, 2001) requires 

canonical factorization of spectrum which is not necessarily obtained directly from the 

observation process. 

The paper is organized as follows: Section 2 overviews the partial measures of inter­

dependency which consist of the partial measures of one-way effect, reciprocity and as­

sociation. Theorem 2.1 shows that the frequency-wise measure of reciprocity is constant 

over the whole frequency domain if the spectral density matrix of pair of the process in 

interest is canonically factorizable. The procedure presented in Section 2.2 to derive the 

partial measures is based on the second approach of Hosoya (1991). In view of Theorem 

2.2 of the present paper, the second approach turns out to be more suited for representing 

the partial measures of interdependency for the VARMA model. Section 3 provides an 

inferential procedure for quantities related to the partial measures and allied confidence 
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set constructions. Based on the VARMA model, Section 3.1 gives a representation of the 

joint spectral density matrix of the pair of processes in interest, in which third series one­

way effect is eliminated. To derive the required canonical factor matrix, we show how the 

factorization algorithm of Hosoya-Takimoto (2010) for multivariate MA spectral matrices 

is applied. I3ased on a canonical factor matrix, we can proceed to the construction of the 

partial measures. Also the same Section 3.1 shows that the canonical factori:zation of the 

general ARMA model is reducible to that of a vector finite-order MA spectrum, thanks to 

Theorem 2.2. Section 3.2 explains Monte Carlo Wald testing of the measures. Appendix 

A.1 collects the definitions of the partial interdependency measures used in the paper 

and also exhibits equations which hold between those measures. Since the proofs can be 

carried out in parallel to Hosoya (1991, 2001), they are omitted. Appendix A.2 gives the 

proofs of Theorems 2.1 and 2.2. Appendix A.3 provides an explicit representation of the 

joint spectral density of the reciprocal components for a pair of series. 

The paper uses the following notations and symbols: The sets of all integers and 

nonnegative integers are denoted respectively by Z, zo+. For a random-vector x or a 

pair of random vectors x andy, Cov(x) and Cov(x, y) denote respectively the covariance 

matrices of x and vcc(x, y). The determinant of a square matrix Cis written as dct C. 

The identity matrix of order pis written as IP. If A is a complex-valued matrix, A' and 

A* denote respectively the transpose and conjugate transpose matrix of A. Definition 

(or equivalence) is indicated by -. Suppose that a real sequence c[j], j = -a, · · · , a 

satisfies the condition c[j] = c[-j], c[O] > 0 and that c(z) = 2.:;=-a c[j]zj is nonnegative 

for z = e-i>. ( -Jr < A <:::: 1r). Then there exists a real sequence b[j] (j = 0, · · · , a) 

such that b(z) = 2.:;=0 b[j]zj docs not have :zeros inside the unit circle and the relation 

c(z) = 2~b(z)b(z- 1 ) holds. Such a factori:zation is said to be canonical and b(z) is said to 

be a canonical factor of c(z). If 60 > 0 , the factorization is unique. See also Appendix 

A.1 for additional explanation of notations and symbols used in the paper. 

2 Partial measures of interdependency 

2.1 Elimination of a third-series effect 

Let x(t), y(t), z(t) be respectively real random p1 ,p2 ,p3-vectors and suppose that the pro­

cess {.1:(t), y(t), z(t); t E Z} jointly constitutes a second-order stationary process. This 
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subsection describes how to derive from a pair of processes {.1:(t), y(t)} the pair {n(t), v(t)} 

which is free from the one-way effect component of the third series {z(t)}. 

Denote by H the Hilbert space generated from the set of the components of { x(t), y(t), 

z(t); t E Z} For brevity, we write the sub-Hilbert spaces of H H { x(t1 - j), y(t2 - j), z(t3 -

j); j E Z0+} as H{x(tl),y(t2 ),z(t3 )} and H{x(j);j E Z} as H{x(oo)}. For a random 

vector x(t) indexed by t, {x(t)} denotes the process {x(t); t E Z} unless otherwise spec­

ified. Translating the linear prediction problems to those of the projections onto Hilbert 

subspaccs is a standard technique in the theory of stationary stochastic processes; sec 

Rozanov(1967) or other related literature of stationary processes. This paper mostly fol­

lows the standard notations and the basic framework of the theory, but the concept of 

the one-way effect requires projections of random vectors on special Hilbert subspaces. 

Following the conventional practice of the theory of stationary processes, we identify 

an information set of variables with the Hilbert subspace generated by the set of variables 

and thus identify the linear prediction of a variable by means of the information set of 

predictor variables with the projection of the predicted variable onto the Hilbert space 

generated by the predictor variables, where the projection is the best linear predictor and 

the accompanying prediction error is said the residual (or perpendicular) of the projection. 

The third-effect elimination we propose is the elimination of the one-way effect of the third 

series from a pair of series in focus. In the case ofthc three series system {.1:(t), y(t), z(t)}, 

the one-way effect component of z(t) (which is demoted by zo,o,-1 (t)) is the projection 

residual of z(t) onto the subspace generated by {x(s), y(s), z(s-1), -oo < s:::; t}; namely, 

it is the component of z(t) which is unpredictable by the information set consisting of 

x(s), y(s) up to time period t and z(s) up to time period t- 1. 

We identify the partial relations of interdependency between {x(t)} and {y(t)} in the 

presence of a third series with the corresponding simple relations between { n( t)} and 

{ v(t)} which are obtained respectively by the projection residuals of x(t) and y(t) onto 

H { zo,o,-1 ( oo)} which is equivalent to the projection residuals onto H { zo,o,-1 (t-1)}. Hence 

the partial measures between {.1:(t)} and {y(t)} arc defined to be the corresponding simple 

measures between { n(t)} and { v(t)}. To distinguish an interdependency concept which 

focuses on a pair of processes alone from the partial version which takes account of a third 

series, the former concept is said simple in the sequel. Hence the simple causality, in the 

paper, means the one which does not take third series into account. 
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Let f(A.) be the joint spectral density of the process w(t) = (.T(t)*, y(t)*, z(t)*)*, t E Z 

and suppose that f(A.) satisfies the S:6ego condition 

1: log det f(A.)dA. > -oo, (2.1) 

then the density has the factorization 

(2.2) 

by means of a (p1 + p2 + p3 ) x (p1 + p2 + p3 ) matrix A(z) which is analytic and of full 

rank inside the unit disc. Namely, in (2.2), A(e-i.\) is the boundary value of the analytic 

function 
00 

A(z) = L A[j]zj 
j=O 

with the real matrix coefficients A[j]. Such a factori;mtion is said to be canonical in 

the sequel; see Rozanov (1967, pp.71-77) and Hannan (1970, pp.157-163). Let c:(t) 

(c:1 (t)*, E2(t)*, E3(t)*)* w_1 (t) (x-1,-1,-1 (t)*, Y-1,-1,-1 (t)*, z-1,-1,-1(t)*)* be the one­

step ahead prediction-error of the process w(t) by its past values. Denote the covariance 

matrix of c:(t) by I;t and denote the partition matrix as 

I;t = [ 2:::;. 2::::3 ] . 
2:::3. 2:::33 

Then the residual of the projection of c:3(t) on the linear space spanned by E.(t) 

(c:1(t)*, c:2(t)*)* is given by c:3(t)- I:h,I:!.-1c:.(t) and it constitutes the one-way effect com­

ponent of z(t). For normali:6ing Cov(c:.(t), E:3(t)- I:h,I:!_-1c:.(t)), define 

[ :li:i l ~ [ El~112 
(E\,

0
)-112 ] [ ~~~f-1 T~, l [ :,\~ l' (2.:J) 

and define II a (P1 + P2 + P3) x (P1 + P2 + P3) matrix by 

where 2:::~:3 :- _ I:L- I:~_I:t. - 1I:t3. In view of the construction, II is a lower triangular block 

matrix 

II= [ II.. 0 ] 
II3. II33 · 

(2.4) 
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Set A(L) = A(L)A(o)-1II-1 and let its partition be 

Then it follows from the relationships 

w(t) (x(t)*' y(t)*' z(t)*)* = A(L )A(o)-\:(t) = A(L )A(o)-1 rr-1 IIc:(t) = A(L )c:t (t) 

[ A..(z) A.3(z) ] [ c:t(t) ] 
A3.(z) A33(z) c:~(t) ' 

that 

[ x(t) ] - t - t y(t) = A .. (L)c:. (t) + A.3(L)c:3(t). (2.5) 

Since {c:!(t)} and {c:1(t)} are orthogonal, the spectral density of {x(t),y(t)} is given in 

view of (2.5) by 

f ( ') 1 {A- ( -iA)A- ( -iA)* A- ( -iA)A- ( -iA)*} .. /\ = 21f .. e .. e + .3 e .3 e . 

Denote by { u(t), v(t)} the joint process of the residuals of the projection of x(t) and y(t) 

onto H{zo,o,-1 (oo)} = H{d(oo)}; then it is given in view of (2.5) by 

[ n(t) ] _ - t 
v(t) - A .. (L)c:. (t), (2.6) 

whence the spectral density of { u(t), v(t)} is represented by 

1 - A - A h(>-) = -A .. (e-2 )A .. (e-2 )*. 
2n 

(2.7) 

In view of the construction, A(z) is a canonical factor if A(z) is canonical, but its 

square diagonal block A .. (z) in (2.7) is not warranted to be so; see Remark 2.1 below. 

When the factor given in (2. 7) is not canonical, a certain factori7oation procedure must 

be implemented to construct the partial measures of interdependency between { x( t)} and 

{y(t)}, since all the partial measures proposed are constructed based on the knowledge 

of a canonical factor of h(>-). 

Remark 2.1. Suppose that a matrix A(z) = {Aij(z), i,j = 1, 2, 3} is given by 

2 1 z· 0 0 l 
1.001 0.5 ' 
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then all the zeros of det A(z) are either on or outside of the unit circle if -0.499 ::; d ::; 

-0.243. On the other hand, det A..(z) = (1 - z)(1 - 2z) has one zero inside the unit 

circle, where A..(z) denotes the upper 2 x 2 diagonal block of A(z). Consequently, when 

a partial spectral density is given as h(.A) in (2.7), the factor A..(e-i.A) on the right-hand 

side is not guaranteed to be canonical. D 

2.2 Defining the partial measures 

The partial interdependency measures between {x(t)} and {y(t)} in the presence of {z(t)} 

are defined to be the corresponding simple measures between { u(t)} and { v(t)} given in 

(2.6). Suppose that the spectral density h(.A) given in (2.7) satisfies the S:6ego condition 

(b1) so that h(.A) has a canonical factorization 

(2.8) 

The equality (2.8) implies that the following time-domain MA representation of the series 

{u(t),v(t)} holds in terms of the one-step ahead prediction error E(t)- (E1(t)*,E2(t)*)* 

(u-l,-1 (t)*, v-1,-1 (t)*)*; namely, 

[ u(t) ] = r(L )r(o)-1 [ E1 (t) ] 
v(t) E2 (t) ' 

where E{E(t)} = 0 and E{E(t)E(t)*} = r(O)f(O)* = 2:::. Set, in parallel with (2.3), 

[ E1(t) ] 
E~( t) 

[ 
2:::-1/2 

11 

0 

SE( t), 

whence E{c-t(t)c-t(t)*} = Ip1 +p2 • Then we have 

[ u(t) ] 
v( t) 

r(L )r(o) - 1::::-1SE( t) 

rt (L )Et (t) 

[ rL(L) r12(L) ] [ E1(t) ] 
r~1 (L) r~2 (L) E~(t) ' 

where {E~(t)} is the normalized one-way effect component of v(t) to 1t(t). 

(2.9) 

(2.10) 

(2.11) 

The partial frequency-wise measure of one-way effect (FMO) from {y(t)} to {x(t)} in the 
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presence of { z ( t)} is defined by 

PM ( ') 1 d t{I + rt ( -i>..)-1rt ( -i>..)(rt ( -i>..)-1rt ( -i>..))*} y---+x:z /\ = og C ' Pl 11 C 12 C 11 C 12 C ' (2.12) 

where the rtj(c-i)..) arc defined on (2.11). 

Denote by ii.,oo(t) and ijoo,.(t) the projection residuals of 11(t) onto H{vo,-1 (oo)} and 

of v ( t) onto H { u0,_1 ( oo)} respectively, and set their joint spectral density matrix as 

(2.13) 

See Appendix A.3 for a concrete representation of h(>.). Then the partial measure of 

reciprocity at frequency ). between {.1:(t)} and {y(t)} in the presence of the third series 

{ z(t)} is defined by 

PM . (>.) M ,(>.) lo. [dcth,Il(>.).~cth22(>.)l· 
x.y.z 1u g det h(>.) 

Theorem 2.1. Suppose that the spectral density matrix { u(t), v(t)} has the canonical 

factori:.mtion (2.8) and set I: = r(O)f(O)* and 0"2 = det 2.: 11 det 2.:22/ det I:; then we have 

(2.14) 

namely, the partial frequency-wise measure of reciprocity (FMR) is constant over the 

whole frequency domain. 

Evidently, the quantity 0"2 defined in Theorem 2.1 is a constant not less than 1; Geweke 

(1982) calls the quantity dct 2.: 11 dct 2.: 22 / dct I: the measure of instantaneous feedback. 

The proof of Theorem 2.1 is given in Appendix A.2. See also D.4 in Appendix A.1 for 

the definitions of the overall and frequency-wise measures of association. 

The following Theorem 2.2 has a useful application for the ARMA model. The repre­

sentations of the measures of interdependency are much simplified thanks to it. Let r(z) 

be a scalar-valued analytic function with a expansion with real coefficients defined on the 

complex plane such that r(O) = 1 and which has no 7oeros inside the unit circle. Suppose 

then that the spectral density matrix k(>.) of the process { u(t), v(t)} is expressed as 

(2.15) 
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Moreover, suppose that h(A.) = r(e-i,\)r(e-iA)* for a canonical factor r(z), so that we 

have a canonical factorization 

(2.16) 

In this special case, we have: 

Theorem 2.2. Suppose {v,(t), v(t)} has the spectral density k(A.) given in (2.15), for 

which the canonical factorization (2.16) holds. Then the Mv--+u(A.), Mu--+v(A.) and Mu.v(A.) 

are the same as the corresponding measures for the spectral density h(A.). 

Remark 2.2. Dreitung and Candelon (2006, p.364) directly derive Et(t) in (2.10) by 

multiplying the Cholesky factor matrix of the inverse of the covariance matrix of c(t). In 

the case of their bivariate model where 11(t) and v(t) arc scalar-valued, if the orthogo­

nalization is done by the lower triangle Cholesky matrix, the one-way effect component 

is automatically derived, since then orthogonalization is conducted by eliminating the 

effect of E2(t) from E1(t) via the projection. In general, however, when -u(t) and v(t) are 

vector-valued, arbitrary orthogonalization of E1 (t) and E2(t) does not necessarily produce 

the one-way effect measure. D 

The Sims' version of non-causality in the presence of the third series {z(t)} is char­

acterized as this: A necessary and sufficient condition for {y(t)} not to cause partially 

{ x( t)} is that y( t) is expressed as 

where y( 1l(t) is the projection of y(t) onto H{x(t), zo,o,-1 (t)} and y(2l(t) is orthogonal to 

H{x(oo), zo,o,-1 (oo)}. Moreover, a necessary and sufficient condition for {y(t)} not to 

cause partially {x(t)} in the presence of {z(t)} is PMy--+x:z = 0; see for allied literature 

Sims (1972), Hosoya (1977) and Hosoya (2001). 

3 Inference based on the ARMA model 

Focusing specifically on the stationary vector ARMA process, Section 3.1 shows in con­

crete steps how the partial measures of interdependency introduced in Section 2 are nu­

merically evaluated. Section 3.2 discusses statistical inference on those measures based on 
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the standard asymptotic theory of the Whittle quasi-likelihood inference for the station­

ary multivariate ARMA processes. The point is the use of simulation-based estmation of 

the covariance matrix of the measure-related statistics. 

3.1 The stationary ARMA model 

Suppose that the process {x(t), y(t), z(t)} is a stationary multivariate ARMA process 

which is generated by 

[ 
x(t) l 

A(L) y(t) = B(L)c(t), 
z(t) 

t E Z, (3.1) 

where x(t), y(t), z(t) are respectively p 1 ,p2 ,p3-vectors, A(L) and B(L) are a-th and b-th 

order polynomials of the lag operator L and A[O] = B[O] = Ip1+p2 +p3 ; namely, we have 

A(L) = ~;=o A[j]Lj and B(L) = ~~=o B[j]LJ. 

Moreover suppose that all the zeros of det A(z) are outside of the unit circle, det B(z) 

has the :zeros either on or outside of the unit circle and docs not share any common :zeros. 

Moreover, suppose that that the innovation {c(t)} is a i.i.d. white noise process with 

mean 0 and covariance matrix :E"~". Because of the zero conditions of A(z) and B(z), the 

joint spectral density f(A.) of the process (3.1) satisfies the S7oego condition (2.1), whence 

it has a canonical factorization 

(3.2) 

In view of the zero conditions of A(z) and B(z), a version of the canonical factor A(z) is 

given by 

where I;t~ is the Cholesky factor of I;t satisfying I;t = I;t~(:Et~)*;A~(z) denotes the 

adjugate matrix (transposed cofactor matrix) of A(z) and C(z)(- A~(z)B(z):Et~) IS a 

finite-order real matrix-coefficient polynomial such that 

a 

C(z) = L C[j]zj, a= (Pl + P2 + P3- 1)a +b. 
j=O 
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As in the previous section, denote the projection residuals of .T(t) and y(t) onto H { zo,o,-I ( oo)} 

respectively by u(t) and v(t), and denote the joint spectral density matrix of {n(t), v(t)} 

by h(:>..). Now set 

A(z) ~ C(z) [ E1 ~ 112 
(E\,0)_, 12 ] [ -~~~~-' ;~, l (3.3) 

and let A..(z) be the (PI+ p2 ) x (PI+ p2 ) upper diagonal block of A(z). It follows from 

(2.7) that the spectral density h(:>..) of {n(t), v(t)} is given by 

h(:>..) = ~~ detA(e-i-A)I-2A..(e-i-A)A..(e-i-A)*. 
27f 

In view of Theorem 2.2, all the interdependency measures between { u(t)} and { v(t)} are 

derived assuming that the joint spectral density is given ask(:>..) = 2~1\ .. (e-i-A).i\..(e-i-A)*. 

Although 1\ .. (e-i-A) may not be canonical, since k(:>..) is a MA spectrum, Hosoya and Taki­

moto (2010)'s algorithm can be used in such non-canonical cases to produce a canonical 

factor r( e-i,\) which satisfies 

(3.4) 

Consequently, all the measures of interdependency introduced in Section 2.2 and also in 

Appendix A.1 are able to be computed using the factor r(z) given in (3.4). 

3.2 Inferential procedure 

Based on a finite set of observations {x(t), y(t), z(t); t = 1, · · · , T} and the VARMA 

modeling (3.1) of the data generating process, we are able to conduct statistical inference 

on the partial measures of interdependency introduced in Section 2. Denote the whole 

model parameter by e ; namely, set 

e vee{ A[1], .. · , A[a], B[1], .. · , B[b], v(~t)} 

where v(~t) denotes the (PI +p2 +p3) x (PI +p2 +p3 + 1) /2 vector obtained from vee(~'~') by 

eliminating all the supradiagonal elements of the (p1 + p2 + p3 ) x (PI+ p2 + p3 ) matrix ~t. 

Let G( e) be an m-vector whose components are respectively certain distinct quantities 

related to the partial measures of interdependency. 
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Takimoto and Hosoya (2004, 2006) provide a relevant parameter estimation procedure, 

in contrast to conventional nonrestrictive estimation procedures for the VARMA model 

parameter which do not necessarily produce estimates satisfying the zero conditions of 

det A(z) and det B(z). Modifying the maximum Whittle likelihood estimation, Takimoto 

and Hosoya's afore-mentioned papers provide a three-step root-modification procedure 

which produces coefficient estimates warranting the stationarity and invertibility condi­

tions. The procedure is essentially carried out as follows: 

Step 1. By fitting a sufficiently higher order VAR process and applying the ordinary 

least-square method in the time domain, obtain an estimate of the unobservable distur­

bance terms as the regression residual series. In the case the DGP is VAR process, this 

step is skipped. 

Step 2. Substituting the disturbances in the MA part by the corresponding residuals 

obtained in Step 1, estimate VARMA model by the time-domain least square method, 

selecting the lag-orders of the model by means of an information criterion. 

Step 3. Determine the estimate e of the model parameter by maximizing the Whittle 

likelihood endowed with a penalty function of the ~ero conditions. The maximi~ing algo­

rithm is a quasi-Newton iteration method, using the parameter values obtained in Step 2 

as the initial value of the iteration. 

By setting the penalty asymptotically negligible, the conventional asymptotic normal­

ity holds for VT(B-8) under standard regularity conditions for the VARMA model (3.1); 

see for those conditions Hannan-Rissanen (1982), Hannan-Kavalieris (1984) and Hosoya 

( 1997b), for example. The modified maximum Whittle likelihood estimate for observation 

size T determined by these steps is denote by e in the sequel. Incidentally, it is inter­

esting to note that, in contrast to our Step 3, all the estimation procedures proposed by 

Hannan-Rissanen (1982), Hannan-Kavalieris (1984) and Johansen (1991) have no built-in 

checking step to prevent the root-conditions being violated. 

Our test approach classifies the one-way effect tests into two classes according to the 

types of the null hypothesis and proposes different test statistics for respective classes. In 

particular, a new test for the hypothesis of partial non-causality is provided. Consider 

first the case in which the null hypothesis does not involve the Granger non-causality 

hypothesis. Since all the partial measures are non-negative, testing them being equal to 

zero constitutes a boundary value test. For such tests, the direct use of the stochastic 
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expansion of the estimates is not pertinent since the Jacobian matrix is not of full rank. 

Suppose specifically that Gi(e, .A), i = 1, · · · , m, are different kinds of scalar-valued mea­

sures exhibited in D.1 through D.4 in Appendix A.1 and let G(e, .A) beam-vector such 

that G(e, .A) = (G1 (e, .A), ... , Gm(e, .A))* and Gi(e, .A) > 0. Dy the stochastic expansion, 

we have 

VT{G(e, .A)- G(e, .A)}= (DoG(e, .A))VT(B- e)+ op(l), 

where D8G(e, .A) is them x ne Jacobian matrix of G(e, .A) evaluated ate; ne denotes the 

size of the vector e. Suppose that VT( (j- e) is asymptotically normally distributed with 

mean 0 and covariance matrix \)! (e); see Hosoya ( 1997b) for a set of milder conditions 

of the asymptotic normality. Then VT { G (e)) - G ( e' A)} is asymptotically normally 

distributed with mean 0 and the m x m asymptotic covariance matrix 

H(e, .A)= DeG(e, .A)w(e)DeG(e, .A)*. (3.5) 

Assume that the vector G(e, .A) of measures of interdependency is chosen so that rankH(e, .A)= 

min a neighborhood of the true e; then the Wald statistic 

w(ml(.A)- T{G(B, .A)- G(e, .A)}* H(B, .A)-1{G(B, .A)- G(e, .A)} (3.6) 

is asymptotically x2-distributcd with m degrees of freedom if e is the true value. Let G0 

be a given m vector, then the null hypothesis G(e, .A) = G0 can be tested by the test 

statistic 

where G0 is a vector of positive components. Also a confidence set for G ( e, ,\) is able to 

constructed by means of the statistic W(rn)(.A). 

There arc several alternative procedures available to estimate the asymptotic covari­

ance matrix H(e, .A). For example, we might use the asymptotic covariance matrix for­

mula given by Yao and Hosoya (2000) which is based on the numerical differentiation 

for D0G ( (j, ,\) and evaluation of \)! (B) in the case of the cointcgratcd VAR model, but 

the formula becomes much more complex computationally for the general ARMA model 

set-up. 

An alternative simpler approach is to use the Monte Carlo Wald test procedure which 

is conducted as follows: 
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Step 1. Estimate e which is the vector comprising all the parameter involved in the 

model (3.1) by the modified maximum Whittle likelihood method and evaluate the vector 

G(iJ, A). 

Step 2. Generate the data series { x(t)t, y(t)t, z(t)t; t = 1, · · · , T} by the model (3.1) 

using the parameter estimate e obtained in Step 1 and a set of simulated independently 

normally distributed random vectors { c( t)} with mean 0 and the estimated variance­

covariance matrix f:t in Step 1. 

Step 3. Estimate the parameter e by employing the simulated series {x(t)t,y(t)t,z(t)t; 

t = 1, · · · , T} and set the estimate of G( e, A) by G( et, A). 

Step 4. Iterate Steps 2 and 3 N times, and produce G(e1, A); n = 1, · · · , N, and estimate 

the covariance matrix H(e, A), denoted as fi(iJ, A), as the Monte Carlo sample covariance 

matrix of G(e~, A); namely, 

N 

B(iJ, A)=~ L (c(e~, A)- a(et, A)) (c(e~, A)- a(et, A))*, (3.7) 
n=l 

where 

N 

- t - 1 ""' t G(e , A)- N ~ G(en, A). 
n=l 

Remark 3.1. It is difficult to give a general rule to relate the size of N to the observation 

si:6c T, but in practice it is not difficult to determine an appropriate si:6c N by inspect­

ing how the calculated covariance matrices arc numerically stabili:6cd as the number N 

increases by means of a Monte-Carlo simulation. D 

As alluded above, the foregoing approach is not suited for testing non-causality, and 

so we must look for other statistics. For the latter test, Breitung and Candelon (2006), 

based on bivariate stationary as well as cointegrated VAR models, propose an F-test for a 

set of linear restriction hypotheses on certain distributed lag parameters in their AR-DR 

model. To deal with a more wider class such as the VARMA models, however, we need a 

more general approach. 

The Brei tung and Candclon test uses the standard asymptotic theory of the stationary 

time-series regression estimation and testing, whereas our Monte Carlo Wald test uses the 

standard asymptotic theory of the Whittle quasi-likelihood inference for the stationary 

multivariate ARMA processes. Namely, what we assume in the following arguments is 
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that the consistency and the asymptotic normality of the subject-matter statistics G( e, A) 

used in the Wald tests and the consistency of the Monte Carlo estimate of the covariance 

matrix of the statistics based on sufficient number of Monte Carlo iterations. Although 

the Gaussian pseudo random number series is the most convenient choice to simulate 

observation series, for more sophisticated approach, we may as well apply some other 

time-series bootstrap methods. 

Since the formula (2.12) implies that the measure PMy--+x:z(A) is not determined by 

rt (e-iA) alone but is determined in terms of the ratio rt (e-iA)-l ft (e-iA) we may 
12 ' 11 12 ~ ' 

conduct the test of the null hypothesis of v not causing u at frequency A by testing 

rather than testing the hypothesis ft (e-iA) - 0 where ft (e-iA) = '""'a ft [J.]e-i.iA · 12 - ' kl - L..,j=O kl 

and rtz[j] is the j-th coefficient matrix of the polynomial rtz(z), where k, l = 1, 2 and 

a- a(p1 + P2 + P3- 1) +b. Define 

Then the Wald statistic for the null hypothesis that y(t) does not cause x(t) in the presence 

of z(t) is given by 

where H(e, A) is the asymptotic covariance matrix of VT(?j;(e, A) -1/;(B, A)). The statistic 

w(n)(A) is, under the null hypothesis, asymptotically distributed as x2 distribution with 

degrees of freedom which is equal to the dimension of the vector 1/J( e, A). One way to 

evaluate H(e, A) is to use the stochastic expansion of 1/J(iJ, A) 

(3.8) 

where D01jJ(B, A) denotes the Jacobian matrix of 1/J(e, A). The expansion (3.8) implies the 

asymptotic distributional relationship: 

v'T(1/J(e, A) -1/J(e, A)):::__ N(o, H(e, A)), 

where H(e, A) = D01jJ(e, A)*\IJ(B)D01jJ(B, A). The approach by the stochastic expansion 

(3.8) is useful in case \lf(B) is numerically tractable from the asymptotic theory. Another 
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approach to evaluate the covariance matrix H(e, >.)without relying on the stochastic ex­

pansion is to apply the four-step Monte Carlo procedure given in the paragraph preceding 

to Remark 3.1 directly to 1/;(iJ,>.). 

Lastly consider testing the null hypothesis of the overall measure of one-way effect 

Mv-+u = 0 namely {v(t)} not causing {'u(t)}. The component r12 (z) in (2.11) has a 

finite-order MA expression such that r12 ( z) = L~=O r12 [j] z.i where the coefficients r12 [j] 

arc in general nonlinear functions of e; namely, rL[j] = r12[j, 8],j = 0, ... 'a There arc 

several approaches to the test. One way of testing the hypothesis ]\;fv-+u = 0 is to test 

vec(rL[j, 8],j = 0, · · · , a)= 0, which does not constitute a boundary-value test. In case 

of p1 > 1, another method to test the null OMO is to test rL(z)-1r12(z) = 0. The test 

is reduced to the test of vec(6.[j, e],j = 0, ... 'apl) = 0, where 6.[j, e] is determined by 

the equality 

iipl 

rtl (z, e)~r 12(z, e) = 2::= 6.[j, eJz.i. 
j=O 

For those tests, we can apply the Wald test approach, using the Whittle estimator e and 

its relevant covariance matrix estimate. A third candidate would be to test 

1 ;·7r - P My-+x:z(>.)d). = 0, 
27f -7r . 

where the integrand is defined in (2.12). Although we can evaluate the integral numerically 

for estimated e, the test constitutes a boundary value test and standard large-sample test 

techniques do not apply. 

Remark 3.2. Suppose that u(t) and v(t) are scalar-valued and generated by the bivariate 

AR process: 

a a 

j=l k=l 

j=l k=l 

For such a model, Brcitung and Candclon (2006) notes that the test of r12 (e-i-\) = 0 

in (2.12) for the purpose of testing of {v(t)} not simply causing {u(t)} is equivalent to 

testing 

(3.9) 

18 



where rL(e-i.\)~ is the (1,2) component of the 2 X 2 adjugate matrix r"~"(e-i.\)~, but the 

test (3.9) is reduced to testing 
a 

'""""' f3 -ik.\ 0 D lke = . 
k=1 

(3.10) 

Testing the hypothesis (3.10) can be dealt with by an F-test, since it imposes linear 

restrictions on the distributed-lag coefficients. But, this method docs not extend to a 

higher-dimensional rt ( e-i.\), because (3.9) imposes non-linear restrictions on the model 

parameters. Accordingly a certain version of either the likelihood ratio test or the Wald 

test of non-linear restrictions rather than the F-test is required for more general case. D 

Remark 3.3. To deal with the third-series presence problem, I3reitung and Candelon 

(2006, p.369) propose a way to eliminate a third series effect by a time-domain regression. 

Specifically, they propose to fit a single-equation autoregressive-distributed lag (AR-DL) 

model 

a a a 

x(t) = L o;.ix(t- j) + L PkY(t- k) + L (zv(t- l) + c(t) (3.11) 
j=1 k=1 1=1 

and to test the null hypothesis 2..:::~= 1 f3ke-ik.\ = 0 by an F-statistic, where v(t) is equal to 

either z(t) or the residual obtained by regressing z(t) on x(t), y(t) and w(t-1), · · · , w(t-p) 

where w = (x, y, z)*. I3reitung and Candelon (2006, p.375) present an empirical analysis 

of the one-way effect of the yield spread to the growth rate of real GDP in the U.S. by 

eliminating the effect of the real balances in the time domain, and conclude that the test 

results do not seem to depend on the choice of v(t) in (3.11). Furthermore, based on 

their test approach, Gronwald (2009) provides an empirical analysis on the partial one­

way causality running from oil price series to macro and financial time-series in Germany. 

Even though their method suggests a way to avoid the spectral canonical factori:;mtion 

problem, it would not produce the same test results as this paper proposes. The approach 

we propose have the following merits: 

• The MA part can be included in the basic model so that the partial causal analysis 

can be extended to the ARMA model as shown in the the foregoing arguments. 

• The dimensions p 1 , p2 , p3 can be greater than 1. 
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• Even without assummg such a specific parametric model as the ARMA model, 

measures of interdependency are able to be constructed as long as a canonical fac­

tori:;;-;ation of partial spectral density is available. 

• Partial measures of reciprocity and association can be dealt with. D 

Remark 3.4. I3reitung and Candelon (2006) gave a characterization of local power 

of the F-type test of the null hypothesis of the frequency-wise absence of the simple 

one-way effect by focusing on the Gegenbauer-polynomial frequency-response function. 

As regards the determination of the number of the different ,\ values for the FMO to 

be estimated or tested, Breitung and Candelon's local power analysis provides a useful 

indication of how finer resolution being able to be attained in relation to the observation 

si:6e T. Although our test is not directly comparable with theirs in general, for a possible 

comparable case, such as the one where the third-series one-way effect is absent and 

need not be eliminated (and hence the partial and the corresponding simple measures 

are expected equal), the first-order asymptotic local powers of ours and theirs would 

be equal under common regularity conditions, since the comparison is nothing but the 

comparison between the Wald test and the LR test under the standard conditions. I3ut 

the power would be different in general in the presence of a third series. For such a 

case, in conventional terms of econometrics, the Breitung and Candelon test is a single­

equation limited information likelihood-ratio (LR) test whereas our tests are a kind of 

Wald test based on the full-information maximum-likelihood (ML) estimation. If the 

complete system of the VARMA model is true, the power of tests using only a limited 

information is expected inferior. I3ut well designed numerical comparison between the 

Breitung and Candelon test and ours in a comparable set-up remains to be investigated. 

D 

4 Concluding remarks 

By means of the cointegrated VAR model fitted to Japanese macroeconomic data, Hosoya 

(1997a), Yao and Hosoya (2000) and Hosoya, Yao and Takimoto (2005) investigated the 

empirical one-way effect structure for a variety of pairs of variables. I3ut the studies were 

limited to the simple one-way effects. The new contribution of the present paper is the 
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presentation of a numerically practicable method which enables estimating and testing 

the partial measures introduced in Hosoya (2001). The latter paper covers only theoret­

ical representation and did not go into the numerical evaluation and inference problems. 

In contrast to the simple measures of interdependency, the numerical construction of 

the corresponding partial measures needs an explicit knowledge of canonical factor of a 

spectral density matrix involved. By implementing the numerical factori:zation procedure 

of Hosoya and Takimoto (2010), which is an improved version of the Rozanov (1967)'s 

factorization method, this paper suggested a numerical procedure to evaluate the partial 

measures of interdependency for stationary VARMA model. This paper showed that the 

evaluation of the measures is reducible to the one for a finite-order MA spectral density 

matrix, and presented a parametric statistical inference approach which consists of esti­

mation based on the Whittle likelihood asymptotic theory and testing and confidence-set 

construction relied on the standard limiting theory of the Wald statistics. Although all 

the measures of interdependency were defined for vector second-order stationary processes 

in this paper, they are extensible to non-stationary cointegrated processes with the aid of 

the reproducibility assumption introduced in Hosoya (1997a, 2001). 

There remain some open issues. First of all, the paper has not examined the numerical 

performance of the proposed theory; the authors' research is in progress on the issues of 

simulation and empirical performance. To improve the performance of the Wald test in 

small-sample circumstances and the feasibility in application, employment of a certain 

time-series bootstrap method for probability evaluation and/or introduction of nonlinear 

transformation as proposed by Hosoya and Terasaka (2009) might be useful. Although 

Section 3 focuses on the stationary ARMA process mainly for the sake of expositional 

simplicity, extension to a wider class of processes is necessary for applications to empirical 

economic analyses. By utilizing the asymptotic covariance-matrix formula provided by 

Hosoya (1997b), our statistical inference procedure can be extended to more general time­

series models in which the disturbance series is possibly non-Gaussian. Hosoya, Yao and 

Takimoto (2005) took trend-breaks explicitly into account for testing the simple one-way 

effect measures in a cointegrated VAR set-up. The extension of the partial measures of 

interdependency in that direction as well as the extension to nonlinear processes might be 

also important. I3ut the most important open issue above all would be to develop a testing 

theory of the Granger causality which is more conformable to out-sample prediction, and 
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thus to find a way to identify predictors equipped with substantial out-sample prediction 

ability; see Granger (1999) who emphasized the importance of this kind of research. 

An enormous amount of empirical economic studies has dealt with predictive ability 

of the term structure and other asset-price characteristics for the future growth rate of 

economic activities and inflation rates. Stock and Watson (2003) and Wheelock and 

Wohar (2009) respectively give wide-ranging reviews of the literature; sec also Hamilton 

and Kim (2002) and Assenmacher-Wesche, Gerlach and Sekine (2008) for example. A 

common understanding seems to be that the prediction ability of the term structure has 

fallen since the middle of 1980's in the U.S. economy and also that the predictive content 

of the original as well as the Freedman version of the Phillips curve is rather meager; see 

Staiger, Stock and Watson (1997) for the latter aspect. 

Stock and Watson (2003) claim that in- sample tests of significance for Granger causal­

ity are, in general, poor guides for identification of potent predictors, providing little as­

surance that the identified predictive relations are stable. Although focusing not on the 

causality issue itself but on predictability, Wheelock and Wohar (2009) also note consid­

erable variation of prediction ability of the term spread across countries and over time, 

as far as prediction of a variety of economic-activity changes is concerned. 

To be more specific, Stock and Watson (2003) argue the problem of prediction ability, 

relying mainly on the single equation autoregressive distributive-lag model of the form 

a b 

x(t) = L o:jx(t- j) + L f]jy(t- k) + c(t). (4.1) 
j=l k=l 

The Granger test result in itself does not bring into question how much the prediction is 

improved by inclusion of the sum 2:~=l f]jy(t-k) in case the null hypothesis (/31, · · · , Pb) = 

0 is rejected. The problem, however, is not indigenous to the Granger non-causality test. 

If a relation changes over time, it is natural to expect that in-sample observation attributes 

are not extrapolated for out-sample prediction. Characteristically, while giving negative 

assessment to the Granger causality test in respect of prediction ability, Stock and Watson 

does not question directly the use of the Granger test itself when the stability of the 

relation ( 4.1) extends over a certain out-sample range; namely, they do not ask whether 

the rejection of non-causality indicates the usefulness of the corresponding variable over 

such a time interval of relative stability. 
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In case dependency relation is stable over time, the relation between statistical and 

practical significance is reduced to the general dictum that a significant test result does 

not measure the practical significance. Even if the estimates of the Pj are small in mag­

nitude in ( 4.1), they can be well significant when the corresponding standard errors are 

small and the Granger non-causality hypothesis is rejected, but it does not necessarily 

imply the notable prediction improvement by inclusion of those predictors. In contrast to 

statistical significance, confidence statements seem fit to represent the strength of effects. 

The one-way effect measures proposed in the paper are a way of quantifying prediction 

improvement and the suggested confidence sets would provide predictive information the 

Granger causality test does not cover; see also Yao and Hosoya (2000) who exemplified 

an approach to confidence-set construction of the OMO. 
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A Appendix 

A.l Glossary on partial measures of interdependency 

This subsection collects basic definitions and equations related to partial interdepen­

dencies. Denote by H the Hilbert space defined over the real-number field which is 

the closure of the linear hull of the union {xj(t); t E Z, j = 1, · · · ,pi} U {yk(t); t E 

Z, k = 1, · · · ,p2} U {z1(t); t E Z, l = 1, · · · ,p3 }, where xj(t) denotes the j-th element 

of the vector x(t) and all the .T(t), y(t) and z(t) have finite second-order moments. For 

brevity, H { x( t1 - .i), y( t 2 - .i), z( t3 - j); .i E zo+} is written as H { x( tJ), y( t 2), z( t:3)} and 

H{x(.j);j E Z} is written as H{x(oo)}. For a random vector x(t) indexed by t, {x(t)} 

denotes the process {x(t); t E Z} unless otherwise specified. 
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The projection of a random vector w = {wj; j = 1, · · · ,s} to a closed subspace H(·) 

of H implies the clement-wise orthogonal projection. Namely, if 1TJj is the orthogonal 

projection of U)j onto H(·), the projection implies the vector w whose j-th element is 

'LDj. In the system of three series {x(t), y(t), z(t)}, the one-way effect component of z(t) 

implies the projection residual (the perpendicular) of z(t) when it is projected onto the 

closed linear subspace H{x(t),y(t),z(t- 1)} and the residual is denoted by zo,o,-1 (t). 

The vectors n(t) and v(t) arc respectively the projection residuals of x(t) and y(t) onto 

H{zo,o,-l(t);j E Z} 

Dl. The partial overall measure of one-way effect (OMO) from {y(t)} to {x(t)} is the 

simple OMO from {v(t)} to { n(t)} and defined by 

det Cov{ n_L_(t)} 
P My--+x:z Mv--+u = log d C { 1 , ( )} , · et ov n_1,_1 t 

where 1L 1,.(t) and 1L1,_1 (t) arc the projection residuals of n(t) onto H { u(t -1)} and onto 

H { u( t - 1), v0,1 ( t - 1)} respectively. 

D2. The partial frequency-wise measure of one-way effect (FMO), in terms of the 

frequency-response function rt(e-i,\) as given in (2.11), is defined by 

P My--+x:z(A) Jlvfv--+u (A) 

1 dct{r!1 (e-i,\)r!1 (e-i,\)* + rt2(e-i,\)rL(e-iA)*} 
og 

dct{r!1 ( e-i.A )rL ( e-i.A) *} 
(A.1) 

where the fJj(e-i.A) are defined in (2.11). The partial FMO PMx--+y:z(A) is given in a 

similar way; see Hosoya (2001) for a different representation. 

D3. The partial measure of reciprocity at frequency A and the corresponding overall 

measure between x(t) and y(t) arc defined respectively by: 

PJivf . (A)_ Jlvf (A)= lo. [dethn(A).~eth22(A)l· 
x.y.z u.v g det h(A) ' 

1 1Jr P Mx.y:z - 27f -Jr P Mx.y:x(A)dA 

where a representation of i~ij (A) is given in ( A.4) below and another expression is given 

in Theorem A in section A.3. 

D4. The partial measure of association at frequency A and the corresponding overall 

measure between x(t) and y(t) arc defined respectively by: 

p M .. (A) _ M .(A) lo [det hn (A).~et h22 (A)] . 
x,y.z u,1: g dct h(A) ' 
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1 {" 
p Jl.;fx,y:z = 27r .J -1r P }l;fx,y:z( A )dA.. 

where h(A.) is the spectral density matrix of the joint process {u(t), v(t)}. 

El. The following equality holds between the partial OMO and FMC): 

1 1" P }l;fy--+x:z = 27r -1r P My--+x:z(A.)d)..; 

see for the proof Hosoya (1991, p.433). 

E2. It follows from the definitions of the respective measures and the equality E1 and 

the corresponding equality for P Mx--+y:z that: 

PMx,y:z(A.) P Mx--+y:z(A.) + P Mx.y:z(A.) + P My--+x:z(A.), 

PMx,y:z P Mx--+y:z + P Mx.y:z + P My--+x:z· 

A.2 Proofs of Theorems 

Proof of Theorem 2.1. It follows from the representation (2.11) that the reciprocal com­

ponent iL,oo(t) of n(t) is given by 

Similarly, setting 

we have 

[ u(t) ] 
v(t) 

and ~(t) = Wt:(t), 

r ( L )r( 0) - 1 w- 1 w t:( t) 

f(L )~(t) 

[ fu(L) f12(L) l [ 6(t) l 
r21(L) r22(L) 6(t) · 

(A.2) 

(A.3) 

In view of the construction, {6(t)} is the one-way effect componct process of {u(t)} to 

{v(t)}. It follows from the representations (A.2) and (A.3), the reciprocal components of 

'u(t) and v(t) are respectively given by 
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Consequently, the joint spectral density matrix h(A.) of the process { u.,00 (t), v00 ,.(t)} is 

given by 

h(A.) = 

"-1/2" "-1/2] un u12u22 

IP2 

(A.4) 

Then, in view of the definition of a2 in Theorem 2.1, it follows straightforwardly from 

(A.4) that 

since the determinant of the second matrix on the right-hand side of (A.4) is nothing but 

a2 = det ~11 det ~22 / det ~. D 

Proof of Theorem 2.2. Let EJ (t) and rJj(L), i, j = 1, 2, be defined as in (2.11) based on 

the factorization h(A.) = 2~r(e-i>.)r(e-i>.)*. If the spectral density k(A.) has the canonical 

factori:.mtion (2.16), in parallel to (2.9), we have the time domain representation 

where 

Hence we have 

[ u(t) ] _ 
v(t) -

r!J = 1 (L)rL(L),i = 1,2. 

l . det{r{1 (e-i>.)rt1(e-i.A)* + r{1(e-i>.)r{1(e-i.A)*} 

og det{rn ( e-i>.)r{1 ( e-i,\ )*} 

l det{ri1 (e-2>.)ri 1 (e-'>.)* + rL(e-2>.)ri2 (e-2>.)*} 
og 

det{rL ( e-2>. )ri1 ( e-2>. )*} 
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Namely the right-hand side member of (A.6) implies that the FMO based on k()...) is 

equal to the FMO for the spectral density h()...) = 2~f(e-i>-)r(e-i>-)*. In the same way, 

for the process given by (A.5), the joint spectral density matrix k()...) of the reciprocal­

component process {u.,oo(t),'uoo,.(t)} is equal to ir(e-i>-)l 2 h()...) where h()...) the density 

given by (A.4). Therefore the frequency-wise measure of reciprocity is given by 

M.u.v(A) log[det{ lr( e-i>-W hn ( )...)} det{ lr( e-i,\) 12 i~22( )...)} / det{ lr( e-i>-) 12 h( )...)} 

loga2 . o 

A.3 The joint spectral density of the reciprocal components 

The representation (A.4) of the joint spectral density of the reciprocal components is new, 

whereas another representation was provided by Hosoya (1991). The representation of the 

1991 paper, however, contains some errata, and we present a corrected version in Theorm 

A. Suppose that the joint process {-u(t), v(t)} introduced in Section 2 has the spectral 

representation with respect to a random spectral measure: 

Denote by h()...) the spectral density matrix of the process {r(t)}. Let fL and h. be respec­

tively the joint spectral densities of the pairs of processes { u( t), v0,_1 ( t)} and { u_1,0 ( t), v( t)} 

and let the partitions of them be given by 

and 

Also denote the partition of the spectral density matrix h()...) of the joint reciprocal com­

ponent process { iL,oo ( t), ijoo,. ( t)} by 

2: - [ 2:11 2:12 ] 
- 2:21 2:22 
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is the covariance of the one-step ahead prediction error of the process {n(t), v(t)}. 

Theorem A. The spectral density h,()...) is represented as follows: 

(A.7) h,1l ()...) 

h22 ( )...) 

h12 ()...) 

h22()...)- 27rh2.()...)f(e-i,\)-hf(O)* B*2:11~ 2 Bf(O)f(e-i,\)- 1 h.2()...), (A.8) 

h12( )...) - 21rh1. ( )...)f( e-i,\)- hr(O)* (A *2::221:1 A+ B*2:111:2B)f(O)f( e-i,\) -l h.2( )...) 

(A.9) 

where 2::11:2 = 2:n - 2::122::2212::21 and 2::22:1 = 2::22 - 2::212::1112::12. 

Proof. Since the proofs of the three components proceed in parallel ways, only the proof 

for (A.9) is given below. It follows from the definitions of ii.,oo(t) and ijoo,.(t) which arc 

given in the paragraph containing (2.13) in Section 2 that 

<I>u,oo (d)..) = <I>u(d)...)- hl2()...)h221(A)<l>vo,-1 (d)..), 

<I>u00 ,.(d)...) = <I>v(d)...)- h21()...)h111(A)<l>u_1,0 (d)...). (A.lO) 

On the other hand, it follows from the definition of the one-way effect components that 

<I>vo.- 1 (d)..)= Af(O)f(e-i,\)-1<I>r(d)...), 

<I>u_1 0 (d)...) = Bf(O)f(c-i,\)-1<I>r(d)...). 

Now in view of (A.lO) the submatrix h12 ()...) is given by 

(A.ll) 

h12()...) E{<I>.u(d)...)- h12()...)h221(A)<l>v0 ,_1(d)...)}{<I>:(d)...)- <I>:_ 10 (d)...)h111(A)h12()...)} 

E{ <I>u(d)...)<l>:(d)...)}- h12()...)lL221()...)E{ <l>v0 _ 1 ()...)<!>:(d)..)} 

- E{ <I>u( d)-..)<!>:_ 1 ,0 (d)..) }h.l11 ()...)h12()...) 

+lL12()...)lL221()...)E{ <l>vo,-J ()...)<!>~_ 1 0 (d)..) }fLl11()...)fL12()...) 

h12 ( )...) - h12 ( )...)lL221 ( )...)Af(O)f( e-i,\) - 1 h.2 ( )...) 

-hi-()...)f( e-i,\ )-hr(O)* B* h1/ ()...)h12()...) 

+h12 ( )...)h,221 ( )...)Ar(O)f( c-i,\) - 1 h( )...)f( c-i,\) -hr(O)* B* h111 ( )...)h12 ()...) 

Cl- C2- C3 + C4. (A.12) 

Since h()...) has the canonical factorization 
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the last member C4 on the right hand side of (A.12) is equal to 

(A.13) 

Furthermore, since 

A~B* 

the last member in (A.13) is expressed as 

(A.14) 

Hence the expression of the third member on the right-hand side of (A.9) is derived. On 

the other hand, it follows from ( A.ll) that 

E[<I> (d>.)<I>* (>.)] = h r(c-i>..)-hr(o)* A* 
U V0.-1 '1· ~ ) 

E[<I>u_ 1,o(d>.)<I>:(>.)] = Br(o)r(e-i>..)-1h.2(>.). (A.15) 

Also, it follows from (A.15) that the second member C2 on the right-hand side of (A.12) 

is expressed as 

fL12 ( A)fL221 ( >.)Af(O)f( e-i>.) -l h.2 ( >.) 

= 21rh1. (>.)r( c-i>. )-hr(O)* A*~22\ Af(O)f( c-i>.)- 1h.2(>.) (A.16) 

whereas the third member C3 is given by 

Therefore the sum of the second and third members C2, C3 is equal to 

(A.17) 
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Hence (A.9) follows from (A.14) and (A.17). It provides a representation of the off­

diagonal (1, 2)-th block of the joint spectral density of {ii.,oo(t), ijoo,.(t)}. By means of 

parallel arguments, we have (A.7) and (A.8). D 
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