RATES OF CONVERGENCE IN DISTRIBUTION OF A LINEAR COMBINATION OF U－STATISTICS FOR NON－ DEGENERATE KERNEL

Toda，Koichiro
Graduate School of Science and engineering，Kagoshima University
Yamato，Hajime
Department of Mathematics and Computer Science，Kagoshima University
https：／／doi．org／10．5109／13514

出版情報：Bulletin of informatics and cybernetics． 34 （2），pp．133－141，2002－12．Research Association of Statistical Sciences
バージョン：
権利関係：

RATES OF CONVERGENCE IN DISTRIBUTION OF A LINEAR COMBINATION OF U-STATISTICS FOR NON-DEGENERATE KERNEL

By

Koichiro Toda* and Hajime Yamato ${ }^{\dagger}$

Abstract

As an estimator of an estimable parameter, we consider a linear combination of U-statistics introduced by Toda and Yamato (2001). As a special case, this statistic includes the V-statistic and LB-statistic. In case that the kernel is not degenerate, this linear combination of U-statistics converges to normal distribution. We show some rates of convergence different from Berry-Esseen bound.

Key Words and Phrases: Estimable parameter, Rate of convergence, linear combination of U-statistics, V-statistics.

1. Introduction

Let $\theta(F)$ be an estimable parameter of an unknown distribution F and $g\left(x_{1}, \ldots, x_{k}\right)$ be its kernel of degree $k(\geq 2)$. We assume that the kernel g is symmetric and not degenerate. Let X_{1}, \ldots, X_{n} be a random sample of size n from the distribution F.

As an estimator of $\theta(F)$, Toda and Yamato (2001) introduces a linear combination Y_{n} of U-statistics as follows: Let $w\left(r_{1}, \ldots, r_{j} ; k\right)$ be a nonnegative and symmetric function of positive integers r_{1}, \ldots, r_{j} such that $r_{1}+\cdots+r_{j}=k$ for $j=1, \ldots, k$. We assume that at least one of $w\left(r_{1}, \ldots, r_{j} ; k\right)$'s is positive. For $j=1, \ldots, k$, let $g_{(j)}\left(x_{1}, \ldots, x_{j}\right)$ be the kernel given by

$$
\begin{equation*}
g_{(j)}\left(x_{1}, \ldots, x_{j}\right)=\frac{1}{d(k, j)} \sum_{r_{1}+\cdots+r_{j}=k}^{+} w\left(r_{1}, \ldots, r_{j} ; k\right) g(\underbrace{x_{1}, \ldots, x_{1}}_{r_{1}}, \ldots, \underbrace{x_{j}, \ldots, x_{j}}_{r_{j}}), \tag{1.1}
\end{equation*}
$$

where the summation $\sum_{r_{1}+\cdots+r_{j}=k}^{+}$is taken over all positive integers r_{1}, \ldots, r_{j} satisfying $r_{1}+\cdots+r_{j}=k$ with j and k fixed and $d(k, j)=\sum_{r_{1}+\cdots+r_{j}=k}^{+} w\left(r_{1}, \ldots, r_{j} ; k\right)$ for $j=1,2, \ldots, k$. Let $U_{n}^{(j)}$ be the U-statistic associated with kernel $g_{(j)}\left(x_{1}, \ldots, x_{j} ; k\right)$ for $j=1, \ldots, k$. The kernel $g_{(j)}\left(x_{1}, \ldots, x_{j} ; k\right)$ is symmetric because of the symmetry of $w\left(r_{1}, \ldots, r_{j} ; k\right)$. If $d(k, j)$ is equal to zero for some j, then the associated $w\left(r_{1}, \ldots, r_{j} ; k\right)$'s are equal to zero. In this case, we let the corresponding statistic $U_{n}^{(j)}$ be zero. Note that

[^0]$U_{n}^{(k)}=U_{n}$ for $w(1, \ldots, 1 ; k)>0$, because of $g_{(k)}=g$. The statistics Y_{n} is given by
\[

$$
\begin{equation*}
Y_{n}=\frac{1}{D(n, k)} \sum_{j=1}^{k} d(k, j)\binom{n}{j} U_{n}^{(j)}, \tag{1.2}
\end{equation*}
$$

\]

where $D(n, k)=\sum_{j=1}^{k} d(k, j)\binom{n}{j}$. Since w^{\prime} s are nonnegative and at least one of them is positive, $D(n, k)$ is positive. Y_{n} includes important statistics as shown in the following examples.

Example 1. Let w be the function given by $w(1,1, \ldots, 1 ; k)=1$ and $w\left(r_{1}, \ldots, r_{j} ; k\right)=$ 0 for positive integers r_{1}, \ldots, r_{j} such that $r_{1}+\cdots+r_{j}=k$ for $j=1, \ldots, k-1$. Then the corresponding statistic Y_{n} is equal to U-statistic U_{n}, which is given by

$$
\begin{equation*}
U_{n}=\binom{n}{k}^{-1} \sum_{1 \leq j_{1}<\cdots<j_{k} \leq n} g\left(X_{j_{1}}, \ldots, X_{j_{k}}\right) \tag{1.3}
\end{equation*}
$$

where $\sum_{1 \leq j_{1}<\cdots<j_{k} \leq n}$ denotes the summation over all integers j_{1}, \ldots, j_{k} satisfying $1 \leq$ $j_{1}<\cdots<j_{k} \leq n$.

EXAMPLE 2. Let w be the function given by $w\left(r_{1}, \ldots, r_{j} ; k\right)=1$ for positive integers r_{1}, \ldots, r_{j} such that $r_{1}+\cdots+r_{j}=k$ for $j=1, \ldots, k$. Then the corresponding statistic Y_{n} is equal to the LB-statistic B_{n} given by

$$
\begin{equation*}
B_{n}=\binom{n+k-1}{k}^{-1} \sum_{r_{1}+\cdots+r_{n}=k} g(\underbrace{X_{1}, \ldots, X_{1}}_{r_{1}}, \ldots, \underbrace{X_{n}, \ldots, X_{n}}_{r_{n}}) \tag{1.4}
\end{equation*}
$$

where $\sum_{r_{1}+\cdots+r_{n}=k}$ denotes the summation over all non-negative integers r_{1}, \ldots, r_{n} satisfying $r_{1}+\cdots+r_{n}=k$.

EXAMPLE 3. Let w be the function given by $w\left(r_{1}, \ldots, r_{j} ; k\right)=k!/\left(r_{1}!\cdots r_{j}!\right)$ for positive integers r_{1}, \ldots, r_{j} such that $r_{1}+\cdots+r_{j}=k$ for $j=1, \ldots, k$. Then the corresponding statistic Y_{n} is equal to the V-statistic V_{n} given by

$$
\begin{equation*}
V_{n}=\frac{1}{n^{k}} \sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} g\left(X_{j_{1}}, \ldots, X_{j_{k}}\right) \tag{1.5}
\end{equation*}
$$

(See Toda and Yamato, 2001).
Example 4. Let w be the function given by $w\left(r_{1}, \ldots, r_{j} ; k\right)=k!/\left(r_{1} \cdots r_{j}\right)$ for positive integers r_{1}, \ldots, r_{j} such that $r_{1}+\cdots+r_{j}=k$ for $j=1, \ldots, k$. Then, for example, the corresponding statistic Y_{n} for the third central moment of the distribution F is given by

$$
S_{n}=\frac{n}{n^{2}+1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{3},
$$

where \bar{X} is the sample mean of X_{1}, \ldots, X_{n} (see Nomachi et al., 2002).

For the non-degenerate kernel g, U-statistic U_{n} converges to normal distribution. The purpose of this paper is to show some rates of convergences different from the Berry-Esseen bound, for linear combination of U -statistics Y_{n} given by (1.3). In Section 2, we quote three rates of convergence different from the Berry-Esseen bound, from Zhao (1983), Zhao and Chen (1983), Koroljuk and Borovskich (1994) and Borovskikh (1996). Furthermore we give a new rate described by using a polynomial. In Section 3, for the statistic Y_{n} we shall show three rates of convergence to normal distribution, using the propositions of Section 2. Furthermore, we give a rate different from these ones, using a polynomial.

2. Rates of convergence for U-statistics

For kernel $g\left(x_{1}, \ldots, x_{k}\right)$, we put

$$
\begin{gathered}
\psi_{1}\left(x_{1}\right)=E\left(g\left(X_{1}, \ldots, X_{k}\right) \mid X_{1}=x_{1}\right), \\
\psi_{2}\left(x_{1}, x_{2}\right)=E\left(g\left(X_{1}, \ldots, X_{k}\right) \mid X_{1}=x_{1}, X_{2}=x_{2}\right), \\
g^{(1)}\left(x_{1}\right)=\psi_{1}\left(x_{1}\right)-\theta, \quad \sigma_{1}^{2}=E\left[g^{(1)}\left(X_{1}\right)^{2}\right]>0,
\end{gathered}
$$

and

$$
g^{(2)}\left(x_{1}, x_{2}\right)=\psi_{2}\left(x_{1}, x_{2}\right)-\psi_{1}\left(x_{1}\right)-\psi_{1}\left(x_{2}\right)-\theta
$$

Let $\Phi(x)$ be the standard normal distribution function. We shall quote two rates of convergence of the distribution for U-statistic U_{n}.

Lemma 2.1. (Koroljuk and Borovskich, 1994, Theorem 6.2.4) If for some $0 \leq \delta \leq 1$ kernel g satisfies the conditions

$$
\sigma_{1}>0, \quad E\left|g^{(1)}\left(X_{1}\right)\right|^{2+\delta}<\infty, \quad E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{\frac{4+\delta}{3}}<\infty
$$

then

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n}-\theta\right) \leq x\right)-\Phi(x)\right|=O\left(n^{-\frac{6}{2}}\right) \tag{2.1}
\end{equation*}
$$

as $n \rightarrow \infty$, and for $\delta=0$ we can replace $O(1)$ on the right-hand side by o(1).
Lemma 2.2. (Koroljuk and Borovskich, 1994, Theorem 6.2.5, Zhao, 1983) Let $\sigma_{1}>$ 0 and $E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{3}<\infty$. Then the inequality

$$
\begin{equation*}
\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n}-\theta\right) \leq x\right)-\Phi(x)\right| \leq \frac{C}{\sqrt{n}\left(1+x^{2}\right)} \tag{2.2}
\end{equation*}
$$

holds for all $x \in R$, where C depends on kernel g only via σ_{1} and $E|g|^{3}$ and does not depend on x and n.

Hereafter we use $C, C_{1}, C_{2}, C_{3}, \ldots$ as generic constants which do not depend on x and n. We shall show the similar result to (2.2) for Y -statistic Y_{n}. For this purpose we quote the following.

Lemma 2.3. (Zhao, 1983, Lemma 7) Suppose that $W_{n}=W_{n 1}+W_{n 2}, n=1,2, \ldots$ be a sequence of random variables. Denote the distribution functions of W_{n} and $W_{n 1}$ by F_{n} and $F_{n 1}$, respectively. If

$$
\left|F_{n 1}-\Phi(x)\right| \leq \frac{C_{1}}{\sqrt{n}\left(1+x^{2}\right)}
$$

for all $x \in R$ and for $|x| \geq 1$

$$
P\left(\left|W_{n 2}\right| \geq \frac{C_{2}}{\sqrt{n}}|x|\right) \leq \frac{C_{3}}{\sqrt{n}\left(1+x^{2}\right)}
$$

then for all $x \in R$

$$
\left|F_{n}-\Phi(x)\right| \leq \frac{C_{4}}{\sqrt{n}\left(1+x^{2}\right)}
$$

In the following lemma, we consider kernel g of degree $k=2$.

Lemma 2.4. (Zhao and Chen, 1983) Let $\sigma_{1}>0$ and $E\left|g\left(X_{1}, X_{2}\right)\right|^{3}<\infty$. Then the inequality

$$
\begin{equation*}
\left|P\left(\frac{\sqrt{n}}{2 \sigma_{1}}\left(U_{n}-\theta\right) \leq x\right)-\Phi(x)\right| \leq \frac{C}{\sqrt{n}(1+|x|)^{3}} \tag{2.3}
\end{equation*}
$$

holds for all $n(\geq 2)$ and all $x \in R$.
For this lemma, see also, Koroljuk and Borovskich (1994), Theorem 6.2.6 and Borovskikh (1996), Theorem 6.4.1. We shall show the similar result to (2.3) for the Y-statistic Y_{n}. For this purpose we quote the following.

Lemma 2.5. (Zhao and Chen, 1983, Lemma 3) Suppose that $W_{n}=W_{n 1}+W_{n 2}$, $n=1,2, \ldots$ be a sequence of random variables. Denote the distribution functions of W_{n} and $W_{n 1}$ by F_{n} and $F_{n 1}$, respectively. If

$$
\left|F_{n 1}-\Phi(x)\right| \leq \frac{C_{1}}{\sqrt{n}(1+|x|)^{3}}
$$

for all $x \in R$ and for $|x| \geq 1$

$$
P\left(\left|W_{n 2}\right| \geq \frac{C_{2}}{\sqrt{n}}|x|\right) \leq \frac{C_{3}}{\sqrt{n}(1+|x|)^{3}}
$$

then for all $x \in R$

$$
\left|F_{n}-\Phi(x)\right| \leq \frac{C_{4}}{\sqrt{n}(1+|x|)^{3}}
$$

Again we consider the kernel of degree $k \geq 2$. Let us consider a bound related with a polynomial including $1+x^{2}$ of (2.2) and $(1+x)^{3}$ of (2.3). If we allow n to depend on x, then we have the following.

THEOREM 2.6. Let $\sigma_{1}>0$ and $E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{3}<\infty$. In addition, we suppose that $\lim _{|t| \rightarrow \infty}|\eta(t)|<1$. Let p be a polynomial which is positive and increasing over $[0, \infty)$. Then inequality

$$
\begin{equation*}
\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n}-\theta\right) \leq x\right)-\Phi(x)\right| \leq \frac{C}{\sqrt{n} p(|x|)}, \quad x \in R \tag{2.4}
\end{equation*}
$$

holds for a sufficiently large n which depends on x.
Before its proof we note the Berry-Esseen bound and the Edgeworth expansion. Let ϕ be the density of the standard normal distribution and

$$
\kappa_{3}=\sigma_{1}^{-3}\left[E\left[\left(g^{(1)}(X)\right)^{3}\right]+3(k-1) E\left[g^{(1)}\left(X_{1}\right) g^{(1)}\left(X_{2}\right) g^{(2)}\left(X_{1}, X_{2}\right)\right]\right]
$$

Under the condition of this theorem we have the Berry-Esseen bound

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n}-\theta\right) \leq x\right)-\Phi(x)\right| \leq \frac{C_{1}}{\sqrt{n}} \tag{2.5}
\end{equation*}
$$

and the Edgeworth expansion

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n}-\theta\right) \leq x\right)-Q_{n}(x)\right| \leq \frac{\epsilon_{n}}{\sqrt{n}} \tag{2.6}
\end{equation*}
$$

where

$$
Q_{n}(x)=\Phi(x)-\frac{1}{6 \sqrt{n}}\left(x^{2}-1\right) \kappa_{3} \phi(x)
$$

and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ (see, for example, Maesono and Yamato, 1994).
Proof of Theorem 2.6. Let M be a positive constant such that

$$
\begin{equation*}
\left|x^{2}-1\right| p(|x|) \phi(x) \leq 1 \quad \text { for } \quad|x| \geq M . \tag{2.7}
\end{equation*}
$$

By the definition of Q_{n} we have

$$
\begin{gathered}
I_{n}=\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n}-\theta\right) \leq x\right)-\Phi(x)\right| \\
\leq \sup \left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n}-\theta\right) \leq x\right)-Q_{n}(x)\right|+\frac{1}{6 \sqrt{n}}\left|\left(x^{2}-1\right) \kappa_{3}\right| \phi(x)
\end{gathered}
$$

For a given x, we can choose a sufficiently large n such that $\epsilon_{n}<1 / p(|x|)$. Using (2.6), for $|x| \geq M$, we have for a sufficiently large n

$$
I_{n} \leq \frac{1}{\sqrt{n} p(|x|)}+\frac{\kappa_{3}}{6 \sqrt{n} p(|x|)}=\frac{C_{1}}{\sqrt{n} p(|x|)} .
$$

If $|x| \leq M$, then $p(|x|)$ is bounded and $1 / p(M) \leq 1 / p(|x|) \leq 1 / p(0)$. Therefore by (2.5) we have

$$
I_{n} \leq \frac{C_{2}}{\sqrt{n} p(|x|)}
$$

Thus we get (2.4).

3. Rates of convergence for \mathbf{Y}-statistics

If $d(k, k)=w(1, \ldots, 1 ; k)>0$, then there exists a constant $\beta(\geq 0)$ such that

$$
\begin{equation*}
\frac{d(k, k)}{D(n, k)}\binom{n}{k}=1-\frac{\beta}{n}+O\left(\frac{1}{n^{2}}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{k-1} \frac{d(k, j)}{D(n, k)}\binom{n}{j}=\frac{\beta}{n}+O\left(\frac{1}{n^{2}}\right) \tag{3.2}
\end{equation*}
$$

For U-statistic $U_{n}, \beta=\mathbf{0}$. In the following we assume that

$$
\beta>0
$$

because the corresponding results for U -statistic are given in Section 2. For V-statistic V_{n} and S-statistic $S_{n}, \beta=k(k-1) / 2$. For the LB-statistic $B_{n}, \beta=k(k-1)$.

As stated in Toda and Yamato (2001), we can write

$$
\begin{equation*}
Y_{n}=U_{n}+R_{n} \tag{3.3}
\end{equation*}
$$

and R_{n} satisfies the following: For $r(\geq 1)$ and integers $j_{1}, \ldots, j_{k}\left(1 \leq j_{1} \leq \cdots \leq j_{k} \leq k\right)$, we assume $E\left|g\left(X_{j_{1}}, \ldots, X_{j_{k}}\right)\right|^{r}<\infty$. Then we have

$$
\begin{equation*}
E\left|R_{n}-E R_{n}\right|^{r} \leq C_{1} n^{-\frac{3 r}{2}}, \quad r \geq 2 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left|R_{n}-E R_{n}\right|^{r} \leq C_{2} n^{-(2 r-1)}, \quad 1 \leq r<2 \tag{3.5}
\end{equation*}
$$

(we note here these inequalities hold even if r is not integer by the reason of the proof of Proposition 3.6 of Toda and Yamato, 2001). From (3.1), we have

$$
Y_{n}-E Y_{n}=U_{n}-\theta+\left(R_{n}-E R_{n}\right)
$$

Theorem 3.1. If for some $0 \leq \delta \leq 1$ the kernel g satisfy the conditions

$$
\sigma_{1}>0, \quad E\left|g^{(1)}\left(X_{1}\right)\right|^{2+\delta}<\infty, \quad E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{\frac{4+\delta}{3}}<\infty
$$

and

$$
E\left|g\left(X_{j_{1}}, \ldots, X_{j_{k}}\right)\right|^{\frac{8+\delta}{\delta}}<\infty, \quad 1 \leq j_{1} \leq \cdots \leq j_{k} \leq k
$$

then

$$
\sup _{-\infty<x<\infty}\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(Y_{n}-E Y_{n}\right) \leq x\right)-\Phi(x)\right|=O\left(n^{-\frac{\pi}{2}}\right)
$$

as $n \rightarrow \infty$.
Proof. Let G_{n} and Φ_{n} be the distribution functions of $\left(\sqrt{n} /\left(k \sigma_{1}\right)\right)\left[Y_{n}-E Y_{n}\right]$ and $\left(\sqrt{n} /\left(k \sigma_{1}\right)\right)\left[U_{n}-\theta\right]$, respectively. Then for any $\varepsilon>0$

$$
\begin{equation*}
\sup \left|G_{n}(x)-\Phi(x)\right| \leq \sup \left|\Phi_{n}(x)-\Phi(x)\right|+P\left(\frac{\sqrt{n}\left|R_{n}-E R_{n}\right|}{k \sigma_{1}} \geq \varepsilon\right)+\frac{\varepsilon}{\sqrt{2 \pi}} \tag{3.6}
\end{equation*}
$$

(see, for example, Lee, 1990, p.187). By taking $\varepsilon=n^{-\delta / 2}$ and using Markov's inequality and (3.3),

$$
P\left(\frac{\sqrt{n}\left|R_{n}-E R_{n}\right|}{k \sigma_{1}} \geq \varepsilon\right) \leq \frac{1}{\varepsilon^{\frac{8+\delta}{\delta}}} E\left[\frac{\sqrt{n}\left|R_{n}-E R_{n}\right|}{k \sigma_{1}}\right]^{\frac{8+\delta}{\delta}} \leq C n^{-\frac{8}{2}+\frac{1}{12}(\delta+12)(\delta-1)}
$$

Since $0 \leq \delta \leq 1$,

$$
P\left(\frac{\sqrt{n}\left|R_{n}-E R_{n}\right|}{k \sigma_{1}} \geq \varepsilon\right)=O\left(n^{-\frac{5}{2}}\right)
$$

Thus applying this relation and Lemma 2.1 to (3.4) with $\varepsilon=n^{-\delta / 2}$, we get sup | $G_{n}(x)-\Phi(x) \left\lvert\,=O\left(n^{-\frac{5}{3}}\right)\right.$.

Theorem 3.2. Suppose that $\sigma_{1}>0, E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{3}<\infty$ and

$$
E\left|g\left(X_{j_{1}}, \ldots, X_{j_{k}}\right)\right|^{2}<\infty, \quad 1 \leq j_{1} \leq \cdots \leq j_{k} \leq k
$$

Then, inequality

$$
\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(Y_{n}-E Y_{n}\right) \leq x\right)-\Phi(x)\right| \leq \frac{C}{\sqrt{n}\left(1+x^{2}\right)}
$$

holds for all $x \in R$.
Proof. For the first term of the left-hand side of the inequality

$$
\begin{equation*}
\frac{\sqrt{n}}{k \sigma_{1}}\left(Y_{n}-E Y_{n}\right)=\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n}-\theta\right)+\frac{\sqrt{n}}{k \sigma_{1}}\left(R_{n}-E R_{n}\right) \tag{3.7}
\end{equation*}
$$

By Markov's inequality and (3.2) we have for $x \neq 0$

$$
P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left|R_{n}-E R_{n}\right| \geq \frac{C_{1}}{\sqrt{n}}|x|\right) \leq \frac{C_{2}}{n|x|^{2}}
$$

For $|x| \geq 1$, we have $1+|x|^{2} \leq 2|x|^{2}$ and so

$$
\begin{equation*}
P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left|R_{n}-E R_{n}\right| \geq \frac{C_{1}}{\sqrt{n}}|x|\right) \leq \frac{C_{3}}{n\left(1+|x|^{2}\right)} \tag{3.8}
\end{equation*}
$$

Applying Lemma 2.2, (3.5) and (3.6) to Lemma 2.3, we get the theorem.

Theorem 3.3. Suppose that $\sigma_{1}>0, E\left|g\left(X_{1}, X_{2}\right)\right|^{3}<\infty$, and $E\left|g\left(X_{1}, X_{1}\right)\right|^{3}<$ ∞. Then, the inequality

$$
\begin{equation*}
\left|P\left(\frac{\sqrt{n}}{2 \sigma_{1}}\left(Y_{n}-E Y_{n}\right) \leq x\right)-\Phi(x)\right| \leq \frac{C}{\sqrt{n}(1+|x|)^{3}} \tag{3.9}
\end{equation*}
$$

holds for $n \geq 8$ and all $x \in R$.

Proof. By Markov's inequality and (3.2) we have for $x \neq 0$,

$$
P\left(\frac{\sqrt{n}}{2 \sigma_{1}}\left|R_{n}-E R_{n}\right| \geq \frac{C_{1}}{\sqrt{n}}|x|\right) \leq \frac{C_{2}}{n^{3 / 2}|x|^{3}}
$$

For $|x| \geq 1$, we have $(1+1 /|x|)^{3} \leq 2^{3} \leq n$ and so

$$
\begin{equation*}
P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left|R_{n}-E R_{n}\right| \geq \frac{C_{1}}{\sqrt{n}}|x|\right) \leq \frac{C_{3}}{\sqrt{n}(1+|x|)^{3}} \tag{3.10}
\end{equation*}
$$

Applying Proposition 2.4, (3.5) and (3.10) to Lemma 2.5, we get (3.9)
Let us consider a bound related with a polynomial. If we allow n to depend on x, then we have the following.

Theorem 3.4. Let $\sigma_{1}>0, E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{3}<\infty$ and $E\left|g\left(X_{j 1}, \ldots, X_{j_{k}}\right)\right|^{2}<$ $\infty\left(1 \leq j_{1} \leq \cdots \leq j_{k} \leq k\right)$. In addition, we suppose that $\lim _{|t| \rightarrow \infty}|\eta(t)|<1$. Let p be a polynomial which is positive and increasing over $[0, \infty)$. Then inequality

$$
\begin{equation*}
\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(Y_{n}-E Y_{n}\right) \leq x\right)-\Phi(x)\right| \leq \frac{C}{\sqrt{n} p(|x|)}, \quad x \in R \tag{3.11}
\end{equation*}
$$

holds for a sufficiently large n which depends on x.
We can prove this theorem by the similar method to Theorem 2.6, using the BerryEsseen bound of $\left(\sqrt{n} /\left(k \sigma_{1}\right)\right)\left[Y_{n}-E Y_{n}\right]$ (Toda and Yamato, 2001) and its Edgeworth expansion (Yamato et al., 2002). We note that $Y_{n}-\theta$ has a bias but $Y_{n}-E Y_{n}$ has no bias. Under the condition of this proposition we have the Berry-Esseen bound

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(Y_{n}-E Y_{n}\right) \leq x\right)-\Phi(x)\right| \leq \frac{C_{1}}{\sqrt{n}} \tag{3.12}
\end{equation*}
$$

and the Edgeworth expansion

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|P\left(\frac{\sqrt{n}}{k \sigma_{1}}\left(Y_{n}-E Y_{n}\right) \leq x\right)-Q_{n}(x)\right| \leq \frac{\epsilon_{n}}{\sqrt{n}} \tag{3.13}
\end{equation*}
$$

where $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. We can prove Theorem 3.4 by using these results.

Acknowledgement

The authors would like to express their thanks to the referee for his careful reading and kind comments.

References

Borovskikh, Yu.V. (1996). U-statistics in Banach spaces. VSP, Utrecht.
Koroljuk, V.S. and Borovskich, Yu.V. (1994). Theory of U-statistics, Kluwer Academic Publishers, Dordrecht.
Lee, A. J. (1990). U-statistics, Marcel Dekker, New York.
Maesono, Y. and Yamato, H. (1994). U-statistics and related topics, Sugaku Exposition, 7, 43-58.
Nomachi, T., Kondo, M. and Yamato, H. (2001). Higher order efficiency of linear combinations of U-statistics as estimators of estimable parameters, Scientiae Mathematicae Japonicae, 56, 95-106.
Toda, K. and Yamato, H. (2001). Berry-Esseen bounds for some statistics including LB-statistic and V-statistic, J. Japan Statist. Soc., 31, No. 2, 225-237.
Yamato, H., Nomachi, T. and Toda, K. (2003). Edgeworth expansions of some statistics including LB-statistic and V-statistic, J. Japan Statist. Soc., (to appear).
Zhao, Lincheng (1983). Non-uniform bounds for U-statistics, China Annal. Math., Ser. A, 4, No.6, 699-706.
Zhao, Lincheng and Chen, Xiru (1983). Non-uniform convergence rates for distributions of U-statistics, Scientia Sinica, Ser. A, 4, No.6, 699-706.

Received December 12, 2002
Revised April 17, 2003

[^0]: * Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan.
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Kagoshima University, Kagoshima 890-0065, Japan.

