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FOR NON-DEGENERATE KERNEL

By

Koichiro Topa* and Hajime YaMATO!

Abstract

As an estimator of an estimable parameter, we consider & linear combination of
U-statistics introduced by Toda and Yamato (2001). As a special case, this statistic
includes the V-statistic and LB-statistic. In case that the kernel is not degenerate,
this linear combination of U-statistics converges to normal distribution, We show
some rates of convergence different from Berry-Esseen bound.

Key Words and Phrases: Estimable parameter, Rate of convergence, linear combination of
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1. Introduction

Let 8(F) be an estimable parameter of an unknown distribution F and g(z1, -, T#)
be its kernel of degree k(> 2). We assume that the kernel g is symmetric and not
degenerate. Let X3, ..., X, be a random sample of size n from the distribution F.

As an estimator of ¢(F), Toda and Yamato {2001} introduces a linear combination
Y of U-statistics as follows: Let w(r1,...,r;; k) be a nonnegative and symmetric func-
tion of positive integers ry,...,r; such that ry +---+r; =k for = 1,..., k. We assume
that at least one of w(ry,...,r; k)'s is positive. For j = 1,...,k, let g(j)(21,...,%5) be
the kernel given by '

1 +
g1, .. 25) = mzrl+___+rj=kw(f‘1,. N P 7/ € I SN ISR 73 N

T ri

(1.1)
where the summation Z:‘l fobry=k is taken over all positive integers ry, ..., vy satisfying
ro+ 41 = k with j and k fixed and d(k,j) = X7 . o001, 75 k) for
1,2,....k Let U,(,")‘ be the U-statistic associated with kernel g(;)(21, vooy 253 k) for
1,...,k The kernel gi»{z1,...,z;;k) is symmetric because of the symmetry of
w(ry,-. .,y k). Hd{k, ) is equal to zero for some j, then the associated w(r1,...,r;; k)’s
are equal to zero. In this case, we let the corresponding statistic UL be zero. Note that

’
i
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Uk = U, for w(l,...,1;k} > 0, because of gy = g. The statistics Y, is given by

%= B2 Zd(k a(;)ve, a2)

where D{n, k) = E;;, d(k, ) (';) Since w's are nonnegative and at least one of them is
positive, D(n, k) is positive. ¥,, includes important statistics as shown in the following
examples.

EXAMPLE 1. Let w be the function given by w(1,1,...,1;k) = land w(ry,...,rs; k) =
0 for positive integers 7y,...,7; such that r +---+r;=kfor j=1,...,k— 1. Then
the corresponding statistic ¥, is equal to U-statistic U,,, which is given by

-1
T
Un = (k) Z g(XJ'n'-' rx.‘."g)a (13)
1) < Cjpsn

where 21<, 1 << ju<n denotes the summation over all integers ji,. .., jr satisfying 1 <
A< <mEn

ExXaMPLE 2. Let w be the function given by w(ry,...,r;;k) = 1 for positive
integers ry,...,r; such that ry + ... +7; = k for j = 1,...,k. Then the corresponding
statistic Y;, is equal to the LB-statistic B, given hy

|.

1t APk ng hg

nt+k—1\""

By = k Z g(Xl,...,Xll,...,X,,,...,Xn), (14)
where 3°_ . . _, denotes the summation over all non-negative integers r1,..., 7 sat-
isfying ry + - - + 74 = k.

EXaMPLE 3. Let w be the function given by w(ry,...,r;; k) = kl/(r)---r;1) for

positive integers ry,...,r; such that ry + .-+ r; = kfor j = 1,..., k. Then the
corresponding statistic Y, is equal to the V-statistic V|, given by

- ik z c 3T (Ko X )- (1.5)
i=1 Fe=1

(See Toda and Yamato, 2001).

EXAMPLE 4. Let w be the function given by w(ry,...,r;k) = kl/(ry---r;) for
positive integers r,...,7; such that ry+--.47; = kfor j = 1,..., k. Then, for example,
the corresponding statistic Y, for the third central moment of the distribution F is given
by

T - R

where X is the sample mean of X;,...,X, (see Nomachi et al., 2002).
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For the non-degenerate kernel g, U-statistic U/, converges to normal distribution.
The purpose of this paper is to show some rates of convergences different from the
Berry-Esseen bound, for linear combination of U-statistics Y;, given by (1.3). In Section
2, we quote three rates of convergence different from the Berry-Esseen bound, from Zhao
(1983), Zhao and Chen (1983), Koroljuk and Borovskich (1994) and Borovskikh (1596).
Furthermore we give a new rate described by using a polynomial. In Section 3, for the
statistic ¥;, we shall show three rates of convergence to normal distribution, using the
propositions of Section 2. Furthermore, we give a rate different from these ones, using
a polynomial.

2. Rates of convergence for U-statistics
For kernel g(z1,...,2:), we put

1,/)1(.1:1) = E(Q(Xl,. . ,Xk) l Xl B 21),

'J’Z(zlsn':?) = E(Q(Xl}" '!Xk) | Xl = Il,xz :::1;2),
9V (z1) =v1(m) -8, of = Eg™(X1)? >0,

and

9P (z1, 22) = Pa(@1, 22} — Y1 (®1) — Y1 (m2) — 0.
Let ®(x) be the standard normal distribution function. We shall quote two rates of
convergence of the distribution for U-statistic Up,.

LEMMA 2.1. (Koroljuk and Borovskich, 1994, Theorem 6.2.4) If for some0 <48 <1
kernel g satisfies the conditions

a1 >0, E|gV(X) PH< o0, E|g(Xa,...,Xs) | F< oo,

then
wp | P(L W~ 0) <) - 8(a) I=O(n~*) @)

— 00 ELOD koy

as n — 0o, and for § =0 we con replace O(1) on the right-hand side by o(1).

LEMMA 2.2. (Koroljuk and Borovskich, 1994, Theorem 6.2.5, Zhao, 1983) Let o, >
0 and E | g(Xq,...,Xx) 3< 00. Then the ineguality

c
V(1 +22)

holds for all z € R, where C depends on kernel g only via o1 and E | g [* and does not
depend on x and n.

| P(Eﬁ-"—f(uﬂ —0) < z) — ®(z) |< (2.2)

Hereafter we nse C, Cy, Ca, Cs, ... as generic constants which do not depend on z
and n. We shall show the similar result to (2.2) for Y-statistic Y,. For this purpose we
quote the following.
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LEMMA 2.3. (Zhao, 1983, Lemma 7) Suppose that W,, = Wy + W2, n=1,2,.
be o sequence of random variables. Denote the distribution functions of W,, and Wy, by
F, and F,,), respectively. If

G
L ———
| Fa1 — ®(z) |< vf_(1+m2)
forallze Rand for|z|>1
Cy
> _—
P(|Wﬂ2| \/—lzl) ﬁ(l-’-ﬁz),
then forallz € R
| By — ®(z) |<L
" = va(l +z?)

In the following lemma, we consider kernel g of degree k=2 .

LEMMA 2.4, (Zhao and Chen 1983) Let o1 > 0 and E | g(X1, Xa) |3< oo. Then
the inequality
C

/
| P(E(U,. —0) <) - ¥(a) | AT T2TP (2.3)

holds for all n(> 2) and all 7 € R.

For this lemma, see also, Koroljuk and Borovskich (1994), Theorem 6.2.6 and Borovskikh
(1996), Theorem 6.4.1. We shall show the similar result to (2.3) for the Y-statistic ¥,.
For this purpose we quote the following.

LEMMA 2.5. (Zhao and Chen, 1983, Lemma 3) Suppose that Wy, = Wy + Wao,
n=1,2,... be a sequence of random variables. Denote the distribution functions of W,
and Wy by F, and Fo,, respectively. If

Gy
- P S
|Fﬂ1 @(iﬂ) |— ‘/1,-3(14_ | z |)3
forallze R and for |z |21
Cs
P(|Waa|> z S itz
(12> Z2121) € Zori o
then forallz € R o
F,- < —l
= S T e e

Again we consider the kernel of degree & > 2. Let us consider a bound related with
& polynomial including 1 + 22 of (2.2) and (1 +z)® of {2.3). If we allow n to depend on
x, then we have the following.
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THEOREM 2.8. Let oy > 0 and E | g(X,...,X;) |¥< co. In eddition, we suppose
that limpy—.oc | 7(t) |< 1. Let p be a polynomial which is positive and increasing over
[0,00). Then inequality

| P(F@(Un —9)< :c) — ®(z) |< zER (2.4)

<
ZEDY
holds for a sufficiently large n which depends on z.

Before its proof we note the Berry-Esseen bound and the Edgeworth expansion.
Let ¢ be the density of the standard normal distribution and

xs = o7 > [E[gM(X))*] + 8(k — DE[gD (X1)gV (X2)e® (X1, X2)]]-
Under the condition of this theorem we have the Berry-Esseen bound

I (i \/_(Uﬂ ~6) <z) - 8(a) I< % (2.5)
and the Edgewor’t.h expa.nsion
Yoy, 6y <a
| P -0 <a) -0 1€ 2 2.6)
where

Qn(z) = ®(z) - \/- z? — Drzd(z)
and e, — 0 as n — oo (see, for example, Maesono and Yamato, 1994).
Proof of Theorem 2.8. Let M be a positive constant such that
|z? —11p(|z @) <1 for |z]>M. 2m
By the definition of @, we have

o=l P(LWa-0) <7) - 2)|

‘ vn
<sup | P2 (Un - 0) < 2) = Qulo) | +5 7= | (" = D | ().
For a given z, we can choose a sufficiently large n such that ¢, < 1/p{| = |}. Using (2.6},
for | z |> M, we have for a sufficiently large n
In < 1 + K3 = C]_
vap(lz ) ~ 6vmp(lz|)  apll=

If | # |< M, then {| = |) is bounded and 1/p(M) < 1/p{| = |) < 1/p(0). Therefore by
(2.5) we have

%
b= N ED)
Thus we get (2.4). u
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3. Rates of convergence for Y-statistics
If d(k, k) = w(l,...,1; k) > 0, then there exists a constant 3{> 0) such that

dik, k 1
D((n, k)) (';) —1- g +0() 3.1)
and -
=L dk,5) (n\ _ B, 1
2 D(n, k) (5) =2+t ®3)

For U-statistic U,, 8 = 0. In the following we assume that
B>0,

because the corresponding results for U-statistic are given in Section 2. For V-statistic
Vn and S-statistic Sn, B = k(k — 1)/2. For the LB-statistic B,, 8 = k{k — 1).

As stated in Toda and Yamato (2001), we can write
Yuo=U.+R, (33)

and R, satisfies the following: For r(> 1) and integers jy,...,jx (1 < H1 € --- < jx < k),
we agsume F | g(Xj;,,...,X;,) ["< co. Then we have

E|R,—ER,['<Cin ¥, r>2 (3.4)

and
E|Ry—-ER,"SCpn~ -1, 1<r<2, (3.5)

(we note here these inequalities hold even if r is not integer by the reason of the proof
of Proposition 3.6 of Toda and Yamato, 2001). From (3.1), we have

Yn _EYn = Un _8"'(.&1 _ERn)o
THEOREM 3.1, If for some 0 < § <1 the kernel g satisfy the conditions

4
a1>0, E|gW(X,) PH<o0, E|g(X,...,Xx) [ F< oo,

and
Elg(xin---1xjh)I£Eé<°°r ]-Sle"‘Sijki
then /A
n
—_—n — n < —_ = _%
_msgfmw(kal(y BY,)<z) - (@) |= O(n %)
asg 71— 00,

Proof. Let G, and &, be the distribution functions of (/R/{k¢1))[¥;, — EY,] and
(vn/(ke1))[Un — 8], respectively. Then for any € > 0

E

\/ﬁ,

sup | Ga(s) - $(2) |< sup ] 8a(a) - #(a) | +P(LLIn—EBnl 5 oy | € (g
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(see, for example, Lee, 1090, p.187). By taking ¢ = n~%/2 and using Markov’s inequality
and (3.3),

vn| R, — ER, | Vi | R, - ER, 1%* —$+ P (5+12)(5-1)
P - >e) < EEF [ Yoo < Cn }
Since 0 <8 <1,
V| Ry — ER, | _ on-}
P( ko >¢e)=0(n"%),
Thus applying this relation and Lemma 2.1 to (3.4) with ¢ = n~%/2, we get sup |
Ga(z) — 8(z) |= O(n~ ). u|

THEOREM 3.2. Suppose that oy > 0, E | 9(X1,..., Xz} P< 0 and
Bl g(Xjse s X5 P<o0, 185K <G <k
Then, t'na.qmlity
C

\/1—;
PR 1 52) 000 15 ey

holds for allz € R.

Proof. For the first term of the left-hand side of the inequality

L2 1y~ BY) = L2 Ua - 0)+ L2(R, ~ BR,), (37)
By Markov's inequality and (3.2} we have for £ £ 0
(£|Ru ER, > flzl) nlc;flg
For |z |>1, wehave 1+ |2 1?< 2|2 |? and s0
P(;f—f;lﬁ,.—mﬂl_v,_lwl) T (3.8)
Applying Lemma 2.2, (3.5) and {3.6) to Lemma 2.3, we get the theorem. a

THEOREM 3.3. Suppose that oy > 0, E | g(X1,X2) [¥< o0, and E | (X1, X1) P<
oo, Then, the inequality

C

o
| P(35 0 — BY) < 2) ~ () IS s

S0, (3-9)

holds forn > 8 and allz € R.
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Proof. By Markov’s inequalii;_f and (3.2) we have for x £ 0,

vn i Cy
_ - > —_ L .
P 5o 5Rub2 S 151) € i
For |z|>1,wehave (1 +1/ |z <2 <nandso -
Vn Ch Cs
- __ — D — < — .
P(kmm,. ER,.|_ﬁim|)_ﬁ(1+|zD3 (3.10)
Applying Proposition 2.4, (3.5) and (3.10) to Lemma 2.5, we get (3.9) O

Let us consider a bound related with a polynomial. If we allow n to depend on z,
then we have the following,

THEOREM 3.4. Let 0y > 0, E | g(X3,...,Xk) [P< o0 and E | g(X;1, ..., X;,) [P<
00 (L<g1 S--- < jx S k). In addition, we suppose that limsj_e. | 7(t) [< 1. Let p be
a polynomial which is positive and increasing over [0, 00). Then inequality

| P(i{y—f—(l’n - EY,)<2) - 3() |< z€R @.11)

__C
vap(l )’
holds for a sufficiently large n which depends on z.

We can prove this theorem by the similar method to Theorem 2.6, using the Berry-
Esseen bound of (v/n/(ko1))[Y, — EY,] (Toda and Yamato, 2001) and its Edgeworth
expansion (Yamato et al., 2002). We note that ¥, — 8 has a bias but ¥,, — EY,, has no
bias. Under the condition of this proposition we have the Berry-Esseen bound

Vi G
P n™- EY < —_— S r—— .
| (—-,m (Yo~ BY,) < 3) — &(a) | = (3.12)
and the Edgeworth expansion
VR €n
Pl — Yn - n) S — Yn < ) -
| ( o (¥a = EY,) z) — Qu(a) | = (3.13)

where €, — 0 as n - co. We can prove Theorem 3.4 by using these results.
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