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RATES OF CONVERGENCE IN DISTRIBUTION 
OF A LINEAR COMBINATION OF USTATISTICS 

     FOR NONDEGENERATE KERNEL

               By 

Koichiro TODA* and Hajime  YAMATOI

                           Abstract 

  As an estimator of an estimable parameter, we consider a linear combination of 
Ustatistics introduced by Toda and Yamato (2001). As a special case, this statistic 
includes the Vstatistic and LBstatistic. In case that the kernel is not degenerate, 
this linear combination of Ustatistics converges to normal distribution. We show 
some rates of convergence different from BerryEsseen bound.
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1. Introduction 

   Let 9(F) be an estimable parameter of an unknown distribution F and g(xi, ..., xk) 
be its kernel of degree k(> 2). We assume that the kernel g is symmetric and not 
degenerate. Let Xi, ... , Xn be a random sample of size n from the distribution F. 

   As an estimator of 9(F), Toda and Yamato (2001) introduces a linear combination 
Yn of Ustatistics as follows: Let w(rl, ... , rj; k) be a nonnegative and symmetric func
tion of positive integers r1i ... , rj such that r1 + • • • + rj = k for j = 1, ... , k. We assume 
that at least one of w(rl, ... , rj; k)'s is positive. For j = 1, ... , k, let g(j) (xl, ..., xj) be 
the kernel given by 

          1  + 
g(j) (xl, • • • , xj) =w(ri,...,rj;k)g(xi,..., xl,..., xj,..., xj),                   d(k),~ri+...+r=k 

                   r1 rj 

                                                   (1.1) 
where the summation Ei+ rj=k is taken over all positive integers r1, ..., rj satisfying 
r1 + • • + rj = k with j and k fixed and d(k, j) = , ... , rj; k) for 

j = 1, 2, ..., k. Let Uni) be the Ustatistic associated with kernel g(j) (xl, ... , xj; k) for 
j = 1, ... , k. The kernel g(j) (xl, ... , xj; k) is symmetric because of the symmetry of 
w(rl, ... , rj; k). If d(k, j) is equal to zero for some j, then the associated w(ri, ... , rj; k)'s 
are equal to zero. In this case, we let the corresponding statistic U7V) be zero. Note that 
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Unk) = Uri for w(1, ... , 1; k) > 0, because of g(k) = g. The statistics Yn is given by 

                                            is 

Yn Dn,kEd(k,j)jUnj), (1.2)                        () J=1 

where D(n, k) _ E3k.=1 d(k, j) (7) . Since w's are nonnegative and at least one of them is 
positive, D(n, k) is positive. Yn includes important statistics as shown in the following 
examples. 

   EXAMPLE 1. Let w be the function given by w(1, 1, ... , 1; k) = 1 and w(r1i ... , rj; k) = 
0 for positive integers r1, ... , rj such that r1 +  • • + rj = k for j = 1, ... , k  1. Then 
the corresponding statistic Yn is equal to Ustatistic Un, which is given by 

                                      -1 
Un =(nk)xxii, • • • , Xjk ), (1.3) 

                                         1<jl<•••<jk<n 

where E1<ji< -•<ik<<n denotes the summation over all integers j1i ... , jk satisfying 1 < 
j1<•••<3k<n. 

   EXAMPLE 2. Let w be the function given by w(r1, ... , rj; k) = 1 for positive 
integers r1, ... , rj such that r1 + • • • + rj = k for j = 1, ... , k. Then the corresponding 
statistic Yn is equal to the LBstatistic Bn given by 

                n+k-1-1          Bn = kE g(X1, • • • , X1, ... , Xn, • • • , Xn),(1.4) 
                     rl .+....+rn =k7 

1rn 

where Erl++r n=kdenotes the summation over all nonnegative integers r1,...,rn sat 
isfying r1 + • • • + rn = k. 

   EXAMPLE 3. Let w be the function given by w(r1, ... , rj; k) = k!/(r1!  • • rj!) for 
positive integers r1i ... , rj such that r1 +  • • + rj = k for j = 1, ... , k. Then the 
corresponding statistic Yn is equal to the Vstatistic Vn given by 

            n n 

Vn = n E ... E g(Xji , ... , Xjk ).(1.5) 
ji=1 jk=1 

(See Toda and Yamato, 2001). 

    EXAMPLE 4. Let w be the function given by w(r1 i ... ,r3; k) = k!/(r1 •  • rj) for 
positive integers r1, ... , rj such that r1 + • -+rj = k for j = 1, ... , k. Then, for example, 
the corresponding statistic Yn for the third central moment of the distribution F is given 
by 

                                          n n Sn =-----E(Xi  X)3, 
                                n2+l 

i-1 

where X is the sample mean of X1, ... , Xn (see Nomachi et al., 2002).
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    For the nondegenerate kernel g, Ustatistic  Un converges to normal distribution. 
The purpose of this paper is to show some rates of convergences different from the 
BerryEsseen bound, for linear combination of Ustatistics Yn given by (1.3). In Section 
2, we quote three rates of convergence different from the BerryEsseen bound, from Zhao 
(1983), Zhao and Chen (1983), Koroljuk and Borovskich (1994) and Borovskikh (1996). 
Furthermore we give a new rate described by using a polynomial. In Section 3, for the 
statistic Yn we shall show three rates of convergence to normal distribution, using the 
propositions of Section 2. Furthermore, we give a rate different from these ones, using 
a polynomial.

2. Rates of convergence for Ustatistics 
    For kernel g(xl, ... , xk), we put 

01(x1) = E(g(X1,...,Xk) I X1 = x1), 

02(X1, X2) = E(g(X1, ... , Xk) I X1 = xi, X2 = X2), 

g(1)(xl) = 01(x1) — 0, 0.? = E[g(l)(X02] > 0, 
and

'/~"~~,/' g(2)(xl,x2) =W2(x1,x2) —Y~1(x1)—Y'1(x2) — 0. 

Let (I)(x) be the standard normal distribution function. We shall quote two rates of 
convergence of the distribution for Ustatistic Un. 

   LEMMA 2.1. (Koroljuk and Borovskich, 1994, Theorem 6.2.4) If for some 0 < 5 < 1 
kernel g satisfies the conditions 

         Ql > 0, E I g(1) (Xi) I2+6< oo, E I g(X1i...,Xk) I4'< co, 

then 

            sup I P(—(Un—8) <x) —~(x) I= 0(n-4)(2.1) 
           —oo<x<oc1 

as n —* oo, and for 5 = 0 we can replace 0(1) on the right-hand side by o(1). 

    LEMMA 2.2. (Koroljuk and Borovskich, 1994, Theorem 6.2.5, Zhao, 1983) Let o-1 > 
0 and E I g(X1 i ... , Xk) I3< 00. Then the inequality 

            

I P(—(Un — 6) < x) —~(x) 1< -----------n(+x2)(2.2) 
  1( 

holds for all x e R, where C depends on kernel g only via cr1 and E I g 13 and does not 
depend on x and n. 

    Hereafter we use C, C1, C2, C3, ... as generic constants which do not depend on x 
and n. We shall show the similar result to (2.2) for Ystatistic Yn. For this purpose we 
quote the following.
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    LEMMA 2.3. (Zhao, 1983, Lemma 7)  Suppose that Wn = Wn1 + WT22, n = 1, 2, ... 
be a sequence of random variables. Denote the distribution functions of Wn and Wn1 by 
Fn and Fn1i respectively. If 

Fnl — (I)(x) I < Cl  
N/T(1+x2) 

for all xER and for lxl>1 

C2C3  P(IWn2I? lxl)< 
nl+x2, 

then for all x E R 

                     IFn43(x)I—< C4  0-41+x2). 

    In the following lemma, we consider kernel g of degree k = 2 . 

   LEMMA 2.4. (Zhao and Chen, 1983) Let al > 0 and E I g(X1, X2) 13< oo. Then 
the inequality 

            P(2~(Un — 0)<x) —~(x) I—< 13(2.3)         1,/—(+Ixl) 
holds for all n(> 2) and all x E R. 

For this lemma, see also, Koroljuk and Borovskich (1994), Theorem 6.2.6 and Borovskikh 
(1996), Theorem 6.4.1. We shall show the similar result to (2.3) for the Ystatistic Yn. 
For this purpose we quote the following. 

    LEMMA 2.5. (Zhao and Chen, 1983, Lemma 3) Suppose that Wn = Wn1 + Wn2, 
n = 1, 2, ... be a sequence of random variables. Denote the distribution functions of Wn 
and Wn1 by Fn and Fn1i respectively. If 

                   Fnl — 4)(x) I< Cl  VT
1(1+ I x 1)3 

for all xER and for lxl>1 

P(IWn2I?ifIxl)< n1+3x 3, 
then for all x E R 

                     IFn—(1)(x)I<_ C4 
                            Nrri(1+I x 1)3. 

   Again we consider the kernel of degree k > 2. Let us consider a bound related with 
a polynomial including 1 + x2 of (2.2) and (1 + x)3 of (2.3). If we allow n to depend on 
x, then we have the following.
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   THEOREM 2.6. Let  al > 0 and E I g(X1i ... , Xk) I3< oo. In addition, we suppose 
that limiti_,, I i1(t) I< 1. Let p be a polynomial which is positive and increasing over 
[0, oo). Then inequality 

I P(Un-9)<x) —(13(x) I< n~I), x E R(2.4) 
                   IC                             ,p(I 

holds for a sufficiently large n which depends on x. 

   Before its proof we note the BerryEsseen bound and the Edgeworth expansion. 
Let 0 be the density of the standard normal distribution and 

       = Ui 3 [E[(9(1)(X ))3] + 3(k  1)E[g(1) (X1)9(1) (X2)9(2) (Xi, X2)]] . 

Under the condition of this theorem we have the BerryEsseen bound 

             sup I P((Un — 9) < x) —(1)(x)  I <cn(2.5) 
             —oc <x<oo1 

and the Edgeworth expansion 

                      Arn              supIP(Un  9)<x)  Qn (x)IE n(2.6) 
            oo<x<oo i 

where 

Qn (x) =(1)(x) 1n (x2  1)ic30(x) 

and En --> 0 as n -* oo (see, for example, Maesono and Yamato, 1994). 

   Proof of Theorem 2.6. Let M be a positive constant such that 

Ix21IP(Ixi)(/)(x)<1 for IxI> -M.(2.7) 

By the definition of Qn we have 

                in =I P( 1(U,n9)<x)—(1)(x)I 
< sup I P((Un — 9) < x) — Qn(x) I +61n I (x2 — 1)K3 10(x)• 

For a given x, we can choose a sufficiently large n such that En < 1/p(I x I). Using (2.6), 
for I x I> M, we have for a sufficiently large n 

         In <1  jr-tp(I x I) 61p(I x I) N/Tip(I x 1)• 

If I x I < M, then p(I x I) is bounded and 1 /p(M) < 1/p(I x I) < 1/p(0). Therefore by 
(2.5) we have 

In <                      C2  ~
p(I xI)• 

Thus we get (2.4).^
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3. Rates of convergence for Ystatistics 
   If d(k, k) = w(1, ... , 1; k) > 0, then there exists a constant 13(> 0) such that 

d(k, k)  /n\ =1~O(1)(3.1) D(
n, k) knn2 

and                 d(k,j) (')=+O(2)(3 .2)               L•D(n , k)nn j=1 
For Ustatistic Un, ,Q = 0. In the following we assume that 

> 0, 

because the corresponding results for Ustatistic are given in Section 2. For Vstatistic 
Vn and Sstatistic Sn, ,Q = k(k  1)/2. For the LBstatistic Bn, ,Q = k(k  1). 

   As stated in Toda and Yamato (2001), we can write 

Yn=Un+Rn(3.3) 

and Rn satisfies the following: For r(> 1) and integers ji, . . . , jk (1 < j1 < • • • < jk < k), 
we assume E I g(Xjl, ... , Xjk) Ir< Do. Then we have 

               E I Rn  ERn Ir< Cin , r > 2 (3.4) 

and 
                E I Rn  ERn Ir< C2n—(2r-1), 1 < r < 2, (3.5) 

(we note here these inequalities hold even if r is not integer by the reason of the proof 
of Proposition 3.6 of Toda and Yamato, 2001). From (3.1), we have 

Yn  EYn = Un  0 + (Rn  ERn). 

   THEOREM 3.1. If for some 0 < 6 < 1 the kernel g satisfy the conditions 

Q1 > 0,E 19(1)(X1) I2+5< 00, E I g(X1, ... , Xk) 14 5 < 00, 

and 
            E I g(Xjl,...,Xjk) I86a<oo, 1 <j1 <... <jk <k, 

then 

           sup I P(\Ft(Yn-EYn)<x) -~(x) l=O(n-2) 
                 -00<x<00kQ1 

asn ->oo. 

   Proof. Let Gn and ~n be the distribution functions of (01/(ka1))[Yn  EYn] and 
(N/Ti/(kal))[Un  0], respectively. Then for any s > 0 

                              ,~ sup I Gn(x) 43(x) I<sup 14•n(x) (x) I +P( IRkERn I 
                                 ~> e) + , (3.6)               12ic
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(see, for example, Lee, 1990, p.187). By taking E  = n-6/2 and using Markov's inequality 
and (3.3), 

P(rn I R  ERn I > e) 1 E IRnERn 1]4°< Cn_i+ia(b+12)(5_1). 
ICUlE s/cal 

Since 0 < 8 < 1, 

P(fr1,IR,-ERnI ~e)=O(n-2). 
kQi 

Thus applying this relation and Lemma 2.1 to (3.4) with e = n-512, we get sup I 
Gn(x)  (I)(x) 1= O(n-2).^ 

   THEOREM 3.2. Suppose that al > 0, E I g(Xi, ... , Xk) 13< oo and 

E I g(Xi1, ... , Xik) I2< oo, 1 < ji < ... < jk < k. 

Then, inequality 

        P(EYn)<x)4)(x) n+x2() 
holds for all x E R. 

   Proof. For the first term of the left-hand side of the inequality 

            kQi(Yn  EYn) _ (Un  0) +kQl(Rn  ER,),(3.7) kQi 

By Markov's inequality and (3.2) we have for x 0 

          P(NrnIRn—ERnI> xI)< C2       kvinI xI2 

For Ix1>1,we have 1+Ix12<2Ix12 and so 

           P(~IRnERnI>Ci(x I)< C32(3.8) 
        k-07n(1+1 xI) 

Applying Lemma 2.2, (3.5) and (3.6) to Lemma 2.3, we get the theorem. ^ 

   THEOREM 3.3. Suppose that al > 0, E I g(Xi, X2) I3< oo, and E I g(Xi, Xi) I3< 
00. Then, the inequality 

           P (~(Yn  EYn)<x)43(x) 1� (3.9) 
                  2Ui                                    ,F1(1+  I X I)3 

holds for n > 8 and all x E R.
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    Proof. By Markov's inequality and (3.2) we have for x 0, 

          P(2~IRERnI>CnIxI)< 2  
           1~n3/2IxI3. 

For IxI> 1,wehave (1+1/ IxI)3 <23 <nandso 

            (kQI Rn — ERnI?cnlxI)<_± .(3.10)         1,~(1+1)3 

Applying Proposition 2.4, (3.5) and (3.10) to Lemma 2.5, we get (3.9) ^ 

    Let us consider a bound related with a polynomial. If we allow n to depend on x , 
then we have the following. 

THEOREM 3.4. Let Q1 > 0, E I g(Xl, ... , Xk) I3< oo and E I g(Xi 1 i ... , Xik) 12< 
00 (1 < ji < • • • < jk < k). In addition, we suppose that limitH oo I n(t) 1< 1. Let p be 
a polynomial which is positive and increasing over [0, oo). Then inequality 

          P((Yn EYn)<x)—(1)(x)I<  nc, xER (3.11)      1~p(IXI) 

holds for a sufficiently large n which depends on x. 

    We can prove this theorem by the similar method to Theorem 2.6, using the Berry
Esseen bound of (//(ku1)) [Yn  EYn] (Toda and Yamato, 2001) and its Edgeworth 
expansion (Yamato et al., 2002). We note that Yn  9 has a bias but Yn  EYn has no 
bias. Under the condition of this proposition we have the BerryEsseen bound 

sup I P (Yn  EYn) < x)  Cx) 15_ C1(3.12) 
                00<x<00 k0.1 

and the Edgeworth expansion 

             sup I P (,(Yn — EYn)<x) — Qn (x) 15_--€L--T(3.13)      —00<x<ooko'1v~ 

where en -* 0 as n -> 00. We can prove Theorem 3.4 by using these results .
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