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RATE OF CONVERGENCE IN DISTRIBUTION 

OF A LINEAR COMBINATION OF USTATISTICS 
      FOR A DEGENERATE KERNEL

                 By 

Hajime YAMATO* and Masao KONDOI

                           Abstract 

  Associated with an estimable parameter, we consider a linear combination of 
Ustatistics (Toda and Yamato, 2001) which includes Vstatistic and LBstatistic. 
For a degenerate kernel, its asymptotic distribution (Yamato et al., 2001) is easily 
derived by the same method as Yamato and Toda (2001). We give the rate of this 
convergence in distribution.

Key Words and Phrases: Linear combination of Ustatistics, order of degeneracy, rate of con

vergence.

1. Introduction 

   Let 0(F) be an estimable parameter of an unknown distribution function F which 
has a symmetric kernel g(xi, ..., xk) of degree k(> 2) and X1, ... , Xtz be a random sample 
of size n from F. 

   As an estimator of 0(F), Toda and Yamato (2001) introduced a linear combination 
Yn of Ustatistics as follows. Let w (r1i ... , r j ; k) be a nonnegative and symmetric func
tion of positive integers r1i ... , rj such that j = 1, ... , k and r1 + • • • + rj = k, where k 
is the degree of the kernel g and fixed. We assume that at least one of w(ri, ... , rj; k)'s 
is positive. For j = 1, ... , k, let g(j) (x1, ..., xj) be the kernel given by 

    1 +(T 
     g(j) (xl, ... ) xj)=d(k, j)~Tl+...+,_kw(rl, ... ,rj;k)g(xll,...,xj7 ),(1.1) 

where 

rlrn 

and the summation 1+.••+r;=k is taken over all positive integers r1, ..., rj satisfying 
r1 + + rj = k with j and k fixed and d(k, j) = Erl+„•+•;=kw(r1, ... , rj; k) for 
j= 1, 2, ..., k. 

  Let UC') be the Ustatistic associated with this kernel g(j) (xl, ... , xj; k) for j = 
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 1,  ... , k. The kernel g(j) (xl, ... , xj; k) is symmetric because of the symmetry of w(r1, ... , 
rj; k). If d(k, j) is equal to zero for some j, then the associated w(r1 i ... , rj; k)'s are 
equal to zero. In this case, we let the corresponding statistic U4') be zero. The statistics 
Yn is given by 

           Yn =-------1d(k,j) U(j),(1.2) D(
n, k) 

where D(n, k) = E3=1 d(k, j) (7). Since w's are nonnegative and at least one of them is 
positive, D(n, k) is positive. 

Yn generalizes well-known statistics. Four examples are given to show this . First, 
let w be the function given by w(1,1, ... ,1; k) = 1 and w(r1i ... , rj; k) = 0 for positive 
integers r1i ... , rj such that j = 1, ... , k — 1 and r1 + • • • + ri = k. Then Yn is equal to 
Ustatistic Un, which is given by 

         (n)_l  Un = (k)9(X.i1 , ... , Xik ), (1.3) 1<j1<•••<jk<n 

where >1< .71<...<,k<n denotes the summation over all integers j1, ... , jk satisfying 1 < j
1<•••<jk<—n. 

Second, let w be the function given by w(ri, ... , rj; k) = 1 for positive integers 
r1, ... ,rj such that j = 1, ... , k and r1 + • • • + r2 = k. Then Yn is equal to the LB
statistic Bn given by 

                      n+k-1—1          Bn =  E g(Xi1,...,XT1n),(1.4) 

where E denotes the summation over all non-negativeintegers rrsat rl+...+'^'n=kgg1~...~n 
isfying r1 + • • • + rn = k. 

   Third, let w be the function given by w (r1 i ... , rj; k) = k! / (r1! • • • rj!) !) for positive 
integers r1i ... , ri such that j = 1, ... ,k and r1 + • • • + ri = k. In case of k = 3, Yn is 
equal to the Vstatistic Vn given by 

             1nn                 Vn=>...>g(Xil,...,Xik)•(1.5) 
                              nk

71=1 3k=1 

(See Toda and Yamato, 2001). 
   The last, let w be the function given by w(r1i ... , rj; k) = k!/(r1 • • • rj) for positive 

integers r1i ... ,rj such that j = 1, ... , k and r1 + • • • + r3 = k. In the case of k = 3, Yn 
for the third central moment of the distribution F is given by 

                                            n n Sn = n2 + 1 E(Xi — X)3, 
i=1 

where X is the sample mean of X1,... , Xn (see Nomachi et al., 2002). 

    Now, for the kernel g(x1, ... , xk), we put 

1' (x1, ... , xi) = E[g(X1, ... , Xk)) X1 = x1 i ... , X3 = xj], j = 1, ..., k
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and 

                   o2=  Var[  i(X1i...,Xi)], j =1, ..., k. 

                                               In this paper, we suppose that 

=...=oa -1 =0 and a3>0, 

that is, the Ustatistic and/or the kernel g is degenerate of order d— 1.  Hence, Eid(Xl, 
   Xd) = 0 and with probability one (w.p.1) 1Pi(Xi) = 0, ... , Od_1(Xl, ... , Xd_1) = 9. 

  The asymptotic distribution of U, was studied by Lee (1990), Koroljuk and Borovs
kich (1994) and Borovskich (1996). We may summarize their results as follows. Let W 
be the Gaussian random measure associated with the distribution F on the real line 
(—oo, oo) such that EW (A) = 0 and EW (A)W (B) = F(A fl B) for any Borel sets A, 
B. Denote the stochastic integral of the function f (xi, ..., x,) by Jc(f ), that is, 

                    r~             L(f) =J...ff (x1, ..., xc)W (dx1) ... W(dxc). 
                                              00 

Alternatively, 4(1) can be represented by using an orthonormal basia el, e2, ...of L2(F) . 
                 f R For any function fi and f2 such thatc fi(xi, ... , x,)2fI;-1 dF(xj) < oo (i =1, 2), 

their inner product is given by (fl, f2) = fR~ fl (xl, ... , x~)f2 (x1, ... , x,) rt =1 dF(x;). 
Jc (f) is also written as 

                00 00 

Jc(f) = E ... >(f,ei, ...eic)1114,0)(Z1), 
i,=1 is=11=1 

where Hr is the r-th Hermite polynomial, {Z,}1 is a sequence of independent standard 
normal random variables and rl (i) is the number of indices among i = (i1, •••, id) equal to 
1. For the degenerate kernel g of order d— 1,  under the conditions E g(X1, ... , Xk) 12 < 
oo, the asymptotic distribution of U, is given by 

                v(k)nd/2 (Un — e)~(1.6Jd(~d,d),\) 
where means the convergence in distribution as n co and d,d(x1, •••, xd) = 

   The convergence (1.6) also holds under the following conditions (i) or (ii): (i) 
E ( g(c)  , Xd) 12c/ (2c—d)  < oo for c = d, d + 1, ... , k (see Koroljuk and Borovs
kich,1994). (ii) E l g(d) (Xi, ... , Xd) 12 < oo and t2c/(2e—d) p[I g(c) (> t] —> 0 (t  oo) for 
c = d + 1, ... , k (see Borovskich,1996). 

  Yamato et al. (2001) studied an invariance principle (functional limit theorem) of 
Yn and derived its asymptotic distribution as a special case of the principle. Also the 
asymptotic distribution of Yn may be obtained by the method of Yamato and Toda 
(2001). 
  The purpose of this paper is to give the asymptotic distribution of Yn directly by the 

later method and to evaluate the rate of its convergence, for the degenerate kernel. In 
Section 2, we give the asymptotic distribution of a linear combination Y,, of Ustatistics 
given by (1.2). In Section 3, we give its rate of convergence in distribution.
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2. Asymptotic distribution of Ystatistic 

    For kernel  g(j)  (xl,  ...  ,  xj) given by (1.1), we put for c = 1, ... , j and j = 1, ...,k 

0(j),c(xl , ..., xc) = E~g(j) (Xl, ..., Xj) I X1= x1, ..., Xc = xc] 

_ 1 v.+                                  w(rl,...rjik)Eg1211...2~`X+i1...~Xj3), d(k
,j) *i+...+r~—k 

where on the right-hand side we use the notation used in (1.1). 
   The Ustatistic U4-1) j = 1, ... , k corresponding to to the kernel g(j) have the 

following properties. 

   LEMMA 2.1. (Yamato et al., 2001) 

                 E [14,-11= 9, kd21< j< k 

or 

E[U(k—j)] = 9, 0 < j < d;1 

   LEMMA 2.2. (Yamato et al., 2001) The order of degeneracy of UIk—j) is at least 
d-2j-1 for <j<(d-1)/2 and 

~~/k  d+ jw(1k-2j, 2j; k)  
 " Y~(kj),d-2j(x1•••, xd-2j) = B +[~d,d-23(x1, ...,xd_2j) — 0],                        j d(k,k-j) 

                                                    (2.1) 
where for 1 < j < (d 1)/2 

(Pd,d-2j (x1, •••, xd-2j) = E[Y'd(xl, ..., xd-2j, Xd-2j+1, Xd-23+1, .••, Xd—j, Xd—j)] (2.2) 

and 
w(1T,2s;k) =w(1,1,•••,1,2,2,—•,2;k). 

r s 

   By the similar method to the above Lemma, we can show that for 1 < j < (d-1)/2, 

E(Pd,d-23 (X1 ) ..., Xd-2j) = 9.(2.3) 

From Lemmas 2.1 and 2.2, it follows that If d = 21 + 1 and 1 is a positive integer, 
then ale) = EUAk-1) = . • . = EU4k-1+1) = EU4k-t) = 9. The orders of degeneracy 
of U4k-1), , U(k-1+1) U(k-1) are at least 2(l  1), ..., 2, 0, respectively. If d = 2l and 
d is a positive integer, then EU4k) = EUe-1) _ • • . = EU4k-1+2) = EU4k-14-1) = 
9. The orders of degeneracy of U4k-1), ,U(k1+2),U(k-1+1) are at least 2l  3, ..., 3, 1, 
respectively. 

   LEMMA 2.3. (Yamato et al., 2001) In case of d =21, 

  (_)1k l  EUnk1g = ------------ d(k,k -1)(I)1k_d,21;k  k) [E0d(X1,X1,..., Xi, Xi)  0]. (2.4)
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   Now we assume  d(k,  k) = w(1, ... , 1; k) > 0, then, it follows that tie) = Un, 
because of g(k) = g. Under this assumption, there exists a constant b(> 0) such that 

                 d(kk)
rn(k)= 1 b+ O2) .(2.5)                  D (n, k) k!nn 

Thus 

              D n kd kkas n-*oo.(2.6) 

For the Ustatistic Un, d(k, k)n(k)/[D(n, k)k!] = 1. For the Vstatistic Vn and the S
statistic Sn, b = k(k  1). For the LBstatistic Bn, b = k(k  1)/2. (see Nomachi et 
al., 2001)). It is assumed that nk/D(n, k) is nondecreasing in Yamato et al. (2001) 
for invariance principle, but the convergence in distribution needs only the convergence 
(2.6). 

Yamato et al. (2001) obtained the asymptotic distribution of Yn from invariance 
principle. Alternatively, it can be obtained directly by the same method as Yamato 
and Toda (2001). We state here the idea of how to compute directly the asymptotic 
distribution of Yn. Noting the degeneracy of Unk-j), 0 < j < (d  1)/2, stated above, 
we expand Yn as follows: For d = 21 + 1 

nd/2 (Yn  0) _ E Tj,n + Rin,(2.7) 
j=--o 

where 

T= d(k,k (knj)  nd 2 U(k-j)  0 0 1 ... l 

k-I-1 

Rin = d(k~ j)D(n, k) ~3 nd/2 (U(j)—0).          E 
j=1 

By Minkowski's inequality we have 

                           k-1-1 
(1/2          [ERin] 1/2d(k, j)(3 ,nd/2 ~) _ 0)2] 2ll.                     D(n,k)[E(uiJ 

j=1 

By the relation (2.6), (7)nd/2/D(n, k) cnj-k+d/2 (n oo), where c is a positive 
constant. For 1 < j < k -1-1, it hols that j  k + d/2 < -1 -1 + d/2 < -1/2. Under 
the condition (2.11) given in the following theorem 2.4, we have E(U4')  0)2 < oo and 
therefore it follows that ERln = O(n-1). In case of d = 2l, it holds that j k + d/2 < 
-1  1 + d/2 < -1 for 1 < j < k  l  1. Thus, for d =21, 

1-1 

nd/2 (Yn — 0) = E Tj,n + T1,n + R2n, (2.8) 
                                        j=o 

where ER2n = O(n-2) under the condition (2.11) given in the following theorem 2.4. 
R1n i R2n do not affect the convergence in distribution of nd/2 (Yn — 0) .
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    We note that  g(k)  = gand the kernel g is assumed to be degenerate of order d —1 . 

We put g(l(21 i... ,2d) =bd(21, ... ,2d) — 0( = (pd,d (21, ... , 2d) — 0) . Then, by (1.6) it 
follows 

               nd(v(k) — e) d()J(g).(2.9) 
Similarly, noting the degeneracy of the kernel g(k_j) given by Lemma 2.2, we put 

 (d-2')29<< —      g(k—j) ( 1 ~ ... ,d-2j) = 4'(k—j),d-2j( 1~...,d-2j) —~1(d1j—()l2. 

For 1 < j < (d — 1)/2, at first we assume that the order of degeneracy of (.4k—') is 
d — 2j — 1. Then, by Lemma 2.1 and (1.6), it follows that 

nd2j(U4k—j) — 0) 4Jd-2(g),1 <j < (d — 1)/2. (2.10) (.) 
By(2.1), for 1<j <(d-1)/2 

 (d-2j)1  k — d+ jk2jj tt  g
(k—j)(21 i.• • 5 2d-2j) =d(k , k — 3) jw(1' 2; k)Sd,d-2j (21, ... , 2d-2j)~ 

where 
d,d-2j (21 • • • , 2d-2j) _ (Pd,d-2j (X1, . . . , 2d-2j) — 0. 

If for some jo (1 < jo < (d — 1)/2) the order of degeneracy of UAk-7o) is less than 
d — 2jo — 1, then the limit in distribution of U4k—'0) vanish because of g((k_L-1)) = 0. In 
the case of d = 21, T1,n converges to a constant as n -+ co. Applying these convergence 
of U4k—j) (0 < j < (d — 1)/2) to (2.7) and (2.8), we get the following proposition. 

   THEOREM 2.4. (Yamato et al., 2001) We suppose that 

E [g(Xjl , X72, ..., Xjk )2] < oo(2.11) 

for all j1i j2i ..., jk such that 1 < j1 < j2 < • • • < jk < k. We assume d(k, k) > 0. Then 
in case of d = 21+ 1 (1= 1, 2, ...), we have 

ndI2 (Yn 9) 4) Tj(2.12) 
j—o 

where 

           k! 1 w(1k-2j,2j; k)  T_ (k — d)! (d — 2j)!j! w(1k; k) Jd2j(ed,d-2j), j = 0,1, ... ,1 

and 
                   d,d-2j = CPd,d-2j (21, ..., 2d-2j) — 0, j = 0, 1, ... ,1. 

   In case of d = 21 (1 = 1, 2, ...) we have 

l-1 

nd/2 (Yn — 9) E Tj + a1,(2.13) 
j=o
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where 
                ktw(1 k—d,21,  k)              at = (k—d)tltw(lk,k)[EiPd(X1,X1,...,X1,Xi) —9]. 

The value w(lk-2j, 2j; k)/w(lk; k) is equal to 1/2j for the Vstatistic Vn and the S
statistic Sn, and 1 for the LBstatistic Bn, respectively. The asymptotic distributions 
of the Vstatistic Vn and the LBstatistic Bn are given by Yamato and Toda (2001) and 
Yamato et al. (2001). The asymptotic distribution of the Sstatistic Sn is given by the 
followings: In case of d = 21 + 1 (1 = 1, 2, ...), we have 

                             I 

           k1.1 
nd/2('S'n — 9) (k _----------d)!(d —----------------2j)tjt2jJd2j-2j)• 

9— 

In case of d = 21 (1 = 1, 2, ...) we have 

                kt 1-1 1 
nd/2(Sn — 9) (k — d)!t(d — 2j)!j!2jJd2j(d,d-2j) 

j—o 

+l 21 [E d(X1, X1 ..., Xi Xi) — 0] 1. 

3. Rate of convergence 

   To get the rate of convergence in distribution of Yn, we use the following rate of 
convergence in distribution of the Ustatistic Un. 

   LEMMA 3.1. (Theorem 6.5.2 of Borovskikh, 1996) Assume that                 

I Eexp(itJk(ed,d)) 1= 0(1 t I -~) 

as I t I-4 00, where 'y is some sufficiently large number. Then if d is odd and 

E 19(X1,...,Xk) I3< co, 

it follows that 

            sup I P(71d/2(Un — 9) <t) — P(To< t) 1= 0(n2). (3.1) 
—00<t<00 

Furthermore, if d is even and 

E 19(X1,...,Xk) I4< 00 

then, 
            sup I P(nd/2(Un — 9) < t) — P(To< t) 1= o(n-2). (3.2) 

—00<t<00 

This lemma is also given by Theorem 6.6.3 of Koroljuk and Borovskich (1994). Under 
the condition about the characteristic functions of Lemma 3.1, the corresponding distri
bution function has a bounded continuous derivative (see, for example, Corollary 11.6.1 
of Kawata, 1972) .
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   THEOREM 3.2. We assume that d(k, k) > 0 and  

I  Eexp(itJk23(ed,d-2,;)) 1= 0(I t l-ry') 0 < j < (d  1)/2 

as I t oo, where ryj is some sufficiently large number. Then if d = 21+ 1 (1 = 1, 2, ...) 
and

y               E1g(X~ 17.••,Xyk) I3<oo for 1 <il <•••<ik < k, 
it follows that 

          sup I P (nd/2 (Yn  0) < t) — P (E Ti < t) 1= 0(71—i). (3.3) 
                 oo<t<oo j =0 

If d = 21 (l = 1, 2, ...) and 

Elg(X~1,...,Xtk)I4<oo for 1<i1 <•••<ik<k 

then, we have 

t-1 
        sup I P (nd/2 (Yn  0) < t)  P (E Ti + at < t) I= 0(n 2 ). (3.4) 

              oo<t<oo j =0 

In case of d = 21 (1 = 1, 2, ...), the rate of convergence given by (3.4) is weaker than 
(3.2). This is due to the evaluation of l31 given later by (3.13). In order to prove this 
theorem, we need the following lemma. 

    LEMMA 3.3. For any random variables W11, W12, W21 and W22, we have 

I11 = sup I P(W11 + W21 < t) — P(W12 + W22 < t) I 
—oo<t<oo 

< sup I P(Wi1 < t) -P(W12 < t) I + sup I P(W21 < t) -P(W22 < t) I . (3.5) 
—oo<t<oo   —oo<t<oo 

We suppose that Wn ~ W, EWn is uniformly finite in n = 1, 2, ..., and that 
an = 1  (a/n) + 0(n-2), where a is a constant. Then 

I12 = sup I P(anWn < x)  P(W < x) I 
—o0<Z<oo 

           <-~<p I P(Wn < x)  P(W < x)1 +0(i). (3.6) 
Proof of Lemma 3.3. For Iii, we have the following inequality. 

Il1 <sup I Ew21 {P(W11 + W21 < t 1 W21)  P(W12 + W21 < t I W21) }I  

      +sup I E14712 {P(W12 + W21 < t I W12) — P(W12 + W22 < t I W12) } 11 

where Ew denotes the expectation with respect to the random variable W . The right
hand side of the above inequality is less than or equal to 

Ew21 sup I P(Wi1 + W21 <t I W21)—P(W12 + W21< t I W21) I 
 t_
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 +E14712 sup I P(W12 + W21 < t I W12) — P(W12 + W22 < t I W12) I • 

Thus we can obtain (3.5). 

   Next we shall prove the inequality (3.6). For I12, we have 

I12 < sup I P(anWn < x) — P(Wn < x) + sup I P(Wn < x) — P(W < x) I. 

x For any random variables W and A, it holds that 

sup P(W+0<x)—P(W <x) I<4(EI WAI+EIAI)(3.7) 

(see p.261 of Shorack, 2000). Because an = 1 — (a/n) + O(n-2) and EWW is uniformly 
finite, we have from (3.7) 

 sup IP(anWn<x)—P(Wn<x)15.47[-(EW,,+EfWnI)+0()]=0(-n). 

                                                          0 

   Proof of Theorem 3.2. At first we consider the case of d = 21 + 1 (1 = 1, 2, ...). 
Put 

I2 = sup I P(nd/2 (Yn — 0) < t)  P(  Tj < t) I 
                                       j-o 

1 

= sup I P(E Tj,n+R1n < t) — P(E Tj<t)I I. t—        j=oj=o 

Then we have 
I2 < I21 + I22,(3.8) 

where 
      tt 

I21 = sup I P( Tj,n < t) — P(E Tj < t) I 
j=oj=o 

and 
   tt 

I22 = sup I P(E Tj,n+R1n < t) — P(Tj,n < t) . 
t j=oj=o 

Since En n = 0(1), j = 0,1, ... , l and EC = O(n-1), applying (3.7) to I22 we have 

I22 = 0(n— ).(3.9) 

By (1.7) we can write Tj,n, j = 0, ... ,1 of the right-hand side of (2.5) as 

        T= c(1 —n + 0(771 )) n d 21 (U k—j) — 0), 0 ... l (3.10)
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where  c1(> 0) andc2 are generic constants. By Lemma 3.3 we have 

'21 <Esup I P('I'i,+i <t)-P(T,j <t) I . 
j=0 

Using the relation E I U4k-j) -0 I2= 0(n(d-2i)), j = 0, ... , l (see p.185 of Serfling,1980) 
and applying (3.1), (3.6) and (3.10) to the right-hand side of the above inequality , we 
have 

'21 = O(n-'a ).(3.11) 

Because of (3.9) and (3.11), we get from (3.8) 

I2 = 

which is (3.3). 

    Next we consider the case of d = 21 (1 = 1, 2, ...). On the right-hand side of (2.6), 
T1_1,n converges in distribution to 71_1 and Ti converges in probability to a1. We shall 
compute 

I3 = sup I P(Ti-1 ,n + T1,n _< x)  P(7-1-1 + at _< x) I 

              = sup I P(71-1,n + T,,n — a1 < x) — P(T1-1 < x) I 

x It follows that 
I3 < '31 + '32 

where 
'31 = SUP I P(T1-1,n + T1,n — a1 < x) — P(T1-1,n < x) I 

and 
'32 = SUP I P(11-1,n < x) — P(T1-1 < x) I 

x For '32 i by (3.2) , (3.6) and (3.10) with j = 1  1 we have 

I32 = o(n 2) •(3.12) 

Next we consider '31. By (3.7), we have 

I31 < 4E I T11 ,n(T1,n  a,) I +4E I T,,n — a1 I, (3.13) 

where 
                        d(k, k  l)k! T

i ,n  a1 = (k  l) !d(k
, k) (A + B) , 

A =D(n~kk!n(k1)n1U4k-1)EU~k-1) and B =[1 d(k' k)~n(k1)n119.   (,)D(n, k)k.J 
By (1.7), we have 

       A = (4k-1)  EU4k-1) + In+ O()] U(k-1) and B =O()'
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for some constant c. Because of  E[UAk-1) — EU4k-1)]2 = O(n-1) (see, for example, Lee, 
1990, p.21), we have E I A 1= O(n-1/2). Thus we get E I T1,n — at 1= O(n-1/2) and 
E I Tz_1,n(T,,n — at) 1= O(n-1/2). Thus by (3.13) we have I31 = O(n-2). From this 
and (3.12), we get 

I3 = 0(n-1). 
Since ET?n = 0(1), j = 0, 1, ... ,1 and ER2n = 0(n-2), by the similar discussion to the 
first part of the proof in case of d = 2l + 1 we have 

                                                                l-1 

I4 = sup I P(nd/2 (Yn — 9) < t) — P(E Tj + al < t) I 
t——                                                      j=0 

1-11-1 

< sup I P( Tj,n + Tln < t) — P(~ rj + al < t) I +0(n-1). 
j=0j=0 

By (3.5), we have 

1-2 

I4 < E sup I P(Tj,n < t) — P(Tr < t) I +13 + O(n-1) 
j=0 

1-2 

E sup I P(TT,n < t) — P(Tj < t) I +0(n). 
j=0 

By the similar discussion to the case of d = 2l + 1, by (3.2), (3.6) and (3.10) we have 

I4 = O(n 2), 

which is (3.4).^ 

   In particular, for the case of k = 2 and d = 2 the rate of convergence of the U
statistic is given by Theorem 6.5.1 of Borovskikh (1996) and Theorem 6.6.2 of Koroljuk 
and Borovskich (1994) as follows: Suppose the condition (A) that for Soperator 

              S : f E[g(X1,X2)f(X2) I X1 = x], 

there exists infinitely many indices j for which the eigenvalues Ai of this operator S are 
nonzero. Furthermore we assume that E I g(X1iX2) 13< oo. Then 

            sup I P (n(Un  6) < t)  P(To < t) 1= o(n), (3.14) 
-co<t<o 

where 
00 

To=Eaj(ZZ-1) 
J=1 

and Z1iZ2,... are independent standard normal random variables. In the proof of The
orem 3.2, we consider the case of d = 2l and 1 = 1. By (3.6),(3.10) and (3.14), we have 
132 = o(n). Under the condition E I g(1) (Xi, X1) 12 < oo, we have I31 = O(n— 2 ). 
Hence we get 13 = 0(n— 2 ). Thus we have the following proposition.
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   PROPOSITION 3.4. Suppose that the condition (A), E  I g(Xi, X2) I3< oo and E I 
g(1)(Xi, X1) I2< oo. Then we have, 

           sup I P(n(Yn — 0) < t) — P(To + al < t) I= 0(n-1), (3.15) 
—oo<t<oo 

where To = J2(6,2) and a1 = 2 [w(2; 2)/w(1, 1; 2)] • [Eg(Xi, Xi) — 0] . 

Specially, for the LBstatistic Bn , by (2.13) we have 

     sup I P(n(Bn — 0) < t) — P(To + 2[Eg(Xi, Xi) — 0] < t) I= 0(n— 2 ). 
— oo <t <oo 

For the Vstatistic Vn, by (2.103 we have 

    sup I P(n(Vn — 0) < t) — P(To + Eg(X1, Xi) — 8 < t) I= 0(n-1). (3.16) 
—oo<t<oo 

For the statistic Sn, (3.16) holds with Sn instead of Vn in the first P on the left-hand 
side. For the Vstatistic, Theorem 6.6.1 of Koroljuk and Borovskich, 1994 shows that 
the rate of convergence is o(n-1/2) under the condition (A), E[ I g(Xi, X2) 13 ] < 00 
and E[ I g(1) (Xi, X1) I3/2 ] < oo. This is stronger than our result given (3.16). The 
reason why our result is weaker is due to the evaluation I31 = 0(n-1/2).
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