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MANTELHAENSZEL TYPE ESTIMATORS FOR 
THE COUNTERMATCHED SAMPLING DESIGN 

    IN NESTED CASECONTROL STUDY

                  By 

Yoshinori FuJuu* and Zhong—Zhan ZHANG1

                           Abstract 

  We are concerned with a countermatched nested casecontrol study. Assuming 

the proportional hazards model, the MantelHaenszel estimators of hazard rates 

are presented in two situations. The proposed estimators can be calculated without 

estimating the nuisance parameter. Consistent estimators of the variance of the 

proposed hazard rate estimators are also developed. We compare these estimators 
to the maximum partial likelihood estimators in the asymptotic variance. The 

methods are illustrated using the Colorado Plateau uranium miner cohort data.
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1. Introduction 

   We often encounter the situations that a cohort has already been enumerated and 
more information for the cohort members is needed. Since it is often expensive to collect 
such additional information for all cohort members, the nested casecontrol designs have 
been developed. In the nested casecontrol designs the information is given from the 
selected controls of the cohort at risk at each event time. The sampling methods of 
controls are discussed by many articles for example, see Langholz and Thomas (1991). 
Langholz and Borgan (1995) proposed the countermatched sampling designs in the 
nested casecontrol study. They show that it is more efficient than random sampling 
designs especially in the cases that the exposure or a surrogate measure of the exposure 
is available for all cohort members. Langholz and Borgan (1995) also developed the in
ference based on the maximum partial likelihood estimator(PL estimator) assuming the 
proportional hazards model. Borgan et al. (1995) derived the asymptotic properties of 
the estimator using process and martingale theory. 

    However the proportional hazards model has many assumptions, for example the 
multiplicity relationship between the baseline hazard function and the regression func
tion of covariates. The violation of these assumptions may have adverse effects on the 
statistical inference. For checking the model assumptions, it is important to have an
other inference procedure. The purpose of this article is to develop the MantelHaenszel 
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type estimators for the countermatched sampling design. In the estimation for the com

mon odds ratio in several 2x2 tables, the MantelHaenszel estimator is known to be not 

only simple but also having many preferable properties. Especially the unbiasedness of 

the estimating function provides the robustness for the assumption of probability mod

els. In this article we consider the case that exposure variable and another covariate 

are dichotomous. In Section 2, we give a class of unbiased estimating functions and 

propose the MantelHaenszel type estimators in two situations. Consistent estimators 
of the variance of the proposed estimators are also given. In Section 3 we compare the 

proposed estimator with the PL estimator in the asymptotic relative efficiency and an 
example is presented in Section 4. Some discussions are made in Section 5.

2. Model and Estimation 

2.1. Formulation 

   We consider the cohort study that consists of n individuals, who have a failure time 
T and a censoring time C. We can observeT= min(T, C) and= I{T<c}We assume 
the Cox's(1972) proportional hazards model so that the hazard function for the subject 
with a vector of covariates Z is given by 

Ao(t)exp{i3 Z} 

where Ao(t) is a baseline hazard function. We also assume that the censoring time C is 
independent on the failure time T. In this paper we consider the case that the covariate 
vector consists of two time independent covariates Z1 and Z2 which take values zero or 
one. Zi is available for all cohort members and Z2 is for cases and sampled controls in 
the countermatched sampling design. 

   Let t1 < t2 < ... < tK be the ordered failure time and assuming no tied failure ik 
be the index of the subject failed at tk. R(tk) , the risk set at tk, is defined as the set of 
individuals at risk just prior to tk. For the case ik, controls are drawn from the risk set 
R(tk) as follows. The risk set R(tk) is partitioned into two strata accoding to the value 
of Z1 and the controls are drawn from each stratum such that the sum of the numbers 
of the case and controls with Z1 = j is mi . 
   Letn3+,X~tandYibe defined as follows: 

nik = #{iER(tk)IZi,I=~} 
X~ l = #{i E R(tk) I Ti = tk, = 1, Zil = j and Zi,2 = l} 

         Yi=#{i E R(tk)IIi > tk, Zi,1 = j and Zi,2 = l} 
where Zi,r denotes the value of Zr of the individual i. We also define Wkl and S 11 for 
sampled subjects as Table 1. 
   The conditional distribution of Xh given Sk = (Si1, Sio, So1, Soo)T is 

           kk                                              ,s.ea~~+QZhn.i+ 
     P(X h= 1I Sk) =~h nkm3nk(1) (Si

1e11+Q2 + Sloe1') + (402 + Soo) 
Note that the formula is similar to the noncentral hypergeometric distribution except 

for the coefficients no+/mo or ni+/mi exists. So we can construct the MantelHaenszel 
type estimator for /3 in the following two situations.
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            Table 1: Sampled risk sets 

 Z1  =1 Z1 =0  

Z2=1 Z2=0 Z2=1 Z2=0 

case NM X10 I X01 X00 1 
control MOM W10 I W01 W00 m1 + mo — 1 

S11 S10 S01 S00 ml+ m0 

2.2. Countermatching on a surrogate measure of exposure 

   When the exposure of interest is expensive to collect but there is an inexpensive 
surrogate measure, the true exposure is evaluated for the sampled subjects counter
matching on the surrogate measure. In this case Z1 is the surrogate measure for exposure 
and Z2 is the true exposure measurement. Z1 is assumed to be dependent on the failure 
time only through the true exposure, i.e. i3 = 0. Put 

   kkkk 
Ak — Si1nl+ + So1n0+ and Bk= Slon1+ + S on0+ 

m1 mom1 mo 

then it is easily shown from (1) that X+1Bk — exp(/32)X+oAk is an unbiased estimating 
function for /32 for each k where the subscript + denotes the sum over all possible 
subscript. We construct the following family of estimating functions 

K 

9(02) = E wk{X+1Bk — exp(/2)X+oAk} 
k=1 

where wk is positive constant. To yield optimum weights we apply the theory of esti
mating functions (Godambe,1991). It requires the minimization of the following criteria 

                        Var(g) 

                       E[Dtg]2. 

    THEOREM 2.1. Suppose wk is nonrandom variable conditioned by Sk and nk, an 
optimal weight is given by 

             =1            wkAk
exp(,Q2) + Bk(2) 

    PROOF. We calculate Var(g) and E[Ag] respectively. We use the conditional 
independence of the estimating functions between the failure times and the double ex

pectation theorem. We have following identity: 

  K2 

       Var(g)= E[ E wk{X+1Bk — exp(/32)X+oAk}] 
k=1 

K 

           = E[E wk{X+1(Bk)2 + exp(2/32)X+o(Ak)2}] 
k=1



46Y.  FUJII and Z. ZHANG

            = E[E wkE[X+1(Bk)2 + exp(2,132)X+o(Ak)2I nk, sk1 
k=1 

            = E[Ak(Bk)2exp(/32) + (Ak)2Bkexp(2132)1 
                            A exp() + Bk 

                              k=1 

             = E[E wZAkBkexp(,32)]. 
k=1 

On the other hand 

           E[—Q2g] = —E[>wkexp(/32)X+oAk] 
k=1 

AkBkexp(Q2)  = —E[L wkexp(i32) Akea"p(/3) + Bk 

We have 

                   fc Var(9)  E[Ek1wkAkBkexp(/i))  
E[Ag]2 E[Ek=1 wkexp(132) AkeBkP(Qzk 12 •                                           P(az)+B1 

Using CauchySchwartz inequality, we may show that wk =Ake xr(102)----------------+Bk provides the 
minimum of the above criteria. 

   The estimator with above optimal weights is equivalent to the PL estimator in 
this situation. Yanagimoto (1990) shows that the simplicity of the MantelHaenszel 
estimator results from using the locally optimum weights. In this case by using the 
optimum weights at /3 = 0 , we have the following estimating equation : 

                  1 
Enk{X.k+1Bk — exp(/2)X+oAk} = 0.(3) 

                   k=1++ 

The solution of the estimating equation is called the MantelHaenszel type estimator 
in countermatching on surrogate measure. The result in the proof of the Theorem 2.1 
leads to an estimator of variance of the MantelHaenszel type (MH) estimator as follows 

             K ~k=1 AkBk/(n++)2(4) ei2
k=1AkBkI (n++)(Ak + ea2Bk) 

2.3. Countermatching on exposure 

   The second situation is when the exposure of interest is known for the full cohort 
and a confounder variable is collected for the sampled subjects countermatching on the 
exposure. In this case /3i is an interesting parameter and /32 is nuisance. At each failure 
time tk , we have two unbiased estimating functions 

            Xjso~no+_exp($1)Xo~sl~nl+j = 0,1 
mp ml
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by considering the conditional distribution Xik given  n  +s and S s. We have the fol
lowing theorem using the similar method of Theorem 1. 

   THEOREM 2.2. Among the weighted estimating functions 

K 1nknk 

EE wjk{ViSI;  °                         ro— exp(/31)X jSml}, 
i=1 j=0 

an optimal weight is given by 

                             1 
wjk = k----------------------k 

                     S7m+exp($1)S~m i 

We also call the MantelHaenszel type (MH) estimator for the solution of the estimating 
equation with above optimal weight in /31 = 0. Because this estimating equation is not 
dependent on $2, we don't have to estimate the nuisance parameter $2. This property 
may lead to the robustness for the modeling for the effect of Z2. We also proposed the 
following estimator of the variance of the MH estimator 

                ~K ~1XkSk Sk(Vko)2                  k=1j=0OjljmomiI  
2 

       e K1n°nit                                V)                Qi{L~k=1~j=0Xk+jOjSk Skljoml/(01} 
where 

                       yk_Skn0++Sknl~                        0— 03 m
0 13 ml 

                         Vk=Skn0++ealSknk            1Oj 
m0  mi

3. Comparison with partial likelihood method 

   In this section we compare the MantelHaenszel type estimators to the maximum 
partial likelihood estimators. One of the advantages of proposed estimators is the robust
ness for the assumptions of the distribution of the failure time because of not asssuming 
the proportionality of hazard rate for Z2. However the MH estimator losses some effi
ciency in exchange. The characteristic of the poposed estimator may be remarkable in 
countermatching on exposure. So we investigate the asymptotic relative efficiency in 
the case of countermatching on exposure. 

   First we compare the asymptotic relative efficiency. We use the same situation in 
Langholz and Borgan (1995). We assume that the joint distribution of Z1 and Z2 for 
individuals at risk remains constant over time with 

= pr{Z1 = i, Z2 = i}, 7ri+ = pr{Zi = i}, 7r+, = pr{Z2 = if 

We measure the correlation between Z1 and Z2 by the odds ratio 9 = (lrlllroo)/(lrlolro1)• 
The asymptotic information matrix of the PL estimator is given in the Appendix of
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Langholz and Borgan (1995). The similar method leads to the asymptotic variance of 
the MH estimator of /3i. With to1 = mo — too and t11 = ml — t1o, it is given by 

E =0 Etio=0 C(t)E(t) 
eal (E 00=0 Et o=0 D(t)E(t)) 2 

where    

1  

C(t) _ Et03t13 mo ml 2 F3 (t), 
                                                  Trl+ j=0t0j12+m

o + t1 ml 

                     1 

   D(t) = Et03t13-----------------------------------------------m0mlF3(t), 
j =o (t0± + t lj m) (to. + eth t 1j _ I 

 1 E(t) = EE tijeol ~+(32j ri+m0mlT(~ij                      mitoodoH()tzJ                                                             ~i+ i
=o j=oi,j 

                      Ei1=0to.m;eal i+02 j F
j (t) = 152+l3, i+(32j• 

                EL Ej=0 tijmie 
   Table 2 gives asymptotic relative efficiencies of the PL estimator and the MH es
timator in the countermatched design relative to the maximum partial likelihood es
timator in simple nested casecontrol sampling. The result of the asymptiotic relative 
efficiencies comparing the simple random sampling shows that in every case the ef
feciency of the MantelHaenszel type estimator is smaller than the maximum partial 
likelihood estimator, but it is still larger than 1. The countermatching design has the 

gain in efficiency even if we use the MH estimator. We also calculate the asymptotic 
relative efficiencies of the MH estimator versus the PL estimator. They are almost 50
70% except for the case both 02 and 0 are small. In such cases the probability that 
the case and controls have different Z2 is high and the MH estimator does not use the 
information of those cases. The asymptotic relative efficiency increases with increasing 
the number of the sampled control. It is notable that there are little differences in the 
asymptotic relative efficiency comparing the PL estimator enen if the locally optimal 
weight is employed in the MantelHaenszel estimator.

4. Example 

   Consider the Colorado Plateau uranium miner cohort data. The data set has 
been described in earlier publications(see Langholz and Goldstein (1996) and references 
therein). The cohort consists of 3347 male miners with 258 lung cancer deaths. The asso
ciation of radon exposure with lung cancer mortality rate is of interest. We dichotomize 
the exposure by the total cumulative radon exposure level measured in working level 
months(WLM). Set Exposure=1 for the total cumulative radon exposure level less than 
1200 WLM and Exposure=0 otherwise. 

    First, we consider a situation that the Exposure is unknown and the surrogate 
measure is given for the full cohort. The exposed period is used for a surrogate measure 
and it is dichotomized by 60 months. We draw controls for 1:1 countermatching and 1:3 
countermatching and then compute the MH estimates /3MH and the proposed estimated
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Table 2: Asymptotic relative efficiencies of the partial likelihood estimator and the 
MantelHaenszel estimator in countermatched sampling versus partial likelihood esti
mator in simple nested casecontrol sampling when the exposure relative risk  exp(/31) is 
2 or 4, for mo = m1, 71-1+ = 0.05 and 7r+1 = 0.30

(a) exp(Q1) = 2

            1:1 matching1:3 matching 

e132 8 PL MH MH:PLPL MH MH:PL 

0.20 0.20 2.65 2.47 0.93 1.73 1.61 0.94 

0.20 0.50 2.75 2.36 0.86 1.72 1.58 0.91 

0.20 1.00 2.83 2.22 0.78 1.71 1.52 0.89 

0.20 2.00 2.86 2.01 0.70 1.68 1.44 0.86 

0.20 5.00 2.63 1.66 0.63 1.59 1.29 0.81 
1.00 0.20 2.46 1.91 0.78 1.58 1.38 0.88 

1.00 0.50 2.75 1.79 0.65 1.60 1.32 0.82 
1.00 1.00 2.86 1.66 0.58 1.61 1.25 0.77 

1.00 2.00 2.72 1.50 0.55 1.60 1.16 0.73 

1.00 5.00 2.23 1.28 0.58 1.54 1.05 0.68 

5.00 0.20 2.56 1.55 0.61 1.55 1.21 0.78 

5.00 0.50 2.85 1.58 0.55 1.71 1.22 0.72 

5.00 1.00 2.80 1.61 0.57 1.80 1.24 0.69 

5.00 2.00 2.58 1.64 0.63 1.82 1.24 0.68 

5.00 5.00 2.24 1.68 0.75 1.78 1.25 0.71

(b) exp(/31) = 4

            1:1 matching1:3 matching 
02 0 PL MH MH:PL PL MH MH:PL 

0.20 0.20 4.06 3.77 0.93 2.23 2.11 0.94 
0.20 0.50 4.15 3.55 0.86 2.23 2.05 0.92 
0.20 1.00 4.20 3.30 0.78 2.21 1.97 0.89 
0.20 2.00 4.13 2.95 0.71 2.16 1.86 0.86 
0.20 5.00 3.63 2.37 0.65 2.02 1.65 0.82 
1.00 0.20 3.75 2.91 0.78 2.01 1.76 0.87 
1.00 0.50 4.19 2.73 0.65 2.07 1.68 0.81 
1.00 1.00 4.35 2.52 0.58 2.09 1.59 0.76 
1.00 2.00 4.15 2.28 0.55 2.06 1.50 0.73 
1.00 5.00 3.41 1.96 0.58 1.93 1.36 0.70 
5.00 0.20 3.46 2.18 0.63 1.89 1.47 0.78 
5.00 0.50 3.99 2.25 0.56 2.13 1.53 0.72 
5.00 1.00 4.07 2.33 0.57 2.26 1.59 0.70 
5.00 2.00 3.88 2.43 0.63 2.29 1.64 0.72 
5.00 5.00 3.47 2.57 0.74 2.23 1.70 0.76
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Table 3: The estimates in counter matching on the surrogate measure for Colorado 

Plateau uranium miners cohort

Table 4: The estimates in counter matching on the exposure for Colorado Plateau 

uranium miners cohort

variance of I3MH . For reference, we also compute the PL estimates /3PL and its estimated 
variance with the same nested samples. For full cohort data, the PL estimate and the 
MH estimate proposed by Zhang and Yanagawa (2001) and the variance estimates of 
these estimates are also calculated. The result are shown in Table 3. 

   Table 3 shows that the MH estimates are close to the PL estimate. The estimated 
variances of these estimator are also close, but it is strange that the estimated variance 
of the MH estimate is less than that of PL estimates for 1:3 counter matching design. 
We try to draw controls in several times but the same phenomenon occurs. Further 
investigations are needed for the model fitting and others. 

   We consider the second situation that the Exposure is available for the full cohort 
and the confounding factor is measured for cases and sampled controls. We use the 
smoking level for a confounding variable and dichotomize the smoking level by 120 
cumulative packs. We draw controls by 1:1 and 1:3 countermatching on Exposure level. 
We compute the MH estimates and the optimal weight estimates and the estimated 
variance of these estimates. For reference the PL estimates and its estimated variance 
are calculated for the same data. The results are shown in Table 4. 

   Table 4 shows that the MH estimates and the optimal weight estimates are slightly 
large than the PL estimates for each sampling design. It may provide the possibility of 
the lack of model fitting, but the effect of it is small. On the other hand, the differences 
between the MH estimates and the optimal weight estimates are small. The results of 
two situations lead to the usefullness of the MH estimates because of slight difference to 
the optimal estimates.
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5. Discussion 

   In this article, we developed the theory in the proportional hazards model, but 
the assumption of the exponentiality of the regression form is not needed. Along the 
Langholz and Goldstein (1996), the MH estimator can be extended when the hazard 
function is given by 

 \(tIZ) = Ao(t)r(/3T Z) 

where r is a positive function on (oo,00). However the multiplicity of the relationship 
between the baseline hazard function and the regression function of covariate is needed. 
If we don't assume it, the effect of covariate is difficult to understand and we need some 
over-all measure of the effect. 

    The proposed estimator in the counter matching on the exposure is interpreted 
as adjusting the confounding factor by stratification. Of course we can extend it when 
Z2 has several categories but decreasing the efficiency of the proposed estimator with 
increasing the number of the category. In such a case, it might be preferable to model 
the effect of confounding factor like the proportional hazards model and we must check 
the model assumption by other methods.
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