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IN NESTED CASE-CONTROL STUDY
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Yoshinori Fvan* and Zhong—Zhan ZrANG!

Abstract

We are concerned with a counter-matched nested case-control study. Assuming
the proportional hazards model, the Mantel-Haenszel estimators of hazard rates
are presented in two situations. The proposed estimators can be calculated without
estimating the nuisance parameter. Consistent estimators of the variance of the
proposed hazard rate estimators are also developed. We compare these estimators
to the maximum partial likelihood estimators in the asymptotic variance. The
methods are illustrated using the Colorado Plateau uranium miner cohort data.

Key Words and Phrases: proportional hazard model, conditional distribution, nuisance param-
eter.

1. Introduction

We often encounter the situations that a cohort has already been enumerated and
more information for the cohort members is needed. Since it i8 often expensive to collect
such additional information for all eohort members, the nested case-control designs have
been developed. In the nested case-control designs the information is given from the
selected controls of the cohort at risk at each event time. The sampling methods of
controls are discussed by many articles for example, see Langholz and Thomas (1991},
Langholz and Borgan (1995) proposed the counter-matched sampling designs in the
nested case-control study. They show that it is more efficient than random sampling
designs especially in the cases that the exposure or & surrogate measute of the exposure
is available for all cohort members. Langholz and Borgan (1995) also developed the in-
ference based on the maximum partial likelihood estimator(PL estimator) assuming the
proportional hazards model. Borgan et al. (1995) derived the asymptotic properties of
the estimator using process and martingale theory.

However the proporticnal hazards model has many assumptions, for example the
multiplicity relationship between the baseline hazard function and the regression func-
tion of covariates. The violation of these assumptions may have adverse effects on the
statistical inference. For checking the model assumptions, it is important to have an-
other inference procedure. The purpose of this article is to develop the Mantel-Haenszel
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type estimators for the counter-matched sampling design. In the estimation for the com-

~mon odds ratio in several 2x2 tables, the Mantel-Haenszel estimator is known to be not
only simple but also having many preferable properties. Especially the unbiasedness of
the estimating function provides the robustness for the assumption of probability mod-
els. In this article we consider the case that exposure variable and another covariate
are dichotomous. In Section 2, we give a class of unbiased estimating functions and
propose the Mantel-Haenszel type estimators in two situations. Consistent estimators
of the variance of the proposed estimators are also given. In Section 3 we compare the
proposed estimator with the PL estimator in the asymptotic relative efficiency and an
example is presented in Section 4. Some discussions are made in Section 5.

2. Model and Estimation
2.1. Formulation

‘We consider the cohort study that consists of n individuals, who have a failure time
T and a censoring time C. We can observe T = min(T,C) and A = Iir<c). We assume
the Cox’s{1972) proportional hazards model so that the hazard function for the subject
with a vector of covariates Z is given by

~o(t)ezp{8 Z}

where Ag(t) is a baseline hazard function. We also assume that the censoring time C is
independent on the failure time T'. In this paper we consider the case that the covariate
vector congists of two time independent covariates Z; and Z» which take values zero or
one. Z; is available for all cohort members and Z; is for cases and sampled controls in
the counter-matched sampling design.

Let t; <t3 < ... < tx be the ordered failure time and assuming no tled failure i3
be the index of the subject failed at £x. R(ty) , the risk set at tx, is defined as the set of
individuals at risk just prior to £. For the case i, controls are drawn from the risk set
R(t;) as follows. The risk set R(t;) is partitioned into two strata accoding to the value
of Z, and the controls are drawn from each stratum such that the sum of the numbers
of the case and controls with 2, = j is m;.

Let n¥ ,, X%, and Y}, be defined as follows:

nf . = #{ieR(te)|Zia = j}
Xt = #{ie RG)fi=ts, Ay =1,Zi1 =jand Zia =1}
Y = #{icRthi>t,Zis=jand Z;2 =1}
where Z,, denotes the value of Z, of the individual i. We also define W"! and S’-‘:I for

sampled subjects as Table 1,
The conditional distribution of X%, given 8% = (8%, Sk, 5§, S§)7 is

Sk eﬂ1j+ﬁnh;'fia-_
P(X}p =1|S%) = P 5 (1)
(ShePrtts + Shoeft) T + (Shefs + Sho) ot

Note that the formula is similar to the non-central hypergeometric distribution except
for the coefficients nf, /mg or n¥, /m, exists. So we can construct the Mantel-Haenszel
type estimator for 3 in the following two situations.
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Table 1: Sampled risk sets

Zy =1 Zy=0 T
Zo=1 Zy=0|Z2=1 Z3=0
case X5 X5 X5 X5 1
control | W W W5 Wa [ m1+mg—1
ST, Sto S5, S-gho my + My

2.2. Counter-matching on a surrogate measure of exposure

When the exposure of interest is expensive to collect but there is an inexpensive
surrogate measure, the true exposure is evaluated for the sampled subjects counter-
matching on the surrogate measure. In this case Z, is the surrogate measure for exposure
and Z is the true exposure measurement. Z; is assumed to be dependent on the failure
time only through the true exposure, i.e. 8, =0. Put

Aot g b g g g ey genbe

=n 01 mo a =910, % e

then it is easily shown from (1) that X%, B* — exp(82) X%, A* is an unbiased estimating

function for B2 for each k where the subscript + denotes the sum over all possible
subscript. We construct the following family of estimating functions

K
o(B2) =D wi{ X%, B — eap(B2) X5, 4%}
k=1

where wy, is positive constant. To yield optimum weights we apply the theory of esti-
mating functions (Godambe,1991). It requires the minimization of the following criteria

Var(g)
Elg9*

THEOREM 2.1. Suppese wy, i3 non-random variable conditioned by S* and n¥, an

optimal weight is given by
1

= Fcap(ss) + BF ‘2’

PrRoOOF. We calculate Var(g) and E[-a%;g] respectively. We use the conditional
independence of the estimating functions between the failure times and the double ex-
pectation theorem. We have following identity:

2

K
B (Z wk{XLBk - exp(ﬁg)X_’f_oA"}) ]

k=1

Var(g)

K
E[Y wi{X},(B*) + exp(282) X50(4%)H
k=1
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K
= EB[Y_wiE[X},(B*) + exp(20:) X5 o (A% [n¥, 5¥])

k=1
o AR(B*)2exp(B) + (A*)2B*exp(26;)
- E[g wf Akexp(Bz) + B* ]
K
= E[Y_wiA*Bexp(B)]
k=1
On the cther hand
3 F. 9
Elzgd = —E[)_ wrexp(Ba) X5, A%
k=1
= A*B*exp(B;)
We have
Var(g) _  E[;, wiA*B*ezp(B))]

Elgfol®  E[SK, wperp(B;) fDtbln |2

Using Cauchy-Schwartz inequality, we may show that w; = W provides the
minimum of the above criteria.

The estimator with above optimal weights is equivalent to the PL estimator in
this situation. Yanagimoto (1990) shows that the simplicity of the Mantel-Haenszel
estimator results from using the locally optitnum weights. In this case by using the
optimum weights at 3 = 0, we have the following estimating equation :

K

> - (XhB* () oA} =0 -
k=1

The solution of the estimating equation is called the Mantel-Haenszel type estimator
in counter-matching on surrogate measure. The result in the proof of the Theorem 2.1
leads to an estimator of variance of the Mantel-Haenszel type (MH) estimator as follows

S AkBi/(nf,)?
82 Top 1 AeBr/(n% 1) (A + €52 By)

(4)

2.3. Counter-matching on exposure

The second situation is when the exposure of interest is known for the full cohort
and a confounder variable is collected for the sampled subjects counter-matching on the
exposure. In this ease £) is an interesting parameter and 3 is nuisance. At each failure
time £ , we have two unbiased estimating functions

k ok "'5+ k gl n'f-q- .
leSojE—e-":P(ﬁl)an 1,1m—1 i=01
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by considering the conditional distribution X%, given n¥, s and S¥s. We have the fol-
lowing theorem using the similar method of 'I%:eorem 1

THEOREM 2.2. Among the weighted estimating functions

k
ZE"’J"{XIJ 03 e-"’p(ﬁl)xag 17 1+}

i=1 j=0
an optimal weight is given by
1

SOJ ot 4 ezp(ﬁl)S{‘,—-ﬂl;f

Wik =

We also call the Mantel-Haenszel type (MH) estimator for the solution of the estimating
equation with above optimal weight in 3; = 0. Because this estimating equation is not
dependent on /3, we don't have to estimate the nuisance parameter 33, This property
may lead to the robustness for the modeling for the effect of Z;. We also proposed the
following estimator of the variance of the MH estimator

K w1
Yokt im0 X 55585 un?:.'?t%lt/ (Vk)

3
35‘{2&—1 —o X% ;55,5 ﬁ—lt/(%k‘ﬁk)}

1i mo ma

where

% k
ng n
Vo = nggﬁ' +S’fjm+-:

3. Comparison with partial likelihood method

In this section we compare the Mantel-Haenszel type estimators to the maximum
partiat likelihood estimators. One of the advantages of proposed estimators is the robust-
ness for the assumptions of the distribution of the failure time because of not asssuming
the proportionality of hazard rate for Z;. However the MH estimator losses some effi-
ciency in exchange. The characteristic of the poposed estimator may be remarkable in
counter-matching on exposure. So we investigate the asymptotic relative efficiency in
the case of counter-matching on exposure.

First we compare the asymptotic relative efficiency. We use the same situation in
Langholz and Borgan (1995). We assume that the joint distribution of Z;, and 23 for
individuals at risk remains congtant over time with

mi; = pr{Z1 =i, Z2 = §}, 7oy =pr{ZL =i}, rpu=pr{Z2 =14}

We measure the correlation between Z; and Z2 by the odds ratio 8 = (m11700)/{710%01)-
The asymptotic information matrix of the PL estimator is given in the Appendix of
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Langholz and Borgan (1995}, The similar method leads to the asymptotic variance of
the MH estimator of 3;. With tgy = mo — tgp and 11 = my — tig, it is given by

2 tae=0 2atr=0 C()E()
A (L7 o X DOE(R)

where
U 21: bortis s py(e,
=0 (tOJ—'t + )
- tojty kTt
D) = ;0( Dot 4y, e )(T:j%Mﬂ]tU%)Fj(t),
El) = g;tﬁeﬁiwﬁu ":- ( ::: )( 2; )H(%)g,,
Fit) = Zs—otj"—'*-eﬂ"*ﬁ”

1 k]
Ei=0 ;,-—0 tij _‘teﬁu+ﬁ‘)3

Table 2 gives asymptotic relative efficiencies of the PL estimator and the MH es-
timator in the counter-matched design relative to the maximum partial likelihood es-
timator in simple nested case-control sampling. The result of the asymptiotic relative
efficiencies comparing the simple random sampling shows that in every case the ef-
feciency of the Mantel-Haenszel type estimator is smaller than the maximum partial
likelihood estimator, but it is still larger than 1. The counter-matching design has the
gain in efficiency even if we use the MH estimator. We also calculate the asymptotic
relative efficiencies of the MH estimator versus the PL estimator. They are almost 50-
70% except for the case both B2 and # are small. In such cases the probability that
the case and controls have different Z5 is high and the MH estimator does not use the
information of those cases. The agymptotic relative efficiency increases with increasing
the number of the sampled control. It is notable that there are little differences in the
asymptotic relative efficiency comparing the PL estimator enen if the locally optimal
weight is employed in the Mantel-Haenszel estimator.

4. Example

Consider the Colorado Plateau uranium miner cohort data. The data set has
been described in earlier publications(see Langholz and Goldstein (1996) and references
therein). The cohort consists of 3347 male miners with 258 lung cancer deaths. The asso-
ciation of radon exposure with lung cancer mortality rate is of interest. We dichotomize
the exposure by the total cumulative radon exposure level measured in working level
months(WLM). Set Exposure=1 for the total cumulative radon exposure level less than
1200 WLM and Exposure=0 otherwise.

First, we consider a situation that the Exposure is unknown and the surrogate
measure ig given for the full cohort. The exposed period is used for a surrogate measure
and it is dichotomized by 60 months. We draw controls for 1:1 counter-matching and 1:3
counter-matching and then compute the MH estimates gy and the proposed estimated
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Table 2: Asymptotic relative efficiencies of the partial likelihood estimator and the
Mantel-Haenszel estimator in counter-matched sampling versus partial likelihood esti-
mator in simple nested case-control sampling when the exposure relative risk exp(8:) is
2 or 4, for mg = m,, m4 = 0.05 and 73 = 0.30

(a) ezp(Br} = 2

1:1 matching 1:3 matching

e ¢ PL MH MHPL PL MH MH:PL
020 020 265 247 0.93 1.73 161 0.94
020 050 275 236 0.86 1.72 1.58 0.91
020 100 283 222 0.78 171 1.52 0.89
0.20 200 286 201 0.70 1.68 1.44 0.86
020 500 263 1.66 0.63 1.5¢ 1.29 0.81
1.00 020 246 191 0.78 1.58 1.38 0.88
1.00 050 275 1.79 0.65 1.60 1.32 0.82
100 100 286 1.66 0.58 161 1.25 0.77
1.00 2,00 272 1.50 0.55 1.60 1.16 0.73
1.00 5.00 223 1.28 0.58 1.54 1.056 0.68
500 020 256 1.55 0.61 1.55 1.21 0.78
500 050 2385 1.58 0.55 1.1 122 0.72
500 100 280 1.61 0.57 1.80 1.24 0.69
500 200 258 164 0.63 1.82 124 0.68
500 500 224 168 0.75 1.78 1.25 0.71

(b) exp(B1) = 4

1:1 matching 1:3 matching

= ¢ PL MH MH:PPL PL MH MHPL
020 (.20 4.06 3.77 0.93 223 211 0.94
0.20 050 4.15 3.55 0.88 223 205 0.92
020 100 4.20 3.30 0.78 221 197 0.89
¢.20 2.00 4.13 295 0.71 2,16 1.86 D.86
620 5.00 3.63 237 0.65 202 165 0.82
1.00 020 375 291 0.78 201 176 0.87
1.00 050 419 2.73 0.656 207 1.68 0.81
1.00 100 435 252 0.58 209 1.59 0.76
1.00 200 415 2.28 0.55 2.66 1.50 0.73
1.00 500 3.41 1.96 0.58 193 136 0.7¢
500 020 346 218 0.63 1.8% 1.47 0.78
500 050 3.99 2.25 0.56 213 1.53 0.72
500 1.00 4.07 233 0.57 226 1.59 0.70
500 200 3.8 243 0.83 229 1.64 0.72
500 500 347 257 0.74 223 1.7 0.76
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Table 3: The estimates in counter matching on the surrogate measure for Colorado
Plateau uranium miners cohort

MH PL

Sampling | Barg | variance | Apr | variance
1:1 1.617 | 0.07385 | 1.577 | 0.07110
1:3 1.414 | 0.06419 | 1.467 | 0.06505
Full 1.309 | 0.01579 | 1.338 | 0.01574

Table 4: The estimates in counter matching on the exposure for Colorado Plateau
uranium miners cohort

MH ~ Optimal — PL

Sampling | Gy | variance | Bo, | variance | Bpr | variance
1:1 1.372 | 0.02790 | 1.400 | 0.02780 | 1.333 | 0.01698
13 1.382 | 0.02185 | 1.371 | 0.02139 | 1.292 | 0.01600
Full 1.344 | 0.01609 | 1.366 | 0.01597 | 1.309 | 0.01575

variance of Ay y. For reference, we also compute the PL estimates Spy, and its estimated
variance with the same nested samples. For full cohort data, the PL estimate and the
MH estimate proposed by Zhang and Yanagawa {2001) and the variance estimates of
these estimates are also calculated. The result are shown in Table 3.

Table 3 shows that the MH estimates are close to the PL estimate. The estimated
variances of these estimator are also close, but it is strange that the estimated variance
of the MH estimate is less than that of PL estimates for 1:3 counter matching design.
We try to draw controls in several times but the same phenomenon occurs. Further
investigations are needed for the model fitting and others.

We consider the second situation that the Exposure is available for the full cohort
and the confounding factor iz measured for cases and sampled controls. We use the
smoking level for a confounding veriable and dichotomize the smoking level by 120
cumulative packs. We draw controls by 1:1 and 1:3 counter-matching on Exposure level.
We compute the MH estimates and the optimal weight estimates and the estimated
variance of these estimates. For reference the PL estimates and its estimated variance
are calculated for the same data. The results are shown in Table 4.

Table 4 shows that the MH estimates and the optimal weight estimates are slightly
large than the PL estimates for each sampling design. It may provide the possibility of
the lack of model fitting, but the effect of it is small. On the other hand, the differences
between the MH estimates and the optimal weight estimates are small. The results of
two situations lead to the usefullness of the MH estimates because of slight difference to
the optimal estimates.
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5. Discussion

In this article, we developed the theory in the proportional hazards model, but
the assumption of the exponentiality of the regression form is not needed. Along the
Langholz and Goldstein (1996), the MH estimator can be extended when the hazard
function is given by

A(HZ) = Ao (t)r(F" Z)

where r is a positive function on (—c0,00). However the multiplicity of the relationship
between the baseline hazard function and the regression function of covariate is needed.
If we don’t assume it, the effect of covariate is difficult to understand and we need some
over-all measure of the effect. .

The proposed estimator in the counter matching on the exposure is inferpreted
as adjusting the confounding factor by stratification. Of course we can extend it when
Z2 has several categories but decreasing the efficiency of the proposed estimator with
increasing the number of the category. In such a case, it might be preferable to model
the effect of confounding factor like the proportional hazards model and we must check
the model assumption by other methods.
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