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  THE EXPECTATION OF RANDOM 

FUNCTIONALS WITH THE DIRICHLET 

 PROCESS AND ITS APPLICATIONS

                 By 

Toshifumi NoMACHI" and Hajime YAMATOt

                       Abstract 

   We deal with the expectation of random functionals with the Dirich-

let process, using Sethuraman's representation. As an application of this 

expectation, we obtain the Bayes estimates of estimable parameters with 

the squared error loss based on the Dirichlet prior process. From the 

Bayes estimates, we obtain the limits of Bayes estimates, which may be 

used for the non-Bayesian inference. We see the differences of the limits of 

Bayes estimates from the corresponding U-statistics and the V-statistics, 

for five estimable parameters of degree two.

1. Introduction 

We consider Bayes estimation of estimable parameters with squared error loss based 

on the Dirichlet process, which is introduced by Ferguson (1973). For some estimable 

parameters of degrees one and two, he gives the Bayes estimates and their limits. Using 
the results of Ferguson (1973) and Antoniak (1974), Yamato (1977b) gives the expecta-
tion of random functionals with the Dirichlet process. Using this expectation, he gives 
the Bayes estimates of estimable parameters of any degree. He also shows that for a 
sample of size n from the fixed distribution, the mean squared difference of the limit of 
Bayes estimate from the U-statistic is of order O(n-2). In Section 2 we quote the defini-
tion and some properties of the Dirichlet process from Ferguson (1973) and Sethuraman 

(1994). We also quote the definition and some properties of the GEM (Generalized 
Engen-McCloskey) distribution, which is, introduced by McCloskey (1965) and Engen 

(1978) (see Johnson et al. (1997)). In Section 3 we give the expectation of random 
functionals with the Dirichlet process using the result of Sethuraman (1994) and prop-
erties of the GEM distribution. As an application of this expectation, we can obtain 
Bayes estimates of estimable parameters with squared error loss based on the Dirichlet 

process. From the Bayes estimates, we obtain the limits of Bayes estimates, which may 
be used for the non-Bayesian inference. In Section 4 we consider the three estimators 
of estimable parameters of degree two, which are the limit of Bayes estimate, the U-
statistic and the V-statistic for a sample from the fixed distribution. We give the mean 
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squared difference of the limit of Bayes estimate from the corresponding U-statistic. We 

also give the mean squared errors of the limit of Bayes estimate and the corresponding 

V-statistic. Using these mean squared difference and the mean squared errors, we see 

the differences of the limit of Bayes estimate from the U-statistic and the V-statistic for 

the five estimable parameters of degree two. In Section 5 which is Appendix. two proofs 

are given for the Proposition 1 stated in Section 3.

2. The Dirichlet Process and the GEM Distribution 

2.1. The Dirichlet process 

    Let a(•) be a finite non-null measure on a measurable space (X, A) and P(.) be a 
random probability on (X, A). We denote the k-dimensional product measurable space 
(Xx•••xX,Ax•••xA)by(Xk,Ak). 

   DEFINITION 1. (Ferguson (1973)) We say P(.) is the Dirichlet process on (X, A) 
with parameter a and write P E D(a), if and only if for any m and every finite measur-
able partition (B1,....., Bm) of X (i.e. for every m = 1, 2, ... and B1, . .. , B„ti E A, B1 U 
...0 Bm, = X and Bi n Bj = 0 for i j), the random vector (P(B1),....., P(B„1)) has 
the Dirichlet distribution with parameter (a(B1), ... , a(B,,,,)), D(a(B1), ... , a(B,,,,)). 

    Ferguson (1973) gives the following representation of the Dirichlet process. Let 
J1, J2,... be random variables whose distributions are given by the following equations, 

P{J1 < xi} = exp(N(xi)) for x1 > 0 
P{Jj < xjI Jj_1 = xj_1i ... , J1 = xl} 

             = exp{N(xj) — N(xj_1)} for 0 < xj < xj_1; j = 2, 3, ... , 

where N(x) = —a(X) f °° e—yy—ldy. Then the distributions of J1, J2, ... depend on 
a only through a(X). For each j = 1, 2, • • we put Pj = J1/(1 Ji). Then, Pj > 
0 a.s.(almost surely) and E  Pj = 1 a.s. Let VI, V,, • be a sequence of independent 
random variables on X with the probability measure Q, where Q(•) = a (•)/a(X). We 
assume that V1,12, ... are independent of P1, P2, .. . 

LEMMA 1. (Ferguson (1973)) Let P(•) be a random probability on (X, A) defined 
by 

P(A) = E Pik (A) for A E A,(2.1) 
                                      j=1 

where Sr is a measure with the total mass one on point x. Then P(•) is the Dirichlet 

process with parameter a. 

    Sethuraman (1994) gives a new representation of the Dirichlet process. Let Y1, Y2, 
... be a sequence of independent random variables on X with probability measure Q.
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Let pi ,p2.... be a sequence of random probabilities defined by 

Pi=01 and pj=(1-01) ••• (1—Bj_1)0j for j=2,3,.....(2.2) 

where 01. 02, • • • are independent and identically distributed random variables with a 
Beta distribution. Be(1, a(X)). 

LEMMA 2. (Sethuraman (1994)) The random probability on (X, A) defined by 

P(A) = pj6y, (A) for A E A,(2.3) 
j-1 

is the Dirichlet process with parameter a. 

From Lemma 2, we can get easily the following lemma. 

   LEMMA 3. (Sethuraman (1994)) The random probability P(•) defined by (2.3) 
satisfies the distributional equation, 

P(A)  016y, (A)+ (1 — 61)P(A) for A E A,(2.4) 

where  means the stochastic equivalence relation and on the right-hand side P is inde-

pendent of 01 and Y1. 

2.2. The GEM distribution 

    The joint distribution of p = (pi, p2, ...) defined by (2.2) is called the GEM distri-
bution. Now let W = (W1, W2, ...) be a size-biased permutation of p. That is, given p, 
the conditional probability of W is such that for j = 1, 2, ... and any distinct integers 
k1 k2, ..,kj,      

......,uPk2Pk;           P[V1=Pk1j=Pk;1PI=Pk~l _Pk i...1__...—Pk;_~. 

Then W has the same distribution as p, since the GEM distribution is invariant under 
the size-biased permutation (see, for example, Ewens (1990)). Therefore from the lem-

mas 3 and 4 of Sibuya and Yamato (1995) we have the following lemma. 

     LEMMA 4. For any positive integers ci, c2, ... , cs, we have 

a s        E[ E pC,(ci=— 1)1'                                 j1~ ...Pj~.~a[cl+...+c,~•, 
ji�-••�j,,i-1 

where the above summation extends over all distinct positive integers ji , ... , js and 
ars] = a(a + 1) • • • (a + s — 1).
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    From Lemma 4 we have immediately the following lemma. The similar result 
based on (2.1) is presented by Yamato (1977b) using the result of Antoniak (1974). 

    LEMMA 5. For any combination (ml ,.....ink) of k non-negative integers satisfying 
E,kk i mi = k, we have 

           E[k m; EAmkJ              E[~xfJ 11 pij] = a[k]-----------H{(i — 1)!}m; ,(2.5) 
i=1 j=1i=1I 

where the summation Ex extends over every pair of all mutually distinct values pij 

(j=1, ..,m1:i=1,...,k)in(Pi,P2,•••)• 

3: The Expectation of Random Functionals with the Dirichlet Process and 
   Its Applications 

    The expectation of random functionals based on the Dirichlet process is given by 
Yamato (1977b) as follows: 

   PROPOSITION 1. (Yamato (1977b)) Let P(•) be the Dirichlet process on (X, A) 
with parameter a and let g be a measurable real valued function on (Xk, Ak) and sym-
metric in the arguments. If fx„ ~g(xl, ... , x1, ... , xu..... , x,)1 [i  da(xi) exists for all 
combinations (ri, r2, ... , r,) satisfying with r1 + r2 + • • • + ru = k and u = 1, 2, ... , k, 
then f~g(xl,..., xk)1 Ilk_1 dP(xi) is finite a.s. and we have 

   E fg(xi.....Xk)fldP(Xi) 
              xki=1 

k!(a(X))E _i m, 

                            ...... 

        ~(k9('x11xlmi,(3.1) 
               k

—1 

               Ilk[im' (mi)'] [a(X)l [kix=i,,,i  (E
,=1mi 

                                                  k m 

x21, X21 ... x2m2 , x2,.... xkl ... ; xkl ... ; xkm~. ,....., xkmi,.) fi fidQ(xij ), 
   2m~2,=1 j=1                                                         kmk 

where the above summation E Aextends over the all combinations (mi ,....., 
Mk) of k non-negative integers satisfying Ek_1 i • mi = k. 

    We give two different proofs of Proposition 1, which are presented in Appendix. In 

Proof 1, the proposition is proved by induction on the degree k. using the relation (2.4). 
In Proof 2, we use the expression (2.3) of the Dirichlet process-and the property (2.5) 
of the GEM distribution. 

Using Proposition 1, we may obtain the following Bayes estimate of estimable pa-
rameter 9(P) and its limit, based on the Dirichlet process with squared error loss. Let 
P(•) be the Dirichlet process with parameter a on (R,B) and .F be a distribution func-
tion of P. Let FQ denote a distribution function of Q and X1. X2, • • , X1z be a sample
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from .F. Then Bayes estimate 0(P) of 0(P) is given in (3.1) by replacing Q with Pn. 
where P„ = q„Q+(l—q„)Pn. qn = a(R.)/(a(R)+n). and Pn is the empirical probability 
measure of the sample X1. X2. • • . X. 

   Letting a(X) in 0(P) tend to zero. we obtain the limit of Bayes estimate as follows: 

(n+k_iy1     = E g(xl.....X1, X2,.....X2,.....Xn.....Xn). 
(r1+•••+r„=k')r1r2r„ 

where the above summation E(rl+ +r„ k) extends over all non-negative integers Ti....., 
rn such that r1 + • • • +rn = k. (See Yamato (1977b).) Similar results have been obtained 
by Tiwari (1981). Limits of Bayes estimates are the average over the all k-subset of the 
sample (X1. X2..... , Xn) allowing the duplication. Let the kernel g(xi ,....., xk) depend 
only on the distinct values among xl ,..... xk. For positive integers r1.....ru satisfying 
rl+...+ru = k, weput g (x1 ... xu) = g(xi.....xi, x2,..... x2.....xu,.......xu), where 
on the right-hand side xj appears rj times for j = 1.2, ....u. Then the limit of Bayes 
estimate may be represented as 

        _n+k-1—1~k=1     9xk
u9x (X~1 ,Xi„).(3.2) u=11<21<•••<i„<a 

We give its example in Subsection 4.3. 

4. Limits of Bayes Estimates, U-statistics and V-statistics 

4.1. Mean squared difference and mean squared errors 

    In this subsection, we fix the distribution P and let X1. X2,.....X0 be a sample of 
size n from P. We see the difference of the limit of Bayes estimate from the U-statistic 
by taking the mean squared difference. It is asymptotically E[(U, — 9n)2] = O(n-2) 
for arbitrary degree (see Yamato (1977b)). We consider the case of degree two. The 
U-statistic with the symmetric kernel g of degree two is given by 

                n2)= -----------1               L~= 9(Xi,Xj),                             n(n — 1) 

which is the minimum variance unbiased estimator of estimable parameter 9(P) = 
f g(x. y)dP(x)dP(y) for all absolutely continuous distributions. Its variance is 

 Var (Un21)(4.1) 
_ 2 

n(n — 1){2(n — 2)(Eg(Xi. X2)g(X1,X3)— 92) + E(9( 1X2))2 — 92}. 

(See Lee (1990) and Serfling (1980).) The squared difference of the limit of Bayes 
estimate from the U-statistic is written as 

                    4 (~n —Ln2))2n2(n + 1)2[(n---------1)2 (E g(Xi, Xi ))2
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n21Eg(x~.X;)Eg(Xk, k)+(Eg(Xz•X2))2]• 
,�) k=1~=1 

Taking the expectation of the above equation, we have 

    E(0,,U,2,)2 n(n + 1)2[n1 1 {(n — 2)(n — 3)02 + 2E(g(Xi, X2))2 
         + 4(n — 2)Eg(Xi,X2)g(Xi,X3)} + (n — 1)(Eg(Xi.X1))2 (4.2) 

         — 2(n — 2)9Eg(Xi , Xi) — 4Eg(ki. X2)g(Xi. X1) + E(g(Xi, Xi))2]• 

    The V-statistic associated with a symmetric kernel of degree k is the average over 

the all k-permutation of a sample allowing the duplication. The V-statistic with the 

symmetric kernel g of degree two is given by 

                     v(2) =2g(Xi, X,). 
                                         Ti 2

,3 

(See Lee (1990) and Serfling (1980).) The mean squared error of the limit of Bayes 
estimate is obtained as 

 MSE (9n)(4.3) 

        (n —1)2Var(U~2))+4(n — 1)E(U~
,i2)—9)U~1) + ---------E(Ui) — 0)2, (n + 1)2n(n1)2n(n + 1)2n. 

where 021) = En  g(Xi, Xi)/n. The mean squared error of the V-statistic is obtained 
as 

 MSE ( V(2))(4.4) 

          (n2n21) ~ar(U(2))2(n2_1)E(U~2>9)U(i)+2E(Uci)—0)2. 
The difference of these mean squared errors becomes 

NISE( ) — MSE(K) 
n-1  

                   {(n — 1)(2n + 1)Var(U(2)) — (3n + 1)E(U,1) — 0)2 n2(n + 1)2 

             —2(n2 — 2n — 1)E( u(2) — 9)U(1)}.(4.5) 

Using the results of (4.1), (4.2). (4.3). (4.4) and (4.5), we see the differences of the 
limits of Bayes estimates from the U-statistics and the V-statistics in the following five 
subsections. 

4.2. Estimation of P{X + Y < 0} 

We consider the estimation of 

= P{X +Y < 0} = fI(x + y < 0)dF(x)dF(y).
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where I(A) is an indicator function of A and F is the distribution function of P. The 

Bayes estimate of A is 

             (n(~) + n)(a(R) + n + 1){a(R-)2A(Q) + a(R-)FQ(0) 

+20(R)EFQ(-Xi)+2 E I(xi+Xj <0)}. 
i=1 1<i<j<n 

The limit of Bayes estimate of A is 

                                                —1 

                =n1E I(xi + Xj < 0). 
1<i<j<n 

It is well-known that the corresponding one-sample Wilcoxon's U-statistic and the V-

statistic are given by 

—1n 

   UA =2E I(Xi +xj< 0), VA = r?E I(xi + Xj < 0). 
       1<i<j<ni,j=1 

We assume that the underlying distribution P is a fixed continuous distribution 

symmetric about zero. The mean squared difference of the limit of Bayes estimate 0* 

from the corresponding U-statistic ULA is obtained as 

1  
ERA* — U°)2] = 3

n(n — 1)(n + 1) 

The variance of the U-statistic is given by Var(UU) = (2n — 1)/{6n(n — 1)}. The mean 
squared errors of the limit of Bayes estimate and the V-statistic are, respectively, 

                            2n + 4n2 —1 
MSE(A*) =6

n(n +14                             1)'MSE(VA) = --------12n3 

The difference of these mean squared errors becomes 

               MSE(i%o) — MSE(A*) =(n — 1)(2n + 1)12
n3(n + 1) 

Therefore we have 

t1SE(A*) < MSE(VA) < Var(UU) for n > 2. 

4.3. Estimation of probability weighted moments 

    We consider the estimation of probability weighted moments, 

3r-1 = E[X{F(X)}r-1] =f x{F(x)}r-1dF(x), r = 1, 2, .. .
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The kernel of 3r-1 is given by 

g(x1.....xr) -1Max{x1.....xr}. 

From (3.2). the limit of Bayes estimate of 3r—i is 

        1n+r-1lrr-1 

rr-u 
                                             Iax{Xil.....Xi}. 

                                          u=11<i1 <12<•••<i,, <n 

The corresponding U-statistic is given by 

                                   -1           1 (n)Lr3 1 = -Max{Xil, Xi .... Xi, }. 
r r 

1<il<i2<•••<i, <n 

(See, for example, Lee (1990).) Especially for r = 2, the Bayes estimate of /31 is 

                    2()         =
aR+ na(R+ n + 1---------------------------{a(R)31(Q)+2xdQ(x) 

    /'n           +a(R) EJ Max{x, Xi}dQ(x) + E 
i=1i=1 

where X(1), ... , X(n) denotes the order statistics for the sample X1, .... Xn. The limit 

of Bayes estimate of 31 is 

                       1 'Z = ---------E 
                         n(n + 1) 

i=1 

The corresponding U-statistic is given by 

          _1(n)-1 

1 

     U312 2 E Max{Xi, xi} = n(n - 1)E(i - 1)X( )          1<i<j<n(i=1 

The corresponding V-statistic is given by 

1 n                     ~•312n2E Max{Xi,Xj}. 
i,j=1 

    Assume that underlying distribution P is a uniform distribution, U(—T, T). The 
mean squared difference of the limit of Bayes estimate ,3i from the corresponding U-
statistic U31 is obtained as 

                                         2 

        U2 T2 54 73             E[(3~-Ls1-3 n(n - 1)(n + 1)2(2n-—n +5). 

The variance of the U-statistic is given by Var(U31) = (4n - 3)T2/{45n(n - 1)}. The 
mean squared errors of the limit of Bayes estimate and the 1,7-statistic are, respectively, 

              4n2 + 13n + 316n2+7n-3           MSE()) = 
45n(n + 1)27-2, MSE(V31) =T.                                        180n32
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The difference of the mean squared error from the variance becomes 

4n(n — 2)               1ISE(3) — Var(U31                                 45n(n — 1)(n + 1)2 • 

Therefore we have 

MSE(V31) < Var(U31) < MSE(3) for n > 2. 

    In the following three subsections, we also see the differences of the limits of Bayes 
estimates from the U-statistics and the V-statistics for the three parameters, for which 

Bayes estimates and their limits are given by Ferguson (1973) and Yamato (1977a). 

4.4. Estimation of a variance 

    We consider the estimation of a variance of a distribution P, 

      a2 = f~2(x — y)2dF(x)dF(y) =Jx2dF(x) — (J xdF(x))2. 
The limit of Bayes estimate of a2 is 

1 a2* _-----E(XzX)2. 
n +1 

(See Ferguson (1973).) It is well known that the corresponding U-statistic, sample 
variance, and the corresponding V-statistic are given by 

   nn 

U72 = 1  E(Xi  S-)2,ti0-2=1 ~(Xi—X)2. 
     n-1. n 

    Assume that underlying distribution P is a fixed continuous distribution, which is 

symmetric about zero and has the finite fourth moment. The mean squared difference 

of the limit of Bayes estimate a2* from the corresponding U-statistic U0-2 is obtained as 

     E[(a2* —U2)2] = 4 {(n2 — 2n + 3)µ2 + (n — 1)µ4},(4.6) 
                   n(n — 1)(n + 1)2 

where pi (i = 2,4) is the i-th moment of the distribution P. The variance of the U-
statistic is given by Var(U0-2) = {(n — 1)µ4 — (n — 3)µ4}/{n(n — 1)}. The mean squared 
errors of the limit of Bayes estimate and the V-statistic are. respectively, 

ISE(a2*) = 
n(n + 1)2 {(µ4 — P2)n2 — 2(µ4 — 4[4)n + {G4 — 3µ2}, 

NISE(V0-2) = 3{(14 — 42)n2 — (2µ4 — 5/122)n+~4— 3µ2}. 

                       n 

    We consider the case that P is a normal distribution, N(0,1). From (4.6), the mean



 

1  1I.A(>mAcHi and II.1.AMAJU

squared difference of the limit of Bayes estimate a' from the corresponding U-statistic 

Ua2 is obtained as 
4  

E[(a2,, — L"0.2 )2] = ( n — 1)(n + 1)• 

The variance of the U-statistic is given by Var(UU2) = 2/(n — 1). The mean squared 
errors of the limit of Bayes estimate and the V-statistic are. respectively, 

               MISE(a2*) = -------2, NIsE(Va2) =2n —1 
        n+1n2 

Therefore we have 

MSE(a2*) < MSE(VV2) < Var(UU2) for n > 2. 

Moreover in case that P is a uniform distribution, U(—T, T), we have 

NISE(VQ2) < Var(Ua2) < MSE(a2*) for n > 12, 

MSE(Va2) < MSE(u2*) < Var(UU2) for 3 < n < 11, 

where the last equality holds for n = 11.

4.5. Estimation of a squared mean 

    We consider the estimation of a squared mean of a distribution P, 

µ2 = (fxdF(x))2. 
                            72 

The limit of Bayes estimate of µ2 is 

2* = ------n(S-)2 -------1 X 2 
n+1n+l 

(See Yamato (1977a).) The corresponding U-statistic and the corresponding V-statistic 
are, respectively, 

             U 2= ------2XiX-, Vµ2=2E X~X~. 
     n-1n 

<J i.j 

    Assume that the underlying distribution P is a fixed continuous distribution, which 

is symmetric about zero and has the finite fourth moment. The mean squared difference 

of the limit of Bayes estimate µ2x from the corresponding U-statistic U,2 is obtained as 

       ERµ2* — U42)2] =4 {(n2 — 2n + 3)µ2 + (n + 1)µ4}. 
                    n(n — 1)(n + 1)2 

The variance of the U-statistic is given by Var(U 2) = 2µ2/{n(n — 1)}. The mean 
squared errors of the limit of Bayes estimate and the V-statistic are, respectively, 

                           2 
ISE(µ2x) = 

n(n + 1)2 {3µz(n — 1) + 2p4}. 

                         1 

              MSE(ti2) =
n3{3µ2(n — 1) +µ4}.
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    In case that P is a normal distribution. N(0.1). the mean squared difference of 
the limit of Bayes estimate i2 from the corresponding U-statistic Uµ2 is obtained as 
E[(112,— L'02- )2] = 4/{(n — 1)(n + 1)}. The variance of the U-statistic is given by 
2/{n(n — 1)}. The mean squared errors of the limit of Bayes estimate and the V-statistic 
are obtained as 6/{n(n + 1)} and 3/n2. respectively . Therefore we have 

Var(U 2) < MISE(tn < MISE(µ2') for n > 4. 

4.6. Estimation of a measure of concentration 

    We consider the estimation of a measure of concentration, 

-y = EIX — = fIx — y dF(x)dF(y). 
The limit of Bayes estimate of 'y is                

= -----------2~Xi— X~• 
                      n(n + 1) 

Z<] 

(See Yamato (1977a).) The corresponding U-statistic and the corresponding V-statistic 
are, respectively, 

          U, = 2Y.' —Xi1, V.-= aE -X~~. 
n(n — 1)n i<ji</ 

    We consider the case that the underlying distribution P is a normal distribution, 
N (0, 1). The mean squared difference of the limit of Bayes estimate 'y from the corre-
sponding U-statistic U, is obtained as 

       _16— 516 — 40 1 
       i—-r     E[(COI]

n(n-1)(n+1)2{ +(- 7r+13)n+7C+ 

The variance of the U-statistic is given by Var(LU,) = 4[{(2v — 4)/7 + 1/3}n + (6 — 
4V )/7 + 1/3]/{n(n — 1)}. The mean squared errors of the limit of Bayes estimate and 
the 17-statistic are, respectively, 

           4—4 1214-6040-6 1     NISE(-y5) =
n(n+ 1)2{(7r+3)n +n +-------—3}, 

          4 20-4 1 11-60 40-6 1    -NISE(V„) =n 3{(--------+3)n2 + n +3}.                717r7r

Therefore we have 

?sISE(V2) < Var(U„) <'vISE(^/5) for n > 3. 

    In case that the underlying distribution is a uniform distribution, U(-1/2, 1/2), 

the mean squared difference of the limit of Bayes estimate 'y from the corresponding



 

I  76T. A ONIACHI and H.YANI in

U-statistic U, is obtained as 4(5112 — 4n + 3)/{45n(n — 1)(n + 1)2}. The variance of the 
U-statistic is given by (n + 3)/{45n(n — 1)}. The mean squared errors of the limit of 

Bayes estimate and the V-statistic are obtained as (n2+22n-3)/{45n(n+1)2} and (n2+ 
7n-3)/45n3, respectively. Therefore we have, NISE( r*) = Var(U) < MSE(VV,) (n = 2), 
Var(U,,) < v1SE(7*) = MISE(V,) (n = 3) and 

Var(UU) <v1SE(V.,) <MISE(;') for n > 4.

5. Appendix 

We give two different proofs of Proposition 1. 

    Proof 1. We prove Proposition 1 by induction. First we consider for k = 1. 
Using (2.4), we have 

          fg(x)dP(x) B1g(Yi) + (1 — 91) J g(x)dP(x). (5.1) 
We take the expectations of the both sides of (5.1). Since P is independent of (01, Y1) 

and 91 is independent of Y1 on the right-hand side, we get, 

E[ fg(x)dP(x)] = E[g(} )] =f g(x)dQ(x)• 
xx 

    Let k > 2. We assume that (3.1) holds for 2, 3,....., k — 1 and g(xi,....., xk) is 
symmetric in the arguments. Then we have 

ix, g(xi,....., xk) H dP(xi) 
                                   i=1 

                     k-1        dE(k)_r(l_8i)rf g(Y1.....} , xl, ... xr) dP(xz) 
r 0xk —ri=1 

+(1 — 01)k fg(xi....., xk)H dP(xz).(5.2) 
x, i=1 

We take the expectations of the both sides of (5.2). Note that on the right-hand side 

P is independent of A. Yl) and 91 is independent of For the first integral on the 
right-hand side of (5.2), we take the conditional expectation given Y1 = yl and then 
take the expectation with respect to Y1 having the distribution Q. Then we have 

     (1 E(1 — 91)k)E fg(xl..... xk) H dP(x2) 
xk z=1
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  —k-1rn/kQ" -" " 
                ()(a())Lrl (]__r)~ rrI (~,(X))~~=1                 (a(X))~k+1]ItII~=1(i(mi)!)(a(X))[r] 

(E; -1 i- n,_r) 

Xg(yl.....YiIll.....11m1,.T21.£21 x2m2 x2m2 
      k—r22 

r m; 

.... xrl,..... Xrl.... , Irm ,.... , .Xrmj H H dQ(xij)dQ(yl) 
rr 

i=1 j=1 

For each r E {0, 1.... , k — 1}, yl appears k — r times. We put rri' . = mk_r + 1 and 
mj = mj for j k —r. From the combination (m1, m2,....., mk) satisfying EL, mi = r, 
we have the combination (mi, m2.... , mik+1) which satisfies Ei=1 mz = k. Thus we 
have 

   E[ f g(xi,....., xk) H dP(xi)] 
                                i=1                         

A , 

                (k)![a(X)]~ _ m' 

            _U=1((z))(())                                                          ,9(xll,... ;xlm~~x217 x21, 

                A 

                         Zm;MIaX[k] xE;-i 
                 a•r,_k) — 

                                                             k m' 

.. , x2m2 , 12m2 ,.....1 k.1 •....., xk,l, ... , xk,mi , ... , xk,m~ H fldQ(xij )• 
i=1 j=1 

Therefore Proposition 1 is proved. ^ 

    Proof 2.Since Y1, Y2, ... are independent of (Pl, P2, ...) and by using (2.3), 
we have 

    E[ fg(xi,..., xk)d1)(xi)](5.3) 
               xk                                     i=1 

                 ~-jkl                      ~j---------------------E[9(Yi1, ...,Yimi • Y21, Y21... , 
         (~~iim;—k)llk=1~(i!)m(mi)!] 

                                                                 k m; 

           Y2m2,Y2m2,...,Ykl,...,Ykl•..,Ykmk7....^Ykmk)IE[fiII130L. 
i=1j=1 

Yl Y2, ... are mutually independent random variables with Q and we apply the relation 

(2.4) to the right-hand side of (5.3). Thus the expectation of random functional is equal 
to 

k 9(xll,.....xlmr, x21, 

       ~A~i=1[a"''(mi)!](a(X))[k]x,,,, 

      ( 

                                                                                  =1 
                   i•m;=k)                     —r 

                                                                 k m; 

£21,.....x2m2, x2m2, ... , 1k1, .....rkl, .... xkm1., ...., xkmt:) H H dQ(xij)• 
i=1 j=1



 

1  ~n I.Aw.iac}II and II.A i vTO

Thus the proof of Proposition 1 is completed. ^
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