SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

THE EXPECTATION OF RANDOM FUNCTIONALS WITH THE
DIRICHLET PROCESS AND ITS APPLICATIONS

Nomachi, Toshifumi
Graduate School of Science and Engineering, Kagoshima University

Yamato, Hajime
Faculty of Science, Kagoshima University

https://doi.org/10.5109/13488

HERIEZR : Bulletin of informatics and cybernetics. 31 (2), pp.165-178, 1999-12. Research
Association of Statistical Sciences
N—o30:

HEFIBAMR



Bulletin of Informatics and Cybernetics, Vol 31, No. 2 1999

THE EXPECTATION OF RANDOM
FUNCTIONALS WITH THE DIRICHLET
PROCESS AND ITS APPLICATIONS

By

Toshifumi NoMACHI* and Hajime YamaTo!

Abstract

We deal with the expectation of random functionals with the Dirich-
let process, using Sethuraman's representation. As an application of this
expectation, we obtain the Bayes estimates of estimable parameters with
the squared error loss based on the Dirichlel prior process. From the
Bayes estimates, we obtain the limits of Bayes estimates, which may be
used for the non-Bayesian inference. We see the differences of the limits of
Bayes estimates fram the corresponding [/-statistics and the V-statistics,
for five estimable parameters of degree two,

1. Introduction

We consider Bayes estimation of estimable parameters with squared error loss based
on the Dirichlet process, which is introduced by Ferguson (1973). For some estimable
parameters of degrees one and two, he gives the Bayes estimates and their limits. Using
the results of Ferguson {1973) and Antoniak (1974), Yamato {1977b) gives the expecta-
tion of random functionals with the Dirichlet process. Using this expectation, he gives
the Bayes estimates of estimable parameters of any degree. He also shows that for a
sample of size n from the fixed distribution, the mean squared difference of the limit of
Bayes estimate from the U-statistic is of order O(n~2). In Section 2 we quote the defini-
tion and some properties of the Dirichlet process from Ferguson (1973} and Sethuraman
{1994). We also quote the definition and some properties of the GEM {Generalized
Engen-McCloskey) distribution, which is introduced by McCloskey (1963) and Engen
(1978) (see Johmson et al. (1997)}). In Section 3 we give the expectation of random
functionals with the Dirichlet process using the result of Sethuraman (1994} and prop-
erties of the GEM distribution. As an application of this expectation, we can obtain
Bayes estimates of estimable parameters with squared error loss based on the Dirichlet
process. From the Bayes estimates, we obtain the limits of Bayes estimates, which may
be used for the non-Bavesian inference. In Section 4 we consider the three estimators
of estimable parameters of degree two, which are the limit of Bayes estimate, the U-
statistic and the ¥ -statistic for a sample from the fixed distribution. We give the mean
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squared difference of the limit of Bayes estimate from the corresponding U -statistic. We
also give the mean squared errors of the limit of Bayes estimate and the corresponding
V-statistic. Using these mean squared difference and the mean squared errors, we see
the differences of the limit of Bayes estimate from the L'-statistic and the V'-statistic for
the five estimable parameters of degree two. In Section 5 which is Appendix, two proofs
are given for the Proposition 1 stated in Section 3.

2. The Dirichlet Process and the GEM Distribution
2.1. The Dirichlet process

Let a(-) be a finite non-null measure on a measurable space (X', A) and P(-) be a
random probability on (X, .4). We denote the k-dimensional product measurable space
(X x---x X, Ax .+ x A) by (X*, A*).

DEFINITION 1. (Ferguson {1973)) We say P(-) is the Dirichlet process on (X, .A)
with parameter a and write P € D(a), if and only if for any m and every finite measur-
able partition (B;....,By) of X (i.e. forevery m =1,2,...and By,.... B, € A, By U

...UBp =Xand B;nB; =0 for i # 1), the random vector (P(By)....,P(B,)) has

the Dirichlet distribution with parameter {a(By),...,a(B.)), D(a(By),...,a(B,)).
Ferguson (1973) gives the following representation of the Dirichlet process. Let
Ji. Ja, ... be random variables whose distributions are given by the following equations,

P{A 2} =exp(N(z,)} forz; >0

<
P{JJ S I:lej_]_Zl'j_]_,...,Jl :.1‘1}
exp{N(z;) — N(x;—1)} for 0<z; <zj_y; j=2,3,...,

where N{z) = —a(X) f::'e'yy_ldy. Then the distributions of J,,.J5,... depend on
o only through a(X). For each j = 1,2,--- we put P; = J;/(3°72, J;). Then, P; >
0 as.{almost surely) and 2;1 P, =1as. Let 1,15, -- be a sequence of independent
random variables on A’ with the probability measure @, where @Q(-) = a(.)/a(X). We

assume that V7, Vs, .. are independent of P, P, ...

LEMMA 1. {Ferguson (1973)} Let P(-) be a random probability on (X, A) defined
by

P(4) = Y Piby(4) fordcA, (2.1)
3=1

where &, is a measure with the total mass one on point x. Then P(.) is the Dirichlet
process with paremeter o,

Sethuraman (1994) gives a new representation of the Dirichlet process. Let ¥y, Y5,
... be a sequence of independent random variables on X with probability measure ¢.
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Let py.ps.... be a sequence of random probabilities defined by
pL =68, and sz(l_el) (]—63_1}9}' forj=2.3..... (2.2}

where .63, - are independent and identically distributed random variables with a
Beta distribution, Be(l,a(X)).

LEMMA 2, (Sethuraman (1994)) The random probability on {, A) defined by

P(A) = ipjayj(,q) for A€ A, (2.3)

i=1

is the Dirichlet process with parameler a.
From Lemma 2, we can get easily the following lemma.

LEMMA 3. (Sethuraman (1994)}) The random probability P(-) defined by (2.3)
satisfies the distributional equation,

P(A) 2 8,6y, (A)+(1—6,)P(A) for A€ A4, (2.4)

where = means the stochastic equivalence relation and on the right-hand side P is inde-
pendent of 8, and ¥7.

2.2. The GEM distribution

The joint distribution of p = (py, pe, . ..) defined by (2.2) is called the GEM distri-
bution. Now let W = (W, Wa,...) be a size-biased permutation of p. That is, given p,
the conditional probability of W is such that for § = 1,2,... and any distinct integers
klsk2:" -,kj,

P Pi;
Pk1 1_Pk1 _“'_pkj_l

P[W’I:pkle"ww’j=pk,'|p] PJnl

Then W has the same distribution as p, since the GEM distribution is invariant under
the size-bjased permutation (see, for example, Ewens (1990}). Therefore from the lem-
mas 3 and 4 of Sibuya and Yamato (1995) we have the following lemma.

LEMMA 4. For any posttive integers ¢, ¢a,...,Cq, we have
of - .
. . Y
Z pJ‘L pJp - aleitte] H{Ct 1)-,
h#Eo#£la i=1

where the above summation extends over all distinct positive integers ji,...,J. and
el =ala+1)---(a+s-1).
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From Lemma 4 we have immediately the following lemma. The similar result
based on (2.1) is presented by Yamato (1977b} using the result of Antoniak (1974).

LEMMA 5. For any combination {m,.....my) of k non-negative integers satisfying
z:;lz m; =k, we have

E[Z 1__[ Hp‘lj] [kl H{ i— 1) }m,‘ {25)

=1 j=1

where the summation Y.  eztends over every pair of all mutually distinct values Pij
G=1,...,mgzi=1,...,k) in (p1.p2,...).

3. The Expectation of Random Functionals with the Dirichlet Process and
Its Applications

The expectation of random functionals based on the Dirichlet process is given by
Yamato (1977b} as follows:

PROPOSITION 1. (Yamato (1977b}) Let P(-) be the Dirichlet process on (X, A)
with parameter o and let g be @ measurable real valued function on (X"' A*Y and sym-
metric in the arguments. If fx" \g(:ﬂl,...,xl,...,ru,.... T, dalx;)} exists for all
combinations (ry,ra,...,ry) satisfying with ry 4o 4+ i 47, = k and v = 1,2....,k,
then [oilg(xy,...,xp)| Hf:l dP(zx;) is finite a.s. and we have

k
B /ﬂg(xl,...,zk)i[[ldp(x )
k(0 X)) L ™
>

- (1511....,1'1"1 . (31)
mi M (e )] E, ney \_._..'.._v_lz'
(Zﬂam k)H R Y my
:1"21=I21"-s't?m;a'r?mg‘a---1551::1,“-:Ikla"‘:kak:‘“:Ikm;,-)l_‘[]___[dq(xéj)v

S

2m3 kmk i=1 J=l.

where the above summation ) (v eztends over the all combinations (m,...,

i=1 ‘mq:k]

my) of k non-nequtive integers satisfying Zle iomy; = k.

We give two different proofs of Proposition 1, which are presented in Appendix. Tn
Proof 1, the proposition is proved by induction on the degree k. using the relation (2.4).
In Proof 2. we use the expression {2.3) of the Dirichlet process-and the property (2.5)
of the GEM distribution.

Using Proposition 1, we may obtain the following Baves estimate of estimable pa-
rameter §(P) and its limit, based on the Dirichlet process with squared error loss. Let
P(-} be the Dirichlet process with parameter o on (R, B) and F be a distribution func-
tion of 7. Let Fy denote a distribution function of ¢ and X, Xs,---, X, be a sample
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from F. Then Baves estimate é(’P) of 8{P) is given in {3.1) by replacing @ with 15,1,
where P, = Q@+ {(1—¢n )Py, gn = a(R})/(a{R)+n). and P, is the empirical probability
measure of the sample X7, Xo.---, X,,.

Letting a(X) in é(P) tend to zero, we ohtain the limit of Baves estimate as follows:

& n+k_1 - - - r -
g% = ( L ) Yo X X X X X X
(ri+-+ro=k)

ry such that ry +---+7, = k. (See Yamato (1977b).) Similar results have been obtained
by Tiwari (1981). Limits of Bayes estimates are the average over the all k-subset of the

where the above summation Z( ry bt =k extends over all non-negative integers r1. ...,

sample (X, Xo.....X.) allowing the duplication. Let the kernel g(x,.....z:) depend
only on the distinct values among z,...., 2. For positive integers ry....,r, satisfving
ri+-o+r, =k.weput g*(zy,...,2,) =g{x..... T, T8, ..., T2 - 2 L yyn .., Ty ), Where

on the right-hand side »; appears r, times for § = 1,2,....u. Then the limit of Bayes
estimate may be represented as

-1k

e*:("““:'l) Z(::i) Y g (X X)) (3.2)

w=l 1<y« i, 51

We give its example in Subsection 4.3.

4. Limits of Bayes Estimates, [7-statistics and V'-statistics
4.1. Mean squared difference and mean squared errors

In this subsection, we fix the distribution P and let X;. X5,...,X,, be a sample of
size n from P. We see the difference of the limit of Bayes estimate from the U-statistic
by taking the mean squared difference. It is asymptotically E[(U, — 85)%] = O(n~?)
for arbitrary degree (see Yamato {1977h)). We consider the case of degree two. The
[F-statistic with the symmetric kernel ¢ of degree two is given by

1
"(2) — Y. X,
Ln n(n—l];g(‘('k))’
which is the minimum variance unbiased estimator of estimable parameter #(P) =
f g(z.1)dP(x)dP(y) for all absolutely continwous distributions. Its variance is

Var (U] (4.1)

2 - . -
= m{ﬂﬂ - 2)(Eg(X1. X2)9(X1. X3) — 6°) + E(9(X1. X2))* — 0%}
(See Lee (1990} and Serfling (1980).) The squared difference of the limit of Bayes
estimate from the [7-statistic is written as

4 1
s _pr2y2
(8, -7 n2(n+1}2[[n—l

)E(Z g(X:. X))

i#]
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,,,_IZQ X X)) Zg Xi Xi) +(Zg X X))

i

Taking the expectation of the above equation. we have
L[
a{n + 1)2
+ 4{n-— 2)Eg(X;, X>) (XI,X3)} + (n — 1)(Eg(X;. X,))? {4.2)
~ 2(n - 2)¥Eg(Xy, Xy) — 4Eg(Xy. X2)g( Xy, X1) + Elg( Xy, X1))7).

E(f, - ) = Ti(n —2)(n - 3)8° + 2E(g( X, X3))*

The V-statistic associated with a symmetric kernel of degree k is the average over
the all k-permutation of a sample allowing the duplication. The V-statistic with the
symmetric kernel ¢ of degree two is given by

. 1
Vil = = 3 a(X X;),
.

{See Lee (1990) and Serfling (1980).] The mean squared error of the limit of Bayes
estimate is obtained as

MSE (6;) (4.3)
(n=12 . oy, Hr=1) r(1) i 2
rar(l A2 —=E({U," - 8),
(n+1)2\ar(bn ) + (H_I_I)ZE[Ln UM + (n+1)2E( n =8y,

where 17, AR ZLI g(X;, X;)/n. The mean squared error of the V-statistic is obtained
as

MSE ( ¥(2) (4.4)

(n-1)? 2(n - 1)
n?

= ———Var(UP) + E{U{Y — 3)U,(1”+L2E{U,‘,”—6)2.
n n

The difference of these mean squared errors becomes
MSE( 1% ) - MSE(B*)
= Var(U12h — ALY _ g2
nz(n T 1)2 — g {(r — 1)(2n + )Var(UP) - (3n + BT - 0)
-2(n® — 2n - DE(U - YUV} (4.5)

Using the results of (4.1). (4.2), (4.3). (4.4) and (4.5), we see the differences of the
limits of Bayes estimates from the U-statistics and the V-statistics in the following five
subsections.

4.2. Estimation of P{X + Y < 0}

\We consider the estimation of

A—P{X4+Y <0)= / Hz 4+ y < 0)dF(z)dF(y)
Rﬁ
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where F{1)} is an indicator function of A and F is the distribution function of P. The
Baves estimate of A is
2 1

= @@ e CRAQ) T alRIF(0)

+za(n)iFQ(—.¥,—)+2 Y OIX+ X <0

i=1 1€i<j<n

The limit of Baves estimate of A is

-1
w_(n+tl
A _( y ) > IXi+X;<0).
154<5%n

It is well-known that the corresponding one-sample Wilcoxon's U'-statistic and the V-
statistic are given by

1 n
r n - - 1
DA=(2) E I{)ﬁ,“{‘)&jSO), VA:E E I(‘Y;'-FXjﬁ'U).
1<i<j<n

ig=1

We assume that the underlying distribution P is a fixed continuous distribution
symmetric about zera. The mean squared difference of the limit of Bayes estimate A*
from the corresponding U-statistic U is obtained as

1
nin—1}n+1)

RI(A" - Ua)?] = 3

The variance of the U-statistic is given by Var(Ua) = (2r — 1)/{6n(n — 1)}. The mean
squared errors of the limit of Bayes estimate and the V-statistic are, respectively,

2n+1 4n? — 1

MSE(A*) = MSE(Va) = ~55—

nln+ 1)
The difference of these mean squared errors becomes

(- @n+1)

MSE(Va) - MSE(A") = Y r s

Therefore we have

MSE(A™) < MSE(Va) <« Var(Ua) forn>2.

4.3. Estimation of probability weighted moments

We consider the estimation of probability weighted moments,

3,._1=E{X{F(X)}”‘I]:[Rz{F(a:)}'""dF(:c), r=1.2....
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The kernel of .3, ; is given by

From (3.2), the limit of Bayes estimate of 3._, is

-1 r

. 1 +r—1 r—1 .
3”_;(7: ' ) Z(f_u) S Max{Xi..... X}

u=1 t€iy iz €<y an

The corresponding U'-statistic is given by

-1

s =1 (“) T Max{Xi. Xi,.o X )

AT L<iy<igi, S0
(See, for example, Lee (1990).) Especially for r = 2, the Bayes estimate of 3, is

i 1 a(R)
S= G T aem Farn eRAQ f”’“dQ"’

R) Z /R Max{z, X, }dQ{z) + Z X
=1 =1

where Xy),...,X(n) denotes the order statistics for the sample Xy,....X,. The limit
of Bayes estimate of 3, is

1 n
3= —- E X (6)-
ETCES TR <R
The correspounding [F-statistic is given by

1{n
U31=§(2) Y. Max{X;,X;} =~ 1)2 1) X

1<i<i<n

The corresponding V-statistic is given by

: 1< .
Vs, = 5 S Max{X;,X,}.

i3=1
Assume that underlying distribution P is a uniform distribution, I'(—7,7). The
mean squared difference of the limit of Bayes estimate J; from the corresponding /-
statistic I7z, is obtained as

T2 54 73

B - V)l = s e e 2 T3S

The variance of the U-statistic is given by Var(Us,) = (4n — 3)72/{45n(n — 1)}. The
mean squared errors of the limit of Bayes estimate and the V-statistic are, respectively,

4rf+13n+3 ,

1602 + Tn -3 ,
T ket L
45n{n + 1)2

MSE(3;) = 180n3

MSE(V3,) =
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The difference of the mean squared error from the variance becomes

o ~2
MSE{3]) — Var(ly,) = 45n(in—(ﬂ1)(n)+ 152

Therefore we have
MSE(Vy,) < Var(U, ) < MSE(3]) forn > 2.

In the following three subsections, we also see the differences of the limits of Bayes
estimates from the ['-statistics and the V-statistics for the three parameters, for which
Baves estimates and their limits are given by Ferguson (1973) and Yamato (1977a).

4.4. Estimation of a variance

We consider the estimation of a variance of a distribution P,
6% = f %(;c — y) 2 dF(r)dF(y) = f:rng(:r) - (]zdF(m))Q.
=3

The limit of Bayes estimate of o2 is

{See Ferguson (1973).}) It is well known that the corresponding U-statistic, sample
variance, and the cotresponding V-statistic are given by

ko) Lt

SN(xi-XP, Ve = %Z(x,- - X2
i=1 i=1

1
n—1

Assume that underlying distribution P is a fixed continuous distribution, which is
symmetric about zero and has the finite fourth moment. The mean squared difference
of the limit of Bayes estimate o?* from the corresponding U-statistic U,: is obtained as

El(0® - Ups)?] = -~

W{(HQ — 20+ 33 + (n — Dpa), (4.6)

where u; (i = 2,4) is the i-th moment of the distribution 7. The variance of the U-
statistic is given by Var(U,2) = {{n — 1)ps — (n ~ 3}p3}/{n(n — 1}}. The mean squared
errors of the limit of Bayes estimate and the V-statistic are, respectively,

MSE(0?*) e Lo = ppm® — 2y — 4pd)n + pa — 3p3},

_1
n{n+1
MSE(V;2)

1 i}
—{(na - psIn® — (2pq — 3p2m + pg — 3u3}.

We consider the case that P is a normal distribution, N{0,1). From (4.6), the mean
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squared difference of the limit of Bayes estimate ¢** from the corresponding L"-statistic

{2 is obtained as
4

(n—1}n+1)
The variance of the U-statistic is given by Var(L,2) = 2/(n — 1). The mean squared
errors of the limit of Baves estimate and the V-statistic are, respectively,

n—-1
n?

E[(e® - U,2)7] =

2
MSE(62*) = ——, 2} V)=
I1SE(o*%) e ISE(V2)
Therefore we have
MSE(e™*) < MSE(V,2) < Var(U,2) forn > 2.
Moreover in case that P is a uniform distribution, U'{—, 7), we have

MSE(V,2) < Var(Uy,2) < MSE(6®) for n > 12,
MSE(V,2) < MSE(a®*) < Var(U,2) for3<n <11,

where the last equality holds for n = 11.

4.5. Estimation of a squared mean

We consider the estimation of a squared mean of a distribution P,
wt= (/ zdF(2))°.
R

The limit of Bayes estimate of p? is

2% n 12 1 o
= X X
n+1( ) +n+1

(See Yamato (1977a).) The corresponding {'-statistic and the corresponding V-statistic
are, respectively,

Uy = 2 Y XiXj, Vi = n—12 > XX,
1.

n—1 &=

1<
Assume that the underlying distribution P is a fixed continuous distribution, which
is symmetric about zero and has the finite fourth moment. The mean squared difference
of the limit of Bayes estimate g** from the corresponding U-statistic U, is obtained as

4

E[(#h - U-F-l-z)2] = n[n _ 1](73 + 1}2

{(n® — 2n + 3}uf + (0 + 1)pa}.

The variance of the U-statistic is given by Var(U,2} = 2p3/{n(n — 1)}. The mean
squared errors of the limit of Bayves estimate and the V-statistic are, respectively,

MSE() = e = 1)+ 2}

MSE(V2)

il

1
n_3{3#§{" — 1} + pa}
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In case that P is a normal distribution, N (0, 1). the mean squared difference of
the limit of Baves estimate u?* from the corresponding [-statistic U,z is obtained as
E[(#* - U,-)?] = 4/{(n — 1}{n + 1)}. The variance of the /-statistic is given by
2/{n{n —1)}. The mean squared errors of the limit of Bayes estimate and the V -statistic
are obtained as 6/{n(n + 1)} and 3/n®. respectively . Therefore we have

Var(U,2) < MSE(V,2) < MSE(u®*) forn > 4.

4.6. Estimation of a measure of concentration

We consider the estimation of a measure of concentration,
y=EX =Y = [ Jo-yldF@dFG).
‘RZ

The limit of Bayes estimate of ¥ is
2
P = e X - X

{See Yamato (1977a).} The corresponding {/-statistic and the corresponding V-statistic
are, respectively,

. 2 - _2 _ _
L'»' - m%lxz_ﬁhls V’)‘ T ;[X; XJ|-

We consider the case that the underlying distribution 7 is a normal distribution,
N(0,1). The mean squared difference of the limit of Bayes estimate v* from the corre-
sponding [/-statistic U, is obtained as

Bl(y" - U4)?) =

16 2 9/3-5 1. 6—-4/3 1
—\/;ﬂ-—--l- +—‘/_+ﬁ}.

my sy gy il 3" 3

The variance of the U-statistic is given by Var(U;) = 4[{{2v3 - 4)/7 + 1/3}n + (6 — .
44/3)/m 4+ 1/3}/{n(n — 1}}. The mean squared errors of the limit of Bayes estimate and
the V-statistic are, respectively,

. 4 2v3-4 1 14-6v3 4/3-6 1
LISE(FY ) ﬂ(ﬂ + 1)2 {( T + 5}"’2 + p n+ = - 5}1

A 4 2y/3-4 1 11-6v3 4/3-8 1
MSE(V,) = —{{———+zm*+——n+——-3}

Therefore we have
MSE(V,) < Var(U,) < MSE({y") forn= > 3.

In case that the underlying distribution is a uniform distribution, U{-1/2,1/2),
the mean squared difference of the limit of Bayes estimate 4™ from the corresponding
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U-statistic L", is obtained as 4(57% — 4n + 3)/{45n{n — 1){n + 1)*}. The variance of the
U-statistic is given by (n + 3)/{45n{n — 1}}. The mean squared errors of the limit of
Bayes estimate and the 1 -statistic are obtained as (n?+22n-3)/{45n(n+1)?} and (n?+
7n—3)/45n%, respectively. Therefore we have, MSE(~v") = Var(l,) < MSE(V.) (n = 2),
Var(L, ) < MSE(%*) = M8E(V,} (n = 3) and

Var(L', ) < MSE(V,} < MSE(7*) forn > 4.

5. Appendix
We give two different proofs of Proposition 1.

Proof 1. We prove Proposition 1 by induction. First we consider for k = 1.
Using (2.4), we have

j o2)dPE) L Gig(¥)+(1—6) [ o(@)dP(z). (5.1)
X X

We take the expectations of the both sides of (5.1). Since 7 is independent of (6,,¥1)
and 6, is independent of ¥7 on the right-hand side, we get,

E| L o(2)dP(z)] = Elg(¥1)] = /X #(2)dQ(z).

Let k£ > 2. We assume that (3.1) holds for 2,3,....k — 1t and g{z,,...,7x) is
symmetric in the arguments. Then we have

1

k *
EY .
£y (_,,)6?*’(1—el}ffm_gm,.u,}a,ml,...,x,)HdP(:«:‘-)

r=0 P i=1

k
HEETALY BPCNNERY ) ) (52)
i=l

We take the expectations of the both sides of {5.2). Note that on the right-hand side
P is independent of (#,Y7) and 8, is independent of };. For the first integral on the
right-hand side of (5.2), we take the conditional expectation given ¥3 = g and then
take the expectation with respect to ¥y having the distribution Q. Then we have

&
- -9,k Leeer Xk P,
(1 - E(1-0)) )E]ng(x = [[47(e)
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2 M\ a(X) (o X)) e X)) ™
= ——— k=)
2() (@R ! )(EZ T Gn @

X]I v (¥ YL TLy - Tl 22120 - T2 T2mg
Yo e — | S—_— | S ——"_ 4
k—r 2 2
r o m;
i Zrse e Tt Tom, oo Tom ) [ [ [T dQC25)dQ(0)-
b v i=1j=1

For each r € {0,1,...,k — 1}, y; appears k — r times. We put m{_, = mp_, + 1 and
m; = m; for j # k —r. From the combination {(m,, ms,. .., my) satisfying YMmi=T,
we have the combination (m},m5,...,m{, ) which satlsﬁes 3'_yml = k. Thus we
have
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Therefore Proposition 1 is proved. O

Proof 2. Since Y},Ys2,... are independent of (p1,peo,...) and by using (2.3),

we have
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¥,.Y,.... are mutually independent random variables with @ and we apply the relation

(2.4) to the right-hand side of (5.3). Thus the expectation of random functional is equal
to
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Thus the proof of Proposition 1 is completed, O
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