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MULTIPLE RELATIVE RATES FROM THEIR 

    GIVEN PAIRWISE ESTIMATORS

                   By 

Zhong-Zhan ZHANG * and Takashi YANAGAWA

                          Abstract 
This article is concerned with the estimation of relative rates of population 
characteristics of multiple populations when the estimators of the relative rates 

have been given from the relevant two populations. We generalize the invarince 
of relative rates estimators and the projection method introduced in previous 
articles, and propose a class of estimators obtained from the generalized pro

jection. It is shown that the estimators are invariant. The consistency and the 
asymptotic normality of the estimators are proved. 

Key words: Asymptotic covariance matrix; Begun-Reid estimator; Consis
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1. INTRODUCTION 

   Consider I+ 1 populations indexed by 0, 1, • • • , I(I > 1), and let pi be a population 
characteristic of population i, i = 0, 1, • • • , I. Frequently, the relative rate prameters 

   = pi,/µi, i, i' = 0, 1, , I, such as relative risks and rate ratios in epidemiology and 
hazard rates in survival analysis, are the main concern of researchers. 

   It is easy to see from the definition of relative rate that 

                 g~;> = 9(k),0(k>, i, i', k = 0, 1, ... , I, (1.1) 

which we call the invariance of the relative rates with respect to the selection of a base 

population. 
   Introducing mathematical models one may estimate {9 } using all populations by 

conventional methods, such as likelihood methods (unconditional likelihood, conditional 
likelihood, partial liklihood) (Cox 1975, Breslow et al. 1978, Anderson et al. 1994) 
and estimating equations (Liang 1987). However, the blind faith of these estimates 
with little awareness of strong assumption implicit to the mathematical models leads 
to the possibility of obtaining misleading results if the assumptions are violated. On 
the other hand, 0~;) may be estimated from population i and population i'. We call 
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the estimators pairwise estimators. They are naive and could be used as a diagonostic 
tool for the conventional models. In fact, as shown by Yanagawa and Fujii (1995), and 
Zhang and Yanagawa (1997), many pairwise estimators are informative, and may be 
combined to get alternative estimators which are competing with the estimators from 
the conventional methods. A common disadvantage of many pairwise estimators is that 
they do not satisfy relationship (1.1). This implies that the inference based on the 
pairwise estimators could depend on the base population selected for the reference of 
comparison. For example, it is well known that MantelHaenszel type estimators have 
no invariance property (Yanagawa and Fujii 1995, Zhang and Yanagawa 1997). 

    Any estimators which do not satisfy relationship (1.1) have been called the lack 
of invariance with respect to the selection of a base population (Yanagawa and Fujii 
1995, Zhang  and Yanagawa 1997). In this article, we furthermore note that even if 
estimators of {0,2)} from a base population satisfy (1.1), they may still depend on the 
base population. For example, suppose that we have got pairwise estimators N°)} of 
{9,°)} taking population 0 as the base, and also Nl)} of {k1)} taking population 1 as 
the base. Then we may construct two estimators and 4i) of e by 

           9~;) = b.°)/b°) (i # 0), k°) = b~°> i = 1, 2, .. • , I; 
e(=) = b(1)/b(1) (i � 1), op) = b(l),i = 0, 2, . . . , I. 

It is clear that the two estimators satisfy (1.1), but k;) # k$) if {bn do not satisfy 
(1.1). We generalize the concept of invariance as follows. 

DEFINITION 1.1. Denote the relative rate vector by 9 = (90), ; 19(10), (11), 
g '), 0(1/-1),T.  Suppose that we have an estimator (90'), 91?), , 9(1)) of (9(0'), 
81~), • • • , 9(/)) taking population j as the base population. Define an estimator of 9 

e(j) = (e(1°)(j), ... , BI°)(i), (l)(j), ... , e(11)(j), ... , eI11)(j))T 

by 

6i)(j) = e/e), i < i' = 1, ... , I. 

If 9(j) does not depend on j, we call the estimator invariant with respect to the selection 
of a base population.

   This article generalizes the projection method introduced by Yanagawa and Fujii 
(1995) and considers a class of relative rates estimators obtained from the generalized 
projection. It is shown that the estimators are invariant with respect to the selection 
of a base population. The paper is organized as follows. Section 2 gives the projection 
method estimators and discusses their properties; Section 3 shows the invariance; in 
Section 4, examples are presented to illustrate the usefulness of the projection method 
estimators.
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2. PROJECTION METHOD ESTIMATORS 

   Suppose that pairwise estimators of  {e)} are given, and set population 0 as 
the base population. Consider the following model to estimate {e)} from 

log b~;) = log 9~,  log e) , i < i', i' = 1, . • • , I. (2.1) 

Denoting 

a = (e(1°), ... , 9 °))T ,f3 = log a, 
        b = (b(10), ~ b1°> b(21), ...  by.), ...  b(Ir-1))T,y = log b, 

         00 T 

                                    T 

                                                   (2.2) D EI—1I-1-11                            -2 ...-1,rt= log 0, E
I-1 E -2 1 

g = (6(10), ... ~ e j°), E(21), ... , E(11), ... , Er1))T 

where Eq stands for the identity matrix of order q x q, and 1q for the column q vector 
of 1, (2.1) can be rewritten as 

y=D/3+e,(2.3) 

and also rt may be represented as i = D/3. 

DEFINITION 2.1. Let p(-,-): 7 ,h x Rh -* [0, co) be a continuous function such that 
p(u, u) = 0 for each u E Rh, where h = I(I + 1)/2. When y, or equivalently b, is given, 
we define the projection method estimator of /3 with respect to p as 

13 = arg minop(y, D/3)(2.4) 

provided that it exists. Accordingly the projection method estimators of a and 9 are 
defined by a = exp /3 and 9 = exp D,C3, respectively. 

    Usually p(u, v) is taken as a function expressing some kind of distance between u 
and v. An example is the weighted sum of squared errors of (2.3) 

                 L2,Q = (y  D/3)T Q(y  D/3),(2.5) 

where Q is a given positive definite matrix. This leads to the estimator 

/3Q = (DTQD)1DTQy.(2.6) 

We shall discuss this estimator further and also other estimators in Section 4. 

   The following theorem shows the consistency and asymptotic distributions of the 

projection method estimators. 

   Denoteap(y,z)=ap(u,v)Iand02P(y,z)=a2P(u, v)  Onauiu=y,v=z auavauav lu=y,v=z.
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   THEOREM 2.2. Suppose that the function p(y, D/3) in definition 2 is strictly convex 
with respect to /3, and that p(•, •) is twice continuously differentiable in a neibourhood of 

(ii,17), i.e. a2p(u, v)/au2, 02p(u, v)/auav and 02p(u, v)/0v2 exist and are continuous 
with respect to u and v. 

   (1) If the pairwise estimator b satisfies b P 9 (n -} oo), where n is the total sample 
size, then 

(n oo). 

   (2) If b satisfies that /(y — rt) N(0, Vy) (n oo), then 

—0) N(0 ,V), 

where 
V = (DTF22D)1F12VF2(DrF22D)1, 

                         1'12 = DT a2P(77, 77)  a
uav 

and 

                               r22= 
a2P(1, r!}  

av2 • 

    PROOF. (1) By the Taylor expansion, 

P(y, D'Y) = P(y, rl) + DT apav'rf) ('Y — 0) 
                  +(y—/3)T (DT 02ay,rl)D)(y-0)+R, 

where R = o(11y — 0112). The right hand side except the reminder R is a quadratic 
function in -y, achieving its minimum at 

(DTa2P(y,rl)D)-1DTa(y,rl)  av2av 

Thus it follows that p(y, Dy) has a local minimum at 

_ 0 _ 1 (D2 ) D) -1 DT'P(y, 77)+o(DT aP(y,~)) 
2av2ayay 

The strict convexity of p(y, D-y) implies that the local minimum is the globle minimum, 
i.e. ,Q is the projection method estimator of /3. Since 

DT aP(y, n) DTaP(rl, 7I) = 0 a
yay 

and 

                  DTa2P(y, rl)D.DT2P(rl,rl) D 
           av2 av2' 

the consistency is established. 

   (2) may be proved by using the Taylor expansion of DT p(av y) at y = /3. ^
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3. INVARINACE OF PROJECTION METHOD ESTIMATORS 

   We first define the following terminology for temporary use. 

    DEFINITION 3.1. A linear transformation of  Rh into itself is called the axeskeeped 
if its matrix is represented by the products of transformation matrices which exchange 
any two elements of h column vector and(or) change the signs of any elements. 

    Obviously, an axeskeeped transformation is orthogonal. As an example, in R2 the 
image of a point (x, y) for an axeskeeped transformation will be one of the eight points: 
(x, y), (—x, y), (—x, —y), (x, —y), (y, x), (—y, x), (—y, —x), (y, —x). 

    In this section we employ the following notation to establish the invariance prop
erty. Denote P be the symmetric group of (0, 1, • • • , I). Let p = (i0, • • • , ir) E P, 
8p = (e~l°~ ...8.21),..., O li1), ... ,O.I_1))T,/3p = (log OLi°),... , log 8C,I°))T , and 
by =(bci°),•••,b~l°),b21),•                      • • • , b~jl), . • • , bII-1))T be a pairwise estimator of 8p. 

   With this notation it follows that 

D/3p = log Op. 

Furthermore, for ri defined in (2.2), we may represent log 8p as 

                  log 8p = Apn = Ap log 8,(3.1) 

where Ap is an axeskeeped transformation matrix. Therefore, 8 = exp Ap 1 D/3p. Now 
the projection method estimator of /3p is given by /3p = arg minpp(log bp, D/3p). Thus 
the estimator of 8 corresponding to p E P may be obtained as 8(p) = exp Ap-1D,?-3p.    
Recall Definition 1.1. Then to prove the invariance of the estimator, it is sufficient to 
prove that 8(p) does not depend on p. 

    THEOREM 3.2. Suppose that the following conditions are satisfied. 

 (a) The pairwise estimator by of 8p may be represented by log by = Apy for every 
    p E 2, where y is defined in (2.2). 

 (b) For each value of y, the solution of (2.) exists uniquely. 

 (c) For any axeskeeped transformation A and any u, v E Rh 

p(u,v) = p(Au, Av). 

Then the estimator 8(p) does not depend on p, hence it is invariant with respect to the 
selection of a base population. 

   PROOF. From condition (a) and (c), we have 

             p(log bp, D/p) = p(Apy, D/p) = p(y, A;;1 D0p).
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On the other hand, from (3.1) and (c) 

 p(log  bp,  0p) = p(Apy, log 0p) = p(Apy, ApD/3) = p(y, D/3). 

Thus putting /3p = arg min$p(y, Ap1DOp) and /3 = arg minjp(y, D/3), we have 

                                       P 

              A-P1D/3p=0, (3.2) 

since the solution of (2.4) is unique from assumption (b).^ 

   Noting that the right-hand side of (3.2) does not depend on p, the theorem is 
obtained. 

    Many useful distance functions satisfy condition (c). For example, Lq(u, v) = 

E  v1 , 0 < q < oo have this property. Condition (a) is equivalent to b:!) = 
(b~'))-1ii'=0,1I. Manynaturalpairwise estimators satisfythe condition. For   >>=>>...~yPY 

example, the MantelHaenszel estimators of odds ratios (Mantel and Haenszel 1959), 
Begun-Reid estimators of hazard rates (Begun and Reid 1983), pairwise Cox partial 
likelihood estimators of hazard rates (Crowley, Liu and Veolkel 1982) have this property.

4. APPLICATIONS 

   To apply the projection method, we must suppose that pairwise estimators have 

been given. The selection of pairwise estimator depends on both the background of the 

problem and the favour of researchers. In the following, we present several available 
distance functions and also some comments on the selection of pairwise estimator.

4.1. Linear projection estimators 

   Taking the weighted sum of squared errors (2.5) as p(y, D/3), we get estima
tor 44Q given in (2.6), which is a linear function of y. We call the estimator of 0 
defined by 9Q = exp D/3Q the linear projection estimator. When pairwise estima
tors satisfy the conditions of Theorem 2.2, OQ has the asymptotic covariance matrix 
(DTTQD)-1 DTQVyQD(DT QD)-1 

   The following corollary gives the invariance property of the linear projection esti
mator. 

    COROLLARY 4.1. Suppose that the given pairwise estimators satisfy condition (a) 
of Theorem 3.2. For any p E P, putting 

Np Q = arg mino(Apy — D/3p)TApQAp1(Apy — D/3p),(4.1) 

                                            P where Ap is the axeskeeped linear transformation defined in (3.1). Then the projection 
method estimator of 9 given by BQ(p) = exp Ap 1D/3p,Q does not depend on p. Thus the 
linear projection estimator is invariant with respect to the selection of a base population.
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   A proper selection of the weight matrix Q is  Vy  1, the inverse of the estimated 
covariance matrix of y, if it is available. This weight matrix minimizes the asymptotic 
covariance matrix of ,63Q with respect to Q. Another simple choice is Q = Eh, the h x h 
identity matrix, which is associated to orthogonal linear projection. By the corollary 
both weight matrices lead to invariant estimators. 

    In the following, we present two examples of linear projection estimators. 

    Example 1 

    Consider the following multiple population proportional hazards model in survival 
analysis 

Ai, (1) = B~; ~i {t), i, i' = 0,1,    , I, 

where Ai (t) is the unknown hazard function of population i and e E (0, oo) is the 
unkown hazard rate of population i' with respect to population i, which is assumed 

independent of time t. Suppose that the Begun-Reid estimator of G , is given from 

population i and i', 0 < i < i' < I, and selected for b~t involved in (2.6) (Begun 
and Reid 1983), we get a generalized Begun-Reid estimator of the hazard rate vector. 
Zhang and Yanagawa (1997) investigated the asymptotic distribution of the estimator 
and given an estimator of its covariance matrix. It has been shown by simulations 
that the estimator f3177 1 (i.e. the estimator taking Vy 1 as Q) may have smaller bias 
and covariance matrix than the Cox partial likelihood estimator for small and medium 
sample sizes. 

    Example 2 
    The MantelHaenszel type estimators (1959) of relative risk have been widely used 
in various studies (Greenland 1985, Sato 1992, Yamagimoto 1992, Breslow 1996 and 
Austin et al. 1997). These estimators are for 2 x 2 tables in stratified data, easy to 
compute and have simple variance estimators (Robins et al. 1986), and furthermore, 
they are dually consistent and highly efficient. Suppose that the exposure has I + 1 
levels, and that the relative risk of level i' with respect to level i, denoted by 6,!), is 
common throughout strata, i, i' = 0, 1,    , I. Let {bn be one of pairwise Mantel
Haenszel type estimators of {O }. Taking p as L2,Q in (2.5), we may obtain generalized 
MantelHaenszel estimators. In particular, for L2,E, i.e. Q = E in (2.5), we get 

      SIM=-----1          H[b0g0)h1  — (E log , ... , E log b(I)J1 
        I + 1 i=1i#1i#I 

by using the relationship (DT D)-1 = (EI + ilij)/(I + 1). The resulted estimators 
inherit all characteristics of the pairwise MantelHaenszel type estimators mentioned 
above (Yanagawa and Fujii 1995). 

    If the size of each entry in a contingency table is large, the optimum Begun-Reid 
estimator (that is, the estimator with estimated optimum score, see Zhang and Yanagawa 
1997) might be applicable. The efficiency of the resulted estimator would be slightly 
high than above generalized MantelHaenszel estimator, but it is not consistent for sparse 
data.
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4.2. Ridge estimators 

    Adding a penalty term to the weighted sum of squared errors , we may consider the 
estimator defined by 

 OR = arg mint) [(y — D/3)T Vy 1(y — D/3) + K(D)3)T DO}, 
where K is a given positive number, and Vy is an estimator of asymptotic covariance 

matrix of y satisfying \/(V,  Vy) = Op (1), and the other notations are the same as in 
Section 2. It is easy to show that the estimator is given by 

SIR = [DT Vy 1 D + K DT D] -1 DT Vy 1 y 

This kind of estimators is well known as ridge estimators. The estimator OR with 
K = I/(nyry) (Ryan 1997) has the same asymptotic distribution as 131;

y-1. It is not 
difficult to show the corresponding result as the corollary; thus the estimator of 9 derived 

by 13R is invariant with respect to the selection of a base population .
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