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TESTING STATIONARITY USING RESIDUAL

                      By 

      Gan OHAMA*t and Takashi YANAGAWA* 

                     Abstract 

   Stationarity is assumed in many conventional analysis of time series 
data. The aim of this paper is to propose statistical tests for a weakly 
stationarity.

1. Introduction 

   A time series  {Xt} is said to be stationary if the mean of Xt is independent of t 
and the covariance of Xi and Xi depends only on i — j. The stationarity is assumed in 
many important methods in time series analysis. The aim of this paper is to propose 
statistical tests for the stationarity. Okabe and Nakano (1991) explored recently a 
statistical method for testing this assumption. They introduced the criterion for deciding 
whether any given ddimensional data can be regarded as a realization of a stationary 
time series. The criterion presumes the identity of the sample autocovariance function 
and population autocovariance function. In this paper we first study this presumption 
and then develop two tests of the stationarity. The first test modifies the one proposed 
by Okabe and Nakano (1991) taking into account the multiplicity of the test. The second 
test is new and based on the periodgrams. In section 2 we summarize the definitions 
and known results which will be used in subsequent sections. In Section 3, we will 
give the procedures of the proposed tests. In Section 5, we will show the results of 
simulations and application to practical examples. This will demonstrate the usefulness 
of our testing procedure. In Section 4, we will give the approximate distribution of the 
test statistics in our procedure. Section 6 is devoted to the discussion about this test.

2. Preliminary 

DEFINITION 2.1. A multivariate time series {Xt} is said to be weakly stationary if 
each coordinate of Xt has finite second order moment for all t, and satisfies E[Xt] = 
for all t and Cov[Xi, X3] = R(i — j) for all i, j. R(•) is. called autocovariance function. 

   DEFINITION 2.2. A weakly stationary series {Zt} is said to be white noise with co
variance matrix E, written WN(0, E), if {Zt} satisfies E[Zt] = 0 for all t and Cov[Zi, Z3] 
= bi,i E for all i, j, where Si, j is the Kronecker delta. 

* Graduate School of Mathematics, Kyushu University 
t Research Fellow of the Japan Society for the Promotion of Science



16G. OHAMA and T. YANAGAWA

    DEFINITION 2.3. The rightcontinuous, nondecreasing, and bounded function F 
on  [-7r, 7r] with F(-7r) = 0 is said to be spectral distribution function of an univariate 
stationary process {X t}with autocovariance function yy(•) if ry(h) = f(_71~~expih" dF(v) 
for all h = 0, ±1, • • • . Furthermore, if F(.) is absolutely continuous, the function f(-) 
such that F(A) = f Air f (v)dv, -7r < A < 7r, is called the spectral density function. 

For the exsistence of the spectral distribution function, see Section 4.3 of Brockwell and 
Davis (1991). 

    The spectral density of the stationary process with absolutely summable autocovari
ance function ry(•) is represented by (see Corollary 4.3.2 of Brockwell and Davis (1991)) 

                               1n_oo f (A) = 27rE -y(n) eXp—ina.(2.1) 
n=—oo 

Therefore, a process {vt} is WN(0,1) if and only if E[vt] = 0 and its spectral density 
function is (270-1. 

DEFINITION 2.4. The periodgram of a univariate process {Z}1 for the Fourier 
frequencies wi = 27rj/n (wi E [-7r, 7r]), is defined as follows: 

                                                      2 In (w3) = n-1 E Z exp-itwi 
t-1 

The periodgram is extended to any w E [-7r, 7r] as follows: (see Section 10.3 of Brockwell 
and Davis (1991) ) 

          In(w) —In(wk)wk — 7r/n < W < Wk +7r/n, w E [0,7r], 
In( — w)w E [-7r, 0). 

It is well known that I() may be represented as follows. 

           Inn I Zn 12(4.)j =wo= 0,    (7)_ik w(2.2)                     ~
lkI<n            w'y(k) eXpwj 0 0, 

where Zn and =y(k) are the sample mean and the sample autocovariance function of 
{Z}1 respectively. The periodgram is used for estimating the spectral density. 

3. Procedure of the proposed test 

3.1. Preliminary 

    For a ddimensional time series {Xt}, we suppose that there exist mean At := E[Xt] 
and covariance matrix r, ,t := Cov[Xs, Xt]. Let Xt,k and pt,k be the k-th coordinate of 
Xt and At, respectively. Since Xt,k is considered as an element of a Hilbert space L2(1l), 
we may introduce the projection operator. Let PA4 be the projection operator onto a 
closed subspace M, and denoted by M" the closed subspace spaned by {Xt,k  µt,k (1 <



k < d, s < t <  u}. We call the "regularity condition" if and only if the covariance 
matrix of Xt — µt — (Pmt,--1 (Xi,1  µt,1), .. • , Pi-1 (Xt,d  µt,d))' is positive definite f
or all t. If the regularity condition is satisfied, following (I) and (II) are equivalent. 

  (I) {Xt}t_1 is weakly stationaly. 

 (II) There exist µ E Rd and the function R(•) : Z -+ Md(R), where Md(R) denotes 
    the set of d x d matrix on R, such that: 

      (i) Sn := [R(j  i)] (i, j = 1, • • • , n) is symmetric and positive definite for all n. 

     (ii) Put Rn = (R(1), • . • ,R(n)), V, = R(0) and Vn = R(0) Rn_1Sn 
                                                                                                           1

1 -in-11 

        (n > 2). Let Wn be the symmetric matrix such that WnWn = Vn. Then the 
        series { t}t_1 defined as follows is WN(0, I) : 

     JW'(X1_,2)t = 1,               l
w' (Xt — µ — Rt-1St 11(Xt-1 — µ', ... , Xi — µ')') t > 2. 

   REMARK. In (II), the existence of Wn and Wn 1 are guranteed by the assumption 
(II(i)). 

This shows that testing the stationarity of {Xt} is equivalent to testing whehter IC} } is 
WN(0, I). 

    Now suppose that {Xt} is stationary with mean µ and autocovariance function 
R(•), and that the regularity condition is satisfied. Put 

     (Xt—µ)=0-1/ ...X'_t>2'(3.1) Rt1'St -1lXt-1µ,,,µ) 

Then (Xt -µ) _ (PM1-1     ..  , PMi-1 (Xt ,d µt,d))' and Vt is the covariance 
matrix of Xt  µ — (Xt — µ). Since V, > V2 > • • • in quadratic form, it follows that 
the regularity condition is the necessary condition of the following: 

T := inf Tt > 0, where Tt is the minimum eigenvalue of Vt. 

Recall that is the function of true parameter it and R(•) which are unknwon. Let 
sample size be N. We estimate µ and R(•) by the sample mean XN = N-1 tT 1 Xt 
and the sample autocovariance function R(h) = N-1 IN 1h(Xj+h  XN)(Xj  XNY• 
If h is close to N, R(h) is not reliable. So we use R(h) for 0 < h < M, where M 
is an appropriate constant integer to be discussed in Subsection 3.4. We estimatet 
by 4t which is obtained by replacing µ and R(h) by XN and R(h), respectively. We 

use the notation " " to show the quantities given by such replacement, for example, 

St_1 = (R(j  i)). An exception is (Xt -µ); when replaced it is represented 
i,j=1,••• ,t-1 

by (Xt  µY.
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   Since it is not possible to compute  {Et}t>M from R(1), • • • , R(M-1), we decompose 
the original process {Xt}t'_1 into N — M + 1 blocks, B(j), such that 

B(j) = {Xti)}M1 = {Xt}M9j-1, 

as Okabe and Nakano (1991). We can compute {4t')}M1 in block B(j). If the original 
process {X}1 is stationary then {et3) } M 1 is W N (0, I) for each j. It is clear that IC} 
is W N(0, I) if and only if {et } is W N(0,1), where ei is the j-th coordinate of (C, , 2, • •  )• 
Therefore if the hypothesis Hr(WN) : "{ t3)}t1 is WN(0,1) " is rejected for some j, 
the hypothesis Ho(S) : "{Xt}t'_1 is stationary" is rejected. 
   Employing all blocks for the test might not be the best method since the blocks are 
highly correlated. Thus we also consider the employment of selected blocks. The rule 
of the selection is as follows: 

   Let N and M be the sample size and the size of each block , and J be the least 
integer not less than N/M. Let { ji , j2, • • • , j j } be the set of indices of the selected 
blocks and put R = JM — N. Let Qi and R1 be quotient and residue of N divided by 
M respectively, and Q2 and R2 be the corresponding quantities of R divided by Qi. We 
define jk as follows: 

                (k1)(M1—Q2)+11 <k<R2+1, 
           ik=(k1)(M—Q2)—R2+1R2+1<k<J, 

       (N—M+1k=J. 
For simplify we denote by J the set of indices of the blocks to be tested. Namely, 

f{i,  2, • • • ,N — M + 1} if all blocks are employed, J= 
{j1, j2i • • • ,.i./}if j1, j2i • • . , j,j are selected. 

Furthermore we denote by jl,i2, ... the elements of J.

3.2. A direct procedure 

WN(0,1) is characterized by mean zero, variance one, and the orthogonality of 
the series. Okabe and Nakano (1991) test these three characteristics separately. They 
consider 2 + K(K + 1)/2 test statistics in each test, where K is the integer part of 
2.N/14.. Thus (2 + K(K + 1)/2)(N — M + 1) tests are undertaken altogether. If this 
is the case incidental rejections of the hypothesis occur, in paticular, when N is large. 
Multiplicity of the tests must be taken into account. We develop a test which tests the 
three characteristics at once in each block and take into account the multiplicity of the 
tests throughout the blocks. The procedure is called the modified Okabe and Nakano 
procedure (MON procedure), including Type A (MON Type A) which uses all blocks 
and Type B (MON Type B) which uses selected blocks. 

   Now in the MON procedure, the third characteristics is tested by using the sample 
autocovariance function of {3) } till K. Put L = dM and define µk , -5,(h)()), 2(ii), and
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 EL) in block B(j) as follows: 

L—h 

      i)k            µ(O=L1E(%(j),`Y(h)(i)=—1L j+hSj 
j=1j=1 

           (i)(i)(i)(i)•(i)              ZL= f ~'(ilA~X 1)7•• 7'Y(K)) 7 

µ2) /4) —µi) 
µs) —µi) µ4)—2µa)+1 0 

                                   1                                                                                                                                                                                      • 

        0• 

11 

The MON Type A procedure for testing Ho (S) with the Type I familywise error a is as 
follows: 

 1. Compute XN and R(h) (0 < h < M) from {X}1. 

 2. Decompose {Xt}N1 into {B(k)} (k E J). 

  3. Put i = 1. 

 4. Compute from B(j;) and compute µ~i), ry(h)('i), ZLi), and DP). 

  5. If Too = (ZLi) )^ (ELi)) -1 ZLi) > Co, reject H0(5), else suppose i = i + 1 and return 
to4. untili=N-M+1. 

  6. To;) < Co for all i, do not reject Ho(S). 

Here the constant Co is specified to be the al (N  M + 1) upper quantile of chisquare 
distribution with K + 2 degree of freedom. The MON Type B procedure is for selected 
blocks, and given by replacing N  M + 1 by J in the MON Type A procedure. 

3.3. Procedure based on the spectral density 

    As noticed in Section 2, a time series is WN(0, 1) if and only if its mean is 0 
and spectral density function is identical to (27)-1 We test these characteristics by the 
periodgram. The procedure is called the SPED procedure, including Type A (SPED 
Type A) which uses all blocks and Type B (SPED Type B) which uses selected blocks. 
The SPED Type A procedure is now described. Put wk = 2irk/L and let ii!)(.) be the 
periodgram of {}t• Let G be the integer part of (L  1)/2. Type 2-A procedure 
with the Type I familywise error a is as follows: 

  1. Same as MON Type A. 

  2. Same as MON Type A. 

  3. Same as MON Type A.
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  4. Compute  {}[t1 from B(j;) and compute IL') (Wk) for k = 1, 2, • • , E. 

  5. If To.) = max IL`) (Wk) ¢ (C1, C2), reject Ho(S), else suppose i = i +1 and return 
1<k<G 

to4untili=N—M+1. 

  6. To;) E (C1, C2) for all i, do not reject Ho(S). 

Here C1 and C2 are constants such that GL(C1) = a/2 (N — M + 1), GL (C2) = 1 — 
a/2(N — M + 1) and G(x) = (1 — exp—x)n. As similar to the MON Type B, the SPED 
Type B procedure is given by replacing N — M +1 by J in the SPED Type A procedure. 

3.4. Constants M and K. 

    Box and Jenkins (1970) postulate that useful sample autocovariances are obtained 
if sample size N is greater than 50 and time lag is less than N/4. Thus one possibility 
of selecting M and K are the integer part of N/4 and L/4. Alternatively Okabe and 
Nakano (1991) suggest to select M and K as the integer part of 3A/TV/d and 2-a, 
respectively. Note that the order of M by the Box and Jenkins (1970) criterion is N, 
whereas by the Okabe and Nakano (1991) criterion is N112. We compare these two 
criterion by simulation in Section 5. 

4. Asymptotic properties of test statistics 

    To establish the asymptotic properties of those test statistics in the preceding 
section, we set up the following conditions. Remind that et'k is the k-th coordinate of 
et') and that {V)} _ {13)1,...(i)S2 ,1...(i)              ,l,d,~2,d~ }' 

(C1) T = innffrt > 0, where Tt is the minimum eigenvalue of Vt . 

(C2) XN = µ + o,(1) and R(h) = R(h) + op(1) as N oo. 

(C3) For each Xt,i, the i th element of Xt, 

E[X] < oo, n-2 E E[Xt i] —+ 0 as n --+ oo. 
t=1 

(C4) 10)}  is independent of t for each j . 

(C5) E[(et'))4] < oo and {V)} is independent and identically distributed with respect 
    to t for each j. 

4.1. Asymptotic equivarence 

    We first prove Lemma 4.1.1 to show Lemma 4.1.2. The lemma extends Proposition 
5.1.1 of Brockwell and Davis (1991) to multivariate case.
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 LEMMA  4.1.1. Let {Xt} be a ddimensional stationary process whose autocovari
ance function is r(-). Put rn = [F(j  i)]Z,j=1,... ,n. If A'r(0)A > 0 and 1Ir(h)'AII  0 
as h -4 co for any A E Rd, then rn is positive definite for all n, where II  II denotes 
usual norm in Euclid space. 

    PROOF. Since r is the covariance matrix of (Xn, • • • , Xi)', we have det I' > 0 for 
all n. Let E[Xt] = 0 without loss of generality. Suppose det rr+1 = 0 for some r. If 
there exists r' < r such that det rr'+1 = 0, replace r by r'. Namely, r is the minimum 
integer such that det rr+1 = 0. By formula (2.27) in Okabe and Nakano (1991) , we have 

det rr+1 = det rr det Vr+1 • 

Thus det Vr+1 = 0 since det rr > 0. By the similar argument as Subsection 3.1, Vr+1 is 
shown to be the covariance matrix of Xr+1— (PM Xr+1,1, ' • ' , PM; Xr+1,d)', where Xt,k 
is the k-th coordinte of Xt and Ms' is the corresponding closed subspace . Therefore, 
there exists some A E Rd and d x d matricses ti, . • • , (Dr such that 

                                                  r 

                       A'Xr+1 = E A'(kjXr+1-j a.e. 
                                       j=1 

By stationarity we have 

r A'Xr+h = E A'4jXr+i_j a.e. for all h > 1. 
j=1 

Thus for all n > r + 1 there exist (1)(n),   , 1:1)(n) such that 

  rXr 

A'Xn = E A'(1)(in)Xr+1_j = A' (n)44 . . .~(n)). (4.1) 
     j=1/ X

1 

Now from (4.1) 

Xr`rn) 

                        i A'R(0)A = E[A'XnXnA] = E[A' (e) . . . (Xn))(X,.  .. X1) : A] 
                  / 

X144n) 

4,ln) 

           = A' (4)(n) . . . (11.n')) rr : A. 
                               4.(,n) 

Let E be the minimum eigenvalue of rr. Since rr is symmetric positive definite matrix,
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 we  have  E  >  0  and 

4)ln), 
A'r(0)A > EA' (44n) . . . (1)(n))A 

                                     11 
4)(n), 

r r 

= E E a'43(.1)4);nra = e >2 Ii4);n)'AII2 (4.2) 
j=1 j=1 

We also have 

Xr 

A'r(0)A = Coy A'Xn,A' (44n)...en)/                            f 
X1 

= A' (r(n — r),    ,r(n — 1)) A 

                               &n), 
rr 

=EA'r(n-r-1 +j)(1.(inYA < >2IA'r(n—r1+j)43;nYAI• 
j=1j=1 

By the CauchyScwartz inequality and (4.2) we have 

r a'r(0)a < E la'r(n — r — 1 + j)(1)(jn)'al 
j=1 

< E Ilr(n — r —1 + j)'AII Il4);n)'AII < V a'r(0)a..IIr(n  r -1 + j)'all. 
e j=1j=1 

The right hand side of the last inequarity converges to 0 as it —4 oo. Thus A'r(0)A = 0, 
and we have contradiction. Therefore det Fn > 0 for all n. 

                                                           D 

   LEMMA 4.1.2. If (C1) and (C2) hold, Vt is positive definite for any t = 1,    , N. 

   PROOF. By an argument similar to section 7.2 of Brockwell and Davis (1991), we 

may show that SN is nonnegative definite. Define R* (h) and Sn as follows: 

R* (h) ={R(h) 0 < h < N — 1, Sn = [R* (j — i)]i,j=1,... ,n (n = 1, 2, ... ). 0 h>N. 

Then using the same argument again we may show Sn is positive definite for all n. 
Therefore, there exists ddimensional stationary process {Xt } whose autocovariance ma
trix function is R*(-). We first show A'R*(0)A > 0 for any A. Suppose AIR*(0)A = 0



Testing Stationarity Using Residual23

for some A then 

      0 =  A'R*(0)A = A'R(0)A = A'N-1 > (xi XN) (xi XN)' A 
j=1 

= N 1 (Xj  XN)' AI2 
j=1 

Namely, A'X2 = A'XN for any j = 1, . • • ,N. From (C2), it follows for any e > 0 that 

             Pr ((A'X1 — A'µ~ > e) = Pr (IA'XN — A'tz > e) 
=Pr(IA'(XN—µ)I>E) 

0 as N -+ oo. 

It follows that A' (Xi — µ) = 0 a.e. and we have 

         0 = E [(A' (X1 — µ))2] = A'E [(xi — µ) (X1 — A)'] A 
            = A'R(0)A. 

However we have det Vo = det R(0) > 0 from (C1), thus contradiction. Namely we have 
A'R*(0)A > 0 for any A, so Sn must be positive definite for all n > 1 by Lemma 4.1.1. 
Since R* (h) = R(h) for 0 < h < N — 1, SIN is positive definite. From formula (2.27) in 
Okabe and Nakano (1991), 

H det Vj = det SN > 0. 
                              j=1 

Thus det Vt 0 for any t = 1, • • • , N. Furthermore, since Vt is the covariance matrix of 
Xt — Rt_1St 11 (Xt_1, ... , Xi)', Vt is positive definite for any t = 1, • • • , N. 

0 LEMMA 4.1.3. If (C1) and (C2) hold, '43) = t') + op(1)

   PROOF. From Lemma 4.1.2, there exist S111, and Wt is welldefined and positive 
definite for any t = 1, • • • , N. From (C2), we have Sn = Sn+op(1) and Rn = Rn+op(1) as 
N -3 oo, and from the perturbation theory (see Kato (1995)) we have S1z1 = S1 +op(1).
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Thus 

                          Xt') -X 

      (:'N     (X(t') =R1S1
') -X 

            1N 

                                    Xti)  (µ + op(1)) 
 =  (Rt-1 + op(1)) (St 11 + op(1))                   (k:;  (µ + op(1)) 

                                                          Xtt—i' )   

            = {Rt-1S11 + (Rt_1 + St i)Op(1) + Op(1)} {+ Op(1)}. 

                                             X(i) — µ 

Note that Rt_ 1 and ,V11 are not random and each element of X(ti)  µ has a finite 
variance. So these quantities are Op(1) and thus 

                                           Xci)                                                               t1  

(Xt')  µ) = (Rt-1St11 + op(1)) [ + op(1)] 
Xu  µ 

) 
t-1 — 

                                   1                  = R
t-1St1+ o1)(1) 

V1) —p. 
                        = (X(ti) — ILl + Op(1). 

Similarly we have Vt = Vt + Op (1), and thus Wt-1 = Wt-1 + o(1). Therefore 

 = Wt(Xt')  XN  (X(t')  µ)~) 

= (14C-1 + Op(1)) (Xt." — p, (Xt')  ~,)" + Op(1)\ 

= Op(1) . 

0 

    REMARK. Lemma 4.1.3 may not be true when t depends on N. 

Define /74:), ''(h)(), ZL) and 12)(A) as follows: 

LL—h 

             50) =L-1 E(et'))k,'Y(h)c') =L-1E e(.7)(.7)                                                          t+h 
t=1t=1 

ZL) _ (µi), µ2) — 1, ,(1)(s), ... ,'Y(I{)(11 
L2 

IL) (A) = L-1 E etO expit9(L,a) 
                                   t=1
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Where  g(n, w) is the multiple of 27r/n closest to w (the smaler one if there are two) if 
w E [0, 7], and g(n, —w) if w E [-7r, 0). 

LEMMA 4.1.4. If (C1) and (C2) hold, we have 

ZL) = ZL) + op(i) and IL) (A) = /(2)(A) + op(1), 

asN-400. 

    PROOF. The lemma is straightforward from Lemma 4.1.3 and the fact that the 

functions 

L-1 Et1 2t ,L-1 Et lh xt+hxt and L-1I Et xt eXp—atg(L,a)I 

are continuous on RL to R. 

U 

4.2. Asymptotic distributions of the statistics 

    In this subsection we show the asymptotic distributions of the test statistics, which 

consist of true when L-+ooasN-+oo. 

   Define '(h) (') and YL) as follows: 

;OP) = L-1 Y(1) = (Tin  4) — 17Y(1)"), 
t=1 

Denote NN (rl, T) by the pdimensinal normal distribution with mean vector rl and co
variance matrix and by Ir the p x p unit matrix. 

   LEMMA 4.2.1. If (C5) holds, then under the null hypoyhesis we have 

                 YL) -+ NK+2 (0, E) as L -+ oo. 

The covariance matrix E is as follows: 

                   1 µ3 0 
          E = 01I

K=µs114—1(4.3) 0I
K 

where µk := E[( t'))k] for k = 3, 4. 

   PROOF. For any A = (A1, ... , AK+2)' E RK+2 

       (i) 2(i)(i)(7'         AYL=A{L_h12(,t(st))—~St(i)+lSt ,..., St+KSt)) 
t=1 

= L-1/2 E(Alet + A2(( t'))2 — 1) + E Ah+2et+het')). 
h=1
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Now, put  Tit := 74') = )1v) + A2((4 '))2 — 1) + Eh 1 Ah+2e1+het') then {rlt}t 1 is a 
strictly stationary Kdependent sequence since {ti)} is IID(0,1). Moreover, it follows 
that 

y(i)y(i)1 = L-1 E ^(i) L L 

                                                            s,t=1 

where (P is the matrix such as follows: 

   (itt(i)(i)t(i)(i)(i)(i)  /s(1)t)Ss')((St'))2  1) s t+1St s t+Kt 1 
((es'))2 —1)((41))2 — 1) (((i))2 — 1)et+14')...((v))2 — 1)t+Kti) 

                                                    s 

                                 (i)
+ls(i)tJ+)le(I)...t(i)s+1e(st                                                          ')(i

+Kt)(i) 

 ^ Ss+Kst+Kt 

and that 

                          E^)= S                                   [u$(i,t]s,tE. 

Therefore we have 

E[YL)] = 0, Var[YL)] = E. 

Thus for rlL := L-1 Et 1 it = L1/2A'YL), we have 

E[iL] = L1/2A'E[YL)] = 0 

and 

VarfrIL] = (L1/2A')Var[YL)](L-1/2A) = L1A'EA. 

By the central limit theorem for strictly stationary Kdependent sequence, it follows 

that 

                  ~rlL = a'YL) I> N(0, A'EA). 

Therefore, using the Cramer-Wold device, we have 

YL) NK+2(0, E). 

                                                             0 

    LEMMA 4.2.2. Under the same conditions of Lemma 4.2.1 and under the null hy

pothesis, we have 

ZL) =1(2) + op(1) as L -+ oc
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   PROOF. It suffices to show  L-1/2 ~tL—h+1 et+h ti) = op(i) for any h = 1, • • • ,K 
since 

LL 

   Z= L-1/2O0t(i)(i)..(i)(i)(1)(i))~ LL(>>SL+1Lt+hCt 7 '~t+Ket 
                          t=L-h-{-1t=L—K+1 

However we have 

L 

        E[{L-1/2 ~L(i)(i)l27= L-1[~~,(tci)ci)e(')c(i)]                t=L—h+1t+htI1LLSs+hsSt+hSt 
                                                           s,t=L—h+1 

                         = L-1 E E[( t+h)2(6'))2] 
                                                   t=L—h+1 

=  —* 0 as L —* oo . 

Thus L-1/2 v--'L(i)ttci)to0 i                          convergesoin mean square,probability.            t+hStgQ~thus inbbilit.py 

From Lemma 4.2.1 and 4.2.2, we have the next lemma. 

    LEMMA 4.2.3. Under the same conditions of Lemma 4.2.1 and under the null hy

pothesis, we have 

ZL)-14NK+2(0, E) as L -+ oo 

   LEMMA 4.2.4. If (C5) holds, the matrix E given in (4.3) is positive definite. 

   PROOF. E is welldeifined from (C5) and it is clear from the proof of Lemma 4.2.1 
that E is nonnegative definite. Thus it suffices to show that det E = µ4  1  µ3 o 0. 
Suppose that p4  1  µ3 # 0 then we have 

 Var [—µ3 t3) + (6'))2 — 1] = E [AV)  2113V) ((V))2  1) + (St'))4  2(V))2 + 1] 

                                       z 

                       =µ4-1-µ3 = 0 

Thus p3eti) + (V))2  1 = 0 a.e. It shows eti) = C a.e. for some constant C, but it is 
a contradiction since E[Cti)] = 0 and E[(V))2] = 1. 

                                                           0 

   LEMMA 4.2.5. Define EL)* as follows: 

                                   ci)                                              nu)_(i) 

                EL)# 
                        P(3') l~2µi)µ4µ3 24) + 1 

If (C5) holds, EL)* is positive definite and EL)* = E1 + or(1) as L —> oo, where E1 is 
given in (4.3).
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    PROOF. It is  straightforward to show EL) = E1 + or(1) by the weak law of 
large number. We show EL)* is positive definite. Put x = (V), • , e) )' and y = 
((ei'))21,..•,(())21Ythen 

'to)* 
= L-1 1142 L(x, y) L 

L-1(4, y) L-1 llyll2 • 

By the CauchySchwartz inequality we have 

det EL)* = L-2 (II4II2IIyII2 — I(x, y)I2) ? 0. 

The equality is satisfied if and only if y = ((x, y) / I I x 112) x. Thus it suffices to show 

Y 112-1 (ri3  i i )X.(4.4) 

Suppose that (4.4) is not true, then there exists t such that 

                      (V))2 )2 — 1 = P2 1(P3 — µ1)St ) • 

Put t = 1 without loss of generality. Then we have, for any E1, E2 > 0, 

 Pr (I(S(3))2 — 1 — P3e1')I > E1) = Pr (I{P2 1(P3 — h i) — 113}V)I > E1) 
< Pr (I/12 1(µ3 — hi) — P31 > E162) + Pr (IS1

ti)I > E2-1)                        < Pr (1/12-1(P3 — hi) — P31 > E1E2) + EE[(1'))2] 

                       = Pr (1P2-1(1-13 — hi) — /13I > E1E2) + EZ(4.5) 

The first term of the right hand side of (4.5) converges to zero as L -+ oo and the second 
term is arbitrary small. Therefore (V))2 — 1 — p3 12) = 0 a.e, but we may show that 
it is contradiction by the same argument as that in the proof of Lemma 4.2.4. So EL)* 
must be positive definite. 

                                                           0 

From Lemma 4.2.3, 4.2.4 and 4.2.5 we have the next theorem. 

    THEOREM 4.2.6. Define EL) as follows: 

                                                                                     * 

                      *(i)=EL) L 0 I
K 

If (C5) hold, (Z2))'(E2))-1Z2) converges in distribution to chisquare distribution with 
(K + 2)degree of freedom under the null hypothesis. 

Remainder of this subsection is for the SPED procedure. The next lemma gives an 
inequality between the fourth moment of )k and 

   LEMMA 4.2.7. If (C1) and (C4) hold, E[(etii)4] < C Ed=1 E[(Xt1)4] for some 
constant C.
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   PROOF. We write  etn and Xt'n by and Xt for short. We can assume E[Xt] = 0 
without loss of generality. From condition (Cl), t is welldefined. Recall that Xt+1 is 
the best linear predictor of Xt+1 based on X1i • • • , Xt. Thus we may represent Xt+1 by 

Xt+1 = —0t,1Xt — (kt,2Xt-1 — ... — 4t,tX1

Therefore 

~t+1Wt+i I (1)t,1 • • • (1)t,t -Xt+1 
Cwt-1I xt                                        

• 4)1,1 • 
   S1 __Wi1 _I_-Xl 

Put 
-I e

t,1 ... Ott4                             tl...4tt 
•II              

•  0 1,14)1,1 

            Yt+1tt then we have Xt+1=Wt+l~t+1 + Yt+l,where= ~jt-1~t,jWt+1—jSt+1—j•It 
follows that 

(X41Xt+1)2 = {(147t+1C+1 +Yt+l)'(Wt+lt+1 +Yt+1)}2 
_ (et+1Vt+1 t+1)2 + 4(et+1W41Yt+l)2 + (Yt+1Yt+11)2 

                                           ttt +2t+1Vt+1~t+1Yt+1Yt+1+4et+1Vt+1bt+1t+1Wt+lYt+1 

+ 4C+1 Wt+1 Yt+1 Yt+l Yt+l 

Because {C} is independent, C+1 and Yt+1 are independent. Therefore 

E[Et+1Vt+1t+1Et+1Wt+1Yt+1] = E[t+1Vt+1C+1t+1Wt+1]E[Yt+1] = 0. 

      E[ t+1Wt+1Yt+1Yt+1Yt+1] = E[ t+1]E[Wt+1Yt+1Yt+1Yt+1] = O. 

So we have 

E[(Xt+1Xt+1)2] = Egt+1Vt+1C+1)2] + 4E[(et+1 +1Yt+1)2] 
                     + E[(Yt+1Yt+1)2] + 2E[et+1Vt+1C+1]E[Yt+1Yt+1] 

E[(rt+1Vt+1St+1)2]' 

By the definition of Tt and T, we have next inequalities. 

E[(t+1Vt+1rt+1)2] > E[(TtSt+1St+1)2] ? T2E[(St+1St+1)2] T2E[(et+l,k)4]
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Thus 

 T2  E{(61-1,04] E[(Xt+iXt+1)2] = E[(E(Xt+1,k)2)2] 
k=1 

< E[d E(Xt+1,k)4]• 
k=1 

We have r 0 from the condition (C1) and therefore, for some constant C we have 

E[(6+1,k)4] C C E[(Xt+l ,k)4] k = 1, 2, ... d. 
k=1 

Next theorem is similar to Proposition 10.3.2 of Brockwell and Davis (1991), where 

considered is an independent and identically sequence. Here we consider a sequence 
which is independent but may not be identical. 

    THEOREM 4.2.8. Let El, • • , Ek be distributed independently and identically as an 
exponential distribution with mean 1. If (C1), (C3) and (C4) hold, we have under the 
null hypothesis 

(IV (A1),  .. Ii (~k))~-14(El, • • ,Ek)' as M --* oo 

where IL (•)(') is a periodogram of {'}'tt=1 = • • , l~d SM 1 ' S(Md} 

   PROOF. For simplicity we suppres index (j). Define a(A) and /3(A) for any A E 
(0,r) as follows: 

LL 

a(A) = (2/L)112 E t cos(tg(L,A)), 13(A) = (2/L)'/2 E t sin(tg(L,a))• 
t=1t=1 

where g(-,-) is defined in the proof of Lemma 4.1.4 and L = dM. We have 2IL(A) = 
a(A)2 + 3(A)2. 
Put ¢t,k = d(t — 1) + k then since { t}t 1 = { 1,1, • • • , 1,d, • • • , eM,1, , em,d} we have 

M d 

Et cos(tw) = E E ~t,k COS(l5t,kW)• 
            t=1t=1 k=1 

Put 2L = (a(A1),,9(A1), • • • , a(Ak), a(Ak))'• Let Ul U2, ,U2k be random variables 
distributed independently and identically as a standard normal distribution. It suffices 
to show that converges in distribution to U = (U1, U2, ,U2k)' since the function 

h(u1,...,U2k) = ((u1 + u)/2,•..,(u2k -1 + U2k)/2)1 

is continuous on R2k to Rk and (UZ + U1)/2 is distributed exponentially with mean 
1. Independence of Ei is followed by the independence of U; . We prove it using the
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Cramer-Wold device. For any _ (6,  • , (2k)' E R2k we have 

C'ZL = (ic (A1) + (2i(A1) + . . . (2k—la(Ak) + (2k/3(Ak) 
M d 

     = (2/L)112 E E t,k{(i cos(0t,kg(L,Ai)) + (2 sin(Ot,kg(L,Ai)) + .. 
                    t=i k=1 

• • • + (2k-1 COS(q5t,kg(L,Ak)) + (2k sin(gt,kg(L,Ak))}. 

Let'&t,k be the coefficient of 6,k and put rh = d-1/2 Lk-1 Ot,k 6,k. Then 

C,'ZL = (2/M)1/2 EM111t (4.6) andI t,kJ> i (a (4.7) 
Put BM = Et?i Var[rit]. Recall that {4"t} follows WN(0, I) under the null hypothesis, 
we have 

E[11t] = 0, E[i12] = d-1 E 4 ,k• 
                                                          k=1 

Furthermore, for sufficiently large M, that is, large L, we may consider 0 < g(L, Ai) < 
 < g(L, ) k) < 7. Namely there exist the Fourier frequencies {wn; (wn; = g(L, Ai), i = 

1, . • • , k}. Thus BM is represented as follows: 

M d 
   212       BM=d—Ot ,k 

t=1 k=1 

M d 

            = d-1 E E {(1 cos(0t,kg(L,Ai)) + ... + (2k Sin(Ot,kg(L,Ak))}2 
                        t=1 k=1 

= d E((1 Cos twnl + ... + (2k sin twnk )2. 
t=1 

From the fundamental property of the Fourier frequencies, we have 

 LL 

       (2/L) E cos twi cos twi = aij ,(2/L) E sin twi sin twi = Si.7 , 
t=1t=1 

(2/L) E sin twi cos twi = 0. 
t=1 

Thus 

   LL 

BM = d-1((1 E cos2 twnl + • • • + (2k E sin2 twnk ) 
        t~lt=1 

2k 

             = (2d)-1LE~ = 1102M/2 . 
j=1
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Substituing this equality to (4.6) we have 

 M 

 C'~L = II~IIBM ~ 17t 
t=1 

Since CU follows the normal distribution with mean zero and variance II(112, if we may 
show BM EM1 it converges to 1 in probability, C'ZL converges to CU in distribution by 
Theorem 2 of Raikov (1938). We apply the Chebyshev theorem to show the convergence 
of BM E1:11 id. By the CauchySchwartz inequality and (4.7) it follows that 

                                             /'      E[(rit)4] = E0-112,,Y~t ,k6,k)4] 
k=1 

               = d-2 E Ot,kA,lyt,m4~t,nE [St,kSt,lt,t,rn t,n] 

          < d-2 I t,kll~t,lll~t,mI^E[(et,k)2(6,1)2]E[( t,r02(6,02] 
< d-2 E Ci/E[(t,k)4]E[(~t,l)4]E[(St,m)4]E[(St,n)4]• 

From Lemma 4.2.7y 

E[(iit)4] < C E E[(Xt,k)4], where C is a some constant. 
k=1 

Thus from the condition (C3), we have 

Mdd  M-2 E E[(704,<C M-2 E E[(Xt,k)4] = c (M_2E[(xt+l,k)4]) 
  t=1t=1 k=1k=1 t=1 

d M+j-1 

< C M-2 E E[(Xt,k)4] -3 0as M oo. 
k=1t=1 

Since E[BM >M1 = 1, the convergence of BL 1 rlt to 1 in probability, and that 
of C'.ZL to CU in distribution, is proved. Thus we have the theorem by the Cramer-Wold 
device. 

                                                           0 

    COROLLARY 4.2.9. Under the conditions of Theorem 4.2.8 and under the null hy

pothesis, we have 

                      max IL)(Ak)-+E 
                                 1<k<n 

where E is the random variables with the distribution function Gn(x) = (1  exp-x)".
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4.3. Approximate distributions of test statistics 

    The test statistics for MON and SPED procedures are given respectively by 

 TMON(i) = (22))1(k))-122) 

and 

TsPED (j) = max IL ) (wk) . 
1<k<G 

Assuming condition (C1), (C2) and (C5) it is shown in Lemma 4.1.4 that ZL) converges 
in probability to Vi) as N-+co. Also we may show by the same lemma thatEL) 
converges to EL) in probability as N -+ oo. Furthermore from Theorem 4.2.6, the 
distribution of (VP )1(E2))-1Z2) is approximated by a chisquare distribuiton with (K + 
2) degree of freedom when L is large. Thus under the null hypothesis TMON (j) follows 
a chisquare distribution with (K + 2) degree of freedom approximately when N and L 
are large. 

   For TsPED(j), assuming conditions (C1), (C2), (C3) and (C4) it is shown that 
I (wk) converges in probability to IL (wk) as N -3 oo. Furthermore, it is shown 
in Corollary 4.2.9 that the distribution function of max 1-1!) (wk) is approximated by 

1<k<G 

GG (x) = (1  exp-x) G . Therefore the distribution of TsPED (j) is approximated by 
GG (x) under the null hypothesis when N and L are large. 

5. Simulation and applications 

    In this sections, we show the results of simulations, and applications of our pro
posed procedure to practical data. This will demonstrate the usefulness of our proposed 
procedure. 

5.1. Simulation 

    Simulation is conducted to (a) compare the MON procedure and SPED procedure, 
(b) to examine the selection of blocks, i.e. all blocks v.s. selected blocks, and (c) to 
compare the Box and Jenkins (1970) and Okabe and Nakano (1991) criteria for selecting 
M and K. Note that since the test are undertaken in each block, the MON Type A and 
SPED Type A procedures consist of (N  M +1) tests, and the MON Type B and SPED 
Type B procedures consist of J tests. The Type I familywise error adjusting for the 
multiplicity of the test is selected at a = 0.20 in the simulation. Sample size considered 
are N = 100, 200, and 400, and M and K by the Box and Jenkins (1970) criterion are 
chosen by M = [N/4] and K = [L/4], and by the Okabe and Nakano (1991) criterion is 
decided by M = [31g/d] and K = [2\a], where [x] is the integer part of x. As is seen 
below the models employed are the case of d = 1, thus the values of (N, M, K) used are 

           (N, M, K) = (100, 25, 6), (200, 50, 12) and (400, 100, 25)
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in the Box and Jenkins (1970) criterion and 

           (N, M, K) =  (100,  30,10), (200, 42,12) and (400, 60,15) 

in the Okabe and Nakano (1991) criterion. The models employed are as follows: 

   ARMA(2,2) (1 — B/ai)(1 — B/a2)Xt = (1 — B//31)(1 — B//32)Zt. 

 ARIMA(2,1,2) (1 — B/ai)(1 — B/a2)(1 — B)Xt = (1 — B//31)(1 — B/f32)Zt. 

Here Zt is the i.i.d. random variables from the standard normal distribution and B is 
the the backward shift operator. We generated 300 data sets for each sample size from 
the models with changing the values of al, a2) Qi and /32. The values of ai (j = 1, 2) and 
/3 (j = 1, 2) are generated from U(1, 2) and U(0, 2), where U(a, b) denotes the uniform 
distribution over (a, b). It is well known that the ARMA model is stationary, whereas 
the ARIMA model is not. 

   TABLE 1 and 2 list the number of trials that rejected the null hypoyhesis among 
300 trials for each procedure in the ARMA model, thus show the empirical levels of 
the procedures. TABLE 3 and 4 are corresponding tables to TABLE 1 and 2 in ARIMA 
model, showing the empirical power of each procedure. TABLE 1 and 3 are for the Box 
and Jenkins (1970) criterion, i.e. M = [N/4], and TABLE 2 and 4 are for the Okabe and 
Nakano (1991) criterion, i.e. M = [3~/d].

TABLE 1: Number of rejected trials among 300 and its frequency for 
       ARMA model, M = [N/4]

TABLE 2: Number of rejected trials among 300 and its frequency for 
      ARMA model, M = [3v7/d]
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TABLE 3: Number of rejected trials among 300 and its frequency for 
      ARIMA model, M  = [N/4]

TABLE 4: Number of rejected trials among 300 and its frequency for 
      ARIMA model, M = [3vW/d]

   TABLE 1 shows that the level of the SPED Type B procedure with M = [N/4] 
exceeds the nominal familywise error, and we omit it from further comparison. TABLE 1 
and 2 show that the levels of all the other procedures are less than the nomial familywise 
error; and that the MON procedures are more conservative than the SPED procedures. 
TABLE 3 and 4 show that the SPED Type B with M = [3'/d] has the largest powers 
at every sample sizes; that it is followed by the SPED Type A with M = [N/4] and 
M = [3-1Kr/d], and by the MON Type B with M = [N/4]; and that the powers of 
the MON Type B with M = [N/4] and with M = [3,M/d] compete, but they are less 
than the powers of the other procedures. Regarding the selection of the blocks, TABLE 
3 and 4 show that Type B is slightly better than Type A. Regarding the selection of 
M, the same tables show that for the SPED procedures the Okabe and Nakano (1991) 
criterion is slightly better than the Box and Jenkins (1970) criterion; and that for the 
MON procedures, the Okabe and Nakano (1991) criterion is slightly better than the Box 
and Jenkins (1970) criterion when sample sizes are 200 and 400, but this relationship 
is reversed when sample size is 100. In summary the results of the simulation indicate 
that the SPED Type B procedure with the Okabe and Nakano (1991) criterion is the 
best among those procedures we investigated. 

5.2. Applications 

5.2.1. Sunspot data 

   We applied all procedures with M = [N/4] and M = [3-V7N/d] developed in this 

paper to the Wolfer sunspot data (TABLE 5, from Brockwell and Davis (1991)). It is 
well known that the practical data have large variation, so we transformed the data 
logarithmicly. As the observed number is zero in 1810, we replace it with 1. The sample 
mean of logtransformed data is 3.391. FIGURE 1 gives the scatter plot of the logarithm 
of the Wolfer sunspot numbers and its sample autocorrelation function. 

   Results of the procedures are listed in TABLE 6. The table shows that the sunspot 
data is stationary. It is well known that the sunspot numbers are well fitted to AR(2) 
model, so our procedures lead to the reasonable result. Note that if we aplly the pro
cedures to untransformed data, we have TABLE 7 where all the procedures except the
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MON Type A shows that the sunspot number is not stationary. We suspect that the 

nonrejection by the MON Type A would be due to its conservativeness as indicated 
by the simulation. It is important to transform data appropriately before applying our 

procedures.

TABLE 5: The Wolfer sunspot numbers, 1770-1869

FIGURE 1: The scatter plot of the logarithm of the  Wolfer sunspot numbers (left) 
        and the sample autocorrelation function (right)

TABLE 6: Results of logtransformed sunspot data analysis
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TABLE 7: Results of untransformed sunspot data analysis

5.2.2. Passenger data 

    The second application of our procedures is to the monthly totals of international 
airline passengers. (TABLE 8, from Pandit and Wu (1983)) We again transformed the 

data logarithmicly. FIGURE 2 gives the scatter plot of the logtransformed data and its 
sample autocorrelation function. The sample mean is 5.542. 

   TABLE 8 indicates the passenger data is not stationary, since it shows clear trend 
and seasonality. TABLE 9 summarize the results of our procedures. The table show that 
all procedures except the MON Type A lead to the same conclusion, i.e. the passengers 
data are not stationary. The nonrejection by the MON Type A would be due to its 
conservativeness.

TABLE 8: The number of international airline passengers  (x  1000)

FIGURE 2: The scatter plot of the logtransformed passenger data (left) and the 

        sample autocorrelation function (right)
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TABLE 9: Results of the logtransformed passenger data analysis

   REMARK. The number of data is 144, so M = [N/4] = [144/4] = 36 for Box 
and Jenkins (1970) criterion and M =  [3.  VTV/d] = [3 144] = 36 for Okabe and 
Nakano (1991) criterion. Namley M is same for each case, and thus test statistic of 
the SPED procedure is also same. Note that the SPED procedure is not dependent on 
K.

6. Discussion 

    Two procedures, called the MON and SPED, for testing the stationarity are de
veloped in this paper. The MON procedure modifies that proposed by Okabe and 
Nakano (1991) taking into account the multiplicity of the tests. As the Okabe and 
Nakano (1991) it is assumed in the MON procedure that {t} are distributed indepen
dently and identically. However, it is not the case in many examples, as is seen in the 
univariate AR(1) process Xt = OXt_1+Zt, where {Zt} is WN(0, a) such that E[4] 0 0. 
The SPED procedure is developed to free from this assumption. The Bonferoni inequal
ity is used to adjusting for the multiplicity of the tests repeatedly used in the procedures . 
As is well known, the inequality is conservative, in particular, when the tests are highly 
correlated. To minimize the consevativeness the idea of the selective blocks (Type B) is 
introduced to decrease the correlations among the test statistics. Regarding the size of 
each block, it would not be easy to decide it theoretically, and we considered the Box 
and Jenkins (1970) and Okabe and Nakano (1991) criteria which have been proposed 
for its determination. We compared the proposed procedures , selection of the blocks, 
i.e. Type A and B, and Box and Jenkins (1970) and Okabe and Nakano (1991) criteria 
by a simulation. Although our simulation is limited because of the explosion of the 
computational time, the simulation study shows that the SPED Type B procedure with 

the Okabe and Nakano (1991) criterion is the best among those procedures considered.
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