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TESTING STATIONARITY USING RESIDUAL

By

Gan OHAMA*' and Takashi YANAGAWA*

Abstract

Stationarity is assumed in many conventional analysis of time series
data. The aim of this paper is to propose statistical tests for a weakly
stationarity.

1. Introduction

A time series {X;} is said to be stationary if the mean of X is independent of ¢
and the covariance of X; and X; depends only on i — j. The stationarity is assumed in
many important methods in time series analysis. The aim of this paper is to propose
statistical tests for the stationarity. Okabe and Nakano (1991) explored recently a
statistical method for testing this assumption. They introduced the criterion for deciding
whether any given d-dimensional data can be regarded as a realization of a stationary
time series. The criterion presumes the identity of the sample autocovariance function
and population autocovariance function. In this paper we first study this presumption
and then develop two tests of the stationarity. The first test modifies the one proposed
by Okabe and Nakano (1991) taking into account the multiplicity of the test. The second
test is new and based on the periodgrams. In section 2 we summarize the definitions
and known results which will be used in subsequent sections. In Section 3, we will
give the procedures of the proposed tests. In Section 5, we will show the results of
simulations and application to practical examples. This will demonstrate the usefulness
of our testing procedure. In Section 4, we will give the approximate distribution of the
test statistics in our procedure. Section 6 is devoted to the discussion about this test.

2. Preliminary

DEFINITION 2.1. A multivariate time series {X;} is said to be weakly stationary if
each coordinate of X; has finite second order moment for all ¢, and satisfies E[X;] = p
for all t and Cov[X;, X;] = R(i — j) for all ¢,j. R(-) is.called autocovariance function.

DEFINITION 2.2. A weakly stationary series {Z,} is said to be white noise with co-
variance matrix ¥, written WN (0, X), if {Z;} satisfies E[Z;] = 0 for all t and Cov[Z;, Z;]
= 6;,; % for all 7, j, where 6; ; is the Kronecker delta.
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16 G. OHAMA and T. YANAGAWA

DEFINITION 2.3. The right-continuous, non-decreasing, and bounded function F
on [—m, 7] with F(—7) = 0 is said to be spectral distribution function of an univariate
stationary process {X,} with autocovariance function ~(-) if y(h) = f(_mr] exp™ dF(v)
for all h = 0,%1,---. Furthermore, if F(-) is absolutely continuous, the function f(-)
such that F()\) = f_)‘w f(w)dv, —7 < X <, is called the spectral density function.

For the exsistence of the spectral distribution function, see Section 4.3 of Brockwell and
Davis (1991).

The spectral density of the stationary process with absolutely summable autocovari-
ance function +(-) is represented by (see Corollary 4.3.2 of Brockwell and Davis (1991))

n=oo

QL Z y(n)exp~ ™ . (2.1)

Therefore, a process {11} is WN(0,1) if and only if E[r] = 0 and its spectral density
function is (27)~!.

DEFINITION 2.4. The periodgram of a univariate process {Z;}{, for the Fourier
frequencies w; = 2mj/n (w; € [, x]), is defined as follows:

Z Z; exp —itw;

The periodgram is extended to any w € [—m, 7] as follows: (see Section 10.3 of Brockwell
and Davis (1991))

2
In(wj) =

L) = I, (we) wg—m/n<w<wg+7/n, we[0,7],
e I.(—w) w € [—m,0).

It is well known that I,(w;) may be represented as follows.

In(wj) = {" I e (2.2)
2 kj<n Y(k) exp ki w; #0,

where Z,, and #(k) are the sample mean and the sample autocovariance function of
{Z:}7-, respectively. The periodgram is used for estimating the spectral density.

3. Procedure of the proposed test
3.1. Preliminary

For a d-dimensional time series { X, }, we suppose that there exist mean p, := E[X;]
and covariance matrix I, ; := Cov[X;, X;]. Let X and ¢ x be the k-th coordinate of
X; and p,, respectively. Since X x is considered as an element of a Hilbert space L2(2),
we may introduce the projection operator. Let Py be the projection operator onto a
closed subspace M, and denoted by M?¥ the closed subspace spaned by {X;  — s x|l <
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k <d, s <t<u}. We call the “regularity condition” if and only if the covariance
matrix of X; — p, — (Ple—1 (Xeq1 — pe1),- - s Prge- (Xt,a — pe,q)) is positive definite
for all ¢. If the regularity condition is satisfied, following (I} and (II) are equivalent.

(I) {X.;}2, is weakly stationaly.

(IT) There exist # € R? and the function R(-) : Z — M4(R), where My(R) denotes
the set of d x d matrix on R, such that:

(1) Sp:=[R(j —19)](,7=1,---,n)is symmetric and positive definite for all n.

(ii) Put R, = (R(1),---,R(n)), Vi = R(0) and V,, = R(0) — Rn_lS;_llRﬁl_l,
(n > 2). Let W,, be the symmetric matrix such that W, W, = V,,. Then the
series {£,}§2, defined as follows is WN(0,1) :

¢, = Wit (X, — ) t=1,
FTAWE (Xe - g - Rea SEL (X, — -, XY — ) t>2.

REMARK. In (I), the existence of W, and W, ! are guranteed by the assumption

(I1(i)).

This shows that testing the stationarity of {X;} is equivalent to testing whehter {§,} is
WN(,I).

Now suppose that {X;} is stationary with mean p and autocovariance function
R(-), and that the regularity condition is satisfied. Put

-1 ' ] ' "t (31)
Ry 1S (X, — ', Xy — ) t2>2

(Xt—ﬂ)Az{O t=1

Then (Xt ~”)~ = (PMi_l (Xt,l "ﬂt,l), ety PM:I—I (Xt,d _l/'t,d))’ and V;g is the covariance
matrix of X; — pu — (X; — p) . Since V; > V5 > --- in quadratic form, it follows that
the regularity condition is the necessary condition of the following:

T = 1§£ 7¢ > 0, where 7 is the minimum eigenvalue of V;.
t2>

Recall that &, is the function of true parameter p and R(-) which are unknwon. Let
sample size be N. We estimate g and R(-) by the sample mean Xy = N~! Zivzl X,
and the sample autocovariance function R(h) = N~! zj.vz‘l"(xﬁh -XN)(X; - Xn).
If b is close to N, R(h) is not reliable. So we use R(h) for 0 < h < M, where M
is an appropriate constant integer to be discussed in Subsection 3.4. We estimate &,
by £, which is obtained by replacing  and R(h) by Xy and R(h), respectively. We
use the notation “~” to show the quantities given by such replacement, for example,
Si_y = (R( Jj— z)) v An exception is (X; — ) ; when replaced it is represented

1,j=1,,t—

by (Xt —u) -



18 G. OHAMA and T. YANAGAWA

Since it is not possible to compute {£, };> s from R(1),--- , R(M —1), we decompose
the original process {X;}/V, into N — M + 1 blocks, B(j), such that

B(j) = {XP, = {Xe} 2,

as Okabe and Nakano (1991). We can compute {£; }M, in block B(j). If the original
process {X;}/, is stationary then {£{}4, is WN(0,I) for each j. It is clear that {§,}
is WN(0, I) if and only if {¢;} is WN(0, 1), where §; is the j-th coordinate of (£}, &y 0).
Therefore if the hypothesis H{”(WN) : “{¢7}L, is WN(0,1) ” is rejected for some j,
the hypothesis Ho(S) : “{X:}iL, is stationary ” is rejected.

Employing all blocks for the test might not be the best method since the blocks are
highly correlated. Thus we also consider the employment of selected blocks. The rule
of the selection is as follows:

Let N and M be the sample size and the size of each block , and J be the least
integer not less than N/M. Let {j1,J2,---,js} be the set of indices of the selected
blocks and put R = JM — N. Let Q; and R; be quotient and residue of N divided by
M respectively, and Q2 and R, be the corresponding quantities of R divided by Q;. We
define jj as follows:

(k—1)(M=1-Qy) +1 1<k<Ry+1,
=8 (k-1)(M-Q3)—R:+1 Ry+1<k</,
N-M+1 k=J

For simplify we denote by J the set of indices of the blocks to be tested. Namely,

J= {1,2,--- ,N-M +1} if all blocks are employed,
{1,425+, 3a} if j1,J2,--- ,js are selected.

Furthermore we denote by ji,j2,- - the elements of J.

3.2. A direct procedure

WN(0,1) is characterized by mean zero, variance one, and the orthogonality of
the series. Okabe and Nakano (1991) test these three characteristics separately. They
consider 2 + K(K + 1)/2 test statistics in each test, where K is the integer part of
2vdM. Thus (2 + K(K + 1)/2)(N — M + 1) tests are undertaken altogether. If this
is the case incidental rejections of the hypothesis occur, in paticular, when N is large.
Multiplicity of the tests must be taken into account. We develop a test which tests the
three characteristics at once in each block and take into account the multiplicity of the
tests throughout the blocks. The procedure is called the modified Okabe and Nakano
procedure (MON procedure), including Type A (MON Type A) which uses all blocks
and Type B (MON Type B) which uses selected blocks.

Now in the MON procedure, the third characteristics is tested by using the sample
autocovariance function of {€} till K. Put L = dM and define 3¢, 4(h)%, Z$, and
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£9) in block B(j) as follows:

"(J) L1 Z(f(”)k ,7 h @ =1 Z (J)hé(.v)
J b

Z%) = \/E(#‘i’)aﬁg)”?(l)(]) e ,7(K)(J)) )

~(3) ~G) _ mG)
Ha H3" — By

ﬁi(ij) _ [L(IJ') (J) 2*(:) +1 0
S0 — 1

1

The MON Type A procedure for testing Ho(S) with the Type I familywise error « is as
follows:

1. Compute Xy and R(h) (0 < h < M) from {X;}}Y,.
2. Decompose {X;}{¥, into {B(k)} (k € J).

3. Puti=1.

~Ui) &

4. Compute {£/}L | from B(j;) and compute fig”’, 4(h)4, ZY9 and £§°.

5. I Ty, = (Z§9) (E4”)"1Z > Co, reject Ho(S), else suppose i = i+ 1 and return
tod. until: = N - M + 1.

6. T;,) < Cp for all i, do not reject Ho(S).

Here the constant Cy is specified to be the a/(N — M + 1) upper quantile of chi-square
distribution with K + 2 degree of freedom. The MON Type B procedure is for selected
blocks, and given by replacing N — M + 1 by J in the MON Type A procedure.

3.3. Procedure based on the spectral density

As noticed in Section 2, a time series is WN(0,1) if and only if its mean is 0
and spectral density function is identical to (27)~! We test these characteristics by the
periodgram. The procedure is called the SPED procedure, including Type A (SPED
Type A) which uses all blocks and Type B (SPED Type B) which uses selected blocks.
The SPED Type A procedure is now described. Put wy = 2rk/L and let I{’(-) be the
periodgram of {£’}L,. Let L be the integer part of (L — 1)/2. Type 2-A procedure
with the Type I familywise error a is as follows:

1. Same as MON Type A.
2. Same as MON Type A.

3. Same as MON Type A.
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4. Compute {£’}, from B(j;) and compute I (wy) for k =1,2,---, L.

5. If T, = max 189 (W) & (C1,Cs), reject Hy(S), else suppose i = i+ 1 and return
to4until s = N — M +1.

6. T(;,) € (C1,Cy) for all ¢, do not reject Ho(S).

Here C; and C; are constants such that G£(C1) = a/2(N — M + 1), G¢(C2) =1 —
a/2(N - M +1) and G,(z) = (1 —exp~*)". As similar to the MON Type B, the SPED
Type B procedure is given by replacing N — M + 1 by J in the SPED Type A procedure.

3.4. Constants M and K.

Box and Jenkins (1970) postulate that useful sample autocovariances are obtained
if sample size N is greater than 50 and time lag is less than N/4. Thus one possibility
of selecting M and K are the integer part of N/4 and L/4. Alternatively Okabe and
Nakano (1991) suggest to select M and K as the integer part of 3v/N/d and 2VL,
respectively. Note that the order of M by the Box and Jenkins (1970) criterion is N,
whereas by the Okabe and Nakano (1991) criterion is N'/2. We compare these two
criterion by simulation in Section 5.

4. Asymptotic properties of test statistics

To establish the asymptotic properties of those test statistics in the preceding
section, we set up the following conditions. Remind that £, is the k-th coordinate of

E‘j) and that {fé”} = {Ei],)l’ e agiizi) éJ,)l’ T é‘:zp """ }
(C1) 7= }gg 7¢ > 0, where 7; is the minimum eigenvalue of V;.
(C2) Xy = p+ 0,(1) and R(h) = R(h) + 0,(1) as N = co.

(C3) For each X, ;, the i th element of X;,

E[Xf,z] < 00, n_2 ZE[X?:"] =0 as mn — oo.
t=1

(C4) {£{’} is independent of t for each j .

(C5) E[(¢7)%] < oo and {&”’} is independent and identically distributed with respect
to t for each j.

4.1. Asymptotic equivarence

We first prove Lemma 4.1.1 to show Lemma 4.1.2. The lemma, extends Proposition
5.1.1 of Brockwell and Davis (1991) to multivariate case.
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LEMMA 4.1.1. Let {X;:} be a d-dimensional stationary process whose autocovari-
ance function is I'(-). Put 'y = [['(j — )]s j=1,,n- If AT(0)A > 0 and ||T(R)'A|| = 0
as h = oo for any A € R?, then T, is positive definite for all n, where || - || denotes
usual norm in Euclid space.

PROOF. Since T is the covariance matrix of (X/,,---,X})’, we have detT' > 0 for
all n. Let E[X;] = 0 without loss of generality. Suppose detT',,; = 0 for some r. If
there exists ' < r such that det';; = 0, replace r by . Namely, r is the minimum
integer such that detI'.;; = 0. By formula (2.27) in Okabe and Nakano (1991), we have

det Fr+1 = det Fr det ‘/1-+1 .

Thus det V41 = 0 since detI', > 0. By the similar argument as Subsection 3.1, V,; is
shown to be the covariance matrix of X, — (Prm; Xr1,15 7+ Py Xry1,a), where Xg
is the k-th coordinte of X; and MY is the corresponding closed subspace. Therefore,
there exists some A € R? and d x d matricses ®1,--- , ®, such that

r
/\IXT+1 = Z AI‘I’J'X,-+1_J' a.e.
=1
By stationarity we have
ANXpph =) N®Xep1-; ae. forallh>1.

=1

Thus for all n > 7 + 1 there exist <I>§"), -+, 8™ such that

X,
NXn= Y NG X,y =N (@Y -e™) | ¢ | (4.1)
Now from (4.1)
X, 3™
NROA = ENX XA = BN (@7 e) |+ | XX [ 1 | N
X1 3%
3™
=X (q>§"’.--<1>5,")) r.| : |
3

Let ¢ be the minimum eigenvalue of I',.. Since I, is symmetric positive definite matrix,
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we have € > 0 and

. q,&")’
NT(0)A > eX' (qeg'” ---q>£">) 2 D
o
r r
=e> NeWeMa = 38 A% (4.2)
j=1 =1

We also have
AT(O)A = Cov | A'Xp, X (<1>§"’ <1><")

(n)'

=X (T(n—-r), - ,I(n—1))
q,(n)

-ZAF(n—r—l-{-j )3 < Z|,\'P(n—r—1+y)<1>(")A1

j=1

By the Cauchy-Scwartz inequality and (4.2) we have

ATOA < Y INT(n —r — 1+ )8 A
=1

- . ny’ AT(0)A ¢ _
< i —r =1+ ANE M < 2O S - 145N
i=1 i=1

The right hand side of the last inequarity converges to 0 as n — co. Thus A'T'(0)A =0,
and we have contradiction. Therefore detT';, > 0 for all n.
O

LEMMA 4.1.2. If (C1) and (C2) hold, V; is positive definite for anyt=1,--- ,N.

PROOF. By an argument similar to section 7.2 of Brockwell and Davis (1991), we
may show that Sy is non-negative definite. Define R*(h) and S;, as follows:

R*(h)z{f(’” 0ShSN=L g (RG-iyr n (R=1,2,0).

h>N.

Then using the same argument again we may show S} is positive definite for all n.
Therefore, there exists d-dimensional stationary process {X;} whose autocovariance ma-
trix function is R*(-). We first show A'R*(0)A > 0 for any A. Suppose A'R*(0)A = 0
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for some A then

— /

N
0=XNR"(0X = NROX = XN 1Y (X; - Xn) (X; - Xn) A
j=1
N
=N"1 Zl (Xj —X.N)'Alz
j=1

Namely, A'X; = A'Xy for any j = 1,--- , N. From (C2), it follows for any ¢ > 0 that

Pr(IA'X; — A'p| > ¢e) =Pr (A Xy — Al > ¢)
=Pr(|X (Xnv —n)|>¢)
-0 as N — oo.

It follows that A’ (X; — i) = 0 a.e. and we have

0=E[(\ (X1 - w)’] = NE[(X: - ) (X1 - )] A
= NR(0)A.

However we have det Vp = det R(0) > 0 from (C1), thus contradiction. Namely we have
X'R*(0)A > 0 for any A, so S’ must be positive definite for all n > 1 by Lemma 4.1.1.
Since R*(h) = R(h) for 0 < h < N — 1, Sy is positive definite. From formula (2.27) in
Okabe and Nakano (1991),

N
I det V; = det Sy > 0.
j=1

Thus det 14 #0foranyt =1,--- , N. Furthermore, since V, is the covariance matrix of
Xe— RS (X, ,X{l)', V; is positive definite for any t =1,--- , N.
u}

235

LEMMA 4.1.3. If (C1) and (C2) hold, £, = £ + 0,(1).

PROOF. From Lemma 4.1.2, there exist 9; 1 and W, is well-defined and positive
definite forany t = 1,--- , N. From (C2), we have S,, = S, +0,(1) and R, = R, +0p(1) as
N — 00, and from the perturbation theory (see Kato (1995)) we have S;! = S ! +0,(1).
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Thus
X, - XN
Xy —u) =R 1574 :
X(jl) XN
X221 = (1 +0p()
= (Re—1 + 0p(1) (S;2} + 0p() :
X9 = (n+o0,)
x;j—)l —H
= {Ri-1574 + (Re—1 + S;4)0,(1) + 0,1} { : + 0p(1)}.
X9 —p
Note that R,_; and S;'; are not random and each element of X — y has a finite
variance. So these quantities are O,(1) and thus

X2 -
(X —p) = (Re—1 S + op(1) [ : + 0p(1)]
X9 —p
X2 -
=R, 15,74 : +0,(1)
X9 —p

= (X —p) +o0p(1).
Similarly we have V; =V, + 0p(1), and thus Wt—l = Wt_1 + 0p(1). Therefore
20) N P ; ~
& =WiXP -Xn - (X" —p))
= (W' + 0,(1) (Xi") —u—(XP —p) + op(l))
=& + 0,(1).

REMARK. Lemma 4.1.3 may not be true when t depends on N.

Define g, ¥(h)?, Z’ and I{’(\) as follows:

L—h
_(;) N Z (:))k "‘/(h)m =1! Z Egp)h t(j),
t=1

2 = VI~ 1,300, 30
2

() —1itg(L,))
E &’ exp
t=1 .

) =L
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Where g(n,w) is the multiple of 27 /n closest to w (the smaler one if there are two) if
w € [0,7], and g(n, —w) if w € [-,0).

LEMMA 4.1.4. If (C1) and (C2) hold, we have
ZP =29 +o,0) and PN =IP(N) + 0p(),
as N = oo.

PROOF. The lemma is straightforward from Lemma 4.1.3 and the fact that the
functions

1L _1<—L—-h - L i
L lztzl -Tf, L 1Zt=1 Ternre and L 1]2t=1 Ty exp N |

are continuous on R¥ to R.

4.2. Asymptotic distributions of the statistics

In this subsection we show the asymptotic distributions of the test statistics, which
consist of true £ when L — 0o as N = oo.
Define ¥(h)% and Y as follows:

R)D = -1 Zéiﬁh (n Y([f’ — \/Z (ll(”:ﬁ({) —1,7%(1)®,--. ,f?(K)‘”)'.

Denote N (1, ¥) by the p-dimensinal normal distribution with mean vector n and co-
variance matrix ¥ and by I, the p X p unit matrix.

LEMMA 4.2.1. If (C5) holds, then under the null hypoyhesis we have
Y A Ng42(0,%) as L — oo.
The covariance matriz ¥ is as follows:

1 M3 0

Y 0
E=(01 I): ks pa—1 (4.3)
K 0 Ix
where py, := E[(&7)¥] for k = 3,4.
PROOF. For any A = (\,--- ,Ag42) € RE+?

L
j - i i j j i iy
/\'Y(If) - /\'{L 1/22 (fé )’(& ))2 _ 17§é+)1 g:),_” ’fi-ﬁx EJ)) }

t=1

= [~1/2 Z(/\ E(J) + /\2((6(1) _ 1 + ZAh_’_zQih{(J))_

h=1
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Now, put 7 := 0 = M&P + X ((6)? - 1) + Th, Mnt2€50 €L then {n:}ic, is a
strictly stationary K-dependent sequence since {£”’} is I1D(0,1). Moreover, it follows
that

L
My _ 7-1 =0)
YPYP' =Ly EY),
s,t=1
=)

where Z/; is the matrix such as follows:

8 e -1 EPENED e el
(€2 =1((E")P -1 (€)Y -DELE -+ ((69) - DELKE”
()  ¢G) ¢3) £ (3)  ¢() ¢ E(j)
s+1€s £t+1€t s+1£s t+ K St

e
and that
E[Z{}] = 65,2
Therefore we have
E[YP]=0, Var[YP]=%.
Thus for 7y, := L1 Zthl ne = L7Y2X'Y{, we have
Efiz) = L2NE[YY] = 0
and
Var[e] = (LTY2N)War[YP(L7/2A) = LTINEA.

By the central limit theorem for strictly stationary K-dependent sequence, it follows
that

VI, = XY B N©0,AEN).
Therefore, using the Cramér-Wold device, we have

Y B Nky2(0,5).
]

LEMMA 4.2.2. Under the same conditions of Lemma 4.2.1 and under the null hy-
pothesis, we have

29 =Y +0,1) as Lo oo
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PROOF. It suffices to show L=1/2 3% w1 Eopn& = opy forany h=1,--- | K
since

YP -2 = L72(0,0,613,6, - Z Ene”s Z €0k

tLh+1 t=L-K+1

However we have

L
E{L7A T i €26 YI=L70 D0 B0

s,t=L—h+1
L
> ElER)ME
t=L—h+1
= —’i -0 as L — o0
7 .

Thus L™V2 YL ;4. €9, 69 converges to 0 in mean square, thus in probability.

From Lemma 4.2.1 and 4.2.2, we have the next lemma.

LEMMA 4.2.3. Under the same conditions of Lemma 4.2.1 and under the null hy-
pothesis, we have

zY B Nk42(0,%) as L— o0
LEMMA 4.2.4. If (C5) holds, the matriz ¥ given in (4.3) is positive definite.

ProoF. X is well-deifined from (C5) and it is clear from the proof of Lemma 4.2.1
that ¥ is non-negative definite. Thus it suffices to show that det ¥ = pg — 1 — p3 # 0.
Suppose that pg — 1 — u? # 0 then we have

Var [—ps€? + (£7) —1] = [usf‘”-2u3€"’((££"’)2 1) + (62)* — 2(¢)? +1]
=pug—1- ,1,3 =0

Thus —p3€” + (€°)2 — 1 =0 a.e. It shows & = C a.e. for some constant C, but it is
a contradiction since E[¢{”] = 0 and E[(£)?] =
0

LEMMA 4.2.5. Define £ as follows:

sor_( W -
L u(]) ﬂ(l.r) -(J) 2#(1) +1

If (C5) holds, 39" is positive definite and £ = £, + 0,(1) as L — oo, where Iy is
given in (4.3).
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PrOOF. It is straightforward to show i‘Lj)‘ = Z; + 0p(1) by the weak law of
large number. We show X" is positive definite. Put z = (¢, --,£) and y =

((6™)? = 1,---,(€2)* = 1) then

50 = (1—4_1”"3”2 L‘l(:z:,y)> _
L~Y=z,y) LMyl

By the Cauchy-Schwartz inequality we have
det £ = L2 (ll*llyl> ~ I(z, y)I?) 2 0.
The equality is satisfied if and only if y = ((z,y)/||z||?)x. Thus it suffices to show

Y # fy (s — )z (4.4)
Suppose that (4.4) is not true, then there exists ¢ such that
(&7)* = 1=p;" (Bs — B1)&”.
Put t = 1 without loss of generality. Then we have, for any €;, €2 > 0,
Pr(|(&”)* — 1 — pa&f”| > e1) = Pr ({55 (fis — fir) — us}&{”| > &1)

< Pr(lazt (s — ) — pal > e162) + Pr (|6 > £57)

< Pr(|ay (Bs — 1) — pal > ere2) + 3 E[(€)7)]

=Pr (|3 (B3 — 1) — ps| > e162) + €3 (4.5)
The first term of the right hand side of (4.5) converges to zero as L — oo and the second
term is arbitrary small. Therefore (£{7)2 — 1 — u3&{” = 0 a.e, but we may show that
it is contradiction by the same argument as that in the proof of Lemma 4.2.4. So £{”

must be positive definite.
o

From Lemma 4.2.3, 4.2.4 and 4.2.5 we have the next theorem.

THEOREM 4.2.6. Define Y as follows:

~ . g(j)' 0
Z(J) — L .

If (C5) hold, (ZP)'(£9)~1Z% converges in distribution to chi-square distribution with
(K + 2)-degree of freedom under the null hypothesis.

Remainder of this subsection is for the SPED procedure. The next lemma gives an
inequality between the fourth moment of £ and X7).

LEMMA 4.2.7. If (C1) and (C4) hold, E[(&7))*] < CY_, E[(XP)*] for some
constant C.



Testing Stationarity Using Residual 29

PROOF. We write £ and X{ by £, and X, for short. We can assume E[X;] =0
without loss of generality. From condition (C1), &, is well-defined. Recall that X¢4, is

the best linear predictor of X;;; based on X;,--- ,X;. Thus we may represent X1 by
Xipr = —®e1Xe — P 2Xeo1 — - — 0,6 X1
Therefore
€1 Wi I @1 - Pt X
Et _ Wt_l I . X
: ’ X P11
51 Wl— I X1
Put
-1
I Ot,l s GM T Qt,l . ‘Dt,t
I - Sl I :
@1,1 . (1)1,1
I I

then . we have Xt+1 = Wt+l£t+1 + Yt+1, where,YHl = Z_;:l et'th+1_j£t+1_j. It
follows that

(Xi1Xer1)? = {(Wes1€pyr + Yer1) Wesr€epn + Yi))
= (€41 Verr€er)® + 4(&, Wi Yerr)? + (Yi 1 Yer)?
+ 260 Vigr€o1 Yo Yerr + 460 Vi€ & Wi Yen
+ 4 Wi Yer1 Y Yega.

Because {¢,} is independent, £, ,; and Y4 are independent. Therefore

E[£;+1V:‘«+1£t+1£;+1Wt,-i—lYH—l] = E[£2+1W+1£t+1€£+1Wt’+1]E[Yt+1] = 0.
El€, W/ 1YY Y] = El§ ] EW 1 Y Y Ye] = 0.

So we have

E[(X} 1 Xe1)’] = E[(€141Vir1€41)%] + AE[(&4 11 Wi 1 Yer1)?]
+ E[(Y;+1Yt+l)2] + 2E[52+1V;t+1€t+1]E[Y£+1Yt+1]
> E[(E’t+1Vt+1£t+1)2]-

By the definition of 7; and 7, we have next inequalities.

E[(£;+1Vt+1£z+1)2] > E[(Tt€;+1§t+1)2] > T2E[(§It+1£t+1)2] > TzE[(ftH,k)ﬂ-



30 G. OHAMA and T. YANAGAWA

Thus
d
T2 E[(er14)*] < E[(X}11Xe41)"] = B[O (Xet1,6))?]
k=1
d
< E[d Z(Xt+1,k)4]'
k=1

We have 7 # 0 from the condition (C1) and therefore, for some constant C we have

d
E[(¢+16)* 1 S CY_E[(X1410)']  k=1,2,---d.

k=1
O

Next theorem is similar to Proposition 10.3.2 of Brockwell and Davis (1991), where
considered is an independent and identically sequence. Here we consider a sequence
which is independent but may not be identical.

THEOREM 4.2.8. Let E,,--- , E} be distributed independently and identically as an
exponential distribution with mean 1. If (C1), (C3) and (C4) hold, we have under the
null hypothesis

(I(J')(/\l)’___ ,I(J') k) ' 3 Ey,--- ,Ek)' as M — oo
L L

where IL() is a periodogram of {67}y = {60}, 6%+~ €80, 1E5ha)-

ProOF. For simplicity we suppres index (j). Define a(\) and S(A) for any A €
(0, 7) as follows:

L L
a(\) = (2/L)Y? Z ecos(tgy),  B(A) = (2/L)/? Z & sin(t g(L,\)).

t=1 t=1

where g(-,-) is defined in the proof of Lemma 4.1.4 and L = dM. We have 2I;()\) =
a(A)? + B(N)?.
Put ¢y x =d(t — 1) +k then since {& 1}, = {&1, €4, €M1, - »Em,a} We have

L M d
Z & cos(tw) = Z Z €tk cOS(Pt,kw).
t=1 t=1 k=1

Put Z; = (a(A1),B8(A1), -+ ,a(Ae), B(Ak))'. Let Uy, Us,--- , Uz be random variables
distributed independently and identically as a standard normal distribution. It suffices
to show that Zj converges in distribution to U = (U;,Us, - - - , Usx)’ since the function

h’(ula Tty u?k) = ((uf + U%)/2, Y (ugk—l + ugk)/2),

is continuous on R* to R¥ and (U2 + U?;)/2 is distributed exponentially with mean
1. Independence of Ej; is followed by the independence of U;. We prove it using the
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Cramér-Wold device. For any ¢ = ((1,*-- ,(2)' € R?* we have
C'Zp = Ga(h) + GO + -+ - Gr—1a(Me) + GrB(k)

M d
= (2/L)'/? Z Z &tk {C1 cos(t kg(L.A) + (o sin(Pe kg, A1) + -+

t=1 k=1

“+ + C2k—1 €OS(Be k g(L M) + Cok SIN(Pe kg(LA0)) }-
Let 411 be the coefficient of & x and put 7, = d=1/2 Y4_, ¥ x& k- Then

CZr =@/M)PTLm (46)  and [l <TG (A7)
Put B, = Efil Var[n,). Recall that {£,} follows WN (0, I) under the null hypothesis,
we have

d
Eln]=0, E@R]=d'> ¢}

Furthermore, for sufficiently large M, that is, large L, we may consider 0 < g(L, ;) <
-+ < g(L, Ax)} < m. Namely there exist the Fourier frequencies {wn,|wn, = g(L,As), ¢ =
1,---,k}. Thus B%, is represented as follows:
d

M
By =d™! Z 2 Vi

M d
=d™ Y Y {Gcos(Berg(ran) + -+ + ok sin(Breg(L20) }
t=1 k=1
L
Z(Cl costwp, + - -+ (ak sin twnk)2.

From the fundamental property of the Fourier frequencies, we have

L L
(2/L) ZCOS tw; costw; = &;; , (2/L) Zsin tw; sintw; = &;5 ,
t=1 t=1
L
(2/L) Zsin tw; costw; = 0.
t=1

Thus

L L
B =d (¢ Z o8 twn, + -+ + (3 Z sin® twy, )

t=1 t=1

2k
= @)Ly =ICIPM/2 .

Jj=1
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Substituing this equality to (4.6) we have
M
C'ZL=CIBy Y me-
t=1

Since ¢'U follows the normal distribution with mean zero and variance ||¢||?, if we may
show B32 "M 72 converges to 1 in probability, ¢’ Z;, converges to ¢'U in distribution by
Theorem 2 of Raikov (1938). We apply the Chebyshev theorem to show the convergence
of B;,Iz Z:le n?. By the Cauchy-Schwartz inequality and (4.7) it follows that

d
E[(Tlt)4] = E[(d_l/2 Z ¢t,k§t,k)4]

k=1

d
=d~* Z Yt ket m e n E&e kE,18t,m &t n]

k,lmn=1

<d’? Z I¢t,k|]¢t,l|l¢t,ml|¢t,n|\/E[(ft,k)z(ft,t)2]E[(ft,m)2(ft,n)zl
< a3 C{/ElEm B0 Bl m) | El(En)]

From Lemma 4.2.7

d
El(m)Y1 < C Z E[(Xtx)*]), where C is a some constant.
k=1

Thus from the condition (C3), we have

M M d d M
M2 Z E[(m)' ] <CM™2Y S E[(Xx)'] = C > (M_z > E[(Xt+j—1,k)4]>
t=1 t=1 k=1 k=1 t=1

d Mij-1
<C> (M‘2 > E[(Xtyk)‘*]) —+0 as M — oo.
t=1

k=1

Since E[B3; Y., 7?] = 1, the convergence of BZ, ¥ 72 to 1 in probability, and that
of ¢’ Z1, to ¢'U in distribution, is proved. Thus we have the theorem by the Cramér-Wold
device.

O

COROLLARY 4.2.9. Under the conditions of Theorem 4.2.8 and under the null hy-
pothesis, we have

(3) D
max I/ (\y) > F
1<k<n L (M)

where E is the random variables with the distribution function G,(z) = (1 —exp™*)™
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4.3. Approximate distributions of test statistics

The test statistics for MON and SPED procedures are given respectively by
Tuon() = (21 (EF) 2
and

N — TG
Tspep(j) = R I (we)-
Assuming condition (C1), (C2) and (C5) it is shown in Lemma 4.1.4 that Z¢ converges
in probability to Z§’ as N — oo. Also we may show by the same lemma that £’

converges to £y’ in probability as N — oco. Furthermore from Theorem 4.2.6, the
distribution of (Z$)'(£$)~1Z¢ is approximated by a chi-square distribuiton with (K +
2) degree of freedom when L is large. Thus under the null hypothesis Taon(j) follows
a chi-square distribution with (K + 2) degree of freedom approximately when N and L
are large.

For Tspep(j), assuming conditions (C1), (C2), (C3) and (C4) it is shown that
1Y (wi) converges in probability to I{’(wg) as N — oco. Furthermore, it is shown

in Corollary 4.2.9 that the distribution function of |max I{(wy) is approximated by

Ge(z) = (1 — exp~®)~. Therefore the distribution of Tspgp(j) is approximated by
G (z) under the null hypothesis when N and L are large.

5. Simulation and applications

In this sections, we show the results of simulations, and applications of our pro-
posed procedure to practical data. This will demonstrate the usefulness of our proposed
procedure.

5.1. Simulation

Simulation is conducted to (a) compare the MON procedure and SPED procedure,
(b) to examine the selection of blocks, i.e. all blocks v.s. selected blocks, and (c) to
compare the Box and Jenkins (1970) and Okabe and Nakano (1991) criteria for selecting
M and K. Note that since the test are undertaken in each block, the MON Type A and
SPED Type A procedures consist of (N — M +1) tests, and the MON Type B and SPED
Type B procedures consist of J tests. The Type I familywise error adjusting for the
multiplicity of the test is selected at a = 0.20 in the simulation. Sample size considered
are N = 100,200, and 400, and M and K by the Box and Jenkins (1970) criterion are
chosen by M = [N/4] and K = [L/4], and by the Okabe and Nakano (1991) criterion is
decided by M = [3v/N/d] and K = [2V/L], where [z] is the integer part of z. As is seen
below the models employed are the case of d = 1, thus the values of (N, M, K) used are

(N, M, K) = (100, 25,6), (200, 50, 12) and (400, 100, 25)
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in the Box and Jenkins (1970) criterion and
(N, M, K) = (100, 30, 10), (200,42, 12) and (400, 60, 15)
in the Okabe and Nakano (1991) criterion. The models employed are as follows:

(1= B/e1)(1 - B/a2)Xe = (1 - B/B1)(1 ~ B/B2)Z:.
(1-B/a1)(1 - B/az)(1 - B)X; = (1 - B/B1)(1 - B/B2)Z;-

ARMA(2,2)
ARIMA (2,1,2)

Here Z; is the i.i.d. random variables from the standard normal distribution and B is
the the backward shift operator. We generated 300 data sets for each sample size from
the models with changing the values of a;, a2, £ and B2. The values of ¢; (j = 1,2) and
B; (7 = 1,2) are generated from U(1,2) and U(0,2), where U(a,b) denotes the uniform
distribution over (a,b). It is well known that the ARMA model is stationary, whereas
the ARIMA model is not.

TABLE 1 and 2 list the number of trials that rejected the null hypoyhesis among
300 trials for each procedure in the ARMA model, thus show the empirical levels of
the procedures. TABLE 3 and 4 are corresponding tables to TABLE 1 and 2 in ARIMA
model, showing the empirical power of each procedure. TABLE 1 and 3 are for the Box
and Jenkins (1970) criterion, i.e. M = [N/4], and TABLE 2 and 4 are for the Okabe and
Nakano (1991) criterion, i.e. M = [3\/—17/(1]

100 200 400

MON Type A

17 (0.057)

20 (0.067)

6 (0.020)

MON Type B

35 (0.12)

25 (0.083)

11 (0.037)

SPED Type A

19 (0.063)

36 (0.12)

36 (0.12)

SPED Type B

47 (0.16)

72 (0.24)

103 (0.34)

TABLE 1: Number of rejected trials among 300 and its frequency for
ARMA model, M = [N/4]

100 200 400
MON Type A | 9 (0.030) | 16 (0.053) | 17 (0.057)
MON Type B | 26 (0.087) | 26 (0.087) | 23 (0.077)
SPED Type A | 30 (0.10) | 30 (0.10) | 25 (0.083)
SPED Type B | 49 (0.16) | 47 (0.16) | 40 (0.13)

TABLE 2: Number of rejected trials among 300 and its frequency for

ARMA model, M = [3v/N/d]

100 200 400
MON Type A | 107 (0.36) | 134 (0.45) | 137 (0.46)
MON Type B | 152 (0.51) | 147 (0.49) | 143 (0.48)
SPED Type A | 132 (0.44) | 169 (0.56) | 184 (0.61)
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TABLE 3: Number of rejected trials among 300 and its frequency for
ARIMA model, M = [N/4]

100 200 400
MON Type A | 91 (0.30) | 147 (0.49) | 143 (0.48)
MON Type B | 137 (0.46) | 166 (0.55) | 154 (0.51)
(
(

SPED Type A | 150 (0.50) | 181 (0.60) | 178 (0.59)
SPED Type B | 160 (0.53) | 206 (0.69) | 186 (0.62)

TABLE 4: Number of rejected trials among 300 and its frequency for
ARIMA model, M = [3v/N/d]

TABLE 1 shows that the level of the SPED Type B procedure with M = [N/4]
exceeds the nominal familywise error, and we omit it from further comparison. TABLE 1
and 2 show that the levels of all the other procedures are less than the nomial familywise
error; and that the MON procedures are more conservative than the SPED procedures.
TABLE 3 and 4 show that the SPED Type B with M = [3v/N/d] has the largest powers
at every sample sizes; that it is followed by the SPED Type A with M = [N/4] and
M = [3v/N/d], and by the MON Type B with M = [N/4]; and that the powers of
the MON Type B with M = [N/4] and with M = [3v/N/d] compete, but they are less
than the powers of the other procedures. Regarding the selection of the blocks, TABLE
3 and 4 show that Type B is slightly better than Type A. Regarding the selection of
M, the same tables show that for the SPED procedures the Okabe and Nakano (1991)
criterion is slightly better than the Box and Jenkins (1970) criterion; and that for the
MON procedures, the Okabe and Nakano (1991) criterion is slightly better than the Box
and Jenkins (1970) criterion when sample sizes are 200 and 400, but this relationship
is reversed when sample size is 100. In summary the results of the simulation indicate
that the SPED Type B procedure with the Okabe and Nakano (1991) criterion is the
best among those procedures we investigated.

5.2. Applications
5.2.1. Sunspot data

We applied all procedures with M = [N/4] and M = [3v/N/d] developed in this
paper to the Wolfer sunspot data (TABLE 5, from Brockwell and Davis (1991)). It is
well known that the practical data have large variation, so we transformed the data
logarithmicly. As the observed number is zero in 1810, we replace it with 1. The sample
mean of log-transformed data is 3.391. FIGURE 1 gives the scatter plot of the logarithm
of the Wolfer sunspot numbers and its sample autocorrelation function.

Results of the procedures are listed in TABLE 6. The table shows that the sunspot
data is stationary. It is well known that the sunspot numbers are well fitted to AR(2)
model, so our procedures lead to the reasonable result. Note that if we aplly the pro-
cedures to untransformed data, we have TABLE 7 where all the procedures except the
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MON Type A shows that the sunspot number is not stationary. We suspect that the
non-rejection by the MON Type A would be due to its conservativeness as indicated
by the simulation. It is important to transform data appropriately before applying our
procedures.

1770-79 | 101 | 82 {66 { 35 |31 | 7 | 20 | 92 | 154 | 125
80-89 | 8 | 68|38 |23 (10|24 | 83 | 132|131 | 118
90-99 | 90 | 67 | 60 | 47 | 41 | 21| 16 6 4 7

1800-09 | 14 | 34 | 45|43 |48 | 42| 28 | 10 8 2
10-19 | O 1|5 [12]14]35| 46 | 41 | 30 | 24
2029 | 16 | 7 | 4 | 2 | 8 | 17| 36 | 50 | 62 | 67
30-39 | 71 |48 |28 | 8 |13 |57 | 122 | 138 | 103 | 86
40-49 | 63 (37 (24 111540 | 62 | 98 | 124 | 96
50-59 | 66 (64 |54 39|21 7 4 23 | 55 | 94
60-69 | 96 | 77 |59 | 44 | 47 | 30 | 16 7 37 | 74

TABLE 5: The Wolfer sunspot numbers, 1770-1869

0.8
0.6

8 0.4
2 0.2 /\
N
\

1770 1790 1810 1830 1850 1870

FIGURE 1: The scatter plot of the logarithm of the Wélfer sunspot numbers (left)
and the sample autocorrelation function (right)

M =[N/4] | M =[3V/N/d]
MON Type A | Not rejected | Not rejected
MON Type B | Not rejected | Not rejected
SPED Type A | Not rejected | Not rejected
SPED Type B | Not rejected | Not rejected

TABLE 6: Results of log-transformed sunspot data analysis

M =[N/4] | M = 3/N/d]
MON Type A | Not rejected | Not rejected
MON Type B Rejected Rejected
SPED Type A Rejected Rejected
SPED Type B Rejected Rejected
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TABLE 7: Results of untransformed sunspot data analysis

5.2.2. Passenger data

The second application of our procedures is to the monthly totals of international
airline passengers. (TABLE 8, from Pandit and Wu (1983)) We again transformed the
data logarithmicly. FIGURE 2 gives the scatter plot of the log-transformed data and its

sample autocorrelation function. The sample mean is 5.542.

TABLE 8 indicates the passenger data is not stationary, since it shows clear trend
and seasonality. TABLE 9 summarize the results of our procedures. The table show that
all procedures except the MON Type A lead to the same conclusion, i.e. the passengers
data are not stationary. The non-rejection by the MON Type A would be due to its

conservativeness.
Year [ Jan. | Feb. [ Mar. | Apr. [ May { Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec.
1949 | 112 | 118 | 132 | 129 | 121 | 135 | 148 | 148 | 136 | 119 | 104 | 118
1950 | 115 | 126 | 141 | 135 | 125 | 149 {170 | 170 | 158 | 133 | 114 | 140
1951 145 | 150 | 178 | 163 | 172 | 178 {199 | 199 | 184 | 162 | 146 | 166
1952|171 | 180 | 193 | 181 | 183 | 218 {230 | 242 | 209 | 191 | 172 | 194
19531 196 | 196 | 236 | 235 | 229 | 243 | 264 | 272 | 237 | 211 | 180 | 201
1954 | 204 | 188 | 235 | 227 | 234 | 264 | 302 293 | 259 | 229 | 203 | 229
1955 | 242 | 233 | 267 | 269 | 270 | 315 | 364 | 347 | 312 | 274 | 237 | 278
1956 | 284 | 277 | 317 | 313 | 318 | 374 [ 413 | 405 | 355 | 306 | 271 | 306
1957 | 315 | 301 | 356 | 348 | 355 |.422 | 465 | 467 | 404 | 347 | 305 | 336
1958 | 340 | 318 | 362 | 348 | 363 | 435 | 491 | 505 | 404 | 359 | 310 | 337
1959 | 360 | 342 | 406 | 396 | 420 | 472 | 548 | 559 | 463 | 407 | 362 | 405
1960 | 417 | 391 | 419 | 461 | 472 | 535 {622 | 606 | 508 | 461 | 390 | 432

TABLE 8: The number of international airline passengers (x1000)

5 10 1

5

20

25

1

6.25
6.0 09
575 08
5.5
525 0.7
5.0 0.6
4.75

1949 1952 1955 1958 1961 0.5

FIGURE 2: The scatter plot of the log-transformed passenger data (left) and the

sample autocorrelation function (right)

M=[N/4 | M=[3VN/d|
MON Type A | Not rejected | Not rejected
MON Type B Rejected Rejected
SPED Type A Rejected Rejected
SPED Type B Rejected Rejected
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TABLE 9: Results of the log-transformed passenger data analysis

REMARK. The number of data is 144, so M = [N/4] = [144/4] = 36 for Box
and Jenkins (1970) criterion and M = [3v/N/d] = [3v/144] = 36 for Okabe and
Nakano (1991) criterion. Namley M is same for each case, and thus test statistic of
the SPED procedure is also same. Note that the SPED procedure is not dependent on
K.

6. Discussion

Two procedures, called the MON and SPED, for testing the stationarity are de-
veloped in this paper. The MON procedure modifies that proposed by Okabe and
Nakano (1991) taking into account the multiplicity of the tests. As the Okabe and
Nakano (1991) it is assumed in the MON procedure that {£,} are distributed indepen-
dently and identically. However, it is not the case in many examples, as is seen in the
univariate AR(1) process X; = ¢X;_; +Z;, where {Z,;} is WN (0, o) such that E[Z}] # 0.
The SPED procedure is developed to free from this assumption. The Bonferoni inequal-
ity is used to adjusting for the multiplicity of the tests repeatedly used in the procedures.
As is well known, the inequality is conservative, in particular, when the tests are highly
correlated. To minimize the consevativeness the idea of the selective blocks (Type B) is
introduced to decrease the correlations among the test statistics. Regarding the size of
each block, it would not be easy to decide it theoretically, and we considered the Box
and Jenkins (1970) and Okabe and Nakano (1991) criteria which have been proposed
for its determination. We compared the proposed procedures, selection of the blocks,
i.e. Type A and B, and Box and Jenkins (1970) and Okabe and Nakano (1991) criteria
by a simulation. Although our simulation is limited because of the explosion of the
computational time, the simulation study shows that the SPED Type B procedure with
the Okabe and Nakano (1991) criterion is the best among those procedures considered.
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