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EQUIVALENCE TESTS FOR PAIR-MATCHED 
           BINARY DATA

                       By 

Toshihiko MORIKAWA; Takashi YANAGAWA? Akira ENDout 
               and Isao YOSHIMURA$

                      Abstract 

   Equivalence tests for binary data with pair-matched design in clinical 

trials are explored in this paper. Eight tests are considered altogether 

including those tests constructed by the GSK method, the tests which 

use estimated null variances among others. The Type I error rates and 

powers are investigated by a Monte Carlo study, and it is shown that the 
test associated with the log-risk difference has the highest power among 

those eight tests. The determination of the value of tolerance is also 

discussed.

Key Words : cross-over design; McNemar test; log-odds difference criterion; log-risk 

    difference criterion; pair-matched prospective design; risk difference criterion.

1. Introduction 

   Equivalence tests for binary data with parallel design has been proposed (see, for 
example, Dunnett and Gent [3]; Makuch and Simon [8]; Blackwelder [2]; Hirotsu [6]; 
Farrington and Manning [4]; Yanagawa, Tango and Hiejima [10]). However, the one 
with pair-matched design seems not to be given yet and in some cases equivalence 
tests for parallel designs are applied without regard to the association among matched 
pairs, which may affect results. In this paper, we propose equivalence tests for pair
matched binary data, arising in the situation where two drugs, say, new drug T and 
standard drug C, are administered to the same person with the same condition in a 
homogeneous population and the effects of drugs are evaluated in binary response. Such 
data are obtained from, for example, a bilateral design, using both eyes or both ears, 
etc., a cross-over design, or other pair-matched prospective designs. Note that, in the 
application of matched pair methods, it is required that there is no bias between right 
and left sides in bilateral studies, and there is no residual effect or period effect in the 
cross-over studies. Also note that in the socalled clinical equivalence, it is sufficient to 
show that the response of T is not lower than that of C over a given value of tolerance,
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socalled "delta value". We consider the test statistics which are based on the GSK 
method (Grizzle, Starmer and Koch [5]) using the generalized least squares (GLS) for 
some function of multinomial distribution. The statistics utilize the empirical variance 
in denominators. We also consider the test statistics using the estimated null variance 
obtained by the maximum likelihood method, and several other statistics. 

   The problem and hypotheses are established in Section 2, and numerical illustration 
is given in Section 3 to show the value of the new tests of equivalence which will be 
developed in Section 4. Eight tests are developed altogether in this paper. The use of 
confidence intervals is briefly discussed in Section 5 in relation to the proposed tests. 
In Section 6 the Type I errors and powers of the proposed tests are compared by a 
Monte Carlo study. One of the most controversial points in the practice of the test of 
equivalence has been centered around the value of tolerance. The problem is studied in 
Section 7 and methods of determining the value of the tolerance is explored in the section. 
Section 8 summarizes our findings and gives suggestion for the use of the equivalence 
test in pairmatched designs.

2. Problem and Hypothesis 

    In a bilateral or cross-over trial, assume that two drugs T and C are allocated 
randomly to both sides or two treatment periods of n subjects, respectively. Let n2i be 
the number of persons who responded as i for drug T and as j for control C, where i, j = 
1, 2; 1 indicates a positive response (+) and 2 a negative one (-). The results of the trial 
may be summarized in Table 1, where n1., n2., n.1 and n.2 represent marginal frequencies, 
and n is the total sample size. Corresponding cell probabilities and associated marginal 

probabilities are shown in Table 2. We want to prove the equivalence of T to C based 
on the data in Table 1, in the sense that 71. is not lower than ir.1 over a predetermined 
value of tolerance, where marginal probabilities ii . and r.1 represent the response rates 
of drugs T and C, respectively.

Table 1: A frequency table from pairmatched data 

C 

+  total 

+ nii ni2 nu. 

T  n21 n22 n2 .  
           total n .1 n.2 n

    Hereafter we use the word "risk" as a general terminology to represent a response 

probability. We consider three tolerance criteria according to the three types of scale 
to be evaluated, namely, original scale, log-risk scale or log-odds (or logit) scale. Corre
sponding hypotheses to be tested are as follows: 

   (a) risk difference criterion



Equivalence Tests for PairMatched Binary Data33

Table 2: Cell probabilities corresponding to Table 1 

                 C 

 +  total 

            +  7111 7112 711. 

       T  7121 722 712.  

total  7r. i 7.2 1

Ho: 7r1. < 7r.1 + 0 (A < 0) 
         H1: 7r1. > 7r. i + A 

   (b) log-risk difference criterion 
Ho: log 7ri. < log 7r.1 + log F (log r < 0) 

         H1: log 7r1. > log 7r.1 + log r 

   (c) log-odds (or logit) difference criterion 
Ho: log[7ri./(1  7ri.)] < log[7r.i /(1  7r.1)] + log xli (log W < 0) 

        H1: log[7ri./(1  7r1.)] > log[7r.i/(1  711)] + log T. 
   In order to treat the problems in a unified format, the logarithmic scales are used 

here for (b) and (c). Note that the hypotheses (b) and (c) may be represented in the 
original scale by: 

   (b') H0:71. <Fir.1 (0 < r < 1) 
1/1:7r1. > I'7r.1 

and 

   (c') H0: [711(1-70] < 1[7r.1/(1  7r.1)] (0 < T < 1) 
        H1: [70(1-70] > T[7.i/(1  7.1)], 

which are often called the risk ratio (or relative risk) criterion and odds ratio criterion, 
respectively.

3. Numerical illustration 

   The equivalence tests that have been developed for parallel designs should not be 
applied for pairmatched designs. To illustrate it and also to show the value of the new 
tests which are developed in the next section we consider two numerical examples, and 
demonstrate the behavior of these tests. The tests considered for the parallel design are 
ZMSB-test which was proposed in Makuch and Simon [8], and in Blackwelder [2], and 
ZH-test, proposed in Hirotsu [6]. The new tests considered for the pairmatched design 
are ZD-test for criterion (a), ZR-test for criterion (b), and ZL-test for criterion (c). The 
explicit formulae of these tests are given in the next section. 

   We first consider the data in Table 3. The cell frequencies of the table are generated 
by setting pi. = p.1 = 0.4, cell odds ratio 0 = 1 (no association) and n = 100. The 
tolerance was selected as A =  0.1, and F and III in criteria (b) and (c) are determined 
so that p.l + A =Fp .1, and (p.i + A)/(1  p.1  A) ='p.1/(1  p.1).
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   Applying the tests for a parallel design to the data in Table 3, we obtain 

ZMSB =1.443 (p = 0.074), and ZH = 1.450 (p = 0.074). 

For tests in pairmatched design, we obtain 

        ZD = 1.443 (p = 0.074), ZR = 1.661 (p = 0.048), 

        and ZL = 1.531 (p = 0.063). 
The results show that the behaviors of the ZD, ZMSB, and ZH tests are similar. This 

would be reasonable since this is the case of no association in matched pairs, and fur
thermore all three tests are designed for the risk difference criterion. Note that the 

pvalues of ZR and ZL-tests indicate that we might improve the powers of the tests of 
equivalence by considering criteria (b) and (c). 

   We next consider the data in Table 4. The data in the table are obtained by using 
the same sample size and the same marginal probabilities as Table 3 but the cell odds 
ratio 0 ti 10 (substantial association). Using the same values of tolerance as above, we 
obtain the following results: 

        ZD = 2.041 (p = 0.021), ZR = 2.349 (p = 0.009) 

        and ZL= 2.165 (p = 0.015). 
The values of ZMSB and ZH are the same as above since these tests use only marginal 
frequencies of a table. Generally, the responses of the new and standard drugs in a 
matched pair are positively associated, and this association is frequently substantial. 
If this is the case the above numerical values show that the new tests which will be 
constructed in the next section are the one that should be used in a pairmatched 
design. Inspecting the pvalues of the new tests it is also indicated that criteria (b) and 

(c) could provide us more powerful tests of equivalence than the test for the the risk 
difference criterion.

Table 3: No association in a matched-pair (0 = 1) 

C 
+  total 

         + 16 24 40 
      T   24 36 60  
          total 40 60 100

Table 4: Substantial association in a matched-pair (0 ti 10) 

C 

                   +  total 
            + 28 12 40 
        T   12 48 60  
              total 40 60 100
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4. Construction of tests 

4.1. By GSK method 

   We first construct test statistics by the GSK (Grizzle, Starmer and Koch [5]) for
mulation. Define the vectors  7r = (ir11, 712, 72177r22)' and p =(p11, p12, p21, p22)', where 
pi) = ni.7/n is a sample estimate of E[pii] = 'zrij , for i, j=1, 2. Then the sample 
variancecovariance matrix of p is, 

Pi i (1 — Pl1)—P11P12—P11P21—P11P22 
           1—P11P12P12(1 — P12)—P12P21—P12P22        V

p=n —p11p21 —P12P21 P21(1 — P21)—P21P22 
—P11P22 —P12P22 —P21P22 P22(1 — P22) 

   For some scalar function f(p) of p, f(p) = f(r) + E, E ̂ , N(0, S), asymptotically, 
where S is the asymptotic variance of f(p) based on the delta method. Therefore the 
test of the null hypothesis f(p) = c can be performed by using the test statistic 

              Z = (f(p)— c)/S1/2,(1) 

and this statistic may be applied for testing H0 : f(7r) < c against H1 : f (7r) > c since 
P(Z>aIf(7r) <c) <P(Z>aI Pr) =c). 

   Statistic Z is distributed asymptotically as a standard normal under f (7r) = c. If 
Z > Za, we decide that T is clinically equivalent to C, where Za is an upper a point of 
a standard normal distribution. Note that the S is represented as S = Q'VVQ with Q 
= of (P)/ap. 

   Now the criterion (a) utilizes a linear function f(7r) = Air with A = (0, 1, -1, 0), 
thus Q = A; The criterion (b) utilizes a loglinear function f (7r) = K log{Air} with K 
= (1, -1) and 

                         1 1 0 0                    A _
1 0 1 0 

thus Q =Kdiag{Ap}—'A, where the log operation applies to each element of the vector 
Air, i.e., log{A7r} = log(7r1 , 7r 1)' = (log(7 1. ), log(ir.1) )', and diag {Ap} is the diagonal 
matrix with the elements of Ap as its diagonal elements; and the criterion (c) utilizes 
also a loglinear function f (7r) =K log{Air} with K = (1, -1, -1, 1) and 1 1 0 0 ) 

                   _0 0 1 1                  `4 1 0 1 0 

0 1 0 1 

Specifically we have 

     S = [q Vl 1 + q2 V22 + q3 V33 + g4 V44 + 2q1 q2 V12 + 2q1 q3 V13 + 2Q1 q4 V14 
+2g2g3V23 + 2q2q4 V24 + 2g3g4V34],
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where V13 is the (i, j) element of V, and qi is the i-th element of Q. Using these repre
sentations, the test statistics are explicitly given as follows: 
For risk difference 

         ZD = (P12  P21  0)/s1/2, 
where ql = 0, q2 = 1, q3 = -1, q4 = 0. 
For log-risk difference 

ZR = (log /31. — logp.i — logr)/S112, 
where gl=pl .1—p.11,g2=pl.l,g3=l~g4=0. 
For log-odds (or logit) difference 

         ZL = (log pi. — log p.l — log p2. + log p.2 — log) /S1 /2, 
where ql = pl .l — p.l l , q2 = Pl.l + p.21 , q3 = —P2.1 — P.l l q4 = + p721. 

   Especially the test statistic ZD, which is based on a risk difference, can be written 
as 

         ZD=(n12 — n21 — n0)/{(n12 + n21) — (n12— n21)2/141/2. 
If we set 0 = 0, this reduces to 

ZD = (n12 — n21)/[(n12 + n21) — (n12 — n21)2/n]l/2• 
Note that the McNemar's test statistic 

ZM = (n12 — n21)/(n12 + n21)1!2 
is constructed by taking into account the heterogeneity among individuals, whereas the 
homogeneity among individuals is assumed in this paper. We would emphasize that in 
randomized matched-pair prospective designs, we often come across the situations where 
this assumption is justifiable. Z°D > ZM for n12 � n21i but usually in practice (n12 — 
n21)2/n is relatively small and the difference of these statistics will not be substantial. 

   Also statistic ZD can be represented as 
ZD = (P12 — P21  0)/[{Pl.(1 — pl.) + p.1(1 —p.1) — 2(0 — 1)p12p21}/n]1/2, 

where = PI1P22/P12P21• Note that 0 is an estimate of the population cell odds ratio 
lr117r22/7r127r21 • If we assume that the data are mutually independent in a matched 

pair, 0 would be close to one. If we set 0 = 1, we have 
ZMSB = (Pl.  p.1  0)/[{P1.(1  pi.) +p.1(1—  P.1)}/n]1/2. 

This is the equivalence test statistic proposed by Makuch and Simon [8] or Black
welder [2]. Thus ZD-test can be considered as a matched-pair analog of Makuch, Simon, 
and Blackwelder-test in a parallel design. Pairmatched data in our situation are usu
ally positively associated, i.e., 1. > 1, thus the value of ZD tends to be larger than that 
of ZMSB. Furthermore the above representation of the statistic ZD indicates that the 
power of the ZD-test increases as the increase of the positive association. 

4.2. Statistics with estimated null variances in the denominators 

   The statistics obtained by the GSK method utilize empirical variances in the de
nominators. Alternatively, we may use estimated null variances. For a parallel design 
Hirotsu [6] employed this idea and proposed the following test statistic; 

        ZH = (Pl. — p.l — 0)/[{PI .(1 —PI.) +P*i(1 
where the pi and p*1 are the restricted maximum likelihood estimators (MLEs) with
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the restriction  pi . — R* 1= A. 
    Now we develop corresponding tests in a pairmatched design. The variance of 

f (p) — c is approximated by S* = Q*Vp.Q*', where Vp. and Q* are the same quantities 
as Vp and Q except p is replaced by p*, where p* is the restricted MLE of 7 obtained 
under the null hypothesis f (7r) = c. Using the Lagrangean multiplier, the MLE, p*, is 
obtained by maximizing 

e = n11 log 1r11 + n12 log 712 + n21 log 721 +7122 logr22 
—A(7r11 +7r12 +1r21 +722 — 1) — 7(f (7r) — c). 

The test statistics are given by Z* = (1(r) — c)/(S*)1/2. These statistics follow the 
standard normal distribution under the null hypothesis asymptotically. In particular, 
the statistics for the risk difference and log-risk difference are explicitly given as follows: 
(a) For risk difference 

ZD = (P12 — P21 — 0)/[{(P12 +P21) — A2}/n]1/2, 
where p21 is given as a proper solution of a quadratic equation Ax2 — Bx + C = 0 with A 
= 2n, B = {(n12 + n21) + O(n12 — n21) — 2nL], C = —n21 O(1— A), and the other MLEs 
are obtained as /42 = p21+A, pil = nii/A, P22 = n22/A, and a = (n12/p12+n21/p21)/2. 

(b) For log-risk difference 
ZR = (log pi . — log p.1 — log r) / (S* )1 /2, where p12 and p21 are given by 

P12 = Dp21 and p21 = E/F, 
with 

          A = rn21 , B = n1. — r2n.1 , C = —rn12 
        D = [—B + (B2 — 4AC)1/2]/2A, E = rn12 + Dn21, 

        F = (1 + r)Dn22 — (rn12 + Dn21)(FD — 1)/(1 — r), 
and the other MLEs are given by 

Pli = —{(D —r)/(1—r)}P21, P22 =1+{(rD1)/(1—r)}p21. 
    We do not consider the test for the log-odds difference criterion in this paper since 

it requires an iterative solution. It might be interesting to apply the ZD and ZR tests 
to the data in Tables 3 and 4. The values of ZD are obtained from Tables 3 and 4, 
respectively, by 1.442 (p=0.075) and 1.968 (p=0.025). The MLEs of cell probabilities 
are Pli = 0.16, P12 = 0.20, Pal = 0.30, and p22 = 0.35, for Table 3; and Pli = 0.27, P12 
= 0.08, p21 = 0.18, and p22 = 0.46 for Table 4. The corresponding values of ZR are 
obtained, respectively, as 1.606 (p=0.054) and 2.105 (p=0.018), and the MLEs of cell 
probabilities are pl1 = 0.15, pi2 = 0.19, p2i = 0.30, p22 = 0.36 for Table 3; and pi i = 
0.25, P12 = 0.08, p2i = 0.19, p22 = 0.48 for Table 4. As anticipated, these pvalues are 
slightly larger than those pvalues given in section 3. It will be shown in the next section 
by simulation that these tests provide closer levels to the nominal levels than the tests 
by GSK method, in particular, when the size of the sample is small.

4.3. Other test statistics 

   Using the MLEs in the previous subsection, we easily obtain the likelihood ratio 

(LR) chisquare 

XLR = 2(Lmax — Lmax(P*)),
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where Lmax is the unrestricted maximum loglikelihood and Lmax(p*) is the restricted 
maximum loglikelihood with restriction pi = p 1 + A or A' . = Fpi, depending on the 
criteria employed. Setting 

ZLR = XLR if p1. > p.1 + 0, 
= —XLR otherwise, 

we may obtain one-sided LR test. We included these statistics in the Monte Carlo 
study in the next section, but the behaviors of these statistics are quite similar to the 
corresponding statistics with the empirical variance in the denominators and we omit to 
describe the results. 

   If we apply theGSK approach directly to the risk ratio criterion we may obtain 
         ZRR =(p1 .—rp.l)/S1/2 

where S is given in (1) with q1 = 1—r, q2 = 1,q3 = —r, and q4 = 0. We also included this 
statistic in our Monte Carlo study but its behavior is quite similar to the ZR-test and we 
omit to describe the results. Similarly, we may construct the test statistic by applying 
the GSK method to criterion (c'). Since the expression of the statistic is involved it is 
not included in our simulation. 

5. Confidence intervals 

    Confidence intervals are utilized frequently to show the equivalence of two drugs. 
We may immediately obtain a two-sided (1-a) confidence interval of f(r) as 

If(p) —f(7r)I/S1/2 < Za or IL, fu ={f(p)+ZaS1/2}. 

   It would be reasonable to decide that T is clinically equivalent to C if and only if 
the lower limit fL > c. Now this formulation is equivalent to the equivalence test based 
on (1), and the behaviors of the confidence intervals which are constructed by selecting 
the function f according to the risk difference, log-risk difference, or log-odds difference 
criterion, and also using the empirical variance or the null variance in the denominators, 
are the same as those of the corresponding test statistics. Especially the confidence 
interval using the empirical variance for the risk difference is described in some text 
books, e.g., Agresti [1] or Sakuma [9].

6. Monte Carlo Study 

   A Monte Carlo study was conducted by SAS ver.6.08 to investigate the Type I 

error rates and powers for the eight tests, ZD, ZD*, ZR, ZR*, ZL, AR (original scale), 
d R (log-risk scale) and ZRR (risk ratio). For the reason mentioned above we only show 
the results of the ZD, ZD*, ZR, ZR* and ZL. The response rate of the standard drug C 
was selected as 7.1 = 0.2(0.2)0.8, and that of the new drug T was r1. = ir.1 + 6, for each 
1r,1, where the true difference 6 was selected as 6 = 0.1(0.05)0.1. The cell odds ratio 
was = 1, 2, 4, 8 and 10. For each combination of the values of ir.1 i 6 and 4), the cell 

probability vector r was calculated, and from each 7, 10000 multinomial samples of size
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n were generated using the SAS RANTBL function. The tolerance value A was always 
set to  0.1, and the corresponding values of  r and  ‘If were generated so that 7.1 + A = 
rir ,1 and (7.1 + A)/(1 — 7.1 — A) = 417r,1/(1 — 7.1), respectively. Each data was tested 
using the above eight tests at the significant level a = 0.05. Although the simulations 
were performed for sample sizes n = 30, 50 and 100, only the results for n = 30, 100 

(and 4) = 1, 10) are shown in this paper. 
   Table 5 (for n=30) and Table 6 (for n=100) show the simulated Type I error rates 

and powers of the five test statistics, ZD, ZD, ZR, ZR, and ZL, for 4. = 1, 10 and it.1 
= 0.2(0.2)0.8. In the tables, the rows corresponding to the true difference S = -0.1 list 
the Type I error rates and the other rows list the powers, because we set A = -0.1. 

   Table 6 shows that if the sample size is as large as or larger than n = 100, all five 
tests control the Type I error approximately to the nominal level. But if one look into it 
carefully, although not substantial, the Type I errors of the tests tend to be slightly larger 
than the nominal level, especially in the case of 4 = 10. It seems that this tendency is 
stronger in the lower or the higher response rates. Table 5 shows that when the sample 
size is small, i.e., n=30, these findings are amplified in the tests that use the empirical 
variance, i.e., ZD, ZR and ZL, but the table shows that those tests using the estimated 
null variance, i.e., ZD and ZR, remarkably improve the overestimation. 

   Concerning the power, Tables 5 and 6 show that 

 (i) the power of ZR is higher than those of ZD and ZL, and also the power of ZR is 
   higher than that of ZD, 

 (ii) when the sample size is small the powers of ZD and ZR are higher than those of 
ZD and ZR, respectively; the difference is large especially when 4 = 10, whereas 

    when the sample size is large those powers are similar, 

(iii) when 7,1 is small (7,1 = 0.2), the power of ZD is lower than those of ZR and ZL, 

(iv) when 7.1 is intermediate (7r.1 = 0.4 or 0.6), the powers of the five tests are relatively 
    similar, 

 (v) when it.1 is large (7.1 = 0.8), the powers of ZD and ZR are higher than that of ZL. 

   Summarizing these findings in the Monte Carlo study we may conclude that (a) 
when the sample size is small, the ZR-test is recommended, (b) when the sample size is 
large the ZR-test is suggested, and (c) when the sample size is large and response rate 
is intermediate or high, test ZD is recommended since the test is simple.

7. Determination of the value of tolerance 

   One of the most controversial points in the practice of the test of equivalence is 

about the value of tolerance. The risk difference criterion is conventionally employed 
with A=-0.10 in testing equivalence in parallel designs. It seems that this value has 
been empirically accepted as a reasonable value of tolerance in many cases where the 
response rate of the standard drug is in the range between 0.2 and 0.8 (or more safely
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   Table 5: Type I Errors and Powers for n=30 

   6 7r.1 ZD ZD* ZR ZR* ZL  

         0.2 0.066 0.048 0.054 0.034 0.056 

    0.10 0.4 0.055 0.045 0.052 0.043 0.051 

         0.6 0.059 0.049 0.055 0.051 0.057 

         0.8 0.054 0.049 0.056 0.050 0.050 

          0.2 0.140 0.123 0.181 0.140 0.172 

    0.05 0.4 0.122 0.104 0.126 0.112 0.117 

         0.6 0.115 0.095 0.116 0.109 0.107 

          0.8 0.123 0.112 0.134 0.116 0.102 

          0.2 0.260 0.240 0.388 0.345 0.357 

1 0.00 0.4 0.209 0.183 0.235 0.218 0.206 

          0.6 0.214 0.186 0.223 0.212 0.200 

         0.8 0.261 0.240 0.285 0.254 0.206 

          0.2 0.424 0.395 0.612 0.575 0.563 

    0.05 0.4 0.337 0.302 0.389 0.370 0.337 

         0.6 0.348 0.312 0.376 0.365 0.318 

         0.8 0.467 0.438 0.517 0.463 0.358 

          0.2 0.567 0.536 0.777 0.752 0.728 

    0.10 0.4 0.480 0.440 0.554 0.536 0.481 

         0.6 0.499 0.459 0.542 0.532 0.454 

         0.8 0.701 0.662 0.763 0.699 0.546 

         0.2 0.086 0.039 0.090 0.059 0.080 
   -0.10 0.4 0.067 0.047 0.066 0.050 0.063 

         0.6 0.065 0.046 0.069 0.050 0.063 

         0.8 0.071 0.044 0.079 0.054 0.068 

         0.2 0.197 0.119 0.286 0.230 0.254 

   0.05 0.4 0.174 0.135 0.196 0.159 0.174 

         0.6 0.164 0.131 0.185 0.150 0.157 

         0.8 0.191 0.127 0.212 0.163 0.162 

         0.2 0.372 0.275 0.566 0.504 0.515 

10 0.00 0.4 0.316 0.268 0.374 0.327 0.324 

         0.6 0.319 0.266 0.363 0.306 0.303 

         0.8 0.376 0.282 0.419 0.347 0.301 

         0.2 0.582 0.490 0.792 0.749 0.745 

    0.05 0.4 0.522 0.471 0.614 0.567 0.538 

         0.6 0.534 0.480 0.600 0.540 0.508 

         0.8 0.616 0.497 0.680 0.597 0.466 

         0.2 0.764 0.697 0.921 0.893 0.892 

    0.10 0.4 0.704 0.664 0.794 0.762 0.721 

         0.6 0.717 0.668 0.787 0.747 0.673 

         0.8 0.836 0.740 0.887 0.830 0.651



 Rinnr, nn+7Q1

  Table 6: Type I Errors and Powers for n=100 

4 (5 71.1 ZD ZD* * ZR ZR* ZL  

         0.2 0.052 0.048 0.053 0.058 0.052 
   -0.10 0.4 0.051 0.051 0.052 0.052 0.050 

         0.6 0.049 0.049 0.052 0.051 0.050 

         0.8 0.052 0.051 0.056 0.053 0.049 

         0.2 0.252 0.243 0.375 0.393 0.345 
   -0 .05 0.4 0.183 0.183 0.218 0.219 0.197 

         0.6 0.171 0.171 0.194 0.193 0.168 

         0.8 0.219 0.213 0.243 0.233 0.180 

         0.2 0.548 0.537 0.770 0.786 0.726 

1 0.00 0.4 0.410 0.410 0.500 0.502 0.449 

         0.6 0.420 0.419 0.475 0.473 0.404 

         0.8 0.557 0.547 0.605 0.592 0.455 

         0.2 0.817 0.814 0.963 0.966 0.940 

    0.05 0.4 0.696 0.696 0.795 0.797 0.731 
          0.6 0.708 0.708 0.775 0.773 0.683 

          0.8 0.877 0.870 0.912 0.904 0.766 

         0.2 0.949 0.948 0.997 0.997 0.992 

    0.10 0.4 0.883 0.883 0.944 0.945 0.906 

         0.6 0.910 0.910 0.949 0.949 0.890 

         0.8 0.989 0.988 0.994 0.993 0.952 

         0.2 0.063 0.050 0.062 0.063 0.060 
    -0.10 0.4 0.053 0.048 0.055 0.051 0.052 

          0.6 0.055 0.052 0.061 0.054 0.054 
          0.8 0.054 0.048 0.059 0.048 0.054 

          0.2 0.354 0.323 0.527 0.531 0.493 
    -0.05 0.4 0.276 0.266 0.339 0.322 0.299 

          0.6 0.267 0.256 0.309 0.292 0.260 
          0.8 0.324 0.301 0.357 0.324 0.269 

          0.2 0.766 0.745 0.930 0.932 0.911 

10 0.00 0.4 0.670 0.660 0.769 0.757 0.711 

         0.6 0.669 0.660 0.730 0.714 0.649 

          0.8 0.762 0.741 0.806 0.776 0.647 

          0.2 0.960 0.957 0.997 0.997 0.995 

    0.05 0.4 0.924 0.919 0.966 0.964 0.942 
          0.6 0.928 0.923 0.959 0.954 0.910 

         0.8 0.977 0.973 0.987 0.982 0.921 

          0.2 0.998 0.998 1.000 1.000 1.000 

    0.10 0.4 0.993 0.992 0.999 0.999 0.996 

          0.6 0.995 0.994 0.999 0.999 0.990 

          0.8 1.000 1.000 1.000 1.000 0.995
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0.3 and 0.7). The tests for the log-risk difference and the log-odds difference are seldom 

employed in the parallel designs since it is not easy to determine the values of tolerance 
for these criteria. The determination of the value of tolerance in pairmatched designs is 
more complicated than the case of parallel designs since the power of the test depends 
on the association in a pair. Ideally the value of the tolerance should be determined 

from the clinical point of view in the stage of planning of a trial, in consideration of 
sample sizes and powers of the test. We consider the statistic ZD for a matched-pair 
design and ZMSB for a parallel design in this section and explore statistical methods of 
the determination of the value of tolerance in a pairmatched design. Our basic idea is 

to decide the value of tolerance, or sample size, of the test ZD in a pairmatched design 
so that ZD has the equal power as ZMSB in a parallel design. 

   Now it is easy to show that the ZD is approximately distributed as N(µ1i1) under 
H1, where 

µl = nl/2(71. — ~.1 — LMP)/[(7t12 + 7r21) — (712 — 7r21)2]1/2, 
and OMP is the tolerance parameter in a pairmatched design, thus denoting by F the 
distribution function of the standard normal distribution the power of the ZD-test is 
approximated by 

PMP=1—F(Za—µl). 
Similarly the power of the ZMSB-test is approximated by 

Pp = 1 — F(Za — A2), 
where 

µ2 = n1/2(71. — i•1 — OP)/[in1.(1 — 71.) + 77.1(1 — 7.1)]1/2 
and Ap is the tolerance parameter in a parallel design. 

    A method of the determination is to set OMP = Ap, using the conventional value 
of Ap; that is, to decide OMP= -0.1. The determination elevates the power of ZD, and 
could violate the base of the rule of thumb which has been empirically accepted in a 
parallel design. Thus this determination must be accompanied with the selection of the 
sample size at the initiation of the study. The sample size of the ZD-test, say nMP, 
which provides the same power as theZMSB-testwith the sample size npis given by 

nMP = np[{(712 +721)— (712 — 7202}/{71.(1—7r1.) +7.1(1 —7.1)}}. 
We have nMP < np for 4) > 1, and nMP = np if and only if 4)=1. Using the relationship 
of nMP and np, and also using the conventional value of Ap employed in the parallel 
design, one may choose the sample size nMP for a matched-pair design. For illustration 
the values of nMP/np are listed in the last column of Table 7 for selected values of 4, 
7n1•,7C.1, and 6(=7r1.—in .1)• 

    However in many cases in practice a test of equivalence is required after the study 
is designed; that is, after the sample size has been decided. If this is the case, we suggest 
to select the value of Amp so that the powers of the two tests are identical, by supposing 
that nMP=np and that the value of Ap is known, i.e., -0.1. Specifically the value of 
AMP is given by

fl((f AMP = (71. —i.1)+{AP — (71. —i.1)}[{(in12 + 721)— (712 — 7202}/{71.(1 — 71.) 
+7_1(1 — 7.1)}i1/2 

It follows that Amp <Ap for 4)>1, and Amp =L when Op=(7r1 .7r.1)or4)=1.
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For illustration numerical values of  Amp are given in the second last column of Table 7 

for selected values of 7r1., 7r.1 and (13, when Op = -0.1.

Table 7: Tolerance and Sample Size Ratio to give 
the Same Power as the Parallel Design  

7.1 6 7r1. AMP NMP/NP 
            0.00 0.20 0.094 0.877 

       0.2 0.05 0.25 0.090 0.870 
           0.10 0.30 0.086 0.866 
            0.00 0.40 0.091 0.833 
       0.4 0.05 0.45 0.087 0.832 
   20.10 0.50 0.082 0.832 
            0.00 0.60 0.091 0.833 
       0.6 0.05 0.65 0.087 0.837 
            0.10 0.70 0.084 0.843 
            0.00 0.80 0.094 0.877 
       0.8 0.05 0.85 0.091 0.889 
            0.10 0.90 0.091 0.908 
            0.00 0.20 0.075 0.556 
       0.2 0.05 0.25 0.061 0.549 
            0.10 0.30 0.049 0.556 
            0.00 0.40 0.070 0.487 
       0.4 0.05 0.45 0.055 0.489 
   100.10 0.50 0.041 0.498 
            0.00 0.60 0.070 0.487 
       0.6 0.05 0.65 0.056 0.496 
            0.10 0.70 0.044 0.515 
            0.00 0.80 0.075 0.556 
        0.8 0.05 0.85 0.065 0.584 
            0.10 0.90 0.061 0.648

   In assessing the sample size and the value of Amp in a matched-pair design, we 
need prior information on the cell probabilities. If irk., 7r.1 and are assessed, 7r11 is 
obtained by 

7r11 = [B  (B2  4AC)1/2]/(2A), 
where A = (4)  1), B = [(43  1)(71. + 7.1) + 1] and C = 4'71.7r.1, provided 0 1. If 
= 1, then 7r11 = 7r1.7r.1. Once 7r11 is obtained, other cell probabilities are obtained easily 
and Amp or nM p is finally obtained by the above formulae. 

    When 7r1. = 7r.1, the above formulae reduce to the simple formulae 

nMP = np[7r12/{7r1.(1  ir1.)}], and OMp = Ap[in12/{in1.(1  71•)I]1/2. 

   These formulae require no information on 6, and we might be able to use these 
formulae if the information is not available.
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8. Discussion 

   We developed eight tests for the test of equivalence in a matched pair design in 
this paper, and studied their behavior in a simulation study. We first excluded three 
tests among them since their behavior is quite similar to one of the other five tests. Of 
the remaining five tests it is shown that ZD and Z;-tests which use the estimated null 
variance are more faithful to the nominal a level than the other tests for small sample 
sizes (n=30), and their powers are similar to the ZD and ZRtests, respectively, for large 
sample sizes (n=100). The Z;-test has higher power than the ZD-test. Thus the use of 
the ZR test is recommended. Because of its relative simplicity and of its highest power 
among the tests considered one could suggest the use of ZR-test when the sample size 
is large (n=100). 

   A crucial point that should be taken into account in practice is the determination 
of the value of the tolerance. We developed the methods of the determination in this 

paper for the risk difference criterion with empirical variance. This approach using 
the empirical variance can apply to two other criteria, log-risk difference and log-odds 
difference, whereas in the case of using null variance, the approach cannot be applied 
directly. 
   After this paper was submitted for publication, we noticed the publication of the 
paper by Lu and Bean [7] in the latest issue of the Statistics in Medicine. They inves
tigated the sample sizes for the equivalence tests for binary pairmatched data. Their 
test statistics are different from those eight statistics discussed in this paper. We would 
like to compare their statistics and ours in a follow up paper.
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