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                  By 
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Abstract 

   A class of tests is proposed for detecting the difference of two pop

ulations in an ordinal categorical table. Characteristics of the proposed 

tests are studied. It will be shown that the new tests may have higher 

powers for a class of nonlinear responses than the other conventional 
tests. 

Key Words and Phrases: locationdispersion test, Wilcoxon test, Nair's 

dispersion test, Mantel's extended test, GramSchmidit orthonormaliza

tion, cumulative chisquared test.

1. Introduction 

   To fix the idea consider a randomized clinical trial for testing the effectiveness of 
a new drug against a placebo. Frequently the effectiveness of the drug is measured 
by ordinal categories such as remarkable (+++++), effective (++++), • • •, slightly 
effective (+), and not effective. Table 1 displays data from such a trial. The data is 
plotted in figure 1, except for the data in not effective category. The figure shows a U 
shaped response. Normaly treatment by drugs may change the environment of patient's 
interior such as immune system and we often come across U shaped, or more complicated 
responses. The purpose of the present paper is to propose a class of statistical tests which 
have higher powers for those nonlinear responses in a 2 x k ordered categorical tables.

           Table 1: 2 x 6 table with ordered categories 

Effectiveness 
Drugs Not effective + ++ +++ ++++ +++++ Total 
Placebo 653 3 3 3 3 80 
Treatment 568 3 2 3 8 80

   The Wilcoxon test [6], or equivalently Mantel's extended test [3] has been applied 
for testing ordered categorical data in 2 x k tables. The test has no high powers for 
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Figure 1: Plotted treatment group in Table 1.

the responses we are interested in. Alternatively, the cumulative chisquare test [5] 
and Nair's test [4] may be applied. The former test is an omnibus test developed for 
a wider class of alternatives and the latter test was, in particular, designed to detect 
the dispersion alternatives.  Jayasekara, Yanagawa and Tsujitani [1] have developed 
a test which is useful for detecting locationdispersion alternatives. In this paper we 
generalize the locationdispersion test by constructing the statistic whose score vectors 
are orthonormal. 

   In section 2 we propose the test statistic. Its asymptotic distributions under the 
null hypothesis and contiguous alternatives are studied in section 3. We compare the 
powers of the tests with the competitors in section 4.

2. The Test Statistic 

   Consider 2 x k table given in Table 2, and suppose that X = (X1, X2, • • • , Xk) and 
Y = (Y1,172, • • • , Yk) are independently distributed multinomial random vectors. We 
consider the following null hypothesis: 

H0 : X and Y are identically distributed. 

   To define the test statistic for H0i the orthonormal scores will be introduced based 
on the Wilcoxon score. 

   Let ci be the Wilcoxon Score defined by ci = ~~i r3+(TZ—N)/2 for i = 1, 2, • • • , k, 
so that >k i Tici = 0. We define the inner product of a = (ai, • • • , ak) and b = 
(b1, ... , bk) by (a, b) = Ei—i riaibi and also Ilail2 = (a, a). 

   Let ci3 be the i-th power of ci, j = 1, 2, • • • , k and put ci = (c c2, • • • , c ), i = 
0, 1, • • , k. It is obvious that co, Cl, • • • , ck are linearly independent. Let ao, a1, , ak 

be orthonormal score vectors which are obtained by appling GramSchmidit orthonor
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  Table 2: 2 x k contingency table 

        Ordered Categories Total 

X X1 X2 . . . Xk  ni 

Y Y1 Y2 • • • Yk n2 

Total T1 T2Tk N

                                                drmalization to these vectors. That is, a° =§90and ar =II, r = 1, 2,••, k, where 
dr = cr — Ei 0 (cr, ai)ai. We have, 

                            0 if j,               (
ai, ai) =1 if i = j(1) 

Putting ar = (ari, ar2) . • • , ark), and 

Sr = E ariYi, for r = 1, 2, ... , k, 
i=1 

the test statistic which we propose in this paper for testing the null hypothesis H° is 
given by 

              t S2 
               Qt =, for each t E {1, 2,•••, k},                  _

r_1Y0[Sr~C]  

where Y° [• IC] is the conditional variance conditioned on C = {ni, n2, T1, • • • , Tk } under 
H° and is given by 

                 V° [Sr IC]= -----------ni n2,for r = 1, 2,  , k.                       N(N — 1) 

Note that the conditional distribution of Y under H° conditioned on C is given by 

                    TiTk• 

             Pr[(Y1i...,Yk) = (y1,...,yk)IC] =Yiyk  

                               N n2 

It is shown in section 3 that Qt follows a chisquare distribution with t degrees of 
freedom under H0. This test statistic Qt is identical to the Wilcoxon test statistic and 
the locationdispersion test statistic for t = 1 and 2, respectively. 

    Investigating the asymptotic powers and also by simulation, it is shown that Q3 
has the highest power for the l shaped or U shaped response among {Qt}; and Q4 has 
the highest power for the shaped or if' shaped response among {Qt}.
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3. Asymptotic Distributions 

   First we approximate a multiple noncentral hypergeometric distribution by the 
binomial distribution. Then using this approximation, we develop the asymptotic dis
tributions of  Qt under the hypothesis and also under contiguous alternatives.

3.1. The Multiple NonCentral Hypergeometric Distribution 

   When X and Y are independently distributed multinomial random variables with 
the parameters n1, ir1 = (F11, • • • , wik) and n2, 7r2 = (in21, • • • , 72k), respectively, we have, 

        P4(372, ... , Yk) = (y2, • • • , Yk)I C] =g(Y)11.••(2)      v,(2)  g(i)1/41 .. • 

where g(y) = ni!n2!/[Yr! . . . yk!(Ti — yl)! . • • (Tk — yk)!1 and'03 = 7nll7r2j/7r217n1i which is 
the odds-ratio parameter, relative to category 1, for j = 1, 2, • • , k, so that /P1  1. 
We use the following assumptions for T3 and n2 which are defined in Table 2. 

(A1) limN_,,,„ N = 0, for j = 2, 3, • • . , k. 

(A2) N = p for some given p such that 0 < p < 1. 

   THEOREM 3.1. Suppose that (Al) and (A2) are satisfied, then 

              lim g(Y)T1!...Tk!_ 1. 
N —* oo Tj

T~77                     N!fl=2 )P(l_P)T2_?. 
yj 

    PROOF. Since 

       n2!n1!  
           ii!.• •Tk• (n2—y2—...—yk)! (nl—T2—...—Tk+y2+...+yk)! T2Tk 

  9(Y)-----------.  N!=N, 
                   (N7-2—•••—Tk)!Y2Yk 

from (Al) and (A2) we have 

k 

             uim g(Y)n1!.••Tk!=f 73 )pY3(l_py_Y. 
                                                                 i N! j=2 y~ 

This completes the proof of the theorem.^ 

   From the theorem it follows that the numerator of (2) is approximated by 

                   Tj )()Y(l_p)_Y3 N. 
                       j=2 yjT11... Tk 

                                                     Therefore by normalizing this we may approximate the distribution (2) by 

Pr[(Y2,...,Yk) = (y2)...,yk)IC1
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                 k  
T.  170.3 Y)1  PT3-V                                          (3) 

3_2y3P) 
Thus according to this approximation Y3 is binomialy distributed with parameters T3 
and p/ /(p0; + 1  p), and Y2, Y3, • • • , Yk are independent.

3.2. Asymptotic Distribution of Qt Under Ho 

   Now we consider an approximation of Pr[(Y2i • • • , Yk) = (y2, • • , yk)IC] for large r3, 
j = 2, 3, • • • , k. To begin with we shall make the following assumption. 

(A3) N-ETj = 0(1), j = 2, 3, • • • , k, for some E such that 0 < E < 2 . 

The notation N-Er = 0(1) which is used in this paper, means N-Er tends to a constant 
as N -* oo. Note that (A3) includes (Al). We need the following Lemmas 3.2, 3.3, 3.4 
and 3.5 to get Lemma 3.6. 

   LEMMA 3.2. If (A3) is satisfied, then 

N-rECri = 0(1) and N-rCri = 0(1), (i = 2, 3, • • • , k) 

where cri = cr, is the r-th power of the i-th Wilcoxon score, for r = 1, 2, • • • , k. 

   PROOF. By the definition of c1 we have c1 =  2 >-2 Ti, and from (A3) it follows 
that N-Ec1 = 0(1). By the definition of ci, for i = 2, 3, • • , k, we have ci = 7-1 + 
Ei;-2T.3 +(Ti N)/2.',From (A3) we can get N-lci = 0(1) since N-ir1 = 0(1). Thus, 
the proof is completed.^ 

   LEMMA 3.3. If (A3) is satisfied, then 

N(r1)-E(Cr, ao)aoi = 0(1), r = 1, 2, .. • , k, i = 1, 2, • • . , k. 

   PROOF. LFrom the definition of ao we know that aoi = 1/N1/2 for all i. So by 
Lemma 3.2 we obtain NrE+1/2(cr, ao) = 0(1). Hence, the desired result follows. ^ 

    LEMMA 3.4. If N(11)-Ed11 = 0(1), and N-ldli = 0(1), for i = 2, • • , k, and 

(A3) is satisfied, then 

 (i) N21El,dlll2 = 0(1), 

 (ii) N(r1)-E(cr, d!) 11(1'1112 = 0(1)and N-r(cr~d1)14:112 = 0(1),i= 2, 3,...,k. 
   PROOF. (i) The result can be obtained by the definition of d1. 

 (ii) Expanding (cr, di) and applying Lemma 3.2 we can obtain Nr+1+E(Cr, d1) = 0(1), 
    for all r,1. Then using (i), the result follows.

For the assumption of Lemma 3.4 we have
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   LEMMA 3.5. If (A3) is satisfied, then 

 N(T1)-'dr1 = 0(1) and N-rdri = 0(1), for r = 1, 2, • • • , k and i = 2, 3, • • • , k. 

    PROOF. To prove this result we use induction on r. 
In case of r = 1, 

                   d11 = c12 — (c1, ao)aoi, for i = 1, 2, • • • , k. 

Applying Lemma 3.2 and 3.3, it follows that 

N-Ed11 = O(1) and N-ldli = O(1), for i = 2, 3, • • , k. 

Suppose that the result is true for r = 1, 2, • • • ,m — 1. Since 

m-1 
dm = Cm — E (cm, al)al, 

I=0 

m-1 

                    =Cm— (Cm, ao)ao — E (Cm, dl)-------dl2' 
                               i=1~Il11 

it follows that N(m1)-Edrni = 0(1) and N-mdmi = 0(1) from Lemma 3.2, 3.3 
and 3.4. So the result is true for r = m. By the induction the proof is completed. ^ 

Using these lemmas we may show, 

   LEMMA 3.6. If (A3) is satisfied then 

N1'12ar1 = 0(1) and NE12ari = 0(1), 

for r=1,2,•••,k and i=2,3,•••,k. 

   PROOF. It is straightforward to show the lemma from the definition of ar, 
r = 1,2, • • , k, and by Lemma 3.5.^ 

   Denote by EAO [•] and VAO [•] the expectation and variance, respectively, under Ho 
when Y3, j = 2, 3, • • • , k, follow distribution given in (3), thus we have, for example, 

EAO[17j] = TjP,(4) 

VAO[Y3] = Tjp(1 — /3).(5) 

We have the following lemma. 

   LEMMA 3.7. If (A2) and (A3) are satisfied, then 

 (i) EAO [Sr] = 0, r = 1, 2, ... , k. 

 (ii) limAr~co  [51J = 1, r = 1, 2, • • , k.
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    PROOF.  Since >i=1 Yi = n2, 

                Sr = arin2 + E(ari — ari)Yi•(6) 
i-2 

Thus from (4) 

E' Ao [Sr] = arin2 + E(ari — ar1)Tip, 
                                               i=2 

                         = arin2 + N1/2(ao, ar)p — ar1Np. 

Furthermore, from (1), we have for r = 1, 2, • • • , k, 

EAO [Sr] — ari N \ N pl 

Thus from (A2) we have (i). Next we prove (ii). zFrom (5) and (6) we have 

VA0 [Sr] =(ari — arl)2Tip(1 — P) 
i=2 

                         =p(1—p)(1+a2 r1N). 

Therefore using (A2) and Lemma 3.6 we have 

Vo[SrIC] =  nin2/N(N — 1) 1 as N —> oo. 
VAO[ST] p(1 — p)(1 + ariN) 

   THEOREM 3.8.  If (A2) and (A3) are satisfied, then under H0, the conditional dis
tributions of Sr/ /VO [Sr I C], r = 1,2,—•,k, given C is approximated by a standard 
normal distribution for large N. 

    PROOF. We can write 

 Pr Sr  < xIC =PrSr — EAO[Sr] < Vo[SrIC]_ EAO[Sr] Ic ^
Vo[SrIC] —\/VA0[Sr]  VAO[Sr] VV0 [Sr IC] 

When N —* oo, (A3) (Al), and the distribution of (Y2,173, • • • , Yk) may be ap
proximated by the multiple of the independent binomial distributions. Furthermore 
Ti -+ oo, j = 2, 3, • • • ,k when N --^ oo from (A3). Therefore the distribution of 
(Sr — EAO[Sr])/JVAO[Sr] may be approximated by N(0,1) for large N. Then the result 
follows from Lemma 3.7 and by Slutsky theorem (See Lehmann [2] Appendix, Sec. 3, 
Corollary 2).^ 

   THEOREM 3.9. If (A2) and (A3) are satisfied then the conditional distribution of 
Qt given C under Ho is approximated by a chisquared distribution with t degrees of 
freedom for large N.
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    PROOF. It is sufficient to show that the conditional covariance of Sri and Sr2 
conditioned on C under  Ho, which is denoted by Covo [Sri, Sr2 I is 0. zFrom (6) we 
have 

COVO [Sri , Sr2l Cl = E(arli — arii)(ar2i — ar21)Vo[YilC] 
i=2 

k k 

+E E (ar, i — aril) (ar2j — ar21)Covo [Yi, Yj I C] 
i=2 2t#7 

                       k                                          Ti(N — Ti)nin2                   = E(arli—arii)(ar2i — ar2i) N2(N — 1) 
i=2 

k k 

             _E[~[~/TiTjnln2  
                               L(arli —ar11)(ar2j — ar2i) N2(N — 1) 

i=2 ? 2t�j 

k 
Ti121n2  

                       E(arli — arii)(ar2i — ar2i)                                   N(N — 1) 
                             i=2 

k k 
TiTjn'n2                           — E E(arii — arii)(ar2j — ar2i) N2(N — 1) 

                                     i=2 j=2=2 

Now 

E(arli — arli)(ar2i — ar2i)Ti = ar11ar21N 
i=2 

k k 

(kk     E(ar1i— ar11)(ar2j—ar21)TiTj= [(arii — ari1)Ti [(arii — ar2i)Tj 
i=2 j=2i=2 j=2 

                                         = ar 11ar2iN2 • 

Thus substituting these equalities into the above formula, we have the desired result. 

                                                             0 

3.3. Asymptotic Distribution of Qt Under the Alternative 

   In this section we obtain asymptotic distribution of Qt under the alternative hy
pothesis H1: = 1+ Ai/NE/2, j = 1, 2, • • • , k, where Ai is a constant and 0 < E < 1/2. 
We denote by EA [•] and VA [•] the expectation and variance, respectively, under H1 when 
Yj, j = 2, 3, • • • , k, follow the distribution given in (3). Thus for example, 

       EA[Yj] — ---------------(7) 
                                   pOi+1—p'

' 
VA[Y] =T3p(1 — p),,,L(8)                                (

pb +l—p)2•
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   LEMMA 3.10.  If  (A2) and (A3) are satisfied, then 

 (i) 00 J~o[[sr~]c]—lsr,where ls,.=03(1 p)Ei=2(ar~ arl)Tj("tPj — 1). 
 (ii) limp00V°VA[,~C] = 1, r = 1, 2, • • • , k.              [sS[, 

   PROOF. (i) From (6) and (7) we have 

EA[Sr]=arin2 + E(arj — arl)T7YY'~• 
                                           pzb+1—p                                                j=2 

Now since 
k 

EAO[Sr] = arin2 + E(arj — ar1)Tjp, 
                                                j=2 

and furthermore EAO [Sr] = 0, we have 

EA[Sr]= (EA[Sr] — EAO[Sr]) + EAO[Sr] 

                  = E(arj —arl)Tjp(1 —p)(j  1)1 
1Y0i + 1 p j=2 

Thus 

EA[Sr] _/N(N —1)(arJ—arl)T~p(1 —13)(0i — 1)  
          -IV()[Sr I c]n l n2 

                  j=2 p'Pj +1 p 
Since 

\1N(N — 1)  p(1 — p) —> V.p(1 — p), (from (A2)) nl n2 

(pr/j +1 — p) --^ 1 as N —> oo, and (an — arl )rj (')j — 1) = 0(1), the result follows. 
(ii) From (6) and (8) we have 

            k
jp( VA[Sri = E(arj'arl)2(,.iP:+1                                                  1—p)2. 3=2111''44''        T  

Thus it follows that 
VO[SrIC]nln2/N(N  1)  
VA[Sr]= p(1-p)A 

where A = >ik-2(arj  an )2rj1Pj/(p j + 1  p)2. 
Under H1, 

    A = E(arj — arl)2rj (i+  ~2 (1+P2)2 
                               N~               j =2 

                                                 A2                                     _ E(arjarl)2rj 1+(1-2p) NA3/N2+p(3p-2)+olNE. 
~=2
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Furthermore since 

 E (arj — ari )2Tj = 1 + ar1 N, 
j=2 

we have 

     A2    A = 1 + ar1N + E(arj — ar1)2Tj (1 — 2p)NE~2+ p(3p—2)NE+ oNE. 
j=2 

Employing Lemma 3.6 and (A3) we may show that a2r1 N --> 0 and 

     k 

                                    A2 

   E(arj— ari )2Tj NilNE—> 0 as N-->oo. 
     j=2 

Thus A —4 1 as N —p oo. Since nin2/N(N — 1) —> p(1 — p) as N —> oo (from (A2)), the 
result follows.^ 

    THEOREM 3.11. If (A2) and (A3) are satisfied, then under H1 the conditional dis
tribution of Sr/,/Vo[SrIC], r = 1,2,--, k, given C is approximated by N(ls r, l) for 
large N, where ls, is given in Lemma 3.10. 

    PROOF. Similarly as the proof of Theorem 3.8, the distribution of 

(Sr — EA[Sr])/\/VA[Sr] may be approximated by N(0,1), for large N, under (A3) and 

 Pr Sr <IC= PrSr — EA [Sr] < Vp [Sr I C]         —— EA [Sr]      ^V
0 [Sr IC]\/VA[Sr] VA[Sr] VVo [Sr IC] 1c 

    Thus it is straightforward to show the theorem from Lemma 3.10 and by Slutsky 
theorem.^ 

   LEMMA 3.12. Suppose that (A2) and (A3) are satisfied, then under H1 the condi
tional covariance of Sri and Sr2 given C tends to 0 as N —* oo, where r1, r2 = 1, 2, • •  , k, 
and r1 r2. 

    PROOF. We approximate the conditional distribution of Yj, j = 2, 3, • • , k, by the 
distribution given in (3) and denote by CovA[Sri, 5r2 I C] the covariance of Sr, and Sr, 
under H1. Then from (8) 

COVA[Srl, Sr21 C] = (arli — aril)(ar2. — ar21)Tigi(1 qi) 
i=2 

where qi = Y b /(pOi + 1 — p) and IVi = 1 + Ai/NE/2. Thus 

ICOVA[Sri, Sr2 I C]I < (1/4) E(arii — aril)(ar2i — ar21)ri. 
i=2
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Furthermore from Lemma 3.6 and (A3) we may show that 

 E(ariz — ari1)(ar2z — ar21)TZ = ariiar21N 
z=2 

a 

N1-1 

for some constant a. Thus we have COVA[Sri 8r2 IC] -* 0 as N --> oo. Therefore we 
have the desired result.^

LFrom Theorem 3.11 and Lemma 3.12 we have the following theorem. 

   THEOREM 3.13. If (A2) and (A3) are satisfied, then the conditional distribution of 

Qt given C under H1 is approximated by a noncentral chisquared distribution with t 
degrees of freedom and noncentrality parameter Er-1 ls,, when N is large.

4. Power Comparisons 

   First the asymptotic powers of the test are compared when t is varied, considering 
several types of nonlinear responses. Next the proposed test is compared with the 
cumulative chisquared test (CCS test) by simulation.

4.1. Comparison of the Asymptotic Powers when t is Varied 

   The asymptotic power of the Qt test under the alternative hypothesis H1 is given 
by Pr[X't > X?,,,], where Xt,a is the upper 100a percentage point of the chisquared 
distribution with t degrees of freedom and x't is the random variable which follows the 
density function of the noncentral chisquared distribution with t degrees of freedom and 

the noncentrality parameter A = Er=1 l2 . 
   Table 3 displays six 2 x 6 tables. Note that Table 3D is identical to Table 1. The 
data in the treatment groups except for the data belonging to not effective category have 
been plotted in Figure 2 to visualize the pattern of response. The asymptotic powers 
of Qt test when t = 1, 2, 3, 4 are computed from each table in Table 3, and shown in 
Table 4. The table shows that among {Qt}, t = 1, 2, 3, 4, the test with t = 2 provides 
the maximum powers for the configuration of responses in Table 3A and 3B; for the 
responses in Table 3C and 3D the test with t = 3 provides the maximum powers; and 
for the responses in Table 3E and 3F the test with t = 4 provides the maximum powers.

4.2. Comparison with the CCS test 

   The simulation studies were conducted to assess the Type I error of the proposed 

test when t = 1, 2, 3, 4 and the CCS test at the significance level a = 0.05. We generated 

10,000 experiments for each combination of the response probabilities exhibited in the 

left part of Table 5 and obtained the empirical significance levels. The results are shown 

in the right part of Table 5. The table shows that when the cell probabilities of the first
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              Table 3: 2 x 6 tables with ordered categories.  
 Effectiveness 

   Drugs Not effective + ++ +++ ++++ +++++ Total 
A.L-1 L-2 L-3 L-4 L-5 

 Placebo 653 3 3 3 3 80 
 Treatment 562 3 5 6 8 80  

Effectiveness 
   Drugs Not effective + ++ +++ ++++ +++++ Total B

. Pl
acebo 653 3 3 3 3 80 

 Treatment 56 8 6 5 3 2 80  

Effectiveness 
   Drugs Not effective + ++ +++ ++++ +++++ Total C 

Placebo 653 3 3 3 3 80 

Treatment 56 2 6 8 6 2 80  

Effectiveness 
   Drugs Not effective + ++ +++ ++++ +++++ Total D

. Pl
acebo 65 3 3 3 3 3 80 

 Treatment 56 8 3 2 3 8 80  

Effectiveness 
   Drugs Not effective + ++ +++ ++++ +++++ Total E

. Pl
acebo 65 3 3 3 3 3 80 

 Treatment 56 3 8 6 1 6 80  

Effectiveness 
   Drugs Not effective + ++ +++ ++++ +++++ Total F

.  Pl
acebo 65 3 3 3 3 3 80 

 Treatment 56 6 1 6 8 3 80

Table 4: Asymptotic powers under H1 (a = 0.05). 
t1 2 3 4  

 Table 3 A 0.465 0.481 0.421 0.386 

       3 B 0.484 0.5050.442 0.397 
       3 C 0.427 0.3560.466 0.428 
       3 D 0.416 0.330.424 0.381 
       3 E 0.306 0.3510.304 0.415 
       3 F 0.39 0.3230.317 0.395
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Treatment               A
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Figure 2: Plotted treatment groups in Table 3.
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             Table 5: Type I error levels (a = 0.05).  

Cell probabilities of  (X1, X2, • • • , X6)  Type I error 
= Cell probabilities of (Y1, Y2, • • • , Ys) Q1 Q2 Qs Q4 CCS  

  (0.2, 0.16, 0.16, 0.16, 0.16, 0.16)0.049 0.054 0.051 0.048 0.05 
  (0.3, 0.14, 0.14, 0.14, 0.14, 0.14)0.052 0.05 0.049 0.05 0.047 
  (0.4, 0.12, 0.12, 0.12, 0.12, 0.12)0.051 0.05 0.049 0.048 0.039 
  (0.5, 0.10, 0.10, 0.10, 0.10, 0.10)0.051 0.05 0.047 0.049 0.032 

  (0.6, 0.08, 0.08, 0.08, 0.08, 0.08)0.052 0.054 0.049 0.048 0.027 
  (0.7, 0.06, 0.06, 0.06, 0.06, 0.06)0.051 0.051 0.045 0.041 0.028 
  (0.8, 0.04, 0.04, 0.04, 0.04, 0.04)0.049 0.048 0.044 0.036 0.028 
  (0.9, 0.02, 0.02, 0.02, 0.02, 0.02)0.051 0.046 0.035 0.036 0.025

     Table 6: Cell probabilities for 2 x 6 tables with ordered categories. 
Effectiveness 

A.   Drugs Not effective + ++ +++ ++++ +++++    Pl
acebo 0.80.04 0.04 0.04 0.04 0.04 

  Treatment 0.70.02 0.03 0.06 0.08 0.11  

Effectiveness 
   Drugs Not effective + ++ +++ ++++ +++++  B

.   Pl
acebo 0.80.04 0.04 0.04 0.04 0.04 

  Treatment 0.70.11 0.08 0.06 0.03 0.02  

                              Effectiveness 
   Drugs Not effective + ++ +++ ++++ +++++  C

.   Pl
acebo 0.80.04 0.04 0.04 0.04 0.04 

  Treatment 0.70.02 0.08 0.1 0.08 0.02  

                              Effectiveness 

   Drugs Not effective + ++ +++ ++++ +++++  D
.   Pl

acebo 0.80.04 0.04 0.04 0.04 0.04 
  Treatment 0.70.1 0.04 0.02 0.04 0.1  

                              Effectiveness 

   Drugs Not effective + ++ +++ ++++ +++++  E
.    Pl

acebo 0.80.04 0.04 0.04 0.04 0.04 
   Treatment 0.70.03 0.11 0.08 0.01 0.07  

Effectiveness 

F.    Drugs Not effective + ++ +++ ++++ +++++     Pl
acebo 0.80.04 0.04 0.04 0.04 0.04 

   Treatment 0.70.08 0.01 0.07 0.11 0.03
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Figure 3: Power comparisons with the CCS test.
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category increase and those of the other categories decrease the Type I errors of CCS 
test decrease considerably, whereas Type I error of the proposed test are close to 0.05. 

   To compare the powers of the proposed test with the CCS test, we conducted 
similar simulation using the cell probabilities of 2 x 6 tables given in Table 6. The 
distribution patterns of these cell probabilities are similar to Figure 2. 

   We assessed the power of the proposed test and the CCS test for the sample sizes 
 nl = n2 = 40(20)100. The powers obtained from Table 6A are plotted in Figure 3A; 

from Table 6B are in Figure 3B and so on. Figure 3A shows that the cumulative chi

square test has comparable powers with Q2 test and that it has higher powers than all 
the other Qt test. But the other figures show that the powers of the cumulative chi
square test are smaller than any Qt test, t = 1, 2, 3, 4. This finding would be reasonable, 
since the empirical significance levels of the CCS test are substantially lower than the 
nominal test level (see Table 5). Furthermore, in general, the powers of the cumulative 
chisquare test are poor for such response that we selected. In particular, this test would 

be useless for these response pattern given in Table 6B, since for these cell probabilities, 
the differences of the observed and expected cumulative sum tends to be negligible for 
k>2. 
   Also Figure 3 shows that for the responses given in Table 6A and 6B, the test with 
t = 2 provides the maximum powers; for the responses given in Table 6C and 6D, the 
test with t = 3 provides the maximum powers; and for the responses given in Tables 6E 
and 6F, the test with t = 4 provides the maximum powers.

5. Concluding Remarks 

   A class of statistics is constructed for testing ordered categorical data with non
linear responses in 2 x k tables. The asymptotic distributions of the proposed statistic 
are obtained under the null and alternative hypotheses. The asymptotic powers of the 
test are compared, and also the exact powers of the tests and CCS test are examined. 

   Summarizing the results we may suggest the use of Q2 test if the response pattern 
except for the first category is linear;of Q3 test if the pattern of the response except for 
the first category is U shaped or fshaped; and Q4 test if the pattern of the response 
is shaped or J shaped. 

   Finally, we conclude that according to simulation, the proposed test is better than 
the CCS test for testing the nonlinear responses in 2 x k tables.
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