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Abstract

A class of tests is proposed for detecting the difference of two pop-
ulations in an ordinal categorical table. Characteristics of the proposed
tests are studied. It will be shown that the new tests may have higher
powers for a class of non-linear responses than the other conventional
tests.

Key Words and Phrases: location-dispersion test, Wilcozon test, Nair’s
dispersion test, Mantel’s eztended test, Gram-Schmidit orthonormaliza-
tion, cumulative chi-squared test.

1. Introduction

To fix the idea consider a randomized clinical trial for testing the effectiveness of
a new drug against a placebo. Frequently the effectiveness of the drug is measured
by ordinal categories such as remarkable (+++++), effective (++++), ---, slightly
effective (+), and not effective. Table 1 displays data from such a trial. The data is
plotted in figure 1, except for the data in not effective category. The figure shows a |J
shaped response. Normaly treatment by drugs may change the environment of patient’s
interior such as immune system and we often come across | shaped, or more complicated
responses. The purpose of the present paper is to propose a class of statistical tests which
have higher powers for those non-linear responses in a 2 x k ordered categorical tables.

Table 1: 2 x 6 table with ordered categories

Effectiveness
Drugs Not effective + +4+ +4++ ++++ +++++ | Total
Placebo 65 3 3 3 3 3 80
Treatment 56 8 3 2 3 8 80

The Wilcoxon test [6], or equivalently Mantel’s extended test [3] has been applied
for testing ordered categorical data in 2 x k tables. The test has no high powers for
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Figure 1: Plotted treatment group in Table 1.

the responses we are interested in. Alternatively, the cumulative chi-square test [5)]
and Nair’s test [4] may be applied. The former test is an omnibus test developed for
a wider class of alternatives and the latter test was, in particular, designed to detect
the dispersion alternatives. Jayasekara, Yanagawa and Tsujitani [1] have developed
a test which is useful for detecting location-dispersion alternatives. In this paper we
generalize the location-dispersion test by constructing the statistic whose score vectors
are orthonormal.

In section 2 we propose the test statistic. Its asymptotic distributions under the
null hypothesis and contiguous alternatives are studied in section 3. We compare the
powers of the tests with the competitors in section 4.

2. The Test Statistic

Consider 2 x k table given in Table 2, and suppose that X = (X1, Xa,---, X)) and
Y = (N1,Ys,--,Y,) are independently distributed multinomial random vectors. We
consider the following null hypothesis:

Hy : X and Y are identically distributed.

To define the test statistic for Hy, the orthonormal scores will be introduced based
on the Wilcoxon score.

Let ¢; be the Wilcoxon Score defined by ¢; = 2;;11 Tj+(ri—N)/2fori=1,2,--- k,
so that Zle ri¢i = 0. We define the inner product of a = (a;,---,ax) and b =
(b1,---,bk) by (a,b) = Zle 1;a:b; and also ||a||? = (a, a).

Let ¢} be the i-th power of ¢;, j = 1,2,--+,k and put ¢; = (ci,c}, --,ci), & =
0,1,---,k. It is obvious that cg, ¢, -, ¢k are linearly independent. Let ag,a;,---,a
be orthonormal score vectors which are obtained by appling Gram-Schmidit orthonor-
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Table 2: 2 x k contingency table

Ordered Categories Total
X Xl Xg . . . Xk m
Y i Yo . . . Y no
Total | m 7 . . . T& N

malization to these vectors. That is, ag = ”—gg-” and a, = ——gf—, r=1,2,---,k, where

d,=c, — ZIT:_(}(CT, a;)a;. We have,

_ [0 ifi#,
(aiaaj)—{ 1 ifi=j. (1)

Putting a, = (a'rl, Qr2, " ’a'rk)a and

k
Srzzari}/i, fOI"I‘=1,2,"‘,k,

=1

the test statistic which we propose in this paper for testing the null hypothesis Hy is
given by

t
52
= —T _— foreachte€ {1,2,---,k},
%= 2 7 {2k
where Vy[-|C] is the conditional variance conditioned on C' = {n1,nz,71,-*+, 7%} under
Hy and is given by
nin2
=——-— forr=1,2,---,k.
Vol[Sr|C] NN-1)’ orr=1,2,---,k

Note that the conditional distribution of ¥ under Hy conditioned on C is given by

(5) (o)
(! Yk
N .
N3
It is shown in section 3 that Q; follows a chi-square distribution with ¢t degrees of

freedom under Hy. This test statistic Q; is identical to the Wilcoxon test statistic and
the location-dispersion test statistic for ¢ = 1 and 2, respectively.

Pr((Yi, -, Yi) = (1, -, %)|C] =

Investigating the asymptotic powers and also by simulation, it is shown that Q3
has the highest power for the () shaped or |J shaped response among {Q:}; and Q4 has
the highest power for the " shaped or J” shaped response among {Q;}.



132 L. JAYASEKARA and T. YANAGAWA

3. Asymptotic Distributions

First we approximate a multiple non-central hypergeometric distribution by the
binomial distribution. Then using this approximation, we develop the asymptotic dis-
tributions of (); under the hypothesis and also under contiguous alternatives.

3.1. The Multiple Non-Central Hypergeometric Distribution

When X and Y are independently distributed multinomial random variables with

the parameters ny, m = (711, -, Mk) and ng, 72 = (71, - - -, Mok ), respectively, we have,
5% Yk
g y .« ..
Pr((Ya, -, Yi) = (3o, -, m0)|C) = =LV Wi @

Ej1+-..+jk=n2 g(j)'lp{l Tt w.;k ’

where g(y) = nilno!/[yi! - ye!(m1 — i)' -+ - (7 — w)!] and ¥p; = my1ma; /79171 which is
the odds-ratio parameter, relative to category 1, for 7 = 1,2,---, k, so that 1, = 1.
We use the following assumptions for 7; and n, which are defined in Table 2.

(Al) limy_ o & =0, for j =2,3,--- k.
(A2) %2 = p for some given p such that 0 < p < 1.
THEOREM 3.1. Suppose that (Al) and (A2) are satisfied, then

g(y)n!--- 7! -1

lim

N—-ooo R
M (7 )wa-poes
Y5
PRrROOF. Since

1 1 ng! nll
9(¥) T1:- - Tk: _ (ne—y2—--—yr)! (mi—T2a— —Tk+y2+-+u)! T2 o T
NI N Y2 w )’

(N—=T1g—- =7}

from (A1) and (A2) we have
i n!om! i T - S
N’l’éog(y)T_g( ” )p (1-p)"7¥.

This completes the proof of the theorem. |

From the theorem it follows that the numerator of (2) is approximated by

k
Ti V(] — Tj—jL!
j_[_[z(yj)(m)y(l P

Therefore by normalizing this we may approximate the distribution (2) by

PI'[(YQ, te ,Yk) = (y2a e ,yk)|C]



Testing Ordered Categorical Data in 2 x k Tables 133

k : o
“H(TJ)( pY; )y’( 1-p )TJ v 3)
s\ Y S \pYi+1l-p poj+1-p
Thus according to this approximation Y; is binomialy distributed with parameters 7;
and p¥;/(p¥; + 1 — p), and Y3,Y3, - --, Y% are independent.

3.2. Asymptotic Distribution of ); Under H,

Now we consider an approximation of Pr[(Ya,---,Yx) = (y2,- - -, yx)|C] for large 15,
j=2,3,---,k. To begin with we shall make the following assumption.

(A3) N~¢1; = O(1), j = 2,3,-- -, k, for some € such that 0 < € < 3.

The notation N~¢7; = O(1) which is used in this paper, means N ~¢7; tends to a constant
as N — oo. Note that (A3) includes (A1). We need the following Lemmas 3.2, 3.3, 3.4
and 3.5 to get Lemma 3.6.

LEMMA 3.2. If (A3) is satisfied, then
N—Tecrl :O(l) and N—Tcri = 0(1)’ (2 = 2,3,...71‘;)
where ¢ = ¢, is the r-th power of the i-th Wilcozon score, for r =1,2,--- k.

PROOF. By the definition of ¢; we have ¢; = —} Zf:z i, and from (A3) it follows
that N~¢¢; = O(1). By the definition of ¢;, for i = 2,3,---,k, we have ¢; = 7 +
Z;'sz 7+ (1i —N)/2. ;From (A3) we can get N~'¢; = O(1) since N1y = O(1). Thus,
the proof is completed. 0

LEMMA 3.3. If (A3) is satisfied, then
N_(r_l)_f(c'raaﬂ)aﬂi = 0(1)1 T = 172v o '7k7 1= 112a e ak-

PROOF. ;From the definition of ag we know that ag; = 1/N'/2 for all . So by
Lemma, 3.2 we obtain N~""¢t1/2(¢, ag) = O(1). Hence, the desired result follows. O

LEMMA 3.4. If N~U-D=¢q, = O(1), and N~'d; = O(1), fori = 2,---,k, and
(A3) is satisfied, then

(i) N=H=e|dl]1? = 0(D),

ii ~(r—1)—¢ d — - di = s

(i) N (c,,d,)” = O(1) and N (cr,dl)“ e 0(1),:=2,3,---,k.
PROOF. (i) The result can be obtained by the definition of d;.

(i) Expanding (c,,d;) and applying Lemma 3.2 we can obtain N"*'*¢(c,,d;) = O(1),
for all r,I. Then using (i), the result follows.
0

For the assumption of Lemma 3.4 we have
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LEMMA 3.5. If (A3) is satisfied, then
N==D=¢d, = 0(Q) and N~ "dp; =O(1), forr=1,2,--- k and i =2,3,---, k.

PRoOF. To prove this result we use induction on 7.
In case of r = 1,
di1 = c1; — (c1,a0)a0;, fori=1,2,--- k.

Applying Lemma 3.2 and 3.3, it follows that

N_Edll =O(1) and N_ldli:O(l), fori:2,3,---,k.

Suppose that the result is true for r = 1,2,---,m — 1. Since
m—1
dn = cm— Z(cmval)ah
1=0
m—

= Cp— cma aO - Z(cmadl ”d[||2,

it follows that N=(m=1-¢d_, = O(1) and N~"d,,; = O(1) from Lemma 3.2, 3.3
and 3.4. So the result is true for r = m. By the induction the proof is completed. O

Using these lemmas we may show,
LEMMA 3.6. If (A3) is satisfied then
Ni-€¢/2q = O(1) and N¢/?q,; = 0(1),
forr=1,2,--- kandi=23,---,k.

PROOF. It is straightforward to show the lemma from the definition of a,,
r=1,2,---,k, and by Lemma 3.5. D

Denote by E 0[] and V4o[-] the expectation and variance, respectively, under H,
when Y}, j = 2,3, -, k, follow distribution given in (3), thus we have, for example,

Enl¥l = 7, @
VaolY;] 7;p(1 — p). (5)

We have the following lemma.
LEMMA 3.7. If (A2) and (A3) are satisfied, then

(1) EAO[ST] = 0} r= 1,21'-.)k.

(i) Himy— oo %;J%SLC]I =1,r=12---,k.
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PROOF. Since Zle Y; = ny,
k
S'r =aring + Z(ari - arl)Yi- (6)
1=2

Thus from (4)

EAO [Sr]

1l

k
aring + E (ari - arl)Tipa
=2

= arn2+ N1/2(307 ar)p ~ar Np.

Furthermore, from (1), we have for r = 1,2, - - -, k,

EaolSi] = anN (52 - p).

Thus from (A2) we have (i). Next we prove (ii). ;From (5) and (6) we have

k
VaolS:] = D (ari—an)*rip(1-p)

1=2
= p(1-p)(1+a;N).
Therefore using (A2) and Lemma 3.6 we have

V()[STIC] — nlng/N(N— 1)
VaolS:]  p(1-p)(1+ a2 N)

—1 as N — oo.
O

THEOREM 3.8. If (A2) and (A3) are satisfied, then under Hy, the conditional dis-
tributions of S,/\/Vo[Sr|C], r = 1,2,---,k, given C is approzimated by a standard
normal distribution for large N.

PRrROOF. We can write

S, Sy — EaolSr] VolS:|C] E 40[S]

" [\/VTSI—C] : Z'CJ T s SV s { \/V—[WJ']} “’] |
When N — oo, (A3) = (A1), and the distribution of (Y2,Y3,---,Y;) may be ap-
proximated by the multiple of the independent binomial distributions. Furthermore
T; = 00, j = 2,3,---,k when N — oo from (A3). Therefore the distribution of
(Sr — E40[Sr])/+/VaolSr] may be approximated by N(0,1) for large N. Then the result
follows from Lemma 3.7 and by Slutsky theorem (See Lehmann [2] Appendix, Sec. 3,
Corollary 2). O

THEOREM 3.9. If (A2) and (A3) are satisfied then the conditional distribution of
Q: given C under Hy is approzimated by a chi-squared distribution with t degrees of
freedom for large N.
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Proor. It is sufficient to show that the conditional covariance of S, and S,
conditioned on C under Hy, which is denoted by Covy[Sy,, Sr,|C], is 0. {From (6) we
have

k
Covg[Sr,, Sr,|C] = ) (aryi = 8r,1)(@ryi = ry1)Vo[Vi|C]
=2
k k
+Z Z (a‘rli - a'fll)(arzj - arzl)CO'UO[Yi’ YJIC]
=2 j=2,; i#j
k

Ti(N — 'r,-)nlng

= z(ani - a‘rll)(ami - aTZl)m

1=2
k k :Tinin
1762
_ZZ (a""li - a‘T11)(a72] aTzl)'Nh
1=2 j=2i¢j

TiN1N2

= Z(ani - arll)(a”i - ar21)m

=2
k k TiT;N1N2
_ZZ Qr i — Qry1 (a‘l‘gj GTZI)W
2

1=2 j=
Now
k
E(aﬁi - a’l‘xl)(a'f‘zi - a'rzl)Ti = arllarle
=2
k k k k

Z Z Qrii ~ Ary1 (argy ar;l)TiTj = [Z(aﬁi - arll)Ti] Z(asz - arzl)Tj
i=2 j=2 i=2 j=2

— 2
= arllarle .

Thus substituting these equalities into the above formula, we have the desired result.
O

3.3. Asymptotic Distribution of ; Under the Alternative

In this section we obtain asymptotic distribution of Q; under the alternative hy-
pothesis Hy : ¢; =1+ A;/N¢/2, j =1,2,.-. k, where A; is a constant and 0 < € < 1/2.
We denote by E 4[] and V4[] the expectation and variance, respectively, under H; when
Y;, 5 =2,3,---,k, follow the distribution given in (3). Thus for example,

BAl] = TP U
Valy;] = _Tip(1 =) (8)

(py; +1-p)?
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LEMMA 3.10. If (A2) and (A3) are satisfied, then

() limpy—co 2L =15, where s, = /p(1 - p) Yra(an; — am)7;(%;

Vo[S-[C]
(ii) imy— oo ngrsffl =1,r=1,2-,k.
ProOF. (i) From (6) and (7) we have

k

0,
E — - J J
A[Sr] aring + j;(arj arl)p"/)j fi-p
Now since X
Eao[Sr] = arnz + Y _(ar; — an)7;p,
j=2

and furthermore E 40[S;] = 0, we have

EalS;] = (Ea[Sy] — Eao[S:]) + EaolS
k

e, [P 1)
- ;(ar] aTl) 7 [ Wj +1 —p .
Thus
EalSr]  _ Z(a —ap)r p(l-p)(¥%; - 1)
VVolS,IC] nm P ¥ 1 p
Since

VS0 a(i=p), (from (42)

(p¥; +1—p) = 1as N > oo, and (ar; — ar1)7;(0; — 1) = O(1), the result follows.

(ii) From (6) and (8) we have
—an)? 7ip(1 — p)y;
Z(ara ar1) (p¥; +1—p)?’

Thus it follows that

Vo[Sr}C] - nlng/N(N - 1)

ValS;] p(l-pA
where A = 3%, (ar; — an )%/ (p¥; + 1 — p)?.

ij=

Under H;,
A; A; \7?
2
Z(a”' —ar1)°Tj (1 + Ne/2) (1 +pr/2)
k

Z(a”— — Qr1 )2T]‘

=2

k

A

Ne/? Ne

1+(1—2p)A +p(3p — 2)A2 o(

1

N¢

)]

~1).

137
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Furthermore since

k
> (arj = an)’r; =1+ a4 N,
=2

we have

k

A? 1
A:1+a21N+Zz(arj—ar1) T |:(1—2p)N€/2 + p(3p — 2) J +0(N€)J.
]-_-

Employing Lemma 3.6 and (A3) we may show that a2, N — 0 and

k 2

2 Aj A 1
> (arj — ar)*7 [(1 - 2P)N€/2 +p(3p—2) 5% +o (N )] -0 as N > .
=2

Thus A - 1as N — oo. Since niny/N(N —1) — p(1 — p) as N — oo (from (A2)), the
result follows. O

THEOREM 3.11. If (A2) and (A3) are satisfied, then under H, the conditional dis-
tribution of S, /\/Vo[S|C], r = 1,2,---,k, given C is approzimated by N(ls 1) for
large N, where lg_ is given in Lemma 3.10.

PROOF. Similarly as the proof of Theorem 3.8, the distribution of
(Sr — Ea[S;])/+/ValS;] may be approximated by N(0,1), for large N, under (A3) and

S IO LSS TE D T )

vV V() [S |C] AV4 VA[ST] - VA [Sr] Vo [ST|C

Thus it is straightforward to show the theorem from Lemma 3.10 and by Slutsky
theorem. a

LEMMA 3.12. Suppose that (A2) and (A3) are satisfied, then under H; the condi-
tional covariance of S, and Sy, given C tends to 0 as N — oo, wherery,ro = 1,2, ,k,
and r, # 9.

PROOF. We approximate the conditional distribution of Y}, j = 2,3,---,k, by the
distribution given in (3) and denote by Cova[S;,, Sr,|C] the covariance of S,, and S,,
under H;. Then from (8)

k
CovalSr,, 8r,|C) = Y (@ri — ar1)(@r,, — ar1)Tigi(1 — g;)

=2

where g; = py;/(p¥; + 1 — p) and v; = 1 + A;/N¢/2. Thus

k
|Cova[Sy,, S, |C]| < (1/4) Z(am = @ry1)(@ryi = @rp1)Ti-

=2
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Furthermore from Lemma 3.6 and (A3) we may show that

k
> (@i — ar1)(@ryi — @) = amiarmN
=2
o7
== —Jm

for some constant o. Thus we have Cova[Sy,, Sr,|C] = 0 as N — oo. Therefore we
have the desired result. i

;From Theorem 3.11 and Lemma 3.12 we have the following theorem.

THEOREM 3.13. If (A2) and (A3) are satisfied, then the conditional distribution of
Q: giwen C under H, is approzimated by a noncentral chi-squared distribution with t
degrees of freedom and noncentrality parameter Zi:l lzsr, when N is large.

4. Power Comparisons

First the asymptotic powers of the test are compared when ¢ is varied, considering
several types of non-linear responses. Next the proposed test is compared with the
cumulative chi-squared test (CCS test) by simulation.

4.1. Comparison of the Asymptotic Powers when ¢t is Varied

The asymptotic power of the Q; test under the alternative hypothesis H; is given
by Prlx'? > X3 ], where X7 , is the upper 100 percentage point of the chi-squared
distribution with ¢ degrees of freedom and x’? is the random variable which follows the
density function of the noncentral chi-squared distribution with ¢t degrees of freedom and
the noncentrality parameter A = 30_, .

Table 3 displays six 2 x 6 tables. Note that Table 3D is identical to Table 1. The
data in the treatment groups except for the data belonging to not effective category have
been plotted in Figure 2 to visualize the pattern of response. The asymptotic powers
of Q; test when t = 1,2,3,4 are computed from each table in Table 3, and shown in
Table 4. The table shows that among {Q:}, t = 1,2, 3,4, the test with ¢ = 2 provides
the maximum powers for the configuration of responses in Table 3A and 3B; for the
responses in Table 3C and 3D the test with ¢ = 3 provides the maximum powers; and
for the responses in Table 3E and 3F the test with ¢t = 4 provides the maximum powers.

4.2. Comparison with the CCS test

The simulation studies were conducted to assess the Type I error of the proposed
test when t = 1,2,3,4 and the CCS test at the significance level & = 0.05. We generated
10,000 experiments for each combination of the response probabilities exhibited in the
left part of Table 5 and obtained the empirical significance levels. The results are shown
in the right part of Table 5. The table shows that when the cell probabilities of the first
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Table 3: 2 x 6 tables with ordered categories.

Effectiveness
Drugs Not effective + ++ +++ ++++ +++++ | Total
A. L-1 L2 L3 L-4 L-5
Placebo 65 3 3 3 3 3 80
Treatment 56 2 3 5 6 8 80
Effectiveness
B Drugs Not effective + ++ +++ ++++ +++++ | Total
" | Placebo 65 3 3 3 3 3 80
Treatment 56 8 6 5 3 2 80
Effectiveness
C Drugs Not effective + ++ +++ ++++ +++++ | Total
" | Placebo 65 3 3 3 3 3 80
Treatment 56 2 6 8 6 2 80
Effectiveness
D Drugs Not effective + +4+ +4+4+ ++++ +++++ | Total
" | Placebo 65 3 3 3 3 3 80
Treatment 56 8 3 2 3 8 80
Effectiveness
E Drugs Not effective + +4+ +++ ++++ +++++ | Total
" | Placebo 65 3 3 3 3 3 80
Treatment 56 3 8 6 1 6 80
Effectiveness
F Drugs Not effective + +4+ +++ ++++ +++++ | Total
" | Placebo 65 3 3 3 3 3 80
Treatment 56 6 1 6 8 3 80

Table 4: Asymptotic powers under H; (a = 0.05).
t 1 2 3 4
Table 3 A | 0.465 0.481 0.421 0.386
3B | 0484 0.505 0.442 0.397
3C | 0427 0.356 0.466 0.428
3D | 0416 0.33 0.424 0.381
3E | 0306 0351 0.304 0.415
3F | 039 0.323 0.317 0.395
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Figure 2: Plotted treatment groups in Table 3.
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Table 5: Type I error levels (a = 0.05).

Cell probabilities of (X7, Xa,- -, Xs) Type I error

= Cell probabilities of (Y1,Y2,--,Ys) | @1 Q2 Qs Q4 CCS
(0.2, 0.16, 0.16, 0.16, 0.16, 0.16) 0.049 | 0.054 | 0.051 | 0.048 | 0.05
(0.3, 0.14, 0.14, 0.14, 0.14, 0.14) 0.052 | 0.05 0.049 | 0.05 0.047
(0.4, 0.12, 0.12, 0.12, 0.12, 0.12) 0.051 | 0.05 0.049 | 0.048 | 0.039
(0.5, 0.10, 0.10, 0.10, 0.10, 0.10) 0.051 | 0.05 0.047 | 0.049 | 0.032
(0.6, 0.08, 0.08, 0.08, 0.08, 0.08) 0.052 | 0.054 | 0.049 | 0.048 | 0.027
(0.7, 0.06, 0.06, 0.06, 0.06, 0.06) 0.051 | 0.051 | 0.045 | 0.041 | 0.028
(0.8, 0.04, 0.04, 0.04, 0.04, 0.04) 0.049 | 0.048 | 0.044 | 0.036 | 0.028
(0.9, 0.02, 0.02, 0.02, 0.02, 0.02) 0.051 | 0.046 | 0.035 | 0.036 | 0.025

Table 6: Cell probabilities for 2 x 6 tables with ordered categories.

Effectiveness

Drugs Not effective + ++ +++ ++++ +++++

Placebo 0.8 0.04 0.04 0.04 0.04 0.04

Treatment 0.7 0.02 0.03 0.06 0.08 0.11
Effectiveness

Drugs Not effective  + 4+ +++ ++++ +++++

Placebo 0.8 0.04 0.04 0.04 0.04 0.04

Treatment 0.7 0.11 0.08 0.06 0.03 0.02
Effectiveness

Drugs Not effective + ++ +++ ++++ +++++4

Placebo 0.8 0.04 0.04 0.04 0.04 0.04

Treatment 0.7 0.02 0.08 0.1 0.08 0.02
Effectiveness

Drugs Not effective + ++ +++ ++++ +++++

Placebo 0.8 0.04 0.04 0.04 0.04 0.04

Treatment 0.7 0.1 0.04 0.02 0.04 0.1
Effectiveness

Drugs Not effective + ++ +++ ++++ +++++

Placebo 0.8 004 004 0.04 0.04 0.04

Treatment 0.7 0.03 0.11 0.08 0.01 0.07
Effectiveness

Drugs Not effective + ++ +++ ++++ 4+t

Placebo 0.8 0.04 0.04 0.04 0.04 0.04

Treatment 0.7 0.08 0.01 0.07 0.11 0.03
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Figure 3: Power comparisons with the CCS test.
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category increase and those of the other categories decrease the Type I errors of CCS
test decrease considerably, whereas Type I error of the proposed test are close to 0.05.

To compare the powers of the proposed test with the CCS test, we conducted
similar simulation using the cell probabilities of 2 x 6 tables given in Table 6. The
distribution patterns of these cell probabilities are similar to Figure 2.

We assessed the power of the proposed test and the CCS test for the sample sizes
n; = ng = 40(20)100. The powers obtained from Table 6A are plotted in Figure 3A;
from Table 6B are in Figure 3B and so on. Figure 3A shows that the cumulative chi-
square test has comparable powers with @2 test and that it has higher powers than all
the other @); test. But the other figures show that the powers of the cumulative chi-
square test are smaller than any Q; test, t = 1,2,3,4. This finding would be reasonable,
since the empirical significance levels of the CCS test are substantially lower than the
nominal test level (see Table 5). Furthermore, in general, the powers of the cumulative
chi-square test are poor for such response that we selected. In particular, this test would
be useless for these response pattern given in Table 6B, since for these cell probabilities,
the differences of the observed and expected cumulative sum tends to be negligible for
k>2.

Also Figure 3 shows that for the responses given in Table 6A and 6B, the test with
t = 2 provides the maximum powers; for the responses given in Table 6C and 6D, the
test with ¢ = 3 provides the maximum powers; and for the responses given in Tables 6E
and 6F, the test with ¢t = 4 provides the maximum powers.

5. Concluding Remarks

A class of statistics is constructed for testing ordered categorical data with non-
linear responses in 2 x k tables. The asymptotic distributions of the proposed statistic
are obtained under the null and alternative hypotheses. The asymptotic powers of the
test are compared, and also the exact powers of the tests and CCS test are examined.

Summarizing the results we may suggest the use of (J, test if the response pattern
except for the first category is linear; of Q3 test if the pattern of the response except for
the first category is | shaped or [ shaped; and Q4 test if the pattern of the response
is U shaped or J” shaped.

Finally, we conclude that according to simulation, the proposed test is better than
the CCS test for testing the non-linear responses in 2 x k tables.
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