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         DETERMINING THE 

NO-OBSERVED-ADVERSE-EFFECT LEVEL IN 

         CATEGORICAL DATA

                    By 

Harutoshi NISHIYAMA* and Takashi YANAGAWAt

                     Abstract 

   We discuss the determination of the no-observedadverse-effect level 
(NOAEL) from a categorical data. Recently a method which incorpo
rated the order regtriction into the multiple testing was proposed in 
Brown and Erdreich [2]. The test is an exact test and computation
ally involved for large samples. Therefore we propose an alternative test 
which is competitive to their test and is easily used for large samples. 

Key words and phrases:categorical data, BLV test, asymptotic distribu
tion, PAVA, hypergeometric distribution, random walks, Williams test.

1. Introduction 

   An experiment with categorical response data is described by the number of exper
imental objects at risk (ni), the number of interesting response (ri), and the exposure 
level (di), for i = 0, 1, • • • , k as given in Table 1. The subscript zero refers to con
trol group, making do = 0 ; otherwise the dose values are arbitrary, subject to order 
0 = do < d1 < • • • < dk . The true, but unknown response rate at dose di is denoted by 
pi, i=0,1,•••,k

        Table 1. Categorical response data  

  dose do d1 • • • d, • • • dk total 

 response ro ri ••• r; ••• rk r.. 

nonresponse 

  total no ni ••• n; •• nk N

   In this paper, it is assumed that the samples are random and mutually independent, 
and that the number of response ri at di is distributed as binomial distribution B (ni, pi) 
with parameters ni and pi for i = 0, 1, • • • , k. It is also assumed to be known a priori 
that the true response rate is nondecreasing as dose increases, i.e. 0 < po < p1 < • • • <
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 pk < 1. The purpose of this paper is to consider methods to decide di such that po = 131 
= • • • = Pi < Pi-F1. In application this di is often called the no-observedadverse-effect 
level(NOAEL). 

   The methods of multiple comparison such as Dunnett's [3] and Scheffe's [9] may be 
applied to this problem. Recently, an interesting method was proposed in Brown and 
Erdreich [2] . The method incorporates the order restriction 0 < po < 131 < • • • < pk < 1 
into the multiple conditional testing conditioned on all margins. The test, which is an 
exact test and computationally involved for large samples, is called the Brown-La Vange 
test(BLV test)(Brown and Erdreich [2]). 

    We propose in this paper an alternative test which also is exact and furthermore 
has an asymptotic approximation, and study its characteristic. 

   The BLV test and a new test are described in section 2. The property of the new 
test is examined in section 3. In section 4, an asymptotic distribution is obtained for 
the critical points of the test when the number of sample is large. Also the difference 
between the asymptotic and the exact distribution is evaluated when the sizes of samples 
are small. In section 5 we compare the new test with the BLV test, and it is indicated 
that the proposed test is competitive to the BLV test.

2. Testing Procedures

2.1. Brown-La Vange test 

   For the null hypothesis le : po = Pi = • = pi , the test uses Ti := pi — j3o 
as the test statistics, where 1pi is the maximum likelihood estimate (m.l.e.) of pi under 
the constraint po < 131 < • • • < pk . The m.l.e. of pi 's under the order restriction are 
constructed by the PooledAdjacentViolators Algorithm (PAVA)(Robertson, Wright 
and Dykstra [8]). It is well known that pi may be expressed by the max-min formulas 
as follows: 

v v 

Pi := max min (E rj / E nj) (i = 0, 1, 2, ... , k). 
0<u<i i<v<k j

-u j-u 

In the BLV procedure, the null hypothesis Hok) : po = p1 = • • • = pk is tested initially. 
For a specified test size al , reject Hok) if Tk takes a value greater or equal to Ck (al ) 
, where Ck(a1) is the smallest constant C such that Pr[Tk > CIr+] < al when Hok) is 
true. If le) is not rejected, then the NOAEL takes the value dk and the test is ended. If 
Hois rejected, then Hok-1)is tested. For a specified test size a2 , rejectHok-1) ifTk_1 
takes a value greater or equal to Ck_1(a2) , where Ck_1(a2) is the smallest constant 
C such that Pr[Tk_1 > COr+,Tk > Ck(ai)] < a2 when H(Ck-1) is true. If Hok-1) is 
not rejected, then the NOAEL takes the value dk_1 and the test is ended. If Hok-1) is 
rejected, then H(jk-2) is similarly tested for a specified test size a3 and so on. If all null 
hypotheses are rejected, then the NOAEL takes the value do and the test is ended.
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2.2. An alternative test 

   The computation for Ci (a) of the BLV test is involved when the sizes of samples 
are large. We modify the BLV test so that we may obtain not only an exact, but also 
an approximate critical point of the test. 
Instead of Ti we use 

Ali := pi —1*, 

for testing the H, i), where 
i i 

pi := max (E rj l E nj) (i = 1, 2, ... , k), (2.1) 

     and 

                     p* := ro .                           n
o    Th

e testing procedure of the new test is the same as the BLV test except for 
the determination of the critical values. The critical value C7 (a) of the new test is 
determined as the smallest constant C such that Pr[Mi > Or+, Hok) is true] < a (i = 
k, k —1, • • • , 1). Note that we use the same a for each stage. Note also that the following 
inequality holds 

         a > Pr[Mi >COr+, His true] > Pr[Mi >C~r+, Hoa'is true] 

for all C>O and all i=k,k1,•••,1. 
   We call this test the modified Brown-La Vange test(MBLV test).

3. The property of the MBLV test 
3.1. Type I FWE 

   Type I FWE(familywise error) is the probability of rejecting at least one true 
hypotheses. In this problem, supposing H/°) is the true null hypothesis, Type I FWE 
is represented in the present set up by 

i° 

           Type I FWE := Pr[U { reject H(()2) }14°) °) is true]. 

We may prove the following inequality 

            Type I FWE < Pr[ reject H(Vo) IHo °) is true] < a. 

Note that this inequality is a special case of the theorem by Marcus, Peritz and Gabriel 

[5].

3.2. Characteristics of the statistics 

   The statistics Mi in the MBLV testing procedure uses 1pi as an estimator of pi. In 

this section we show that we may replace pi with pi in the procedure. Here pi is given
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in (2.1) and  pi is the m.l.e. of pi under the order restriction po < P1 < • • < pk . For this 
aim we introduce pi in THEOREM 3.1 and consider the relationship of pi and pi, and in 
THEOREM 3.2 we consider that of pi and pi. 

    THEOREM 3.1. Let pi denote the m.l.e. of pi under the order restriction p1 < P2 
< • • < pk (i = 1, 2, • • • , k) where po is not included. Then if pi  (ro/no) > 0 or 
pi — (ro/no) > 0, pi is equal to pi (i = 1, 2, • • • , k). 

   PROOF. It is sufficient to show the theorem when pi — (ro/no) > 0 since pi >— pi 
for Vi E {1,2, • • • , k}. 

    Let (A1, A2, • • • , Ar) be the solution block (Barlow, Bartholomew, Bremner and 
Brunk [1]) such that on each Ai the restricted m.l.e.'s are constant. It is clear that 
0 E A1. Furthermore, if i belongs to Ai, then 

pi = Av(Aj ), 

where 
                               EJEA, r1  Av(Aj) := 

L./EA, ni • 

First we prove the theorem when i = 1. If 1 E A1, then 

                                           vr• 
              p1 =130 = Av(A1)= min~v=o <-°                                      o__k Ei=o njno 

This conflicts with p1 — (ro/no) > 0. Thus 1 cl A1i namely po = (ro/no) and p1 = p1 • 
Next we prove the theorem for i > 1. In general, if pil > p12, there exist two integers j1 
and j2 such that 1 _< j2 < it < r, pii = Av(Ajl) and pi = Av(A 2). Therefore Al does 
not contain rani for any i Ail. Thus if pi > (ro/no), we have i feasible cases of the 
location of ro/no, namely 

                                                ro 

                     pti>_pi1>•••>p2>p1> n
o—po7 

                                                 0 

                                             r 

                  pi>pi1>'••>p2>>pl>po, 
                                           no 

                                                                                                                                                       • or 

pi> ro >pi_1> •••>p2>p1>_po, 
                           no 

but in any case we have pi=pi• ^ 

    THEOREM 3.2. Let pi and pi be the estimators of pi defined in THEOREM 3.1 and 
formula (2.1), respectively, then we have 

pj >tj ( for Vj = i, • • • , k) ----- >ti ( for ̀ dj=i,•••,k) 

for ti < ti+1 < ... < tk (i E {1, 2, ... , k}).
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    PROOF. First we show  (~). 
Let (B1, B2, • • • , Br) be the solution block such that on each Bi the restricted m.l.e.'s 
are constant. Furthermore, if i E Bm, then 

pi = AV(Bm), 

where 

Av(Bm) :_ ~l EB"` ri . ~
JEBm ni 

Put Bm = {h,h+1,•••,h+hi}, then 
                                                                h

_+hlr Ph = Ph+1 = • • • = Ph+h1 = AV(Bm) = Lh+hll• (3.1)                                          E
l=h ni 

Furthermore, from 

                                                                       v 

                   max min                                                   EJ-u7'1Ph+111 —1<u<h+h1 h+hi<v<k EJ u ni' 
from the uniqueness of (B1, B2, • • • , Br) and also from (3,.1) we have 

                                   h+hl
r                                       J  

                 Ph+hl = 1<<hhiv`h+h1 = Ph+h1.                                             J-u 711 

Therefore 

ph+h1 = ph+h1 •(3.2) 
    Now for Vj E {i, • • • , k}, there exists m1 E {1, • • • , r} such that j E Bml . Thus 

Pi = Av(Bmi). 

Put 

                              j1 := max 1, 
l E B,,, . 

then from ji > j and (3.1), 

Pj = Pj1. 

Therefore, since (3.2) and ti < • • • < ti < • • • < tjl < • • • < tk, it follows that 

Pj =Pj1 =pj1 >tjl >ti. 

pi > ti. 
Therefore (~) is shown. 

   Next we show (=). Now it follows that 
vj 

pj = max min --------v—u rl < max j-u rl = pi. i<u<j j<v<k EJ -u nl i<u<j El-u ni 
Therefore 

Pj <Pj 
From this inequality if Pi > ti (for Vj = i, • • , k), then 

pi > pi > ti (for V j = i, • • • , k). 
Therefore (=) is also shown.p
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4. The critical points 

   In this section, we consider the computation of getting the critical points Ca (a). 
Section 4.1 is devoted to the exact case. In section 4.2 we consider an asymptotic 
distribution of Mi. In section 4.3 we obtain the critical points when ni and r+ are large.

4.1. Exact case 

    We first list up all configurations of (ro, r1, • • • , rk) when {no,  n 1, • • • , nk , r+} is 

given, and obtain the distribution of Mi, by computing the probability of the occurence 
of each configuration and also computing the corresponding value of A. Then determine 
C2 (a) as the smallest constant C such that Pr[Mi > Ckr+, His true] < a with the 
distribution of Mi. 

   As an example, we shall get the critical points C$ (a) for k = 2, no = n1 = n2 = 
20, r+ = 5, a = 0.05. Table 2 lists all configurations of (ro, r1, r2), their occurence 
probabilities and the values of Mi and Ti. The distributions of M2, M1 and also T2, T1 
are summarized in Table 3. From Table 3, we determine c30.05) = Ci (0.05) = 0.20.

Table 2. The configurations of (ro, ri , r2) for no = ni = n2 = 20 and r+ = 5; the probability 
of each configuration under po = 7)1 = p2; and the values of M2, M1, T2 and T1 for each 
configuration. 

  No. 1 2 3 4 5 6 7 
r2 5 4 3 2 1 0 4 
Ti 0 1 2 3 4 5 0 

  ro 0 0 0 0 0 0 1 

       prob. 0.0028 0.0177 0.0397 0.0397 0.0177 0.0028 0.0177 
       M2 0.25 0.20 0.15 0.125 0.125 0.125 0.15 

      M1 0.00 0.05 0.10 0.15 0.20 0.25 -0.05 
       T2 0.25 0.20 0.15 0.125 0.125 0.125 0.175 
       T1 0.00 0.05 0.10 0.125 0.125 0.125 0.00 
   No. 8 9 10 11 12 13 14 

7.2 3 2 1 0 3 2 1 
  Ti 1 2 3 4 0 1 2 

ro 1 1 1 1 2 2 2 

       prob. 0.0835 0.1322 0.0835 0.0177 0.0397 0.1322 0.1322 
      M2 0.10 0.05 0.05 0.05 0.05 0.00 -0.025 
      Mi 0.00 0.05 0.10 0.15 -0.10 -0.05 0.00 
      T2 0.10 0.05 0.05 0.05 0.10 0.025 0.00 
      Ti 0.00 0.05 0.05 0.05 0.00 0.00 0.00  
   No. 15 16 17 18 19 20 21 

7.2 0 2 1 0 1 0 0 
ri 3 0 1 2 0 1 0 
ro 2 3 3 3 4 4 5 

       prob. 0.0397 0.0397 0.0835 0.0397 0.0177 0.0177 0.0029 
       M2 -0.025 -0.05 -0.10 -0.10 -0.15 -0.175 -0.25 
       Mi 0.05 -0.15 -0.10 -0.05 -0.20 -0.15 -0.25 
      T2 0.00 0.025 0.00 0.00 0.00 0.00 0.00  
      T1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 3. The distribution of  M2, M1, T2 and T1 under po = p1 = p2 for no = ni = n2 = 20 
and r+=5. 

x0.00 0.05 0.10 0.125 0.15 0.20 0.25 
      Pr(M2 > x) 0.6269 0.4947 0.2216 0.1381 0.0779 0.0205 0.0028  

       x-0.05 0.00 0.05 0.10 0.15 0.20 0.25 
      Pr(Mi > x) 0.7988 0.6093 0.3907 0.2011 0.0779 0.0205 0.0028 

       x0.05 0.10 0.125 0.15 0.175 0.20 0.25 
      Pr( T2 > x) 0.4947 0.2613 0.1381 0.0779 0.0382 0.0205 0.0028         x0.00 1 0.05 0.10 0.125  

      Pr( T1 > x) 1.0000 0.3510 0.0999 0.0602

4.2. Asymptotic distribution 

    We consider the limiting conditional distribution of M; under H(Cik), when no = ni 
= • • • = nk = n, conditioned on n and r+ . We first show the two theorems. 

    THEOREM 4.1. Limiting conditional distribution of the random vector 

        (ro1'1 ro rk r1r2 rk-i rk /r+(N_r~)         n n'n n'nn'n n)lnN(N  1) 

conditioned on n and r+ is identical to the distribution of 

(Zo Z1i...,ZoZk,Z1Z2)...,Zk1-Zk), 

where Zo, Z1, • • • , Zk are random variables which are independently and identically 
distributed as a standard normal distribution and N := (k + 1)n. 

    PROOF. When n and r+ are given and H(jk) is true, the conditional distribution of 
(ro, r1, • • • , rk) is a multiple hypergeometric distribution. Therefore for any j, 

E(ri) = r+n/N, 

Var(ri) = r+n(N  r+)(N  n)/{N2(N  1)}, 

and for any ji � j, 

Cov(ri, ri1) = n2r+(N  r+)/{N2(N  1)}. 

Thus we have, for any ji # j2, ii # j3 and j2 0 js 

              Var(nrl --La-r.) = 2r+(N  r+)/{nN(N  1)}, 

                    r?1r~~r?1r~31               corr() _ 
                n n'n n2' 

                        corr(rall_~___1                     --1'r~3)
n nn n 2
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Furthermore from the asymptotic normality of the multiple hypergeometric distribu
tion(Plackett [7]), 

                 r0  r1 ro  rk rl  r2 rk -1 
_ rk         ( n n n nn n n n} 

is asymptotically distributed as a multiple normal distribution. Thus the proof of the 
theorem is immediate, since 

1 
corr(Zi1  Zi2 , Zi1  ZZ3) _ -, 

1 corr(Zj1  Z~2, Z~2  Zj3) _  2' 

for any j1 � 0 j3 and j2 j3.^ 

    THEOREM 4.2. Suppose that X1, X2i • • • , Xn, • • • are independently and identically 
distributed random variables as a standard normal distribution. Put 

1 r Un := max  E Xs 
                                        1<r<n r i

-1 

and 

          F(x) :=exp[ E~                          1T{1 (xr1/2)}] x > 0 
0x<0, 

where denotes the normal distribution function. Then 

                     lim Pr[Un < x] = F(x). 
                                             n --. o0 

    PROOF. Williams [11] showed this theorem for x > 0 by using the theory of random 
walks(Feller [4]). We show the theorem for x < 0 . Since 

            0 < lim Pr[Un < x] < lim Pr[Un < 0] for x < 0, 
n—Pcon—Poo— 

it is sufficient to show that 
lim Pr [Un < 0] = 0. 

n—.co 

Putting Sr := E Xi, we have 
i-1 

            lim Pr[UU < 0] = lim Pr[S1 < 0, S2 < 0, • • • , Sn < 0]. 
    n-^con-.00—— 

Furthermore, putting Wn := max{Si, • • • , Sn}, we have 

                 lim Pr[Un < 0] = liln Pr[Mn < 0].(4.1) 
n co— n—^oo 

Now, applying the law of iterated logarithm, namely 

lim sup Sn  = 1 a.s., 
n— co -V2n log log n
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we have 

 lirn  sup Sri = +oo a.s. 
n-oco 

Furthermore, we have 

                           inf Wk > Sn , 
                                   k>n 

thus 

lim inf Wn > Ern sup Sn a.s., 
n—+co n—co 

and 
                                                                         a.s.                       Wn$+oo as n —> +oo. 

Therefore from (4.1) 
lim Pr[Un < O] = 0 = F(0).^ 

n—.00 

From THEOREM 4.1 and 4.2, the following theorem follows. 

    THEOREM 4.3. Put 

                        /r+(N_r+) q_nN(N — 1) • 

Then for F(t) defined in THEOREM 4.2, 

                                        Joolim Pr[Mi < xlr+,po = ... = pi = ... = pk] = F(t + x)0(t)dt i,n—+oo                         0oq 

,where 0 denotes the normal density function. 

   PROOF. From THEOREM 4.1, the limiting conditional distribution of 

               r1ro r2 ro rir0)/r+(N — r+)  
            (n n'n n''n n nN(N — 1) 

conditioned on n and r+ is identical to the distribution of 

(Z1 — Zo, Z2 — Zo , ... ) Zi — Zo) . 

Therefore the limiting conditional distribution of Mi /q conditioned on n and r+ is 
identical to the distribution of 

i                           1 
            T:= max ---------                         ii—u+1E(Zj —Zo) 

i=u 
From this and THEOREM 4.2, 

lim Pr[Mi < xlr+, pp = ... = pi = ... = pk] 
i,n—*oo 

                      = lim Pr[qT < x] i^
I°°1ux                      =limJPr[ max —1 Z~< t +—]¢(t)dt 

                    i-+ooco1<u<i uq 
j=1 

I= F(t+ q)q(t)dt^
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4.3. Approximate value of the critical points 

   Employing the asymptotic distribution of M; in THEOREM 4.3, we may approximate 

the exact critical value by the smallest constant C such that 

                                       00 

d1> 1a,             f:Ft+ 
                               where q is defined in THEOREM 4.3. 

    To evaluate this approximation we computed the exact and approximate critical 

values for test sizes a = 0.05 and a = 0.10 when no = n1 = n2 = 10, 20 and 30, and r+ 

= 4 and 5. The results are summarized in Table 4.

               Table 4. Critical points for the MBLV test  
                        critical point (a = 0.05)critical point (a = 0.10) 

r+=4 r+=5r+=4r+=5 
                   Exa. Apr. Exa. Apr.Exa. Apr. Exa. Apr. 

no = ni = n2 = 10 C2 0.40 0.275 0.40 0.302 0.30 0.226 0.30 0.248 
Cl 0.40 0.275 0.40 0.302 0.30 0.226 0.30 0.248 

no = ni = n2 = 20 C2 0.20 0.142 0.20 0.157 0.15 0.117 0.15 0.129 
Cl 0.20 0.142 0.20 0.157 0.15 0.117 0.15 0.129 

no = nl = n2 = 30 C2 0.133 0.096 0.133 0.106 0.10 0.079 0.10 0.087 
C.? 0.133 0.096 0.133 0.106 0.10 0.079 0.10 0.087

   Poor approximations might be seen in the tables.However, one must take into 

account the discreteness of the distribution of Mi in such evaluation. Figure 1 and 2 

show the exact and approximate distributions of M2 when no = n1 = n2 = 10, r+ = 4 

and for no = n1 = n2 = 30, r+ = 5, respectively. The inspection of the figures indicates 

that the approximations in Table 4 are not so bad when the discreteness is taken into 

account.

5. Comparison of the two tests 

   We compare the MBLV test with the BLV test when k = 2, no = n1 = n2 = 20, 

and r+ = 5. Using Table 2 we obtain the NOAEL by means of the MBLV test and BLV 

test. The results are summarized in Table 5. The table shows that for the MBLV test 

the configurations No.1 and No.2 select d1 and any others select d2 as the NOAEL at 

the test size a = 0.05; that for the BLV test the configurations No.1, No.2 and No.7 

select d1 and any others select d2 at the test size al = a2 = 0.05. 

   Thus when a = al = a2 = 0.05 it follows from Table 5 that the probability of 

correct decision by the MBLV test is smaller than the BLV test when po = p1 < P2; 

larger than the BLV test when po = P1 = P2 

   This finding comes from the fact that the carrier of the distribution of T2 includes 

that of the distribution of M2 (see Table 3), and that T2 selects the critical points which 
are closer to the nominal size than M2. This discrepancy would decrease if the sample 
sizes increase, or if large test sizes are taken. For example, when a = al = a2 = 0.10, 
Table 5 shows that the configurations No.1, No.2, No.3 and No.7 select d1 and any others
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select d2 as the NOAEL for both tests.

1 

A.D. ----- 

.8  O--------------OE.D. -0 _ 

.6  O--------y 

.44 0 

.2  

 0 0.05 .1 .15 .2 .25 .3 .35 .4 .45 .5

Figure 1. The approximate distribution (A.D.) and the exact distribution (E.D.) of M2 for 

no=nl=n2=10 and r+=4.

1 -------------------------------0
O---P---------------- 
    OA.D. ---- 

.8  ------OE.D. _ 

.6  
O----------O 

.4  

.2  

00.05.1.15.2
Figure 2. The approximate distribution (A.D.) and the exact distribution (E.D.) of M2 for 

no=nl=n2=30 and r+=5.

Table 5. The configuration which select do, dl and d2 as the NOAEL when the MBLV test 

and the BLV test are applied for no = ni = n2 = 20, r+ = 5.

           Test size (critical point) NOAEL  
MBLV testa (C2 (a)) (Cl (a)) do dl d2 

              0.05 (0.20) (0.20) none 1,2 a.o. 
                0.10 (0.15) (0.15) none 1,2,3,7 a.o. 

BLV test al (C2(al)) a2 (C1(a2)) do d1 d2 
           0.05 (0.175) 0.05 (0.10) none 1,2,7 a.o. 
            0.10 (0.15) 0.10 (0.125) none 1,2,3,7 a.o. 

a.o.:all the others
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    When this paper was presented at a symposium, Professor Hirotsu pointed up that 
the MBLV test and BLV test were categorical data versions of the Williams test [10] and 
modified Williams test [10]. Marcus [6] conducted a Monte Carlo study, compared the 
powers of the Williams test and modified Williams test, and found that these tests were 
competitive (see Marcus [6] Table 3(a)). The same would be expected for the powers of 
the BLV test and MBLV test.
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