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CATEGORICAL DATA

By

Harutoshi N1sEIYAMA* and Takashi YANAGAWA!

Abstract

We discuss the determination of the no-observed-adverse-effect level
(NOAEL) from a categorical data. Recently a method which incorpo-
rated the order redtriction into the multiple testing was proposed in
Brown and Erdreich [2]. The test is an exact test and computation-
ally involved for large samples. Therefore we propose an alternative test
which is competitive to their test and is easily used for large samples.

Key words and phrases:categorical data, BLV test, asymptotic distribu-
tion, PAVA, hypergeometric distribution, random walks, Williams test.

1. Imntroduction

An experiment with categorical response data is described by the number of exper-
imental objects at risk (n;), the number of interesting response (r;), and the exposure
level (d;), for ¢ = 0,1,---,k as given in Table 1. The subscript zero refers to con-
trol group, making dy = 0 ; otherwise the dose values are arbitrary, subject to order
0=dy < d; <---<dj . The true, but unknown response rate at dose d; is denoted by
pi,1=0,1,--- k.

Table 1. Categorical response data
dose do | d1 o[ di [ T dg | total
response o | 1 | cec | i | e | Tk ™+

non-response

total no ni cee ng e nk N

In this paper, it is assumed that the samples are random and mutually independent,
and that the number of response r; at d; is distributed as binomial distribution B (n;, p;)
with parameters n; and p; for ¢ = 0,1,---,k. It is also assumed to be known a prior:
that the true response rate is nondecreasing as dose increases, t.e. 0 < po <p; <+ <
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pr < 1. The purpose of this paper is to consider methods to decide d; such that pg = p;
= ... = p; < piy+1- In application this d; is often called the no-observed-adverse-effect
level(NOAEL).

The methods of multiple comparison such as Dunnett’s [3] and Scheffé’s [9] may be
applied to this problem. Recently, an interesting method was proposed in Brown and
Erdreich [2]. The method incorporates the order restriction 0 < pg < p; < ---<pp <1
into the multiple conditional testing conditioned on all margins. The test, which is an
exact test and computationally involved for large samples, is called the Brown-La Vange
test(BLV test)(Brown and Erdreich [2]).

We propose in this paper an alternative test which also is exact and furthermore
has an asymptotic approximation, and study its characteristic.

The BLV test and a new test are described in section 2. The property of the new
test is examined in section 3. In section 4, an asymptotic distribution is obtained for
the critical points of the test when the number of sample is large. Also the difference
between the asymptotic and the exact distribution is evaluated when the sizes of samples
are small. In section 5 we compare the new test with the BLV test, and it is indicated
that the proposed test is competitive to the BLV test.

2. Testing Procedures
2.1. Brown-La Vange test

For the null hypothesis Hgi) 1po =p1 = -+ = p; , the test uses T; := p; —
as the test statistics, where p; is the maximum likelihood estimate (m.l.e.) of p; under
the constraint pp < p; < --- < px . The m.l.e. of p; ’s under the order restriction are
constructed by the Pooled-Adjacent-Violators Algorithm (PAVA)(Robertson, Wright
and Dykstra [8]). It is well known that p; may be expressed by the max-min formulas
as follows:

ﬁi = 0<u<z z<v<k(Z T.J/Zn‘]) (2 - 0’ 1,2, k)

In the BLV procedure, the null hypothesis H (k) Ppo = p1 = --- = pg is tested initially.
For a specified test size oy , reject Hy () if T} takes a value greater or equal to Cr(ay)
, where Ck(al) is the smallest constant C such that Pr[T} > C|r,] < a; when H( ) is
true If H((, ) is not rejected, then the NOAEL takes the value di and the test is ended. If
H( )is rejected, then H(() D is tested. For a specified test size ay , reject Hék_l) if Tp_1
takes a value greater or equal to Cy_1(az) , where Cx_1(ay) is the smallest constant
C such that Pr[Ty_; > Clr;,Tp > Cr(a1)] < ay when H( Y is true. If H(lc D is
not rejected, then the NOAEL takes the value di_1 and the test is ended. If H(lc Y is
rejected, then Hék_z) is similarly tested for a specified test size az and so on. If all null
hypotheses are rejected, then the NOAEL takes the value dy and the test is ended.
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2.2. An alternative test

The computation for C;(«a) of the BLV test is involved when the sizes of samples
are large. We modify the BLV test so that we may obtain not only an exact, but also
an approximate critical point of the test.

Instead of T; we use

I
*

M;:=p;—p",

o7

for testing the H((,i), where

= max (Zr]/znj) (i=1,2,--,k), (2.1)

and
«._To

The testing procedure gfq the new test is the same as the BLV test except for
the determination of the critical values. The critical value C}(a) of the new test is
determined as the smallest constant C' such that Pr[M; > C|ry, H; (k) i true] < o (i=
k,k—1,---,1). Note that we use the same « for each stage. Note also that the following
inequality holds

a > Pr[M; > C|r+,H( )is true] > Pr[M; > Clry, H((, is true]

foralC >0and alli=k,k—-1,---,1.
We call this test the modified Brown-La Vange test(MBLV test).

3. The property of the MBLV test
3.1. Type I FWE

Type I FWE(familywise error) is the probability of rejecting at least one true
hypotheses. In this problem, supposing Hj (o) is the true null hypothesis, Type I FWE
is represented in the present set up by

Jo ] )
Type I FWE = PI‘[U{ reject H(g’) }IH(()J") is true].
i=1
We may prove the following inequality
Type I FWE < Pr[ reject Héj°) |Héj°) is true] < @
Note that this inequality is a special case of the theorem by Marcus, Peritz and Gabriel

[5].

3.2. Characteristics of the statistics

The statistics M; in the MBLV testing procedure uses jp; as an estimator of p;. In
this section we show that we may replace p; with p; in the procedure. Here p; is given
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in (2.1) and p; is the m.l.e. of p; under the order restriction pg < p; < -+ < pi. For this
aim we introduce p; in THEOREM 3.1 and consider the relationship of p; and p;, and in
THEOREM 3.2 we consider that of ; and p;.

THEOREM 3.1. Let p; denote the m.l.e. of p; under the order restriction p1 < ps
< - <pr (i =1,2,---,k) where po is not included. Then if p; — (ro/ng) > 0 or
B —(ro/no) >0, p; is equalto iy (1=1,2,---,k).

Proor. It is sufficient to show the theorem when p; — (ro/no) > 0 since p; >
for Vi € {1,2,---,k}.

Let (A;, Ag, ---, A,) be the solution block (Barlow, Bartholomew, Bremner and
Brunk [1]) such that on each A; the restricted m.l.e.’s are constant. It is clear that
0 € A;. Furthermore, if i belongs to A;, then

Pi = Av(4;),

where
_ ZIEA,' T
ZIEAJ' m

First we prove the theorem when i = 1. If 1 € A, then

Av(4;)

E;—u Tj )
D1 = Do = = ] _ < —,
P1 = po = Av(41) 03ug, S o = o

This conflicts with p1 — (ro/no) > 0. Thus 1 ¢ A, namely po = (ro/no) and p1 = pr.
Next we prove the theorem for ¢ > 1. In general, if p;, > p;,, there exist two integers j;
and js such that 1 < jo < j1 <7, pi, = Av(A;,) and p;, = Av(A;,). Therefore p;, does
not contain r;/n; for any i € A;,. Thus if p; > (ro/no), we have i feasible cases of the
location of rg/ng, namely

R o ~ N o o

Di 2 Pi-12 -2 P22 p1 > — = po,
no

~ N ~ To o N

bi 2 Pi-12> "ZP2>EZP12 0,

or
T . e . .
pi>n—2pi—12---2p22p12po,
0

but in any case we have p; = p;. 0

THEOREM 3.2. Let p; and p; be the estimators of p; defined in THEOREM 3.1 and
formula (2.1), respectively, then we have

pj>t; (forVi=i,--- k)<=p;>t; (forVj=i, --,k)

for t; <tiy1 < --- <t (1 €{1,2,---,k)}).
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Proor. First we show (<=).

Let (By, Bs, -+, B;) be the solution block such that on each B; the restricted m.l.e.’s
are constant. Furthermore, if i € B,,, then
ﬁi = AV(Bm)7
where 5
1
Av(Bp,) = &l€8n —
" ZIGB,,. n
Put B, = {h,h+1,--- A+ h}, then
h+hy
- . - L
Ph = Pht1 = -+ = Prshy = AV(Bm) = ELJ},I : (3.1)
1=n ™
Furthermore, from
N Di=ull
Phah = i hhiSosk 0y
from the uniqueness of (B;, By, -+, B,) and also from (3,.1) we have
hthy
~ I_ —
Phthy, = MaX  ——==—— = Dhth,-
gl TR, T P
Therefore
Phthy = Phth,- (32)
Now for Vj € {i,---, k}, there exists m; € {1,---,r} such that j € B,,,. Thus
Dj = AV(Bm,).
Put
J1:= max l
then from j; > j and (3.1),
ﬁJ = ﬁjl‘

Therefore, since (3.2) and t; < --- < ¢t; < --- < tj, < -+ < tg, it follows that

Therefore (<==) is shown.
Next we show (=). Now it follows that

J
p; = max Zl—“ max _Ilﬁ = p;
J 1<u<_7]<'u<lc EI 1<u<; E]—u 4

Therefore
pj < Bj-
From this inequality if p; > t; (for Vj =1, -+, k), then
pj > pj >ty (forVji=1d,--- k).

Therefore (=) is also shown. a
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4. The critical points

In this section, we consider the computation of getting the critical points C} (a).
Section 4.1 is devoted to the exact case. In section 4.2 we consider an asymptotic
distribution of M;. In section 4.3 we obtain the critical points when n; and r,. are large.

4.1. Exact case

We first list up all configurations of (rg, r1, ---, 7%) when {no, n1, -+, ng, r4} is
given, and obtain the distribution of M;, by computing the probability of the occurence
of each configuration and also computing the corresponding value of M;. Then determine
C;(a) as the smallest constant C such that Pr[M; > C|ry, H(()k)is true] < a with the
distribution of M;.

As an example, we shall get the critical points C}(a) for k = 2, ng = n; = ny =
20, 74 = 5, a = 0.05. Table 2 lists all configurations of (rq,r;,72), their occurence
probabilities and the values of M; and T;. The distributions of M3, M; and also Ty, T}
are summarized in Table 3. From Table 3, we determine C3(0.05) = C7(0.05) = 0.20.

Table 2. The configurations of (70,71, 72) for no = n; = nz = 20 and r4 = 5; the probability
of each configuration under pg = p; = p2; and the values of M;, M1, T> and T; for each

configuration.
No. 1 2 3 4 5 6 7
72 5 4 3 2 1 0 4
r1 0 1 2 3 4 5 0
ro 0 0 0 0 0 0 1

prob. | 0.0028 | 0.0177 [ 0.0397 | 0.0397 | 0.0177 | 0.0028 | 0.0177
M, 0.25 0.20 0.15 0.125 0.125 0.125 0.15

M, 0.00 0.05 0.10 0.15 0.20 0.25 -0.05
T 0.25 0.20 0.15 0.125 0.125 0.125 0.175
Ty 0.00 0.05 0.10 0.125 0.125 0.125 0.00
No. 8 9 10 11 12 13 14
T2 3 2 1 0 3 2 1
71 1 2 3 4 0 1 2
TO 1 1 1 1 2 2 2

prob. | 0.0835 | 0.1322 | 0.0835 | 0.0177 | 0.0397 | 0.1322 | 0.1322
M, 0.10 0.05 0.05 0.05 0.05 0.00 -0.025
M 0.00 0.05 0.10 0.15 -0.10 -0.05 0.00

T 0.10 0.05 0.05 0.05 0.10 0.025 0.00
T: 0.00 0.05 0.05 0.05 0.00 0.00 0.00

No. 15 16 17 18 19 20 21
2 0 2 1 0 1 0 0
T1 3 0 1 2 0 1 0
TO 2 3 3 3 4 4 5

prob. | 0.0397 | 0.0397 | 0.0835 | 0.0397 | 0.0177 | 0.0177 | 0.0029
M, -0.025 -0.05 -0.10 -0.10 -0.15 -0.175 -0.25
M; 0.05 -0.15 -0.10 -0.05 -0.20 -0.15 -0.25
T 0.00 0.025 0.00 0.00 0.00 0.00 0.00
Ty 0.00 0.00 0.00 0.00 0.00 0.00 0.00




Determining the NOAEL in categorical data 147

Table 3. The distribution of M2, M1, T> and T; under po = p1 =pz2forng =n1 =ng =20

and r4 = 5.
T 0.00 0.05 0.10 0.125 0.15 0.20 0.25
Pr(M; > z) | 0.6269 | 0.4947 | 0.2216 | 0.1381 | 0.0779 | 0.0205 | 0.0028
T -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Pr(M; > z) | 0.7988 | 0.6093 | 0.3907 | 0.2011 | 0.0779 | 0.0205 | 0.0028
T 0.05 0.10 0.125 0.15 0.175 0.20 0.25
Pr( T2 > ) | 0.4947 | 0.2613 | 0.1381 | 0.0779 | 0.0382 | 0.0205 | 0.0028
T 0.00 0.05 0.10 0.125
Pr( 71 > «) | 1.0000 | 0.3510 | 0.0999 | 0.0602

4.2. Asymptotic distribution

We consider the limiting conditional distribution of M; under H ((,k), when ng = ny
= .- = nt = n, conditioned on n and r,. We first show the two theorems.

THEOREM 4.1. Limiting conditional distribution of the random vector

To i To Tk T1L_ T2 Th—1 r_k)/ r+(N —ry)
noon n n’'n n n n nN(N - 1)

conditioned on n and r4 is identical to the distribution of
(ZO_ Zl:'”>Z0_ Zk)ZI —Z21'”7Zk—1 _Zk);

where Zo, Z1, -+, Zi are random variables which are independently and identically
distributed as a standard normal distribution and N := (k + 1)n.

PrROOF. When n and r; are given and Hék) is true, the conditional distribution of
(ro,71, -, 7%) is a multiple hypergeometric distribution. Therefore for any j,

E(r;) = r4n/N,
Var(rj) = ryn(N = rp )(N = n)/{N*(N - 1)},
and for any j; # j,
Cov(rj,rj,) = —n?r (N —ry)/{N}N - 1)}.
Thus we have, for any ji # ja, j1 # js and jo # ja

Var(% ~ %’-) =2ry(N —r4)/{nN(N - 1)},

T 75 1

corp(Hr _ Tz Tin _Tiay 1
n’'n n 2

J1 Tja Tja Tjs 1
corp(—+ — 42 I3 day—
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Furthermore from the asymptotic normality of the multiple hypergeometric distribu-
tion(Plackett [7]),

7o SN To Ty T1 T2 Th-1 Tk

AR s AR
n n n n n n n

is asymptotically distributed as a multiple normal distribution. Thus the proof of the
theorem is immediate, since
1
corr(Zh — Zjy, Zj, — Zj:s) = Pk
1
CO’I‘T(ZJ'l = Zj3, L, — st) = X
for any j1 # j2, j1 # js and j2 # Ja. o

THEOREM 4.2. Suppose that X1, Xo,-++,Xn, - are independently and identically
distributed random variables as a standard normal distribution. Put
1 r
Un = max - X.'
1<r<n 1 =1

and
[ exp[- T2 H1- (=)} >0
F(z) = { 0 r<0,

where ® denotes the normal distribution function. Then
lim Pr[U, < ] = F(z).
n—0o0o

ProoF. Williams [11] showed this theorem for 2 > 0 by using the theory of random
walks(Feller {4]). We show the theorem for £ < 0 . Since

0 < lim Pr[U, < z] < lim Pr[U, <0] for <0,

n—00 n—oo

it is sufficient to show that
lim Pr[U, <0]=0.

n—oo
r

Putting S, := Z X;, we have

i=1

lim Pr[U, < 0] = lim Pr[S; <0,5,<0,---,5, <0].

Furthermore, putting W,, := max{S1,---,Sn}, we have
lim Pr[U, < 0] = lim Pr[M, < 0]. (4.1)
n—o0 n—oC

Now, applying the law of iterated logarithm, namely

lim sup

Sn
n—oo V2nloglogn

=1a.s.,
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we have

limsup S, = +00 a.s.
Nn—00
Furthermore, we have

]%rzlﬁ I’Vl&: 2 Sna

thus
liminf W,, > limsup S, a.s.,
n—o0 n—o00
and
W, &3 400 as n — +oo.
Therefore from (4.1)
lim Pr[U, < 0] =0 = F(0). a

From THEOREM 4.1 and 4.2, the following theorem follows.

¢ = [T+ (N =)
’ aN(N -1)"

Then for F(t) defined in THEOREM 4.2,

THEOREM 4.3. Put

lim Pr[M; < z|ry,po=---=pi=-- =Pk]=/ F(t+ §)¢(t)dt

i ,—00
,where ¢ denotes the normal density function.

ProoOF. From THEOREM 4.1, the limiting conditional distribution of

m_rors_fo T Toy [reN-ry)
n na’an n’ ‘n n naN(N —1)

conditioned on n and r, is identical to the distribution of
(Z1— 20,29 — Zo, -+, Zi — Zy).

Therefore the limiting conditional distribution of M;/q conditioned on n and ry is
identical to the distribution of

1 i
T o 1 2 2
From this and THEOREM 4.2,

=p= =

lim Pr[M; < z|ry, po
i,n—00

lim Pr[¢T < z]

oo

lim Pr[ max ZZ <t+ —]¢(t)dt

=0 J_ o 1<u<i u

/_ C e+ Z)o(e)ds 0



150 H. NisHIvyaMa and T. YANAGAWA

4.3. Approximate value of the critical points

Employing the asymptotic distribution of M; in THEOREM 4.3, we may approximate
the exact critical value by the smallest constant C such that

[ re+Sewaz1-a

— o0

where ¢ is defined in THEOREM 4.3.

To evaluate this approximation we computed the exact and approximate critical
values for test sizes @ = 0.05 and a = 0.10 when ng = ny = ng = 10, 20 and 30, and r4
= 4 and 5. The results are summarized in Table 4.

Table 4. Critical points for the MBLV test
critical point (a = 0.05) critical point (o = 0.10)
T+ =4 r+ =5 T+ =4 T+ =35
Exa. Apr. Exa. Apr. | Exa. Apr. Exa. Apr.
no = n3 =nz = 10 C'; 0.40 0.275 0.40 0.302 | 0.30 0.226 0.30 0.248
Cf 0.40 0.275 0.40 0.302 | 0.30 0.226 030 0.248
no=mn1=n2=20 CJ 0.20 0.142 0.20 0.157 | 0.15 0.117 0.15 0.129
Ci‘ 0.20 0.142 0.20 0.157 | 0.15 0.117 0.15 0.129
ng =ni1 =ne = 30 C; 0.133 0.096 0.133 0.106 | 0.10 0.079 0.10 0.087
Cy | 0133 0.096 0.133 0.106 | 0.10 0.079 0.10 0.087

Poor approximations might be seen in the tables. However, one must take into
account the discreteness of the distribution of M; in such evaluation. Figure 1 and 2
show the exact and approximate distributions of M; when ng = ny = ns = 10, ry. = 4
and for ng = ny = ny = 30, r4 = 5, respectively. The inspection of the figures indicates
that the approximations in Table 4 are not so bad when the discreteness is taken into
account.

5. Comparison of the two tests

We compare the MBLV test with the BLV test when k = 2, nyg = n; = ny = 20,
and r4 = 5. Using Table 2 we obtain the NOAEL by means of the MBLV test and BLV
test. The results are summarized in Table 5. The table shows that for the MBLYV test
the configurations No.1 and No.2 select d; and any others select ds as the NOAEL at
the test size « = 0.05; that for the BLV test the configurations No.l, No.2 and No.7
select d; and any others select dy at the test size @y = a3 = 0.05.

Thus when = a; = as = 0.05 it follows from Table 5 that the probability of
correct decision by the MBLV test is smaller than the BLV test when py = p; < po;
larger than the BLV test when po = p1 = ps.

This finding comes from the fact that the carrier of the distribution of 75 includes
that of the distribution of M, (see Table 3), and that T selects the critical points which
are closer to the nominal size than M,. This discrepancy would decrease if the sample
sizes increase, or if large test sizes are taken. For example, when a = a; = a3 = 0.10,
Table 5 shows that the configurations No.1, No.2, No.3 and No.7 select d; and any others
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select dy as the NOAEL for both tests.

0 |

| | I ]

{

1

| |

0 0.05

1 15 2 .25
Figure 1. The approximate distribution (A.D.) and the exact distribution (E.D.) of M>

no =n1 =nz =10 and 74 = 4.

1

3

0

.35

4 45

for

¢

e leg

D. —
.D. ©—

0

0.05 1

15

2

Figure 2. The approximate distribution (A.D.) and the exact distribution (E.D.) of M, for
no=n1 =nz =30and 74 = 5.

Table 5. The configuration which select do, d; and d; as the NOAEL when the MBLYV test
and the BLV test are applied for no = n1 = nz = 20, r4 = 5.

Test size (critical point) NOAEL
MBLV test a (C3(a)) (Ct () do di da
0.05 (0.20) (0.20) none 1,2 a.o.
0.10 (0.15) (0.15) none 1,2,3,7 a.o.
BLV test 31 (C'z (Ot])) g (C](QQ)) do dy da
0.05 (0.175) _ 0.05 (0.10) | none 12,7  awo.
0.10 (0.15)  0.10 (0.125) | none 1,2,3,7 a.o.

a.o.:all the others

151
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When this paper was presented at a symposium, Professor Hirotsu pointed up that
the MBLV test and BLV test were categorical data versions of the Williams test [10] and
modified Williams test [10]. Marcus [6] conducted a Monte Carlo study, compared the
powers of the Williams test and modified Williams test, and found that these tests were
competitive (see Marcus [6] Table 3(a)). The same would be expected for the powers of
the BLV test and MBLYV test.
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