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Abstract

A location-dispersion test for 2 X k contingency,tables is proposed.
The asymptotic distributions of the proposed test are obtained both
under the null and alternative hypotheses, and also its power and ef-
ficiency are studied. The proposed test is compared with several other
chi-squared tests by Monte Carlo studies and it is shown that the test
is superior to Pearson’s chi-squared test, Nair’s location and dispersion
tests and to the cumulative chi-squared test in many cases.
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1. Introduction

Nonparametric two-sample tests for testing identity of distributions versus alter-
natives containing both location and scale parameters have been proposed by Lepage
[3, 4], Duran, Tsai and Lewis [1] and others. The purpose of this paper is to explore an
analogous test which is applicable for categorical data.

Table 1: 2 x k contingency table

Categories Total
X1 X2 . . . X}c ni
Yl Yz . . . Yk ng
Total | /;, 71 . . . n N
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Consider 2 x k table given in Table 1. We suppose that X = (X1, --,X}) and
Y = (Y1, -+, Y;) are independent multinomial random vectors and consider the following
null hypothesis:

Hy : X and Y are identically distributed.

We propose a location-dispersion test for this hypothesis which is sensitive for both
location shift and scale shift which seem common, for example, in clinical trial data. The
proposed statistic will be expressed as functions of the Wilcoxon test and test whose
score is orthonormal to the Wilcoxon score.

In section 2 we propose the statistic. The asymptotic distributions of the proposed
statistic under the hypothesis and contiguous alternatives are studied in section 3. Its
power and efficiency are studied in section 4, and finally in section 5, Monte Carlo studies
are conducted to show the behaviors of the test. It is shown that the proposed test is
superior to Pearson’s chi-squared test, Nair’s location and dispersion tests, and to the
cumulative chi-squared test in many cases.

2. The Test Statistic

Let ¢;,2=1,2,---,k, be the Wilcoxon score defined by ¢; = Z;;ll 7+ (i — N)/2
fori=1,2,---,k, so that Zfﬂ Tici = 0. We define the inner product of two vectors a

and b by (a, b) = zle ;0;b; and ||a||®> = (a,a). For the normalized score,

Cc

a=— (1)
lell’
where ¢ = (¢1, 9, -, ck)', we consider the Wilcoxon test statistic which is defined by:
k
S= Z a,-Y,~.
1=1
Next we consider a score orthonormal to the Wilcoxon score. Let df,i=1,2,---k,

be the score defined by d} = ¢?, and put d* = (d},d3,---,d}) and d; = d} — (d*, a)a;.
For the normalized score,

d
b=—, 2
il @
where d = (dy,da, -+, dy)’, we consider the test statistic defined by:
k
T=>3 Y
i=1

We call b the dispersion score and T the dispersion test statistic. We consider
statistics S and T conditioned on C = {nq,nq, 71,7, -, 7 }. The test statistic for Hy
we propose is

0o 5, (T=ETIc)?

~ WlSIC] wlTIC] 7
where Fy[-|C] and V;[-|C] are the conditional expectation and variance conditioned on -
C, respectively, under Hy. These expectation and variance are given by
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Eo[TIC] = nab,  W[TIC] = iy (1 - NB),

where b = (1/N) Zf=1 b;7;. It is straightforward to show these formulae since we have

(a,1) = (a,b) =0, (1=(1,1,---,1)) 3)
llall = |Ib]| = 1, (4)

and furthermore the conditional distribution of Y conditioned on C is given by

()-()
()

Treating all of the observations in a certain category as being tied and assigning
them a score equal to the midrank for that category, Nair [5] introduced statistics SS 4 (1)
and SS4(d) from the Wilcoxon and Mood rank statistics, respectively. It is easy to
see that SS4(l) is equivalent to S%/V4[S|C], and SS4(d) is almost equivalent to (T —
Eo[T|C])?/Vo[T|C]. In this paper we call the tests based on SS4(I) and SS4(d) the
Nair’s location test and dispersion test, respectively.

PI[(Yl,'-',Yk) = (yl;"';yk)'q =

3. Asymptotic Distributions
3.1. The Multiple Non-Central Hypergeometric Distribution

When X and Y are independently distributed multinomial random variables with
the parameters ny, m; = (711, -+, m1x) and ng, mp = (m9;,- - -, Wy ), respectively, we have,

o
Z:.7'1+“~+jk=nz g(J)¢111 e kk ’

where g(y) = nilna!/[pa!- - ye!(m1 — 11)!- - (7x — yx)!] and the odds-ratio parameters
¥, relative to category 1, for j =1,2,-- -, k, are defined by ¢; = m11ma;/m2171;, so that
1,01 =1.

We use the following assumptions:

Pr[(Ys, -+, V) = (y2, -, w)IC] = (5)

(Al) imy—co 3 =0, for j =2,3,-- k.
(A2) Z2 = p for some given p such that 0 < p < 1.
THEOREM 3.1. Suppose that (Al) and (A2) are satisfied, then

g(y)mt- - ! -1

N]im
M (7 ) i-pms
J
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PRrROOF. Since

ng!

g(y)lrl!n 7! (nz—yz—‘--—yk)’ (n1—72—~-—'rk+yz+ +yx)! ( T2 )( Tk )
N! (N—‘I'Q—IY'-—T;,T Y2 Yk ’

from (A1) and (A2) we have

Jim g(y) 1i[ ( )pyf(l e

. This completes the proof of the theorem. o

From the theorem it follows that the numerator of (5) is approximated by
k

(2 )esra-p ey

1
oo 7!
i=2 k

Therefore by normalizing this we may approximate the distribution (5) by

Pr{(Ya,-+-,¥e) = (.-, w)IC] = 1‘[( ) (2=) ()
©)

Thus according to this approximation Y; is binomialy distributed with parameters 7;
and py; /(p¥; + 1 — p), and Y, Y3, -, Y} are independent.

3.2. Asymptotic Distribution of @ Under H,

Now we consider an approximation of Pr[(Ya,---,Y:) = (y2, -, yx)|C] for large 7;,
j=2,3,---,k. To begin with we shall make the following assumption.

(A3) N=¢1; = O(1), j = 2,3, -+, k, for some € such that 0 < € < 3.

The notation N~¢r; = O(1) which is used in this paper, means N ~¢; tends to a constant
as N — oo. Note that (A3) includes (Al).

LEMMA 3.2. If (A3) is satisfied, then
(i) N'=%a; = O(1), Nig; =0(1), i=2,3,---,k.
(i) N'=%b, = O(1), N$b; = O(1), i =2,3,---,k.
ProOF. From (A3) and using the definitions of ¢; and d; we have
N=¢¢; = O(1), N~1¢; = O(1),
N=1=¢d; = 0(1), and N=2d; = O(1) for i = 2,3, -, k.

Thus the proof is completed from the definitions of a; and b; which are given in (1) and
(2). o
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Denote by E 4[] and V4o[-] the expectation and variance, respectively, under Hy
when Yj, j = 2,3, k, follow distribution given in (6). We have the following lemma.

LEMMA 3.3. If (A2) and (A3) are satisfied, then
(i) Eao[S]=0,
(i) limy oo W = 1.

ProoF. Since Zf=1 Y; = n,, we have

k
S=any+ Y (i — @)Y (7

1=2

Thus

k
EqolS]" = aing+ Z(di — a3)E 40[Yi], (8)

=2
k

= anz+ Z(ai - a1)7p,

=2

- (-0,

since ELI a;7; = 0. Thus from (A2) we have (i). Next we prove (ii).
From (7) we have

k

VaolS] = Z(ai—al)ZVAo[Y}],

=2
k

= > (ai—a1)*np(1-p),
i=2

= p(1-p)(1+diN).

Therefore using (A2) and Lemma 3.2 we have

Vo[S'C’] — nlng/N(N—l)
VaolS] — p(1 - p)(1+aiN)

THEOREM 3.4. If (A2) and (A3) are satisfied, then under Hy, the distribution of
S/+/Vo[S|C] may be approrimated by a standard normal distribution for large N.

_5_<x}=Pr S = EaolS] _ [WISIC] {2_ EaolS] }]
VVo[SIC] ~ VVaolS] =V VaolS] Jvisicl |

When N — oo, (A3) = (Al), and the distribution of (¥2,Ys,---,Ys) may be ap-
proximated by the multiple of the independent binomial distributions. Furthermore

—1 as N — oo. n}

Proor. We can write

Pr
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T, — 00, j = 2,3,---,k when N — oo from (A3). Therefore the distribution of
(S — EaolS])/+/Vao[S] may be approximated by N(0,1) for large N. Then the re-
sult follows from Lemma 3.3 and by Slutsky theorem (See Lehmann [2] Appendix, Sec.
3, Corollary 2). (]

We next consider statistic 7. We first show:

LEMmMA 3.5. If (A2) and (A3) are satisfied, then
() Eao[T] - Eo[T|C) =0,
- Vo[T[C] _
(i) Hmy—eo VALO[‘T]I =1

PRrROOF. Since ELI Y; = ns, we have

3
T=bno+ Z(bi - b)Y, 9)
=2
and
k
EpolT] = bina+ Z(bi —b1)EaolYi),
i=2
k
= bny+ Z(bi - b)mp,
=2
= b1n2 +pN5— ble
Now since

- D2 _ YN (22_
Exo[T] - Eo[T|C] = 0N (N P) bN (N P) ;
the proof of (i) is immediate from (A2). Next,

k
> (b = b1)*Vao[Yi],

=2

k
> (b — b1)*rip(1 - p),
=2

p(1—p)(1 —2Nbb + b2N).

Vao [T]

Thus it follows that
Vo[TlC’] _ nlnz/N(N - 1)

= A,

VaolT] p(1-p)
where A = (1— N52)/(1 — ONbb + bIN). Using Lemma 3.2 we can show A tends to 1
as N tends to infinity. So from (A2) the result follows. o

THEOREM 3.6. If (A2) and (A3) are satisfied, then under Hy, the distribution of
(T — Eo[T|C))/\/Vo[T|C] may be approzimated by a standard normal distribution for
large N.



A location-dispersion test for 2 X k tables 131

ProoF. Similarly as the proof of Theorem 3.4, the distribution of
(T — Eao[T])/+/Vao[T] may be approximated by N(0, 1) for large N, under (A3), and

| T=Bolzic] _ ] _pe [T EalT] _ [VelTIC] { _ EaolT] - Eomcq}
VWITIC] ~— VaolZ] ~ \ VaolT] VVoITIC]

Thus it is straightforward to show the theorem from Lemma 3.5 and by Slutsky theorem.
O

THEOREM 3.7. If (A2) and (A3) are satisfied then the distribution of Q under Hy
may be approzimated by a chi-squared distribution with 2 degrees of freedom for large N.

Proor. It is sufficient to show that the conditional covariance of S and T condi-

tioned on C under Hg, which is denoted by Couv[S,T|C], is 0. From (7) and (9) we
have

k
Cov[S,T|C] = Z(ai —a1)(b; — b1)Vo[Y;|C]
=2
k k
+3°3" (ai — a1)(b; — by)CouwglY;, Y5|C,
=2 j=2i¢j
k 1 — Tijnin
= ;(ai —a1)(bi — bl)ﬁ%ﬁ
k k
—ay L TiTymng
“ggi#(‘% )(bj bl)NQ(N 1)’
k
= ;(a; - al)(b,r - bl)ﬁ%
k k
— ;;(ai — al)(bJ — bl) 1\:;?3\";1"21)
Now

k
D (@i — a1)(b; — by)m = a1 (b — B)N,
i=2

M-

2

1=2 j=2

k . k
(ai — ar)(bj — b7y = [Dm - aﬂﬂ] [Z(bj - bﬂfa] :
=2 ji=2
= al(bl—E)NQ.

Thus substituting these equalities into the above formula, we have the desired result. O
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3.3. Asymptotic Distribution of @ Under the Alternative

In this section we obtain asymptotic distribution of @ under the alternative hy-
pothesis Hy : ¢; = 1+ Aj/N¢, j=1,2,---,k, where A; is a constant and 0 < € < 1/2.
We denote by E4[-] and V4[] the expectation and variance, respectively, under H; when
Y;, 5 =2,3,---,k, follow distribution given in (6).

LEMMA 3.8. If (A2) and (A3) are satisfied, then

(i) limy o % =ls,

(if) imy—co “ogsp =1

where ls = 1/p(1 — p) E;‘zz(aj —a))T(¥; - 1).
ProoF. (i) From (7) we have

k
EalS] = aina+) (aj —a1)EalYj],

j=2
: i PY;
= aing+ S (a; — ay)—DE%
112 JZ—;(J 1)p¢j+1_P

Substituting (8), we have
Ea[S] = EalS] - EaolS] + EaolS5],

IR [p(1-p)(¥; = 1)
- 2(—)[ 00 =) Bl

Now consider E4[S]/+/Vo[S|C] and using (A2) the result follows.
(ii) From (7) we have

k
ValS] .= Z(aj - a1)*ValY;],

_ @ —ar)? 7ip(1 = p)¥;
B Z( i) (pv; +1—p])2

Thus it follows that
Vo[SlC’] — nlng/N(N - 1)
ValS] pl-pA
where A = E;ﬂ(aj — a1)*7;9;/(py; + 1 — p)*. Furthermore since

k

E(a]‘ - al)z'rj =14+ a%N,
j=2

we can show by using Lemma 3.2 that A — 1 as N — oo under H;. So from (A2) the
proof is completed. m]
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THEOREM 3.9. If (A2) and (A3) are satisfied, then under Hy the distribution of
S/\/Vo[S|C] may be approzimated by N(ls,1) for large N .

ProoF. Similarly as the proof of Theorem 3.4, the distribution of
(S — E4[S])/+/Va[S] may be approximated by N(0,1), for large N, under (A3) and

Pr [__S_._. < x] = Pr [S — EA[S] < VO[SIQ {.’L’ _ EA[S] }} )
VW[SIC] T Vals] ~ \ ValS] VVelSIC

Thus it is straightforward to show the theorem from Lemma 3.8 and by Slutsky theorem.
a

LEMMA 3.10. If (A2) and (A3) are satisfied, then

- EA[T]-Eo[T|C] _
(i) limy—oo JvTicl lr,

(ii) Limy— oo 2SSl = 1,

where Iy = /p(1 = p) 2_j=5(bj — b1)7j(¥; — 1).

ProoF. (i) From (9) we have

k
ElT] = bing+ ) (b —bi)EalYj],

i=2

: pY;
= bina+ Y (b —by)rj— i
J;, ’ "1+ p(¢; — 1)

and

k
_ .p(l—P)(d)' -1
EAlT] - BoTIC] = Y (b = )y P

j=2

+ Exo[T] - Eo[T|C].

Dividing this by 1/V,[T'|C] and using Lemma 3.5, the result follows. (ii) From (9) we
have

k
D (65 — b1)*ValYi),

ValT] =
j=2
L mip(1 — p)y;
- jz—;(bj ~ by’ (py; +1-p)*

Thus it follows that
Vo[T'Cq _ Tllng/N(N - 1)

= B,
Va[T] p(1-p)
_2 T .
where B = (1= Nb')/Y5_5(b — b1)? rgisizys- From (A3), B — 1as N — co. So

using (A2) the result follows. a
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THEOREM 3.11. If (A2) and (A3) are satisfied, then under Hy the distribution of
(T — Eo[T|C)//Vo[T|C] may be approzimated by N(ir,1) for large N.

Proor. Similarly as the proof of Theorem 3.4, the distribution of
(T — E4[T])//ValT] may be approximated by N(0,1) for large N, under (A3) and

T - BTiC] } _pe|T=Ball] . [%ITIC) { _ Bal1] - Eo[Tm}
VWITICT ~ VVAIT = Vall] VVITIC]

Thus it is straightforward to show the theorem from Lemma 3.10 and by Slutsky theorem.
m}

Pr

LEMMA 3.12. Suppose thatY;, j = 2,3, ,k, follow the distribution given in (6),

and that (A2) and (A3) are satisfied, then under Hy the correlation of S and T tends to
0 as N — oo.

PROOF. We denote by Cov,[S, T, the covariance of S and T, under H; and when
Y;, 7 =2,3, -,k are supposed to follow the distribution given in (6), and we have

k
Covy[S,T) = Z(ai —a1)(bi = b1)Tiqi(1 — g:),

=2

where ¢; = pv;/(p¥i + 1 — p) and ¢; = 1+ A;/N¢. Thus

k
|CovalS, T]| < (1/4) D (@i — a1)(bs — b1)i.

i=2

Now from Lemma 3.2 and (A3) we may show that
k k
Z(ai —a))bi—b)n = —a Z(bi = b)),
=2 i=1

c 1
= N1l-¢ +O (Nl—c) )

for some constant c¢. Thus we have Cova[S,7] — 0 as N — oo.
Employing again Lemma 3.2 and (A3) we may show that

_p ¢ 1
VA[S] 1 -p [1+ N1-¢ +0 (Nl—s)] ’
for some constant ¢. Thus V4[S] — & as N — co.
Similarly we have V4[T] — TI—J_p as N — oco. Therefore we have the desired result. 0O

Summarizing Theorem 3.9, 3.11 and Lemma 3.12 we have the following theorem.

THEOREM 3.13. If(A2) and (A3) are satisfied, then the distribution of Q under H;

may be approzimated by a noncentral chi-squared distribution with 2 degrees of freedom
and noncentrality parameter 1?9 + 12, when N is large.
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4. Power and Efficiency

The power of the location-dispersion test is given by

HQ = PrH] [Q > Xg,a] y
where x%)a is the upper 100a percentage point of the chi-squared distribution with 2
degrees of freedom. From Theorem 3.13 we have

l- =P [ 12 2 },
NgnooHQ T(X2> X2a

where x’/ § is the density function of the noncentral chi-squared distribution with 2 degrees
of freedom and the noncentrality parameter A = % +12. It is well known that the power
is the increasing function of A. Now using Schwarz inequality we have

5 < Np(l-p) zkj(a,- -a)? (5) ﬁ(% -7 (%),
i=2 j=2

7 < N’Zp(l—p)i(b,-—bl)2 (;V—) zk:(¢,-—1)2 (%)
i=2 Jj=2

Thus {4 is maximized when Y;j — 1 = B(a; — ay), that is logyy; = B(a; — a1) approx-
imately. Similarly 2 is maximized when logy; = B(b; — by) approximately. These
findings characterize the optimality of the location score test and dispersion score test.
Unfortunately, however, it is difficult to find the alternative hypothesis which maximize
the power of the location-dispersion test. As will be seen in the simulation in the next
section there exists a wide family of alternative hypotheses which provides larger powers
to the location-dispersion test than the location score or dispersion score tests.

5. Monte Carlo Studies

Monte Carlo studies were conducted to assess the accuracy of the chi-squared ap-
proximation to the nominal test size, and to compare the power of the proposed test
with several other chi-squared tests. Those chi-squared tests considered, except for the
proposed test based on @, are (i) Pearson’s chi-squared test [6], (ii) Nair’s location test
[5], (iii) Nair’s dispersion test [5], and (iv) The cumulative chi-squared test [7].

Table 2: The cell probabilities for 2 x 5 table

02(02]02(02}02
02]02]02]02]02

To assess the accuracy of the chi-squared approximation to the nominal test size,
we considered 2 x 5 table and used the cell probabilities given in Table 2. Generating
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random digits from the product-multinomial distribution with these cell probabilities,
we run ten thousand trials. The sample size employed was n; = 10(10)100. The nominal
significance level was taken as 0.05. The results of the simulation are given in Figure 1.
The inspection of the figure shows that the chi-squared approximation of the Q test and
the other tests provide the values that are quite close to the nominal level o = 0.05
except for Pearson’s test in small sample sizes.

0.06 T T T T T
0.055 —
0.05 -
Estimated
Type I L i
error 0.045
levels
0.04 - - Pearson’s chi-squared -A--
N Nair’s location test -X- -
N Nair’s dispersion test -0 -
0.035 A The cumulative chi-saquared 6—
The Q test ©—
003 i | | | 1
20 40 60 80 100

Sample sizes n; (i = 1,2)

Figure 1: Estimated Type I error levels of the @ test, Pearson’s test, Nair’s
location and dispersion tests and the cumulative chi-squared test when the
distributions in Table 2 are used for the population distributions.

Table 3: Uniform type vs. Convex type
020210210202
0203]025]0.15 (0.1

Table 4: Uniform type vs. Concave type
02 ({02} 02 ]02]02
02501015 (02]03

To compare the powers of the @ test with the other chi-squared tests, we conducted
similar simulation using the cell probabilities given in Tables 3, 4 and 5. The cell
probabilities in Tables 3 and 4 present the distributions of the uniform vs. convex type
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0.7 T T T T T
Pearson’s chi-squared -A- -
06 | Nair’s location test X -

Nair’s dispersion test -O- -
The cumulative chi-saquared 66—
0.5 The @ test <©—

04
Power
03 |
02

0.1 F g7 &

0 ! | 1 | 1

20 40 60 80 100
Sample sizes n; (i =1,2)

Figure 2: Estimated powers of the @ test, Pearson’s test, Nair’s location and
dispersion tests and the cumulative chi-squared test when the distributions in
Table 3 are used for the population distributions.

0.55 T T T T T

Pearson’s chi-squared -A. - n
0.5 Nair’s location test -X- - 7]
045 F Nair’s dispersion test -O- - i

) The cumulative chi-saquared -©—

04 | The @ test <©— i
0.35 |- a —
Power 0.3 | 2 -
0.25 -
0.2 4
0.15 -
0.1 F g~ i

0.05 L& s l

20 40 60 80 100
Sample sizes n; (i = 1,2)

Figure 3: Estimated powers of the @ test, Pearson’s test, Nair’s location and
dispersion tests and the cumulative chi-squared test when the distributions in
Table 4 are used for the population distributions.
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and uniform vs. concave type, respectively, and also Table 5 presents the distributions
of the convex vs. concave type. The powers assessed are plotted in Figures 2, 3 and 4.
Figures 2 and 4 show that the @ test is superior to Pearson’s chi-squared test, Nair’s
location and dispersion tests and to the cumulative chi-squared test. Figure 3 shows
that the @ test is superior to Pearson’s chi-squared test, Nair’s location test and the

cumulative chi-squared test, but it is inferior to the Nair’s dispersion test.

Table 5: Convex type vs. Concave type

0.2

0.3

0.25

0.15

0.1

0.25

0.1

0.15

0.2

0.3

1 T
0.9 I
08 -
0.7
0.6 .
Power S
0.5 R .
X
04 X Pearson’s chi-squared -A--
' Nair’s location test -x- -
0.3 Nair’s dispersion test -0- -
The cumulative chi-saquared ©—
0.2 - _ The Q test ©—
0.1 L— ‘ 1 ] L ! 1
20 40 60 80 100

Figure 4: Estimated powers of the @ test, Pearson’s test, Nair’s location and
dispersion tests and the cumulative chi-squared test when the distributions in
Table 5 are used for the population distributions.

We carried out many simulation studies using various cell probabilities other than
those given in Tables 3, 4 and 5. General implication we obtained is that so long as
testing the distributions of uniform vs. convex type, and convex vs. concave type are
concerned, the @ test is in many cases superior to the Pearson’s test, Nair’s location and
dispersion tests, and to the cumulative chi-squared test. For testing the distributions
of uniform vs. concave type the @ test is also better in many cases than the other

chi-squared tests.

Sample sizes n; (i = 1,2)
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