
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A LOCATION-DISPERSION TEST FOR $ 2 \times k $
TABLES

Jayasekara, Leslie
Department of Information Systems, Interdisciplinary Graduate School of Engineering Science,
Kyushu University

Yanagawa, Takashi
Department of Mathematics, Kyushu University

Tsujitani, Masaaki
Kobe Women's University

https://doi.org/10.5109/13438

出版情報：Bulletin of informatics and cybernetics. 26 (1/2), pp.125-139, 1994-03. Research
Association of Statistical Sciences
バージョン：
権利関係：



 Bulletin of Informatics and Cybernetics, Vol. 26, No. 1N2, 19.94

A LOCATIONDISPERSION TEST 

      FOR 2xk TABLES

                By 

Leslie JAYASEKARA, Takashi YANAGAWAt 
               and 

         Masaaki TSUJITANII

                    Abstract 

   A location-dispersion test for 2 x k contingency, tables is proposed. 

The asymptotic distributions of the proposed test are obtained both 

under the null and alternative hypotheses, and also its power and ef

ficiency are studied. The proposed test is compared with several other 

chi-squared tests by Monte Carlo studies and it is shown that the test 

is superior to Pearson's chi-squared test, Nair's location and dispersion 

tests and to the cumulative chi-squared test in many cases. 
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twosample test; Wilcoxon test; Mood statistic; Pearson's chi-squared 
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1. Introduction 

    Nonparametric two-sample tests for testing identity of distributions versus alter
natives containing both location and scale parameters have been proposed by Lepage 

[3, 4], Duran, Tsai and Lewis [1] and others. The purpose of this paper is to explore an 
analogous test which is applicable for categorical data.

   Table 1: 2 x k contingency table 

          Categories Total 

   X1 X2 . Xk ni 

Yl Y2 Yk n2 

Total 7-1 T2 . • • Tic N
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   Consider 2 x k table given in Table 1. We suppose that X = (X1, • • , Xk) and 
Y = (Y1, • • • , Yk) are independent multinomial random vectors and consider the following 
null hypothesis: 

Ho : X and Y are identically distributed. 
   We propose a locationdispersion test for this hypothesis which is sensitive for both 

location shift and scale shift which seem common, for example, in clinical trial data. The 
proposed statistic will be expressed as functions of the Wilcoxon test and test whose 
score is orthonormal to the Wilcoxon score. 

   In section 2 we propose the statistic. The asymptotic distributions of the proposed 
statistic under the hypothesis and contiguous alternatives are studied in section 3. Its 
power and efficiency are studied in section 4, and finally in section 5, Monte Carlo studies 
are conducted to show the behaviors of the test. It is shown that the proposed test is 
superior to Pearson's chisquared test, Nair's location and dispersion tests, and to the 
cumulative chisquared test in many cases.

2. The Test Statistic 

   Let ci, i = 1, 2, • • • , k, be the Wilcoxon score defined by ci = Eji=1 Tj + (Ti — N)/2 
for i = 1, 2, • • • , k, so that Et 1 Tici = 0. We define the inner product of two vectors a 
and b by (a, b) = ~i =1 Tiaibi and Ilall = (a, a). For the normalized score, 

                          _ 

                   a H
eir(1) 

where c = (c1, c2, • • • , ck)', we consider the Wilcoxon test statistic which is defined by: 

S=EaiYi. 
i-1 

    Next we consider a score orthonormal to the Wilcoxon score. Let d1, i = 1, 2, • • • , k, 
be the score defined by da = 4, and put d* = (di, d2 i • • • , c4)' and di = da — (d*, a)ai. 
For the normalized score, 

b = (2) Iidll 

where d = (d1, d2, • • • , dk), we consider the test statistic defined by: 

T=EbiY. 
i-1 

   We call b the dispersion score and T the dispersion test statistic. We consider 
statistics S and T conditioned on C = {ni, n2371372) • • • , Tk }. The test statistic for Ho 
we propose is 

S2  (T — Eo[TIC])2  

                   _ 

               QV
o[SI C + Vo[TIcl ' 

where Eo [• IC] and Vo [• lC] are the conditional expectation and variance conditioned on 
C, respectively, under Ho. These expectation and variance are given by
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             Eo[SIC] = 0, 1/o[SIC] = N(N21), 
 Eo[TIC] = n2b, Vo[TIC] = N(N21)(1 — Nb2), 

where b = (1/N) E 1 bi Ti . It is straightforward to show these formulae since we have 

(a, 1) = (a, b) = 0, (1 = (1, 1, • • • , 1)') (3) 

      Ilall = IIbII =1,(4) 
and furthermore the conditional distribution of Y conditioned on C is given by 

Ti"rk 

             Pr[(Yl, ... , Yk) _ (yl) ...,yk) I C] = ylyk  

N n2 

   Treating all of the observations in a certain category as being tied and assigning 
them a score equal to the midrank for that category, Nair [5] introduced statistics SSA(1) 
and SSA(d) from the Wilcoxon and Mood rank statistics, respectively. It is easy to 
see that SSA(1) is equivalent to S2/Vo[SIC], and SSA(d) is almost equivalent to (T — 
Eo[TIC])2/Vo[TIC]. In this paper we call the tests based on SSA(1) and SSA(d) the 
Nair's location test and dispersion test, respectively.

3. Asymptotic Distributions 

3.1. The Multiple NonCentral Hypergeometric Distribution 

   When X and Y are independently distributed multinomial random variables with 
the parameters n1, 1r1= (i11,• • •,lik) and n2,71-2= (7r21,,1r2k), respectively, we have, 

       Pr[(Y2,...,Yk)_(y2i•••,Yk)IC]=g(y)or..ki(5) 
                                             ~J1+•••+jk=n2g(J) . . .                                                                           'Pick 

                                                       where g(y) = ni!n2!/[yi! • • • yk!(Ti — yi)! • • • (Tk — yk)!] and the odds-ratio parameters 
ii, relative to category 1, for j = 1, 2, • • • , k, are defined by = 711i2j/ir2iirii, so that 

E1. 

We use the following assumptions: 

(Al) limN_. 0 N = 0, for j = 2, 3, • • • , k. 

(A2) N = p for some given p such that 0 < p < 1. 

   THEOREM 3.1. Suppose that (Al) and (A2) are satisfied, then 

limg(Y)Ti! . . . Tk ! = 1. 
             N--+co 

~7T                      N!11j=2? pYJ (1 — 
y~
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    PROOF. Since 

          n2!  
/n,!              Tl.. . . Tk!(n2—y2—..._yk)!(nl—T2—...—'rk+y2+...+yk)! T2Tk 

  9(y)---------Nf —
(NT2N...-Tk),y2 yk 

from (Al) and (A2) we have 

                                   k 

             limg (y)T l---------------i ... Tk t — 1 ( Tj )pYJ(l_P)TJ-J N!yj j =2 

. This completes the proof of the theorem.0 

   From the theorem it follows that the numerator of (5) is approximated by 

                  k ,I'rj )(pj)Y(l_p)rJ_YJ,N!!. • 
                                             Therefore by normalizing this we may approximate the distribution (5) by 

                   k
;31y.i—pTi—yiPr[(Y2, ...,Yk) _ (y2, • • •,yk) I_ 1• j=2j PIPj+1—P1;1Pj+1—P 

                                        (6) 
Thus according to this approximation Yj is binomialy distributed with parameters Tj 
and pbj /(pij + 1 — p), and Y23 Y3, • • • , Yk are independent. 

3.2. Asymptotic Distribution of Q Under Ho 

    Now we consider an approximation of Pr[(Y2, • • • , Yk) = (y2, • • • , yk) IC] for large rj, 
j = 2, 3, • • • , k. To begin with we shall make the following assumption. 

(A3) N-ETj = 0(1), j = 2, 3, • • • , k, for some c such that 0 < e < a . 

The notation N-ETj = 0(1) which is used in this paper, means N-ETj tends to a constant 
as N — oo. Note that (A3) includes (Al). 

    LEMMA 3.2. If (A3) is satisfied, then 

  (i) N1 a a1 = 0(1), Nai = 0(1), i= 2, 3, • • • , k. 

 (ii) Nl 2 b1 = 0(1), N 2 bi = 0(1), i = 2, 3, • • , k. 

    PROOF. From (A3) and using the definitions of ci and di we have 

N-Ec, = 0(1), N-lci = 0(1), 

N-1-Ed, = 0(1), and N-2di = 0(1) for i = 2, 3, • • ,k. 

Thus the proof is completed from the definitions of ai and bi which are given in (1) and 
(2).0
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    Denote by  EAO  [•] and VAO [•] the expectation and variance, respectively, under Ho 
when Yi, j = 2, 3, • , k, follow distribution given in (6). We have the following lemma. 

   LEMMA 3.3. If (A2) and (A3) are satisfied, then 

(i) EAO [S] = 0, 

 ii lim v°~slcl = 1.  ( ) N~oo Vao s] 

    PROOF. Since  Yi = n2, we have 

S = ain2 + E(ai — ai)Yj•(7) 
i-2 

Thus 

EAO[S] ' = ain2 E(ai — ai)EAO[Y],(8) 
i-2 

                         = ain2 E(ai — al)Tip, 
i-2 

                     = a i N (—n2  — p) 

since EL, airi = 0. Thus from (A2) we have (i). Next we prove (ii). 
From (7) we have 

VA0[S] = E(ai — ai)2VAO[Y], 
i-2 

= E(ai — ai)27-ip(1 — p), 
i-2 

                     = p(1 —p)(1+a?N). 

Therefore using (A2) and Lemma 3.2 we have 

Vo[SIC] =  nin2/N(N —1) —~1 as N—+oo .^ VAO[S]p(1 — p)(1+ 4N) 

   THEOREM 3.4. If (A2) and (A3) are satisfied, then under Ho, the distribution of 
S//Vo[SIC] may be approximated by a standard normal distribution for large N. 

    PROOF. We can write 

    PrS  <_PrS — EAO [S] /V0[SIC]fx EAO [S]+ 
      ~/Vo [S I c]\VAO [S] VAO [S]/Vo [SI`] 

When N —4 co, (A3) (Al), and the distribution of (Y2, Y33 • • • ,Yk) may be ap
proximated by the multiple of the independent binomial distributions. Furthermore
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Ti —4 oo, j = 2, 3, • • • ,k when N -* oo from (A3). Therefore the distribution of 
(S — EAO[S])/\VAO[S] may be approximated by N(0,1) for large N. Then the re
sult follows from Lemma 3.3 and by Slutsky theorem (See Lehmann [2] Appendix, Sec. 
3, Corollary 2).^ 

    We next consider statistic T. We first show: 

   LEMMA 3.5. If (A2) and (A3) are satisfied, then 

 (i) EAO[T] — Eo[TIC] = 0, 

 (lIlimv°[TJcl= 1.    )N~ooVao T] 

PROOF. Since E 1 Yi = n2, we have 

T = bin2 + E(bi — b1)Yi,(9) 
i-2 

and 

EAO[T] = bin2 + E(bi — b1)EAO[Yi], 
i-2 

= b1n2 + E(bi — b1)Tip, 
i-2 

                        = b1n2 + pNb — b1pN. 

Now since 

EAO[T]—Eo[TIC]=b1N —p} —bN(! —p), 
the proof of (i) is immediate from (A2). Next, 

VAO[T] = E (bi — b1)2VAO[Y], 
i-2 

E (bi — b1)2Tip(1 — p), 
                                     i=2 

                     = p(1 — p)(1 — 2Nb1b+ b?N). 

Thus it follows that 
                  Vo[TIC] — nin2/N(N — 1)A,                  VAT] p(1 — p) 

where A = (1 — Nb2)/(1 — 2Nbtb + b?N). Using Lemma 3.2 we can show A tends to 1 
as N tends to infinity. So from (A2) the result follows.^ 

   THEOREM 3.6. If (A2) and (A3) are satisfied, then under Ho, the distribution of 
(T — EO[TIC])/VVO[TIC] may be approximated by a standard normal distribution for 
large N.
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   PROOF. Similarly as the proof of Theorem 3.4, the distribution of 

(T —  EAO[T])/\VAO[T] may be approximated by N(0, 1) for large N, under (A3), and 

PrT — EO [TI C]_< x  PrT — EAO [T] <_ /Vo[TIC]x—EAO[T]— Eo[TIC]}]. -VV0 [T I C]\VAO [T]VAO [T] /Vo [T I C] 

Thus it is straightforward to show the theorem from Lemma 3.5 and by Slutsky theorem. 

                                                             0 

   THEOREM 3.7. If (A2) and (A3) are satisfied then the distribution of Q under Ho 
may be approximated by a chisquared distribution with 2 degrees of freedom for large N. 

   PROOF. It is sufficient to show that the conditional covariance of S and T condi
tioned on C under H0, which is denoted by Covo [S, T IC], is 0. From (7) and (9) we 
have 

k 
Covo[S,TIC] = E(ai — ai)(bi — bi)Vo[YiIC] 

i=2 

k k 

+E E (ai — ai)(bj — bi)Covo[Y, Yj IC], 
i=2 j=2i#j 

EkTi(N — r)n1n2                   (ai — ai)(bi — b1)N2(N — 1) 
                      i=2 

                             k k                                              riri—E E (ai — ai)(bj — b1) N2(N1n1) 
a_2 j=2ioj 

k 

= E(ai — ai)(bi — bi)N(N——1) 
i=2 

k k — E E(ai — ai)(bj — bi)N2(N1n1) •                                          i=2 j=2 

Now 
k 

E(ai — ai)(bi — bi)Ti = ai(bi — b)N, 
i=2 

k kkk EE(ai — ai)(bj — bi)TiTj =E(ai — ai)Ti [(bj — bi)T1 , 
i=2j=2i=2j=2 

                             = ai(bi — b)N2. 

Thus substituting these equalities into the above formula, we have the desired result. ^
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3.3. Asymptotic Distribution of Q Under the Alternative 

   In this section we obtain asymptotic distribution of Q under the alternative hy
pothesis H1 :1,bj = 1 + Ai /NS, j = 1, 2, • • • , k, where Aj is a constant and 0 < e < 1/2. 
We denote by EA[•] and VA[•] the expectation and variance, respectively, under H1 when 
Yj, j = 2, 3, • • • , k, follow distribution given in (6). 

   LEMMA 3.8. If (A2) and (A3) are satisfied, then 
EAEsi  = 1S,            \/V0[SIC1 

 ()VAlilimrr~~Vo[SJC(s]l= 1, 

where is = \p(1 — p) E=2(aj — — 1). 

   PROOF. (i) From (7) we have 

EA[S] = a1n2 + E(aj — al)EA[Yj], 
                                      j=2 

                                                   jp'f'j                        = aln2 + E(aj — a1) 
+1—p j=2 

Substituting (8), we have 

EA [S] = EA [S] — EAO [S] + EAO [S] 

               E(aaTp[(1P)(bi;l)]—+EAO[S].                     jl)j 
              j=2pj+ 1 — p 

Now consider EA[S]/-/Vo[SIC] and using (A2) the result follows. 
(ii) From (7) we have 

V45 , — aj — al)2VA[Yjb 
j=2 

                     _ E(aj — al)2  Tjp(1 — p)'+Pi 
                       j=2030j + 1 p)2 . 

Thus it follows that 
Vo[SIC] — nin2/N(N — 1)  

                  VA[S] p(1 — p)A 

where A = E =2(aj — al)27j j/(pi j + 1 — p)2. Furthermore since 

E(aj — al)27j = 1 + a1N, 
j=2 

we can show by using Lemma 3.2 that A —^ 1 as N —f oo under H1. So from (A2) the 
proof is completed.^
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   THEOREM 3.9. If (A2) and (A3) are  satisfied, then under Hl the distribution of 
S/1/Vo [SI C] may be approximated by N(ls, 1) for large N. 

   PROOF. Similarly as the proof of Theorem 3.4, the distribution of 

(S — EA[S])IVVA[S] may be approximated by N(0, 1), for large N, under (A3) and 

Pr  S------<_x=PrS — EA[S]<_/V0[SICIJ x_ /EA[S]  
      \/Vo [SI C]\/VA[S]VA['S]VVo NC] 

Thus it is straightforward to show the theorem from Lemma 3.8 and by Slutsky theorem. 

                                                             0 

   LEMMA 3.10. If (A2) and (A3) are satisfied, then 

 (i) 11mN—•oo EA[.\T/'V]—Eo[T[TIC]I C] =jT, 

        o ()   itlimN...cov°VAT][TCcl= 1, 
where 17, = V p(1 — p) Ej=2(bj — — 1). 
   PROOF. (i) From (9) we have 

            EA[T] = bin2 + E(bj — bl)EAft ], 
j=2 

p cb                      = bin2+z(bj —bl)Ti l+p(,bi — 1), 
j=2 

and 

k 

    EA[T] — Eo[TIC] _ E(bj —P(1 — p)(~'j — 1)                        bl)Tj
p(ki 1) + EAO[7] — Eo[TIC. 

j=2 

Dividing this by /Vo [T I C] and using Lemma 3.5, the result follows. (ii) From (9) we 
have 

VA[T] = E(bj — b1)2VA[Y.lb 
j=2 

= E(b. — bl)2  TjiP(l — P)Iki  
                          j=2(1)0i + 1—p)2. 

Thus it follows that 
Vo[TIC] — nin2/N(N— 1)B ,                   V

A[T] p(l — p) 

where B = (1 — Nb2)/M2(bj — bl)2 (pip 4 3 1,)2 . From (A3), B —> 1 as N —+ oo. So 
using (A2) the result follows.^
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   THEOREM 3.11. If (A2) and (A3) are satisfied, then under H1 the distribution of 
(T  Eo[TIC])/ ./Vo[TIC] may be approximated by N(1T,1) for large N. 

    PROOF. Similarly as the proof of Theorem 3.4, the distribution of 

(T  EA[T])/\/VA[T] may be approximated by N(0,1) for large N, under (A3) and 

 PrT  Eo [TIC] <x PrT  EA[T]/V0[TIC]xEA[T`]— Eo[T IC]}] 
                                       ^Vo[TIC] VVA[T] VA[T] \/V0[TIC] 

Thus it is straightforward to show the theorem from Lemma 3.10 and by Slutsky theorem. 

                                                               0 

   LEMMA 3.12. Suppose that YY, j = 2, 3, • • • , k, follow the distribution given in (6), 
and that (A2) and (A3) are satisfied, then under H1 the correlation of S and T tends to 
0asN oo. 

    PROOF. We denote by CovA[S, T], the covariance of S and T, under H1 and when 
Yi, j = 2, 3, • • • , k are supposed to follow the distribution given in (6), and we have 

CoVA[S,T] = E(ai  ai)(bi  bi)Tigi(1  qi), 
i-2 

where qi = / (pbi + 1  p) and /Pi = 1 + Ai/N'. Thus 

ICovA[S,T]I < (1/4) E(ai  ai)(bi  b1)Ti• 
i-2 

Now from Lemma 3.2 and (A3) we may show that 

 kk 

            E(ai  ai)(bi  bi)Ti = -al k(bi  b1)Ti, 
i-2i-1 

                             = N1-E + o N1—E 

for some constant c. Thus we have CovA[S, T] -; 0 as N -} oo. 
Employing again Lemma 3.2 and (A3) we may show that 

                 VA[S] =11 +~T1-E+ CN1-E 
                p 1Y 

for some constant c'. Thus VA [Si -> TF-19as N -> oo. 
Similarly we have VA[T] -> E as N oo. Therefore we have the desired result. ^ 

    Summarizing Theorem 3.9, 3.11 and Lemma 3.12 we have the following theorem. 

   THEOREM 3.13. If (A2) and (A3) are satisfied, then the distribution of Q under H1 
may be approximated by a noncentral chisquared distribution with 2 degrees of freedom 
and noncentrality parameter is + 4, when N is large.
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4. Power and Efficiency 

   The power of the locationdispersion test is given by 

 IIQ = PrH, [Q > X2,«] 
where x ,« is the upper 100a percentage point of the chisquared distribution with 2 
degrees of freedom. From Theorem 3.13 we have 

                   ~li~HQ = Pr [X/22 > X2,a] 
where X'2 is the density function of the noncentral chisquared distribution with 2 degrees 
of freedom and the noncentrality parameter a = is + 4. It is well known that the power 
is the increasing function of A. Now using Schwarz inequality we have 

     kk 

l < N2p(1 — p) E(ai — ai)2 (Li ) k(ij 1)2 (N) 
i-2j-2 

              k rtlk 
       1T< N2p(1—p) E(bib1)21Vl1)2 (N) 

           i-2j-2 

Thus is is maximized when — 1 = ,Q(aj — ai), that is logbj = ,Q(aj — ai) approx
imately. Similarly 17, is maximized when logj  — b1) approximately. These 
findings characterize the optimality of the location score test and dispersion score test. 
Unfortunately, however, it is difficult to find the alternative hypothesis which maximize 
the power of the locationdispersion test. As will be seen in the simulation in the next 
section there exists a wide family of alternative hypotheses which provides larger powers 
to the locationdispersion test than the location score or dispersion score tests. 

5. Monte Carlo Studies 

    Monte Carlo studies were conducted to assess the accuracy of the chisquared ap
proximation to the nominal test size, and to compare the power of the proposed test 
with several other chisquared tests. Those chisquared tests considered, except for the 
proposed test based on Q, are (i) Pearson's chisquared test [6], (ii) Nair's location test 
[5], (iii) Nair's dispersion test [5], and (iv) The cumulative chisquared test [7].

Table 2: The cell probabilities for 2 x 5 table 

       0.2 0.2 0.2 0.2 0.2 

       0.2 0.2 0.2 0.2 0.2

   To assess the accuracy of the chisquared approximation to the nominal test size, 

we considered 2 x 5 table and used the cell probabilities given in Table 2. Generating
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random digits from the productmultinomial distribution with these cell probabilities, 
we run ten thousand trials. The sample size employed was na = 10(10)100. The nominal 
significance level was taken as 0.05. The results of the simulation are given in Figure 1. 
The inspection of the figure shows that the chisquared approximation of the Q test and 
the other tests provide the values that are quite close to the nominal level a = 0.05 
except for Pearson's test in small sample sizes.

 0.06 -----------------------------------------------------------------------------------------------------------11I11 

0.055  x•. •  x 

Estimated A, • • 
Type 1 0.045 `' error . 
levels .0 

     0.04 Pearson's chisquared ••• 
                                        Nair's location test  x 
            •Nair's dispersion test •^ • • 

      0.035  pThe cumulative chisaquared $
                                         The Q test 4— 

 0.03 11-------- 
       204060 80100 

                         Sample sizes n$ (i = 1, 2)

Figure 1: Estimated Type I error levels of the Q test, Pearson's test, Nair's 
location and dispersion tests and the cumulative chisquared test when the 

distributions in Table 2 are used for the population distributions.

Table 3: Uniform type vs. Convex type 

    0.2 0.2 0.2 0.2 0.2 

    0.2 0.3 0.25 0.15 0.1  

Table 4: Uniform type vs. Concave type 

     0.2 0.2 0.2 0.2 0.2 

     0.25 0.1 0.15 0.2 0.3

   To compare the powers of the Q test with the other chisquared tests, we conducted 
similar simulation using the cell probabilities given in Tables 3, 4 and 5. The cell 

probabilities in Tables 3 and 4 present the distributions of the uniform vs. convex type
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 0.7 ---------------------------------------------------------------------------------------------------------------------------- 1 I I 1 
                    Pearson's chisquared •t • 

     0.6 Nair's location test • x • e 
               Nair's dispersion test .0. •9 

          The cumulative chisaquared -0— o p     0
.5 The Q test $ —c p• 

                        A• •Q   0.4 .~.'•• 
Power•~ Q 

   0.3 .i\i...•9 

           0.2 ,00,0„S,' 

           0.1-, -• 
                      e• 

  0 1 II 11  
      20 4060 80100 

                       Sample sizes n2 (i = 1,2)

Figure 2: Estimated powers of the Q test, Pearson's test, Nair's location and 
dispersion tests and the cumulative chisquared test when the distributions in 
Table 3 are used for the population distributions.

 0.55 ----------------------------------------------------------------------------------------------------------11i1 1 
                    Pearson's chisquared •0• P 

0.5 Nair's location test x . 

0.45  Nair's dispersion test •^• •a.              Th
e cumulative chisaquared -e—6•  • 

    0.4 The Q test 4— . •                                                                  le .• 

0.35 9 • 

Power 0.3 e 

• 0.25 o 

0.2 9 

 0.15 "     e
xx. 

0.1 . .. x 
... 

       q•.xx.x. 

 0.05 '-----------------------------------------------------------------------------------------------------------I'I' 
      20 406080100 

                       Sample sizes n; (i = 1, 2)

Figure 3: Estimated powers of the Q test, Pearson's test, Nair's location and 
dispersion tests and the cumulative chisquared test when the distributions in 
Table 4 are used for the population distributions.
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and uniform vs. concave type, respectively, and also Table 5 presents the distributions 

of the convex vs. concave type. The powers assessed are plotted in Figures 2, 3 and 4. 
Figures 2 and 4 show that the Q test is superior to Pearson's chisquared test, Nair's 
location and dispersion tests and to the cumulative chisquared test. Figure 3 shows 
that the Q test is superior to Pearson's chisquared test, Nair's location test and the 
cumulative chisquared test, but it is inferior to the Nair's dispersion test.

Table 5: Convex type vs. Concave type 
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Figure 4: Estimated powers of the Q test, Pearson's test, Nair's location and 

dispersion tests and the cumulative chisquared test when the distributions in 
Table 5 are used for the population distributions.

   We carried out many simulation studies using various cell probabilities other than 
those given in Tables 3, 4 and 5. General implication we obtained is that so long as 
testing the distributions of uniform vs. convex type, and convex vs. concave type are 
concerned, the Q test is in many cases superior to the Pearson's test, Nair's location and 
dispersion tests, and to the cumulative chisquared test. For testing the distributions 

of uniform vs. concave type the Q test is also better in many cases than the other 
chisquared tests.
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