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BAHADUR REPRESENTATION OF SAMPLE 
 CONDITIONAL QUANTILES BASED ON 

SMOOTHED CONDITIONAL EMPIRICAL 
     DISTRIBUTION FUNCTION*

By 

K.L. MEHRA, Y.S. Rama KRISHNAIAH** and M. Sudhakara RAO~

                    Abstract 

   Let {(X1, Y1) : i = 1, 2, ... ; be a sequence of stationary independent 
random vectors in :71(2) with a continuous distribution, and let G.,(•) denote 
the conditional distribution function of Y1 given X, = x. In this paper, 
Bahadur's almost sure representation for the sample conditional quantile 
G,,„V), 0 < i. < 1, is established, where G,,., is a smoothed (rank nearest 
neighbor or the NadarayaWatson type) estimator of G,-. Such representations 
arc useful in the study of asymptotics of functionals of conditional quantiles.

1. Introduction 

   Let {(Xi, Y1), i = 1, 2, ...) be a sequence of independent identically distributed 

random vectors with common continuous distribution function (d.f.) H and marginal 
d.f.'s F and G, respectively. Further, let G, denote the conditional d.f. of Y given X = 
x E2= ~R~ = (real line) and, for each A, 0 < n, < 1, let q.r(A) = G1 (A) = inf {y E 

G.r(y) > A}, the Ail' quantile of Gr. Consider the smoothed conditional empirical d.f. 
defined by 

G,,X(y) (na„)'(t„(x))-I W„(a,r'(Fa(x) )71) (1.1) 

1 _ (a„t„(x))-' 
J J W„((F„(x) – F„(u))Ia,,,y – v)ddH„(u, v), 

–~ < y < x , where H„(x, y) = n-' E7=i I~x<.r,Y ~~~ F„(x) = n-1 ~~'_~ I~x~.r~, {W„} is 
a "Heaviside” sequence as defined in Section 3 of Mehra, Rama and Rao [5] (hereafter 
abbreviated to MRR[5]) and {a„} is a bandwidth sequence (a„ , 0 but na„ as 
n — x). In this paper we shall establish a pointwise Bahadur [1] type almost sure 
representation for the sample Ath conditional quantile
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G (A)=inf{y:G,,,(y) A},0<A<1, (1.2) 

corresponding to the "smoothed" conditional empiricaldistributionfunction (s.c.e.d.f.) 
G,,,defined by (1.1) and its NadaryaWatson counterpartG;,t='(A), 0 < A < 1 (see 
MRR [5] Section 1). 

   For unconditional unsmoothed sample quantile G„-'(A), 0 < A < 1, corresponding 
to the e.d.f. G„(y), Bahadur [11 showed that if g(G-'(A)) > 0 and g' exists and is 
bounded in a neighbourhood of G-'(A), then as n x, for each fixed A, 0 < A < 1, 
with probability one 

G,,'(A) — G-1(A) = —[g(G'(A))]'[G„(G-'(A)) — A)] 

                     + 00-1(log n)7(1og log n)q)(1.3) 

(see also Kiefer [3]). Mack [4] extended theabove a.s. representation result to sample 
quantilesG,r'(A) based on smoothed e.d.f. G„(see [4] Theorem pp. 187-188), but with 
the order term 0(n-q(log n)l-) converging to zero at a slightly slower rate as n --> x. 
In order to establish a similar a.s. representation for the conditional quantile (1.2) 

(Theorem 3.1. below), we need, in addition to Theorem 3.1 of MRR[5], some results 
regarding the oscillations of theG„ . These results are given in Section 2. The main 
result along with some remarks are given in Section 3. In order to avoid repetition, we 
employ the same notation and assumptions as used in MRR[5] and refer to the 
arguments therein whenever they help to shorten the proofs. Unlike as in MRR[5], the 
results of this paper are established explicitly only for the case m = 1; the general case 
m > 1 can be dealt with using similar arguments and the results of MRR[5] for the case 
m > 1.

2. Preliminary Results 

   In this section, we shall prove two lemmas which are essential for the proof of the 

main result Theorem 3.1: Lemma 2.1 gives the a.s. rate of convergence of the smoothed 

conditional quantile G „(A) to 1(A) and Lemma 2.2 pertains to the oscillation 
behaviour of the conditional empirical process. G„ ,(A), 0 < A < 1. Let A (F) denote 
the support of F. 

   LEMMA 2.1. Suppose that, in addition to the assumptions of Theorem 3.1(a) of 
MRR[5], b,2,, = o(z„), where {b,,} is defined as in assumption A.111(iv) of MRR[5]. Then 
for each A, 0 < A <1 and each fixed x E A (F), 

[6 r,_r(A) Gx'(11)] = O(rii)(2.1) 

with probability one, as n ---> x, where -O-„I(A)  is defined by (1.2) and r„ = 
(log an-1):'. 

   PROOF. First note that for each A, 0 < A < 1, and E > 0 

P U {GI<X'(A) G'(A) Erkli 
k�11
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=P U {ckt(q,(A)+Erk)<a., +P U{ck .,(qr(A)—Etk)>A) 
   k>,rk>n 

      = P U { Gkk (u k) A) + P U {a k r(u k) -� A) ,(2.2) 
k-11k�n 

where we have set q.t(A) = = qt(A) + E1„ and u,7 = q.,(A) – Er„. Now for 
the second term in (2.2), we obtain from (3.2) that WOLG (see (3.12a) of MRR[5]), 

P U {Gkt(uk) � A} = P U {tk(x)(Gk.r(uk) Gk(uk )) > tk(x)(A G.,(uk ))} 
k?nk?-1r 

P U { I Jk l (uk) E(Jk l (uk )) (tk l (x) 1)1 > (A G,(uk ))/21 
k�1r 

              3 + P U E (Jkj(y) + tkj(x)) > ((A Gx(uk ))/2)EJk I (uk) } , (2.3) 
    .~ =2         k _1r~ 

where r„ = nla,-,'(loga,7 1)' and t„(x) = t„1(x) + t„,(x) + t„3(x) stands for the Taylor's 
expansion similar to that for v„.x(y) in (3.2) of MRR[5]. Now note that, for the RHS 
expressions in the preceding probabilities in (2.3), we have by the mean value theorem, 
for some 4„.t lying between Gk 1(A) and (G 1()L) – Er„), 

rn 1 [A G.Y(ulr )]rO 1[Gt(G-t 1(A)) Gv(G-Y 1(A)Ern)] 
                                  = EJ t(Atr.t) 

-~ E9t(Gx 1(A)) > 0, (2.4) 

as n --> x, and further from (3.13) and (3.15) of MRR[5] and the additional assumption 
b,'`, = 6(r„), that 

E[Jn1(un )] = Q(r„),(2.5) 

as n --> ac. From (2.4) and (2.5), it follows by the arguments used in the proof of 
Theorem 3.1, from (3.16) to (3.19), of MRR[5] that the first probability in (2.3) is 
dominated by 

E P[iJkl(uk) – kl(uk) (tkl(x) – 1)1 > (EI2)rkgx(Gx 1(A))] 
k?n 

c1 E [k-2], 0, (2.6) 
k?n 

as n —> DC above is a positive constant). Also the second probability in (2.3) goes to 
zero by (3.24) of MRR[5](cf. Lemma 3.1). Thus, in view of (2.3) and (2.6), the second 
probability P[Uk,-„{Gkt(uk) >_ AN on the right of (2.2) — 0, as n –> x. By following 
parallel arguments, one can similarly show that the first term in (2.2) 

P U { Gkz(uk) A)  0,(2.7) 
k?n 

as n — x. The proof of the Lemma accordingly follows from (2.2) and the standard a.s.
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convergence criterion. ^ 

_COROLLARY 2.1. Under the conditions of Lemma 2.1, for each A, 0 < A < 1, 
G,7,l(A) is a strongly consistent estimator of (MX) = G; i(A), as n — x. 

   The following lemma gives the order of magnitude of oscillations of the conditional 
empirical process based on G„ x(y), y E 2k. 

   LEMMA 2.2. Suppose the conditions of lemma 2.1 hold. Then, for each A, 0 < A < 
1, and any fixed x E A(F) and constant c > 0, we have with probability one 

           sup I G„x(y) — G„r(q.,(A)) — Gr(y) + A{ = o(r '2), (2.8) 
                      q.(%.)1,„ 

as n x, where r„ is as defined in Lemma 2.1. 

   PROOF. For each fixed A, 0 < A < 1, and x E A(F), consider the real numbers rl,,, 
defined by 

Tim =q(~,)+rr,,r=0,±1, ...±d„, (2.9) 

where c > 0 is a constant,r= _cr~12, d„ =[t,']+ 1, and [.] stands for the integral part. 
                  G Then by the monotonicity of„ _r and G_Y, we have for any y E Ir = hr„, 1](r+i)„], 

Gzzx('/rzz) G.Y(7/(r+l)zz) C `-'z,X(y) Gx(J) 

                                                       G„x01(r-F —Gx(r1r„), 

which yields 

                supI G,/x(y) — GY(y) — G„x(gx(A)) + AI 

                 maxG,/x(7/r„)Gx(Tir,,)  G + Al 
                        Irl -d„ 

              + max IGY(7/(r+t)„) — Gr(rlr,z)J. (2.10) 
d„<r<d„ l 

By assumption A.I(ii), the density gr is bounded (in some neighborhood of q_r(A)) so 
that for sufficiently large n the second term on the R.H.S. in (2.10) is bounded by r t. It 
thus suffices to show that the first term on the R.H.S. of (2.10) is dominated by an order 
term given in the assertion of the lemma. For this, note that from (3.2) of MRR[5] we 
have

— t,,(x)[G,zx('lr,z) G,zx(gx(A)) ` x(Tir,z) + A] 

[J,zl(•/r,z) — ”„,(q,(A))] + [",z2(7/r„)  ",z7(q.Y(A))] + [J,z3('/r,z)  ",z3(q.Y(A))] 
   = [E„1 + E„2 r„31 (say).(2.11) 

We first deal with the terms E„ 2 and r„3. Now as in Lemma 3.1 of MRR[5], we have 
from (3.4), (3.5) and (3.6) of MRR[5], with probability one and uniformly in r, for 
some constants C5 and C6
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 IEn3 En31 + En32 
C5n-'a,r  log a„-' (log log n)' + Con-' a,T ' log a,7 1 

= (n ' a,71 log a„ a,7 ' klog log n) + Con 1a„-t (log a,7 
                                                    (2.12) 

as n --> cc, under the assumption A.IV(ii). Now splitting E„2, on exactly the same lines 
as for Ji2 in (3.8) of MRR[5], we obtain 

Ei2 = En21 + En22 (say) ,(2.13) 

where, in view of boundedness of W„ and W;, (cf (3.9) of MRR[5]), we have uniformly 
in r 

I En22I < C7(n-'a„' log a,7 1)3/4114'a/73'14 (log log nAlog a,7 1) 1 
a.s. 

               = C7r /2(n—'a,, 3)1/4[(loglogn)2/loga,~')]t/4 

     = Q(r '2),(2.14) 

as n-> cc, in view of assumptions A.IV(ii); further on the lines of (3.10) of MRR[5], we 
have 

En211 c r„ 1 Wn(')(t) I J [ V' (t, 1rn v) Vi,''° (t, qx(A) v)]dG.r(v) dt 
                          a.s. A„ 

+ (fIW')(t)Idt)IGiriz)  —  I 
+ ff1 W;,'.o)(tq,-„ v)  W;,'.t,)(t147;,11*                            , qx(A)  v) ')*(t)(G.r(T1r„)A)I 

                  A„ 

dI Grjr)(v) — Gx(v)I dt ,(2.15) 

where x„(t) = F -1(F (x)  a„t) and V;i''°1(t, s) = 147;1-111(t, s)I W (') (t). Now by using 
integration by parts for the inside integral in the first term of (2.15), the assumption 
A.III(v) and the boundedness of W„, W;, and gK, it follows easily that the first two 
terms in (2.15) are, uniformly in r, O(r); also by using Taylor's expansion and the 

preceding boundedness assumptions, it follows that the integral in the last term in 
(2.15) is O(a„) uniformly in r, as n  x. In view of the preceding considerations and 
the assumption A.III(iv), we obtain from (2.15) that, as n ---> x, E„,1 = O(r312) with 
probability one. This coupled with (2.14) yields 

E„2 = O(7-3(2),(2.16) 
a.s. 

uniformly in r, as n  x. Now to deal with the first term, we follow steps similar to 
those in the proof of Theorem 3.1 (a) of MRR[5]: 

    Now E„1 = n-1 17_1 Zn„ with 

Z r, = a,7' [W„((F(x)  F(X1))1an, 11r„ — Y1)  W„((F(x)  F(X,))1an, qx(A)  Y,)
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 W,;((F(x)  F(Xi))/a„)(Gt(i1r„)  A)1,(2 .17) 

so that using transformation F(x)  F(u) = a„t and integration by parts in below, we 
obtain (for notational convenience, we have set qr = qr(A)) 

E[Z ri] _ JJ[W,,(t. qr  v + rr;,)  W„(t, q.  v)  W„(t)(G.r(qr + rr„) 
            G,(q .r))]dG,„(r)(v)dt 

= 1  f[J(w,,(t, q,  v + rr„)  W„(t, q..  v))dG„„(0(v) dt 
            [Gt(qr + rr„)  Gr(0] 

= f[G.Y„(r)(qr  v + rr„)  Gr„(r)(qr  v)]dW„(t, v) dt 
           [Gt(q„ + rr„)  Gr(q_x)] 

         = rr;;I J{q,„(r)(q_r  v)  gz(qti)rdW„(t,v) dt + O(r2r,;2), (2.18) 
where in (2.18) we have used the boundedness of g'„ and the proximity of x„(t) = 
F  1 (F (x)  a„t) to x for -1 < t 1 and n sufficiently large . Further, employing Taylor's 
expansion for x„(t) for n sufficiently large and using assumptions A .I, we obtain from 
(2.18) that for some constant C8 > 0 

IE(Z„')1 Cs r„ f [9.r(q,  v)  9„(q„)]dfn,;(v) + 0(r„a„) + 0(r,) 
    = a(r 12)(2 .19) 

as n x, in view of again the boundedness of gY, arguments similar to those 
of (3.14) to (3.16) of MRR[5] and the assumption A.III(iv), which implies that a „ = 
r,[na (loga,r 1) 1]1/4 = 6(r;',), provided na stays bounded as n -> x . Also similar 
calculations yield 

a„EZ„i = JJ[W,,(t q.Y  v + rr;;)  W„(t, qr  v) 
         W„(t)(Gr(q .r + rr„)  G.V(qV)12dG,„(0(v)dt 

= f{J[(w(t, q_Y  v + rr„)  W„(t, qY  v))2 
       + W,,'(t)gr(q .r + b„rr,)r'r,, 

          2W„(t)g,(qr + 6„rti,)rr„(W„(t, q,,  v + rr,,)  W„(t, q.r  v))] 

dG_r„(r)(v) dt 

f[J(w,,(t. qr  v + rr„)  W„(t, q.Y  v))2dG-Y„(r)(v) i dt



Bahadur Representation of Sample Conditional Quantiles105

       +  Cl  W,,'`(t)dt)  r'r,2gY(q.r + 8„rrn') 
        + 21r1r„9.r(q.r + O„rr„) JW(t) J[W,1(t. 9r  v + rr„) 

          W„(t, qr  v)]dGY„(,)(v) dt 

                           J[J(w11(t, q  v + rr)  W„(t, 9r  v))2dG-r (r)(v) dt 
  + O(r„),(2.20) 

where the order term holds uniformly in r, as n --› x. Now assume momentarily that r 
 0; then the integral within the square bracket in the last R.H.S. expression in (2.20) 

does not exceed a constant times 

J[W,1(t, q  v + rr:,)  W„(t, qY  v)]dGY„(,)(v) 

J [Gx„(0(qr  v + rrt)  G,„(,)(q.Y  v)]dW„(t, v) 

              = rr;,Jg-Y„(0(q.t  v + 5„rrt)dW„(t, v), (2.21) 
where in (2.21), we have used integration by parts and the standard mean value 
theorem. From (2.20) and (2.21), one immediately obtains for some constant Cy > 0 

a„EZ ,1 Cyr„ J[JdW,z(t. v) dt + 0(r,1) 
       = 0(r„)(2.22) 

uniformly in r, as n --› x. The case r < 0 can be dealt with in a similar manner. Now 
using the Bernstein inequality as in Theorem 3.1 of MRR[5], we obtain from (2.22) 

   —1 l~~-E2nt PnE[Z~iEZ„i]>ET;,3i2<_2 exp ----------------------------1-1 
i=1C1a„r„ + (213)a„Er,r3i2 

                                                E'`loga,~1  

 1 

                            = 2 exp 
C 2/31~'(2.23) 

                                        + 

                                          ()Er„ 

for E > 0 and some positive constant C1. Using (2.19) and arguing again as in the 

paragraph immediately after (3.18) of MRR[5], we obtain from (2.23) that, for some 
positive constants C2, 

P[max JJ„1(O1,„)  J„1(qx(A))1 � Er''`] 
2d„n-2 C7n-714 

which in view of BorelCantelli lemma implies that



106K.L.  MEHR.A Ct al.

                 max in  J„i(q.v(A))1 = 0(r;;"2)(2.24) 

with probability one, as n -> s. Since clearly, using mean value theorem, max t G., 
(r1(,.+ i )„)  G,-(r1,.,,) 1 : -d„ rd„} = O(r 2) as n — cc, (2.24) coupled with (2.10) to 
(2.12), (2.16) and the fact that t„(x) — 1, with probability one, as n -> Dc, establishes 
(2.8). The proof is complete. ^

3. The Main Result 

   We shall now state the main result of this paper concerning the almost sure 
representation of the Aidr conditional quantile G,-„1(A) (for fixed 0 < A < 1 and x E 
A(F)) defined by (1.2). 

    THEOREM 3.1. Under the assumptions of Lemmas 2.1 and 2.2, for each fixed A, 
0 < A < 1 and x E A(F), we have with probability one 

,7,1 (A) = Gr'(A) + [A  „,(G.~='(A))]y,='(A)) + 00 71,12), (3.1) 

as n  X, where r„ = n ~a,,'(loga,~ ~)'. 

    PROOF. From Lemmas 2.1 and 2.2, we have at once 

G„,(c,~ .r(~))  c„t(G.Y'(A)) = (G,, .Y'(A)  G,='(AN (G .'(A)) + o(r) + °( T;3112) 
s. 

where r„ = n 12a,,41og a Y, as n  x, which yields (3.1) by rearrangement of the 
equality. The proof is complete ^ 

   The following corollary is an immediate consequence of Theorem 3.1 above and 
Theorem 3.1 of MRR[5]. 

    COROLLARY 3.1. Under the conditions of Theorem 3.1 above, 6,7,1 (,1) is asymptoti
cally normal i.e., for each A, 0 < A < 1, (na„)t/z[G~i(A)  Gr 1(A)] N(0, ar(A)) 
(or, N(b.t(G.Y='(A)), uY(A)) if na,'„+3 — 0) as n -> x, where oY(A) = A(1  A)(f k;(t)dt)I 
q,(G; '(A)) with the kernel function k1, b.Y(•) and 0 as given in Corollary 3.1 of MRR[5]. 

   REMARK 3.1. It is worth noting that in our proof we have made no assumption 
regarding continuity or differentiability of the function W„(t, s) in the second argument. 
Consequently the assertions of Theorems 3.1 and Corollary 3.1 also cover the 
"unsmoothed” conditional empirical distribution and quantile functions considered by 
Stute [6] and Hardle et al. [2]. Further, the considerations of Remark 3.3 of MRR[5] 
will also apply here. 

   REMARK 3.2. The results of Lemmas 2.1 and 2.2, Theorem 3.1 and Corollary 3.1 
concerning the RNN estimator G,-,_Y1(A) also remain valid, under the same conditions, 
for the NadarayaWatson type estimator G;,,-1(A) of G ' (A), 0 < A < 1 defined in 
Section 1 of MRR[5]. The proofs of these results for the NadarayaWatson type 
estimators  both smoothed and unsmoothed  are in fact contained within the
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corresponding ones for the RNN estimators. This remark covers the assertions of 

Remark 3.1 as well.
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