PROPERTIES OF SAMPLES FROM DISTRIBUTIONS CHOSEN FROM A DIRICHLET PROCESS

Yamato, Hajime Department of Mathematics, Faculty of Science, Kagoshima University

https://doi.org/10.5109/13358

出版情報:Bulletin of informatics and cybernetics. 21 (1/2), pp.77-83, 1984-03. Research Association of Statistical Sciences バージョン: 権利関係:

PROPERTIES OF SAMPLES FROM DISTRIBUTIONS CHOSEN FROM A DIRICHLET PROCESS*

By

Hajime YAMATO**

Abstract

The joint distributions of samples from distributions chosen from a Dirichlet process with nonatomic parameter are given and the conditional distributions of the samples are derived, by the method different from Yamato [4]. By making use of the above result, the expectations of functions of the samples are evaluated.

1. Introduction

The Dirichlet process was introduced by Ferguson [2] for Bayesian nonparametric inference. It is well-known that a distribution chosen from a Dirichlet process is discrete with probability one. The purpose of this paper is to show properties of samples from distributions chosen from a Dirichlet process with nonatomic parameter by the method different from Yamato [4] and to give its application. The author assumes that readers are familiar with the Dirichlet process. For the definition of the Dirichlet process, see Ferguson [2].

Let \mathbf{R} be the real line and let \mathbf{B} be the σ -field of Borel sets. Let α be a nonnull finite measure on (\mathbf{R}, \mathbf{B}) . $Q(\cdot)$ denotes $\alpha(\cdot)/\alpha(\mathbf{R})$ and M denotes $\alpha(\mathbf{R})$. We list some properties of the Dirichlet process for the later use.

LEMMA 1 (Ferguson [2]). Let P be a Dirichlet process on (R, B) with parameter α and let X be a sample of size 1 from P. Then for $A \in B$

$$P(X \in A) = Q(A)$$
.

Let X_1, \dots, X_n be a sample of size *n* from a distribution **P** chosen from a Dirichlet process on (\mathbf{R}, \mathbf{B}) with parameter α . Then, as stated in Korwar and Hollander [3], we can view the observations X_1, \dots, X_n as being obtained sequentially as follows: Let X_1 be a sample of size 1 from **P**; having obtained X_1 , let X_2 be a sample of size 1 from the conditional distribution **P** given X_1 ; and so on until X_1, \dots, X_n are obtained. Thus by Lemma 1 we have the following lemma, which is essentially similar to the statement of Zehnwirth [5, p. 16].

LEMMA 2. Let **P** be a Dirichlet process on (\mathbf{R}, \mathbf{B}) with parameter α and let X_1, \dots, X_n be a sample of size n from P. Then we can view X_1 has the distribution Q

^{*} This research was partly supported by the Grant-in-Aid for Scientific Research Project No. 58540117 from the Ministry of Education.

^{**} Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima 890, Japan.

Η. ΥΑΜΑΤΟ

and for $k=1, \dots, n-1$ the conditional distribution X_{k+1} given X_1, \dots, X_k is given by $\left(MQ(\cdot) + \sum_{j=1}^k \delta_{X_j}(\cdot)\right) / (M+k)$, where for $x \in X$, δ_x denotes the measure on (\mathbf{R}, \mathbf{B}) giving the mass one to the point x.

In Section 2, we shall give the joint distribution of samples from distributions chosen from a Dirichlet process with nonatomic parameter, by the method different from Yamato [4]. Furthermore, we shall derive the conditional distribution of the samples, which is essentially similar to Theorem 3.1 of Yamato [4].

We shall use the above result to evaluate expectation of functions of the samples for nonatomic parameter in Section 3.

2. Properties of Samples

Let R be the real line and let B be the σ -field of Borel sets. Let α be a nonnull finite measure on (R, B) and nonatomic. $Q(\cdot)$ denotes $\alpha(\cdot)/\alpha(R)$ and M denotes $\alpha(R)$. Let X_1, \dots, X_n be a sample of size n from a distribution P chosen from a Dirichlet process on (R, B) with parameter α . We can consider that the sample X_1, \dots, X_n is obtained sequentially, as stated in Section 1. For nonnegative integers $m(1), \dots, m(n)$ with $\sum_{i=1}^{n} im(i) = n$, let $(X_1, X_2, \dots, X_n) \in C(m(1), \dots, m(n))$ be the event that there are m(1) distinct values of X that occur only once, m(2) that occur exactly twice, $\dots, m(n)$ that occur exactly n times. We denote the sample (X_1, \dots, X_n) with $(X_1, \dots, X_n) \in C(m(1), \dots, m(n))$ by $(X_{11}, \dots, X_{1m(1)}, X_{21}, X_{21}, \dots, X_{2m(2)}, X_{2m(2)}, \dots, X_{n1}, \dots, X_{n1})$. Note that if $m(n) \ge 1$ then $m(1) = \dots = m(n-1) = 0$ and m(n) = 1. If m(1) = 2 and $X_s \neq X_t$ with s < t are different from the remainders, then $X_{11} = X_s, X_{12} = X_t$. Suppose that m(j) = m(1 < j < m). If $X_{s(1)} = \dots = X_{t(1)}, X_{s(2)} = \dots = X_{t(2)}, \dots, X_{s(m)} = \dots = X_{t(m)}$ with $s(1) < s(2) < \dots < s(m)$ and $s(i) = \min(s(i), \dots, t(i))$ $(i=1, \dots, m)$ and the number of each equal X's are j, then $X_{j1}, X_{j2}, \dots, X_{jm(j)}$ are equal to $X_{s(1)}, X_{s(2)}, \dots, X_{s(m)}$ in that order. The following lemma is essentially similar to Proposition 3.2 of Yamato [4].

LEMMA 3. For any $A_{ij} \in \mathbf{B}(i=1, \dots, n, j=1, \dots, m(i))$,

$$P(X_{ij} \in A_{ij}(i=1, \dots, n, j=1, \dots, m(i)), (X_1, \dots, X_n) \in C(m(1), \dots, m(n)))$$

= $n ! M^{\sum_{i=1}^{m} m(i)} \prod_{i=1}^{n} \prod_{j=1}^{m(i)} Q(A_{ij}) / M^{(n)} \prod_{i=1}^{n} (m(i) ! i^{m(i)}),$ (2.1)

where $M^{(n)} = M(M+1) \cdots (M+n-1)$.

Before proving Lemma 3 we shall prepare Lemma 4. For nonnegative integers $m(1), \dots, m(n)$ with $\sum_{i=1}^{n} im(i) = n$, let $(X_n, X_{n-1}, \dots, X_1) \in C_0(m(1), \dots, m(n))$ be the event that $X_n, X_{n-1}, \dots, X_{n-(m(1)-1)}$, in that order, are unique in the sample and occur only once; that $X_{n-m(1)}, \dots, X_{n-(m(1)+2m(2)-1)}$ occur twice each in the order $X_{n-m(1)} = X_{n-m(1)-1}, \dots, X_{n-(m(1)+2m(2)-2)} = X_{n-(m(1)+2m(2)-1)}$ and etc. We use the similar notations to Antoniak [1] with respect to C and C_0 . We denote the sample X_n, X_{n-1}, \dots, X_1 with $(X_n, \dots, X_1) \in C_0(m(1), \dots, m(n))$ by $Y_{11}, \dots, Y_{1m(1)}, Y_{21}, Y_{21}, \dots, Y_{2m(2)}, Y_{2m(2)}, \dots$. Similarly we denote the realization of the above sample, x_n, x_{n-1}, \dots, x_1 , by $y_{11}, \dots, y_{1m(1)}, y_{21}, y_{2m(2)}, \dots$.

Properties of samples from distributions chosen from a dirichlet process

LEMMA 4. For any $A_{ij} \in \mathbf{B}(i=1, \dots, n, j=1, \dots, m(i))$

$$P(Y_{ij} \in A_{ij}(i=1, \dots, n, j=1, \dots, m(i)), (X_n, \dots, X_1) \in C_0(m(1), \dots, m(n)))$$

= $\prod_{i=1}^n ((i-1)! M)^{m(i)} \prod_{i=1}^n \prod_{j=1}^{m(i)} Q(A_{ij}) / M^{(n)}.$ (2.2)

PROOF. At first we shall prove the lemma for n=2. Two non-negative integers (m(1), m(2)) with m(1)+2m(2)=2 are (2, 0) and (0, 1). Let X_1 , X_2 be a sample of size 2.

For $(X_2, X_1) \in C_0(m(1), m(2))$ with m(1)=2 and m(2)=0, we have $Y_{11}=X_2$, $Y_{12}=X_1$. For any $A_1, A_2 \in B$, from Lemma 2 we have

$$P(Y_{11} \in A_2, Y_{12} \in A_1, (X_2, X_1) \in C_0(2, 0))$$

= $P(X_2 \in A_2, X_1 \in A_1, X_2 \neq X_1)$
= $\int_{A_1} P(X_2 \in A_2, X_2 \neq x_1 | x_1) dQ(x_1).$

Since from Lemma 2, given $X_1 = x_1$, X_2 has the distribution $(\alpha(\cdot) + \delta_{x_1}(\cdot))/(M+1)$ and α is nonatomic, we have

$$P(Y_{11} \in A_2, Y_{12} \in A_1, (X_2, X_1) \in C_0(2, 0))$$

= $\int_{A_1} \alpha(A_2)/(M+1)dQ(x_1) = Q(A_1)\alpha(A_2)/(M+1)$
= $M^{m(1)}Q(A_1)Q(A_2)/M^{(2)}$ with $m(1)=2, m(2)=0$.

For $(X_2, X_1) \in C_0(m(1), m(2))$ with m(1)=0 and m(2)=1, we have $Y_{21}=X_2=X_1$. For any $A \in B$, from Lemma 2 we have

$$P(Y_{21} \in A, (X_2, X_1) \in C_0(0, 1))$$

= $P(X_2 = X_1 \in A) = \int_A P(X_2 = x_1 | x_1) dQ(x_1) = \int_A 1/(M+1) dQ(x_1)$
= $M^{m(2)}Q(A)/M^{(2)}$ with $m(1)=0$, $m(2)=1$.

Thus the lemma holds for n=2. Next we assume that the lemma holds for $n\geq 2$ and show that it holds for n+1. We denote the sample X_{n+1}, X_n, \dots, X_1 with $(X_{n+1}, X_n, \dots, X_1)\in C_0(m'(1), \dots, m'(n+1))$ and $\sum_{i=1}^{n+1} im'(i)=n+1$ by $Y'_{11}, \dots, Y'_{1m'(1)}, Y'_{21}, Y'_{21}, \dots, Y'_{2m(2)}, Y'_{2m'(2)}, \dots$ For a sample of size n+1 we have two cases: The one is that X_{n+1} occurs only once and the other is that X_{n+1} equals to the previous observation.

For the case that X_{n+1} occurs only once, we have $m'(1) \ge 1$, m'(n+1)=0 and for $A_{ij} \in \mathbf{B}(i=1, \dots, n, j=1, \dots, m'(i))$

$$p_1 = P(Y'_{ij} \in A_{ij} (i=1, \dots, n, j=1, \dots, m'(i)), (X_{n+1}, \dots, X_1) \in C_0(m'(1), \dots, m'(n+1))$$
$$= \int_{D_1} P(X_{n+1} \in A_{11}, X_{n+1} \neq x_1, \dots, x_n | x_1, \dots, x_n) dH(x_1, \dots, x_n),$$

where $H(x_1, \dots, x_n)$ is the joint distribution of X_1, \dots, X_n and

$$D_1 = \{(x_1, \dots, x_n) | (x_n, \dots, x_1) \in C_0(m(1), \dots, m(n)), m(1) = m'(1) - 1, m(i) = m'(i)(i = 2, \dots, n), y_{1,j-1} \in A_{1j}(j = 2, \dots, m'(1)), m(i) = m'(i)(i = 2, \dots, n), y_{1,j-1} \in A_{1j}(j = 2, \dots, m'(1)), m(i) = m'(i)(i = 2, \dots, n), m(i)(i = 2, \dots, m'(i)), m(i)(i = 2, \dots, n), m(i)(i = 2, \dots, m'(i)), m(i)(i = 2, \dots, n), m(i)(i = 2, \dots, m'(i)), m(i)(i = 2, \dots, m), m(i)(i = 2, \dots, m'(i)), m(i)(i = 2, \dots, m), m(i)(i = 2, \dots, m'(i)(i = 2, \dots, m), m(i)(i = 2, \dots, m'(i)(i = 2, \dots, m'(i))), m(i)(i = 2, \dots, m'(i)(i = 2, \dots, m)), m(i)(i = 2, \dots, m'(i)(i = 2, \dots, m)), m(i)(i = 2, \dots, m'(i)(i = 2, \dots, m'(i)(i = 2, \dots, m)), m(i)(i = 2, \dots, m'(i)(i = 2, \dots, m'(i)(i = 2, \dots, m'(i))), m(i)(i = 2, \dots, m'(i)(i = 2, \dots, m'(i)(i = 2, \dots, m'(i)(i = 2, \dots, m'(i))))$$

Η. ΥΑΜΑΤΟ

$$y_{ij} \in A_{ij}(i=2, \dots, n, j=1, \dots, m'(i))$$

Since from Lemma 2, given X_1, \dots, X_n, X_{n+1} has the distribution $\left(\alpha(\cdot) + \sum_{i=1}^n \delta_{X_i}(\cdot)\right) / (M+n)$ and α is nonatomic,

$$p_{1} = \int_{D_{1}} \alpha(A_{11})/(M+n)dH(x_{1}, \dots, x_{n})$$

= $[\alpha(A_{11})/(M+n)]P((X_{1}, \dots, X_{n}) \in D_{1})$
= $[\alpha(A_{11})/(M+n)]P(Y_{1, j-1} \in A_{1j}(j=2, \dots, m'(1)),$
 $Y_{ij} \in A_{ij}(i=2, \dots, n, j=1, \dots, m'(i)),$
 $(X_{n}, \dots, X_{1}) \in C_{0}(m'(1)-1, m'(2), \dots, m'(n))).$

Since we assume that the lemma holds for n and m'(n+1)=0,

$$p_{1} = \left[\alpha(A_{11}) / (M+n) \right] M^{m'(1)-1} \prod_{i=2}^{n} ((i-1)!M)^{m'(i)}$$

$$\times \prod_{j=2}^{m'(1)} Q(A_{1j}) \prod_{i=2}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{(n)}$$

$$= \prod_{i=1}^{n+1} ((i-1)!M)^{m'(i)} \prod_{i=1}^{n+1} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{(n+1)}. \qquad (2.3)$$

For the case that X_{n+1} equals to the previous observation, at first we consider the case of m'(n+1)=1 and next the case of m'(n+1)=0. In case of m'(n+1)=1 where X_1, \dots, X_{n+1} are all equal, for $A_{n+1,1} \in \mathbf{B}$ we have

$$p_2 = P(Y'_{n+1,1} \in A_{n+1,1}, (X_{n+1}, \dots, X_1) \in C_0(m'(1), \dots, m'(n+1)), m'(n+1) = 1)$$

=
$$\int_{D_2} P(X_{n+1} = x_n | x_1, \dots, x_n) dH(x_1, \dots, x_n),$$

where $D_2 = \{(x_1, \dots, x_n) | x_1 = \dots = x_n \in A_{n+1, 1}\}$. Since from Lemma 2 given X_1, \dots, X_n , X_{n+1} has the distribution $\left(\alpha(\cdot) + \sum_{i=1}^n \delta_{X_i}(\cdot)\right) / (M+n)$ and α is nonatomic,

$$p_{2} = \int_{D_{2}} n/(M+n) dH(x_{1}, \dots, x_{n})$$

= $[n/(M+n)]P(X_{n} = \dots = X_{1} \in A_{n+1, 1})$
= $[n/(M+n)]P(Y_{n1} \in A_{n+1, 1}, (X_{n}, \dots, X_{1}) \in C_{0}(m(1), \dots, m(n)), m(n) = 1).$

We assume that the lemma holds for n and therefore

$$p_{2} = [n/(M+n)]((n-1)!)MQ(A_{n+1,1})/M^{(n)}$$

= $(n!M)^{m'(n+1)}Q(A_{n+1,1})/M^{(n+1)}$ with $m'(n+1)=1$. (2.4)

Finally we consider the case that X_{n+1} equals to the previous observation and m'(n+1)=0. Since m'(1)=0, we suppose that there exists an integer k such that $2 \leq k \leq n$, $m'(1)=\cdots=m'(k-1)=0$, $m'(k)\geq 1$ and m'(n+1)=0.

For $A_{ij} \in \mathbf{B}(i=k, \dots, n, j=1, \dots, m'(i))$, we have

80

Properties of samples from distributions chosen from a dirichlet process

$$p_{3} = P(Y_{ij} \in A_{ij}(i=k, \dots, n, j=1, \dots, m'(i)), (X_{n+1}, \dots, X_{1}) \in C_{0}(m'(1), \dots, m'(n+1)))$$
$$= \int_{D_{3}} P(X_{n+1} = x_{n} = \dots = x_{n-k+2} | x_{1}, \dots, x_{n}) dH(x_{1}, \dots, x_{n}),$$

where

$$D_{3} = \{(x_{1}, \dots, x_{n}) | (x_{n}, \dots, x_{1}) \in C_{0}(m(1), \dots, m(n)), \ m(i) = 0$$

$$(i = 1, \dots, k - 2), \ m(k - 1) = 1, \ m(k) = m'(k) - 1$$

$$m(i) = m'(i)(i = k + 1, \dots, n), \ y_{k-1,1} \in A_{k1}$$

$$y_{k, j-1} \in A_{kj}(j = 2, \dots, m'(k)), \ y_{ij} \in A_{ij}(i = k + 1, \dots, n, j = 1, \dots, m'(i))\}.$$

By the similar argument to p_2 , we have

$$p_{3} = \int_{D_{3}} (k-1)/(M+n) dH(x_{1}, \dots, x_{n})$$

$$= [(k-1)/(M+n)]P((X_{1}, \dots, X_{n}) \in D_{3})$$

$$= [(k-1)/(M+n)]P(Y_{k-1,1} \in A_{k1}, Y_{k,j-1} \in A_{kj}(j=2, \dots, m'(k)),$$

$$Y_{ij} \in A_{ij}(i=k+1, \dots, n, j=1, \dots, m'(i)),$$

$$(X_{n}, \dots, X_{1}) \in C_{0}(0, \dots, 0, 1, m'(k)-1, m'(k+1), \dots m'(n)))$$

$$= [(k-1)/(M+n)[((k-2)!M)^{m'(k)-1} \prod_{i=k+1}^{n} ((i-1)!M)^{m'(i)}$$

$$\times Q(A_{k1}) \prod_{j=2}^{m'(k)} Q(A_{kj}) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij})/M^{(n)}$$

$$= \prod_{i=k}^{n} ((i-1)!M)^{m'(i)} \prod_{i=k}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij})/M^{(n+1)}$$
(2.5)

From the evaluations of p_1 , p_2 , p_3 , we know that the lemma holds for n+1 and thus proved it by induction.

PROOF OF LEMMA 3. Lemma 4 also holds for $(X_1, \dots, X_n) \in C_0(m(1), \dots, m(n))$. The number of ways that *n* observations X_1, \dots, X_n are permuted differently with $(X_1, \dots, X_n) \in C(m(1), \dots, m(n))$ and $\sum_{i=1}^n im(i) = n$ is $n! / \sum_{i=1}^n [m(i)! (i!)^{m(i)}]$. To multiply the right-hand side of (2.2) with $(X_1, \dots, X_n) \in C_0(m(1), \dots, m(n))$ by this number yields (2.1).

If we take $A_{ij}=\mathbf{R}$ for $i=1, \dots, n, j=1, \dots, m(i)$ in Lemma 3, then we have the following lemma which is found in Antoniak [1].

LEMMA 5. (Antoniak [1]).

$$P((X_1, \dots, X_n) \in C(m(1), \dots, m(n))) = n! M^{\sum_{i=1}^{n} m(i)} / M^{(n)} \prod_{i=1}^{n} (m(i)! i^{m(i)}) .$$

The following theorem is essentially similar to Theorem 3.1 of Yamato [4].

THEOREM 1. Given $(X_1, \dots, X_n) \in C(m(1), \dots, m(n))$, $X_{11}, X_{12}, \dots, X_{1m(1)}, X_{21}, X_{22}, \dots, X_{2m(2)}, \dots, X_{n1}$ are independent and identically distributed with the distribution Q.

PROOF. For any $A_{ij} \in \mathbf{B}(i=1, \dots, n, j=1, \dots, m(i))$, by Lemma 3 and 5 we have

Н. Үамато

$$\begin{split} P(X_{ij} \in A_{ij}(i=1, \cdots, n, j=1, \cdots, m(i)) | (X_1, \cdots, X_n) \in C(m(1), \cdots, m(n))) \\ = P(X_{ij} \in A_{ij}(i=1, \cdots, n, j=1, \cdots, m(i)), \\ (X_1, \cdots, X_n) \in C(m(1), \cdots, m(n))) / P((X_1, \cdots, X_n) \in C(m(1), \cdots, m(n))) \\ = \sum_{i=1}^n \prod_{j=1}^{m(i)} Q(A_{ij}). \end{split}$$

3. Expectation of Random Functionals

By the use of Theorem 1 we shall prove the following theorem (Yamato [4]) for nonatomic parameter α . Our method of proof is different from Yamato [4]. \mathbb{R}^n is the *n*-dimensional Euclidean space and \mathbb{R}^n is the σ -field of Borel subsets of \mathbb{R}^n for $n=2, 3, \cdots$.

THEOREM 2 (Yamato [4]). Let $h(x_1, \dots, x_n)$ be a real-valued measurable function defined on $(\mathbf{R}^n, \mathbf{B}^n)$ and symmetric in x_1, \dots, x_n . Let \mathbf{P} be a Dirichlet process on (\mathbf{R}, \mathbf{B}) with parameter α . Let X_1, \dots, X_n be a sample from \mathbf{P} . Then

$$Eh(X_{1}, \dots, X_{n}) = \sum^{*} \left[n ! M^{\sum_{1}^{n} m(i)} / M^{(n)} \prod_{i=1}^{n} (m(i) ! i^{m(i)}) \right]$$
$$\int_{\mathcal{X}^{\sum_{m}(i)}} h(x_{11}, \dots, x_{1m(1)}, x_{21}, x_{21}, \dots, x_{2m(2)}, x_{2m(2)}, \dots, x_{n1}, \dots, x_{n1}) \prod_{i=1}^{n} \prod_{j=1}^{m(i)} dQ(x_{ij}), \qquad (3.1)$$

provided all integrals of the right-hand side exist. Where \sum^{*} denotes the summation over all n nonnegative integers $m(1), \dots, m(n)$ satisfying $\sum_{i=1}^{n} im(i) = n$ and in the arguments of the integrand of the right-hand side x_{is} appears at exactly i times for $i=1, 2, \dots, n$ and $s=1, \dots, m(i)$.

PROOF. We give the proof for nonatomic parameter α . From Theorem 1, for nonnegative intergers $m(1), \dots, m(n)$ with $\sum_{i=1}^{n} im(i) = n$, given $(X_1, \dots, X_n) \in C(m(1), \dots, m(n))$, $X_{11}, \dots, X_{1m(n)}, X_{21}, \dots, X_{2m(2)}, \dots, X_{n1}$ are independent and identically distributed with the distribution Q. h is symmetric in x_1, \dots, x_n . Therefore we have

$$E[h(X_{1}, \dots, X_{n})|(X_{1}, \dots, X_{n}) \in C(m(1), \dots, m(n))]$$

$$=E[h(X_{11}, \dots, X_{1m(1)}, X_{21}, X_{21}, \dots, X_{2m(2)}, X_{2m(2)}, \dots, X_{n1}, \dots, X_{n1})|(X_{1}, \dots, X_{n}) \in C(m(1), \dots, m(n))]$$

$$=\int_{\mathcal{X}^{\Sigma m(i)}} h(x_{11}, \dots, x_{1m(1)}, x_{21}, x_{21}, \dots, x_{n}) \prod_{i=1}^{n} \prod_{j=1}^{m(i)} dQ(x_{ij}),$$
(3.2)

which exists for each *n* nonnegative integers $m(1), \dots, m(n)$ with $\sum_{i=1}^{n} im(i) = n$ by the assumption. Since by Lemma 5 for each *n* nonnegative integers $m(1), \dots, m(n)$ with

 $\sum_{i=1}^{n}im\left(i\right) \!=\!n,$

 $P((X_1, \dots, X_n) \in C(m(1), \dots, m(n))) = n! M^{\sum_{1}^{n} m(i)} / M^{(n)} \prod_{i=1}^{n} (m(i)! i^{m(i)}),$

taking expectation of (3.2) we have (3.1).

References

- [1] ANTONIAK, C. A.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 (1974), 1152-1174.
- [2] FERGUSON, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 (1973), 209-230.
- [3] KORWAR, R.M. and HOLLANDER, M.: Contributions to the theory of Dirichlet processes. Ann. Probability, 1 (1973), 705-711.
- [4] YAMATO, H.: Expectation of functions of samples from distributions chosen from a Dirichlet process, (in preparation).
- [5] ZEHNWIRTH, B.: Credibility and the Dirichlet process. Scan. Actuarial J., (1979), 13-23.

Communicated by S. Kano Received September 21, 1983