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PROPERTIES OF SAMPLES FROM DISTRIBUTIONS 

   CHOSEN FROM A DIRICHLET PROCESS*

      By 

Hajime YAMATO**

                    Abstract 

   The joint distributions of samples from distributions chosen from 
a Dirichlet process with nonatomic parameter are given and the condi
tional distributions of the samples are derived, by the method different 
from Yamato [4]. By making use of the above result, the expecta
tions of functions of the samples are evaluated.

   1. Introduction 

   The Dirichlet process was introduced by Ferguson [2] for Bayesian nonparametric 
inference. It is well-known that a distribution chosen from a Dirichlet process is discrete 

with probability one. The purpose of this paper is to show properties of samples from 

distributions chosen from a Dirichlet process with nonatomic parameter by the method 

different from Yamato [4] and to give its application. The author assumes that readers 
are familiar with the Dirichlet process. For the definition of the Dirichlet process, see 

Ferguson [2]. 

   Let R be the real line and let B be the a-field of Borel sets. Let a be a nonnull 

finite measure on (R, B). Q(•) denotes a(•)/a(R) and M denotes a(R). We list some 

properties of the Dirichlet process for the later use. 
   LEMMA 1 (Ferguson [2]). Let P be a Dirichlet process on (R, B) with parameter a 

and let X be a sample of size 1 from P. Then for AEB 

P(XEA)=Q(A) . 

   Let X1, • • • , X. be a sample of size n from a distribution P chosen from a Dirichlet 

process on (R, B) with parameter a. Then, as stated in Korwar and Hollander [3], we 
can view the observations X1, • • • , X. as being obtained sequentially as follows : Let X1 

be a sample of size 1 from P ; having obtained X1, let X2 be a sample of size 1 from 

the conditional distribution P given X1; and so on until X1, • • • , X. are obtained. Thus 

by Lemma 1 we have the following lemma, which is essentially similar to the statement 
of Zehnwirth [5, p. 16]. 

   LEMMA 2. Let P be a Dirichlet process on (R, B) with parameter a and let 

X1, ••• , X. be a sample of size n from P. Then we can view X1 has the distribution Q 
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and for  k=1, ••• , n-1 the conditional distribution Xk+l given X1, ••• , X is given by 

        (MQ(.)+±ox(.))/(M+k),• where for xEX, dx denotes the measure on (R, B) giving =1 

the mass one to the point x. 

   In Section 2, we shall give the joint distribution of samples from distributions chosen 

from a Dirichlet process with nonatomic parameter, by the method different from Ya

mato [4]. Furthermore, we shall derive the conditional distribution of the samples, 

which is essentially similar to Theorem 3.1 of Yamato [4]. 

   We shall use the above result to evaluate expectation of functions of the samples 

for nonatomic parameter in Section 3.

   2. Properties of Samples 

   Let R be the real line and let B be the a-field of Borel sets. Let a be a nonnull 

finite measure on (R, B) and nonatomic. Q(•) denotes a(•)/a(R) and M denotes a(R). 

Let X1, • • • , Xn be a sample of size n from a distribution P chosen from a Dirichlet 

process on (R, B) with parameter a. We can consider that the sample X1, • • • , Xn is 
obtained sequentially, as stated in Section 1. For nonnegative integers m(1), • • • , m(n) 

withiim(i)=n, let (X1, X2, •••, Xn)EC(m(1), •••, m(n)) be the event that there are m(1) 
i=1 

distinct values of X that occur only once, m(2) that occur exactly twice, • • • , m(n) that 

occur exactly n times. We denote the sample (X1, • • • , Xn) with (X1, • • • , Xn) E C(m(1), , 

m(n)) by (X11, ••• , Xlm(1), X21, X21, ••• , X2m(2), X2m(2), ••• , Xn1, ... , Xni)• Note that if 

m(n)�1 then m(1)= ••• =m(n-1)=0 and m(n)=1. If m(1)=2 and XS#Xt with s<t are 

different from the remainders, then X11=XS, X12=Xt. Suppose that m(j)=m(1<j<m). 

If XS(1)= ••• =Xt(1), XS(2)= ••• =Xt(2), ••• , XS(m)= ••• =Xt(m) with s(1)<s(2)< ••• <s(m) 

and s(i) = min (s(i), • • • , t(i)) (i=1, • • • , m) and the number of each equal X's are j, then 
X j2, X;2, • , X j , (j) are equal to X8(,), X2(2), • • • , XS („m) in that order. The following 

lemma is essentially similar to Proposition 3.2 of Yamato [4]. 

   LEMMA 3. For any Ai j E B(i =1, • • • , n, j=1, • • • , m(i)), 

P(XijEAij(i=1, •••, n, j=1, •••, m(i)), (X1, ..., Xn)EC(m(1), ..., m(n))) 

           =n ! M''m(i) II II(i) Q(Aij)/M(n) fl(m(i) ! im(i)),(2.1) 
i=1 j=1i=1 

where M(n)=M(M+1) ••• (M+n-1). 

   Before proving Lemma 3 we shall prepare Lemma 4. For nonnegative integers 

m(1), •••, m(n) withiim(i)=n, let (Xn, Xn_1, ••• , Xi) ECo(m(1), ••• , m(n)) be the event 
i=1 

that Xn, Xn_1, ••• , Xn(m(1)-1), in that order, are unique in the sample and occur only 

once; that Xn-m(1), •• , Xn(m(1)+2m(2)-1) occur twice each in the order Xn_m(1)=Xn_m(1)_1, 
••• , Xn-(m(1)+2m(2)2)Xn(m(1)+2m(2)-1) and etc. We use the similar notations to Antoniak 
[1] with respect to C and Co. We denote the sample Xn, Xn-1, • • • , X1 with (Xn, • • • , X1) 
E Co(m(1), • • • , m(n)) by Y11, • • • , Ylm (1), Y21, Y21, , Y2m (2), Y2m (2), • • • • Similarly we denote 

the realization of the above sample, xn, xn-1, • • • , x1, by .Y11, ,Yin cl>, Y21, Y21, • ~> .!2m (2), 

Y2m (2), • Then we have the following
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   LEMMA 4. For any Ai j E B(i =1, • • • , n, j=1, • • • , m(i)) 

P(YijEAij(i=1, •.• , n, j=1, •.• , m(i)), (Xn, ••• , X1)ECo(m(1), ••• , m(n))) 

        7n-~n m(i) =fl((i-1) ! M)m(i) H H Q(A0)1M(n) .(2.2) 
         i=1i=1 j=1 

   PROOF. At first we shall prove the lemma for n=2. Two nonnegative integers 

(m(1), m(2)) with m(1)H2m(2)=2 are (2, 0) and (0, 1). Let X1, X2 be a sample of size 2. 
   For (X2, X1)ECo(m(1), m(2)) with m(1)=2 and m(2)=0, we have Y11=X2, 1712=X1. 

For any A1, A2 E B, from Lemma 2 we have 

P(Y11 E A2, 3712E Al, (X2, X1) E Co(2, 0)) 

=P(X2EA2 , X1EA1, X2�X1) 

                       -
JA P(X2EA2, X2#xil xi)dQ(x1) • 

                                     1 Since from Lemma 2, given X1=x1i X2 has the distribution (a(•)15xl(•))/(M+1) and a 
is nonatomic, we have 

P(Y11 E A2, Y12 E A1, (X2, X1) E Co(2, 0)) 

               =.0a(A2)/(M+1)dQ(x1)=Q(A1)a(A2)/(M+1)                              Al 

=Mm(1)Q(A1)Q(A2)/M(2) with m(1)=2 , m(2)=0. 

   For (X2, X1)EC0(m(1), m(2)) with m(1)=0 and m(2)=1, we have Y21=X2=X1. For 
any A E B, from Lemma 2 we have 

P(Y21 E A, (X2, X1) E Co(0, 1)) 

=P(X2=X1 E A)=JAP(X2=x1 I x1)dQ(x1)=4A 1/(M+1)dQ(x1) 
=Mm(2)Q(A)/M(2) with m(1)=0, m(2)=1 . 

Thus the lemma holds for n=2.  Next we assume that the lemma holds for n�2  and 

show that it holds for n+1. We denote the sample Xn+1, Xn, ••• , X1 with (Xn+1, Xn, ••• 
                                            n+1 

X1)EC0(m'(1), ••• , m'(n+1)) andiim'(i)=n+1 by Yi1, ••• , Yim (1), Y21, Y21, ••• , Y2m(2), 
                                                  i=1 

nn, (2), ••• For a sample of size n+1 we have two cases : The one is that Xn+1 occurs 
only once and the other is that Xn+1 equals to the previous observation. 

   For the case that Xn+1 occurs only once, we have m'(1)>1, m'(n+1)=0 and for 

AijEB(i=1, ••• , n, j=1, ••• , m'(i)) 

p1=P(YZjE Aij(i=1, ••• , n, j=1, ... , m'(i)), (Xn+1, ••• , X1)ECo(m'(1), ... , m'(n+l)) 

               P(Xn+1 E A11, Xn+1� x1i ... , xn l x1, ... , xn)dH(x1, ••• , xn) 
             Dl 

where H(x1i • • • , x n) is the joint distribution of X1, • • • , Xn and 

           D1= {(x1, ••• , xn) I (xn, ... , x1)EC0(m(1), ... , m(n)), m(1)=m'(l)-1 , 

m(i)=m'(i)(i=2, ••• , n), y1,j1EA1j(j=2, ••• , m'(l)),
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                yiiEA0(i=2, ... , n, j=1, ... , mi(i)) . 

Since from Lemma 2, given  Xi, ••• , Xn, Xn+1 has the distribution (a(•)+ iOxi(•))/(M+n) 
                                                                                                                        ti= 

and a is nonatomic, 

p1= a(A11)1(M+n)dH(xi, ••• , xn) 

=Ca(A11)/(M+n)1P((X1, ••• , Xn)ED1) 

=Ca(Aii)/(M+ n)]P(Y1 , i-1 E Aii(j =2, ••• , m'(1)) , 

Yii E Aii(i =2, ... , n, j=1, ••• , m'(i)) , 

(Xn, ••• , Xi)ECo(m'(1)-1, m'(2), ... , m'(n))) • 

Since we assume that the lemma holds for n and m'(n +1) =0, 

p1=Ca(A11)/(M+n)]Mm' (1)-1  ((i-1) ! M)"' (i) 
i=2 

                           m''(1)nm''(i) 

                xHQ(A1;) HH Q(A0)1M7" 
j=21=2 j=1 

n+1n+m'(1) 

=II((i-1)M)m' (i)H1 H Q(Aii)/M(n+i) . (2.3) 
            1=11=1 i=1 

   For the case that Xn+1 equals to the previous observation, at first we consider the 

case of m'(n+1)=1 and next the case of m'(n1-1)=0. In case of m'(n+1)=1 where 

X1, • • • , Xn+1 are all equal, for An+1, 1 E B we have 

p2=P(Y+1,1An+1,1, (Xn+1, •••, X1)ECo(m'(1), ••., m'(n+1)), m'(n+1)=1) 

               P(Xn+1=xn I x1, •••, xn)dH(x1, ••• , xn) , 
               D2 

where D2= {(xi, • • • , x,) I x1= • • • =x, E An+1,1} . Since from Lemma 2 given Xi, • • • , Xn, 

Xn+1 has the distribution (a(.)+öx1(.))/(M+n)•• and a is nonatomic, 

       P2—D 2n/(M+n)dH(xi, ••• , xn) 

=Cn/(M+n)]P(Xn= ••• =X1 E An+i , 1) 

=Cn/(M+n)]P(Yn1EAn+1 ,1, (Xn, ••• , Xi)EC0(m(1), ••• , m(n)), m(n)=1) . 

We assume that the lemma holds for n and therefore 

p2 =En /(M+n)]((n-1) !)MQ(An+1, 1)/M(n) 

=(n ! M)'n' (n+1)Q(An+1,1)/M(n+1) with m'(n+l)=1. (2.4) 

   Finally we consider the case that Xn+1 equals to the previous observation and 

in'(n+l)=0. Since m'(1)=0, we suppose that there exists an integer k such that 

2<k<n, m'(1)= ••• =m'(k-1)=0, m'(k)>_1 and m'(n+1)=0. 
   For Aii E B(i = k, • • • , n, j=1, • • • , m'(i)), we have
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p3=P(Y/0E Aij(i=k, ••• , n, j=1, ••• , m'(i)), (Xn+1, ••• , X1) ECo(m'(1), •.• , m'(n+1))) 

       = JP(Xn+1=xn ••• xn-k+2I xi, ••• , xn)dH(x1, ••• , xn) , 
           D3 

where 

D3= {(x1, ••• , xn)I (xn, ••• , x1)ECo(m(1), ••• , m(n)), m(i)=0 

            (i=1, ••• , k-2), m(k-1)=1, m(k)=m'(k)-1 

m(i)=m'(i)(i=k+1, ..., n),.Yk1,lEAkl 

yk.JlEAkI(1=2, ..., m'(k)), yijEA0(i=k+1, •• , n, j=1, ..., m'(i))}. 

By the similar argument to 132, we have 

p3=1D3(k1)1(M-Fn)dH(x1i ..., xn) 
=[(k1)/(M+n)]I'((X1, ••• , Xn)ED3) 

=[(k1)/(M+n)1P(Yk1 .leAkl, Yk.JJEAkj(j=2, ••, m'(k)), 

YiJEAiJ(i=k+l, •• , n, j=1, ..., m'(i)), 

(Xn, ••• , X1)EC0(0, ••• , 0, 1, m'(k)-1, m'(k+1), ••• m'(n))) 

                                                              n =[(k1)/(M+n)[((k-2) ! M)m' ck)-1 II ((i-i)! M)m' (i) 
i=k+1 

m (k)n ni' (i) 

X Q(Akl) II Q(Ak,)HIIQ(A0)1M(n)
j=2i=k+1 j=1 

         = II ((i-i)! Mr.'") II II) Q(A1J)/Mcn+1)(2.5) 
        i=ki=k j=1 

From the evaluations of pi, P2, p3, we know that the lemma holds for n+1 and thus 

proved it by induction. 
   PROOF OF LEMMA 3. Lemma 4 also holds for (X1, • • • , Xn) E Co(m(1), , m(n)). 

The number of ways that n observations X1, • • • , Xn are permuted differently with 

(X1, ••• , Xn)EC(m(1), ••• , m(n)) and ± im(i)=n is n !/~ [m(i)! (i !)m(i)]. To multiply 
i=1i=1 

the right-hand side of (2.2) with (X1, • • • , Xn) E Co(m(1), • • • , m(n)) by this number yields 

(2.1). 
   If we take Ai j =R for 1=1, • • • , n, j=1, • • • , m(i) in Lemma 3, then we have the 

following lemma which is found in Antoniak [1]. 

   LEMMA 5. (Antoniak [1]). 

P((X1, ••• , Xn)EC(m(1), ••• , m(n)))=n ! ME?m(i)/M(n) II(in(i) im(i)) . 
                                                                                              i=1 

   The following theorem is essentially similar to Theorem 3.1 of Yamato [4]. 

   THEOREM 1. Given (X1, ••• , Xn)EC(m(1), • , m(n)), X11, X12, ••• , Xlm(1), X21, X22, ••• , 
X2m(2), ••• , Xn1 are independent and identically distributed with the distribution Q. 

   PROOF. For any Ai J E B(i =1, • • • , n, j=1, • • • , m(i)), by Lemma 3 and 5 we have
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 P(Xij  E  Aij(i  =1, • • • , n, j=1, ••• , m(i)) I (X1, ••• , X,) EC(m(1), ••• , m(n))) 

=P(X0EA1 (i=1, •••, n, j=1, •••, m(i)), 

(Xi, ••• , Xn)EC(m(1), ••• , in(n)))/P((X1, •••, Xn)EC(m(1), ••• , m(n))) 

        n m (i) 
   = E II C2(A0) • 

i=1 j=1

   3. Expectation of Random Functionals 

   By the use of Theorem 1 we shall prove the following theorem (Yamato [4]) for 

nonatomic parameter a. Our method of proof is different from Yamato [4]. Rn is the 
ndimensional Euclidean space and Bn is the o -field of Borel subsets of Rn for n =2, 3, • • . 

   THEOREM 2 (Yamato [4]). Let h(xi, ••• , xn) be a realvalued measurable function 

defined on (Rn, Bn) and symmetric in xi, ••• , xn. Let P be a Dirichlet process on (R, B) 

with parameter a. Let Xi, ••• , Xn be a sample from P. Then 

Eh(X1i •.• , Xn)=>i*rn ! ME?'")/M(n) fl(m(i) ! im(i))] 
         LLi=1 

J%Em(i) h(xi1, ••• , X m(1), X21, X21, •.• , 

                                                          7ni)                                              IIm ( x2m(2), x2m(2), ••• , xni, ••• , xn1)IIII dQ(xij),(3.1) 
i=1 1=1 

provided all integrals of the right-hand side exist. Where E* denotes the summation over 

all n nonnegative integers m(1), ••• , m(n) satisfying im (i)=n and in the arguments of 
i=1 

the integrand of the right-hand side xis appears at exactly i times for i=1, 2, ••• , n and 

s=1, ••• , m(i). 

   PROOF. We give the proof for nonatomic parameter a. From Theorem 1, for non

negative intergers m(1), • , m(n) with im (i) = n, given (X1, • • • , Xn) EC(m(1), • • • , m(n)), 
i=1 

X li, • • • , X1m (n), X21, • • • , X2m(2), • , Xni are independent and identically distributed with 
the distribution Q. h is symmetric in xi, ••• , xn. Therefore we have 

E[h(X1, ••• , Xn) I (Xi, ... , Xn) EC(m(1), ... , m(n))] 

=E[h(X11, •.• , Xlm(1), X21, X21, ... , X2m(2), X2m(2), ... 

Xnl, ... , Xnl)  (X1, ... , Xn)EC(m(1), ••• , m(n))] (3.2) 

                      .CXEm(i) h(x11, ..• , X17(1), X21, x21, ... , 
                                                      T7n~Ti)                                                               m ((                         x2m(2), x2m(2), ••,x,,1, •••,xn1)1111dQ(xij), 

i=1 j=1 

which exists for each n nonnegative integers m(1), ••• , m(n) with im(i)=n by the as
                                                                                               i=1 

sumption. Since by Lemma 5 for each n nonnegative integers m(1), • • • , m(n) with



Properties of samples from distributions chosen from a dirichlet process 83

 E  i7n  (i)=n, 

P((X1, ... , X.)EC(m(1), ••• , m(n)))=n ! fl(m(i) ! im")) 
                                                                                              j=1 

taking expectation of (3.2) we have (3.1).
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