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Abstract

The joint distributions of samples from distributions chosen from
a Dirichlet process with nonatomic parameter are given and the condi-
tional distributions of the samples are derived, by the method different
from Yamato [4]. By making use of the above result, the expecta-
tions of functions of the samples are evaluated.

1. Introduction

The Dirichlet process was introduced by Ferguson [2] for Bayesian nonparametric
inference. It is well-known that a distribution chosen from a Dirichlet process is discrete
with probability one. The purpose of this paper is to show properties of samples from
distributions chosen from a Dirichlet process with nonatomic parameter by the method
different from Yamato [4] and to give its application. The author assumes that readers
are familiar with the Dirichlet process. For the definition of the Dirichlet process, see
Ferguson [2].

Let R be the real line and let B be the o-field of Borel sets. Let a be a nonnull
finite measure on (R, B). Q(+) denotes a(+)/a(R) and M denotes a(R). We list some
properties of the Dirichlet process for the later use.

LEMMA 1 (Ferguson [2]). Let P be a Dirichlet process on (R, B) with parameter «
and let X be a sample of size 1 from P. Then for AcB

P(Xe A)=Q(A).

Let X, ---, X, be a sample of size n from a distribution P chosen from a Dirichlet
process on (R, B) with parameter «. Then, as stated in Korwar and Hollander [3], we
can view the observations X, ---, X, as being obtained sequentially as follows: Let X,
be a sample of size 1 from P ; having obtained X, let X, be a sample of size 1 from
the conditional distribution P given X, ; and so on until X;, ---, X, are obtained. Thus
by Lemma 1 we have the following lemma, which is essentially similar to the statement
of Zehnwirth [5, p. 16].

LEMMA 2. Let P be a Dirichlet process on (R, B) with parameter a and let
X, -+, Xy be a sample of size n from P. Then we can view X, has the distribution Q
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78 H. YamaTo

and for k=1, -+, n—1 the conditional distribution X+, given X, -+, X, is given by
k

(MQ(-)—I— ZIBXJ-(-)>/(M+k), where for x=X, 6, denotes the measure on (R, B) giving
=

the mass one to the point x.

In Section 2, we shall give the joint distribution of samples from distributions chosen
from a Dirichlet process with nonatomic parameter, by the method different from Ya-
mato [4]. Furthermore, we shall derive the conditional distribution of the samples,
which is essentially similar to Theorem 3.1 of Yamato [4].

We shall use the above result to evaluate expectation of functions of the samples
for nonatomic parameter in Section 3.

2. Properties of Samples

Let R be the real line and let B be the o-field of Borel sets. Let @ be a nonnull
finite measure on (R, B) and nonatomic. () denotes a(-)/a(R) and M denotes a(R).

Let X,, ---, X, be a sample of size n from a distribution P chosen from a Dirichlet
process on (R, B) with parameter «. We can consider that the sample X,, ---, X, is
obtained sequentially, as stated in Section 1. For nonnegative integers m(l), -, m(n)

with i}z’m(i):n, let (X, X,, -+, Xp)eClm(1), -+, m(n)) be the event that there are m(1)
i=1

distinct values of X that occur only once, m(2) that occur exactly twice, ---, m(n) that
occur exactly n times. We denote the sample (X, ---, X,) with (X,, ---, X,)COm(1), ---,
m(n)) by (Xu, =, Ximw, Xa, Xog, -, KXome, Xemey, *y Xny, +, Xn1). Note that if
m(n)=1 then m(1)= --- =m(n—1)=0 and m(n)=1. If m(l)=2 and X;#=X, with s<t are
different from the remainders, then X;;=X;, X;,=X,;. Suppose that m(;)=m(l<j<m).
I Xeo="=Xt, K=" =Xi0, ), Xeemy= " =Ximy With s(1)<s(2)< -+ <s(m)
and s(Z)=min (s(7), ---, t(z)) =1, -+, m) and the number of each equal X’s are j, then
X, Xjo, -+, Xjmp are equal to Xy, Xs, =+, Xsomy In that order. The following
lemma is essentially similar to Proposition 3.2 of Yamato [4].
LEMMA 3. For any A;;=B@=1, -, n, =1, -+, m(@)),

P(Xi;e Ayi=1, -, n, j=1, -+, m@), (X;, -+, Xp)€C0n(l), -+, m(n)))

=nt M FUTE QA M™ TL0n(0) 1ime), @1
i=1 j= i=

where M™W =M(M-+1) --- (M+n—1).
Before proving Lemma 3 we shall prepare Lemma 4. For nonnegative integers

m(l), -, m(n) with éimu):n, let (Xn, Xnos, -, X)EColm(D), -, m(n)) be the event

that X,, Xu-1, -, Xa-mw-v, in that order, are unique in the sample and occur only
once; that X,-m@, =, Xn-m@+zm@-n occur twice each in the order X, y=Xn-ma -1
o Xpomsem - =Xn-mm+2m@-n and etc. We use the similar notations to Antoniak
[17 with respect to C and C,. We denote the sample X,, X,_;, ---, X; with (X,,, -, X))
eCom(1), -, m(n)by Y1y, -, Yimnw, Y, Yo, =, Yemw, Yeme, ---. Similarly we denote
the realization of the above sample, x,, Xn-1, -, X1, DY Y15, ***, Vimcw, Vo, Yo, =, Yam s
Yem, -+ Then we have the following
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LEMMA 4. For any A;;eB@=1, -, n, =1, -, m(@))
P(Y ;€ AyG=1, -+, n, 7=1, -, m@), (Xy, -, X)EColm(1), ---, m(n)))

e

1l
—

(=11 My TTTE QA M. (2.2)

K

ProoF. At first we shall prove the lemma for n=2. ‘Two0 non-negative integers
(m(1), m(2)) with m(1)+2m(2)=2 are (2, 0) and (0, 1). Let X;, X, be a sample of size 2.

For (X,, X))=Co(m(l), m(2)) with m(1)=2 and m(2)=0, we have Y,;=X,, YV.,=X,.
For any A,, A, B, from Lemma 2 we have

PY €A, YVieA, (X, X))eC(2, 0)
=P(X,e A4, X,€A,, X,#X))
=, P Ay, Xo# 2] 2)Q(w) .
Since from Lemma 2, given X;=x,, X, has the distribution (a(+)+d.,(+))/(M-+1) and «
is nonatomic, we have

PY €4, Yi,eA, (X, X)eC(2, 0)
:SAIa(Az)/(M+l)dQ(x1):Q(Al)a(/lz)/(M%—l)
=M"PQ(ANQ(A,)/ M® with m(1)=2, m(2)=0.

For (X,, X)) eCym(l), m(2)) with m(1)=0 and m(2)=1, we have Y, =X,=X,. For
any A< B, from Lemma 2 we have

P u€ 4, (X, X)ECK0, 1)
=P(X,=X,e A= PXy=xl2)dQ(x)=] 1/(M+1aQx)

=M"®Q(A)/M® with m(1)=0, m(2)=1.

Thus the lemma holds for n=2. Next we assume that the lemma holds for n=2 and
show that it holds for n+1. We denote the sample X,.;, X,, -+, X{ with (X,4,, Xa, -+,

n+1
XI)ECO(m/(l)’ T m,(n+1)) and Elzm,(z)zn—l—l by Y;.b Tt Y;.m'(l); Yél: Yél) Ty Yém(z);

Yim @, -+ For a sample of size n+1 we have two cases: The one is that X, ., occurs
only once and the other is that X,,, equals to the previous observation.

For the case that X,.; occurs only once, we have m’(1)=1, m’(n-+1)=0 and for
A;eBG=1, ---, n, j=1, -+, m'())

P=PY € A,G=1, -, n, j=1, -, m'(D), (Xpiy, -+, X)ECo(m/(1), ---, m'(n+1))
={, Pasis Ay Kuwatms, o, aliy, o, x)dHlx,, o, 20),
1
where H(x,, ---, x,) is the joint distribution of X, ---, X, and

Di=A{(xy, -, xa)(xn, -+, x)EC(m(L), -+, m(n)), m(l)=m'(1)—1,
m@)=m'@)(=2, -, n), yr,;1€A(J=2, -, m'(),
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V€A i=2, -+, n, j=1, -, m'@)}.
Since from Lemma 2, given X, ---, X,, X, has the distribution <a(-)+é‘{b‘xi(-))/(M—l—n)
and « is nonatomic,
b=, A/ OFmaH, -, )
=[a(An)/(M+n)IP(X,, -+, Xa)EDy)
=[a(An)/M+n)]PY,, ;- € A(7=2, -, m' (1)),
Y,eA,6=2 -, n, j=1, -, m'@),
(Xz, -, XDECo(m'()—1, m'(2), ---, m'(n)) .
Since we assume that the lemma holds for n and m’(n41)=0,
pr=La(A)/(M+m)IM™ = T (G—1)1 My™ @

m? (1)

<" QA FI'TE QAw)/M™
=T G—D1M™ O T T QA Me+D . @.3)
=1 i=1 j=1

For the case that X,.; equals to the previous observation, at first we consider the
case of m’(n+1)=1 and next the case of m’(n+1)=0. In case of m’(n+1)=1 where
X, -+, Xpn4+, are all equal, for A, =B we have

Pe=P(¥ 1€ Anias, Ky, X)ECM/(D), -, m'(n-+1), m'(n+1)=1)
=| Pan=xal 5 o, x)dHx, -, x0),

where Dy={(x1, -, Xn)| %= -+ =x,€ Apn111}. Since from Lemma 2 given X, -, Xg,

Xoe has the distribution (a(-)+ 330x () /(M+n) and a is nonatomic,

j)gZSD n/(M+n)dH(xy, -+, x3)

=[n/(M+n)]P(X,= - =X,€ Aps1.1)
=[n/(M+n)JP(Y 21 € Ansr1, (Xy, -, X)EC(m(L), -+, m(n)), m(n)=1).
We assume that the lemma holds for »n and therefore
pe=Ln/(M+n)J(n—1) DMQ(Aps1,.)/ M™
=(n! M)™ ®VQ(Ap4q, )/ M with m/(n+1)=1. 2.4

Finally we consider the case that X,., equals to the previous observation and
m’(n+1)=0. Since m’(1)=0, we suppose that there exists an integer % such that
2<k=<n, m'(N)= - =m/(k—1)=0, m’(k)=1 and m'(n+1)=0.

For A;;eBG=k, ---, n, j=1, -+, m’({)), we have
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pe=P(Yi;€ Ayi=k, -, n, =1, -, m'(2)), Xnss, =+, XDEC(m'(L), -, m'(n-+1)))
=, Pani=ry= o =xopial 2y, oo, x)dH (s, o, 52),
where
Dy={(x1, =, xa)[(Xn, =+, x)ECo(m(L), -+, m(n)), m(z)=0

(=1, -, k—2), m(k—1)=1, m(k)=m'(k)—1

m@)=m'@)i=k+1, -, n), Ye-11EAn

Vi 1€ Ar(G=2, =+, m'(k)), yi;€ AssG=k+1, -, n, j=1, -, m' @)} .

By the similar argument to p, we have
po=|, (e=D/(MAmdHE, -, 52
3

=[(k—=1)/(M+n)]P(X,, -+, Xz)EDy)
=[(k—1/(M+m)IPY 4-1.€ Asy, Y, j1 EAn(G=2, -, m'(R)),
Y€ Aii=k+1, -, n, j=1, -, m'(),
(Xn, =+, X)ECO, -+, 0, 1, m'(k)—1, m'(k-+1), - m’(n)))

=[(k—1)/(M+n)[(k—2 1 M)™ =1 TT (G—1)! My™ @

i=k+1

xQ(Ako"‘jij: "Q(A 11T QAL M™

i=k+1 j=1

Il

A1~ e i mﬁ  Q(Ay)/ M+ @2.5)

From the evaluations of pi, ps, ps, we know that the lemma holds for n+41 and thus
proved it by induction.

Proor oF LEMMA 3. Lemma 4 also holds for (X, ---, X,)€Com(l), ---, m(n)).
The number of ways that n observations X, :--, X, are permuted differently with

(X, -, X.)€COm(l), -, m(n)) and ig im@)=nis n! / ZZ}l[m(z')! @N™®7].  To multiply

the right-hand side of (2.2) with (X, -+, X,)€Co(m(l), ---, m(n)) by this number yields
(2.1).

If we take A;;=R for i=1, ---, n, j=1, -+, m(@) in Lemma 3, then we have the
following lemma which is found in Antoniak [1].

LEMMA 5. (Antoniak [1]).

P((X,, -, X)ECm(), -+, m(n)))=n! MEIm® /™ 1:'[1(771(2') 1{m@y,

The following theorem is essentially similar to Theorem 3.1 of Yamato [4].

THEOREM 1. Given (X, -+, X,)eCmQ), -+, m(n)), X1, X1z, -+ » Xamwy, Xoy, Xos, 5
Xomy, ***, Xn1 are independent and identically distributed with the distribution Q.

ProOF. For any A;;€B(G=1, -, n, j=1, ---, m(7)), by Lemma 3 and 5 we have
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P(XijEAij(i:l) e, N ]:17 tty m(l))|(X1, Ty Xn)EC(m(l), Ty m(n»)
:P(XijEAij(izl, e, N, ]':1, teey, m(z)),
Xy, -+, X ECmQ), -, m(n)/P(X,, -, X2)€Cm(1), -, m(n)))

m (i)

=211 Q(A:).

n
i=1 j=1

3. Expectation of Random Functionals

By the use of Theorem 1 we shall prove the following theorem (Yamato [4]) for
nonatomic parameter a. Our method of proof is different from Yamato [4]. R™ is the
n-dimensional Euclidean space and B*® is the o-field of Borel subsets of R” for n=2, 3, .

THEOREM 2 (Yamato [4]). Let h(x,, -+, x,) be a real-valued measurable function
defined on (R*, B™) and symmetric in xy, -+, X. Let P be a Dirichlet process on (R, B)
with parameter a. Let X, -+, X, be a sample from P. Then

EnX,, -, Xn)zz*[n 1 ME'I‘m(i)/MM) ﬁ(m(z) 1 Z'm(i))]

i=1

gxgm(i)h(xn, ty Ximay, Xe1, Xa, 77,

n_m(i)
Xem(2), Xem2), **°y Xa1, *°°, xm)g ,:1_‘[1 dQ(x;5), (3.1)

provided all integrals of the right-hand side exist. Where 2* denotes the summation over
13

all n nonnegative integers m(l), -+, m(n) satisfying _Z‘l,z'm (2)=n and in the arguments of
<

the integrand of the right-hand side x;s appears at exactly i times for i=1, 2, -+, n and
s=1, .-, m(z).
PrOOF. We give the proof for nonatomic parameter a. From Theorem 1, for non-

negative intergers m(l), ---, m(n) with i}im (#H)=n, given (X;, ---, Xp)€Cim(), --- , m(n)),
£

Xi, -y Xima, Xoa, o, Xemew, -+, Xny are independent and identically distributed with
the distribution Q. & is symmetric in x,, -+, x,. Therefore we have

E[h(XI: Ty Xn)I(Xl’ T X,,)EC(m(l), Ty m(n))]
:E[h(Xm R) le(l); le; le, Tty XZm(2); XZm(Z); T

Xy, o5 Xad|[(Xy, -+, X)ECm(), -+, m(n))] (3.2)
-_—SXmeh(xny s Xims Xai Xo, 07
n_ m(i)
Xom@, Xem@s *y Xn1, 05 Xn1) 11 ! dQ(x4j),
i=1 j=1

which exists for each n nonnegative integers m(l), -+, m(n) with 2_‘,1 im(7)=n by the as-

sumption. Since by Lemma 5 for each n nonnegative integers m(l), ---, m(n) with
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3
>Sim@)=n,
=1

P(X,, -, Xa)eCim@), -, m(n))=n AVI":?"‘(i’/M‘"’iIZII(;n(z') 1),

taking expectation of (3.2) we have (3.1).
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