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Abstract. Slow motion of droplets on nonhomogeneous surfaces is modeled by a nonlocal
parabolic free boundary equation. We show existence and Hölder continuity of a unique weak solution
by a combination of smoothing and a variational method that can be directly applied to numerical
computation.
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1. Introduction. Many applications require proper understanding of motion of
liquid droplets on a surface. These include micro- and nano-fluidics, development of
surfaces with special wetting properties, effective heat transfer, spraying pesticides
on plant leaves or paint to surfaces, printing, etc. The possibility of changing the
qualities of the surface using nanomachines has been reported recently. This method
could regulate the motion of a drop with high accuracy.

In the paper [6] we started developing a model for motion of droplets on a surface
which is treated to produce a gradient in its surface tension. The equilibrium contact
angle θ of a droplet depends on the properties of the liquid and of the material on
which the droplet is lying. It is described by Young’s equation

γSG − γSL = γLG cos θ,

where γSG is the solid surface tension, γLG the liquid surface tension and γSL the
solid/liquid interfacial surface tension. If we create a wettability gradient on the
underlying surface, the drop stretches in the direction of greater wettability, which
may result into translation of the drop.

Although many experiments and measurements of moving drops have been done,
there is no well-established analytic model to describe the dynamical aspects of drop
motion. Many papers have been devoted to analyzing the shape of steady drops on
horizontal and inclined surfaces. Works dealing with the motion of droplets often
make some kind of steady or quasisteady assumptions. The authors of [9] take a
similar approach as [5] or [3] and develop a model for a drop that does not change
its shape and moves steadily overcoming shear exerted by the solid surface. They
consider a small droplet and rely on the lubrication approximation of de Gennes ([4]).

Taking into account the principles of surface tension and the feature of positive
contact angle, another natural and reasonable design for the model of moving drop is
to approximate the drop by a film, representing the surface of the drop. The film can
be then filled with a fluid behaving in accordance with a model of fluid dynamics, and
these two models can be coupled. This approach is similar to the group of methods
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based on a modification of Navier-Stokes equations, such as phase-field methods (see,
e.g., [7] or [11]) but our model is substantially different. In [6] it was shown that if the
motion is slow, then it can be modeled by a parabolic operator and the approximation
of the drop by its surface is sufficient. In this way, we obtain a parabolic problem for
the evolution of a scalar volume-preserving membrane with an obstacle and positive
contact angle.

Here we focus on the analysis of such problems. We propose construction of ap-
proximate solutions by a variational method and show their convergence to a unique
weak solution. Application of variational principles to constrained problems of this
type is effective. Another method that was successful in abstract analysis of con-
strained evolutionary problems relies on the technique of subdifferentials and Yosida
approximation. Although this framework is able to solve a large class of problems,
it inherits some disadvantages which we try to overcome by introducing a different
approach. The most substantial contribution of the new proof is that, contrary to
subdifferential approach, it is reproducible in numerical computations (for an exam-
ple of numerical results, see [6]). Another feature of our method is the absence of
assumptions on convexity, which are in essence indispensable for the definition of sub-
differentials. This fact is significant in regard of future consideration of sharp contact
angles.

2. Model. In this section, we derive a model for a droplet moving due to the
difference in contact angles. We approximate the drop by its surface and assume that
the area density of the surface is constant and that the surface tension is homogeneous.
We also consider only the cases when the contact angle θ is smaller than 90◦, as in
Figure 2.1. Then surface tension, contact angle and volume preservation become the
main aspects determining the shape of the moving drop.

u

{u > 0}

Ω

θ
γg

γs

y

x

Fig. 2.1. The setting and notation of the model.

Since θ < 90◦, we can describe the surface as a scalar function u : (0, T )×Ω → R,
where (0, T ) is the time interval and Ω is the domain where the motion is considered.
The plane, on which the drop rests, corresponds to 0-level set of the function u.
The domain Ω ⊂ R

m is taken bounded but large enough so that the drop does
not touch its boundary during the motion. The boundary of the set {u > 0} ≡
{(t, x) ∈ (0, T )× Ω : u(t, x) > 0} will be called free boundary.

Let us use the symbol χu>0 for the characteristic function of the set {u > 0} and
simplify the notation for surface tensions:

γg = γLG, γs = γLS − γSG.
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The surface energy of a drop can be written in the following way:

E = γg

∫
Ω

(√
1 + |∇u|2

)
χu>0 dx +

∫
Ω

γs(x)χu>0 dx. (2.1)

The drop assumes the shape which minimizes energy E under the volume constraint∫
Ω

uχu>0 dx = V, (2.2)

where V > 0 is the volume of the drop.
If γg and γs are constant and the drop is small so that it is not influenced by

gravitation forces, it has the shape of a spherical cap (see [3]). Mathematically,
this can be shown using Schwarz symmetrization and isoperimetric inequality in the
framework of BV functions. In this case, we can derive the well-known Young’s
equation for the contact angle θ

γs = −γg cos θ (2.3)

by explicitly minimizing functional (2.1) under condition (2.2). If we assume that the
minimizer is smooth, we can also derive (2.3) for nonuniform distribution of γs (i.e.,
nonspherical drops).

Besides assuming 0 < θ < π/2, i.e., 0 < −γs < γg, we consider hydrophilic
surfaces, where the value of γs is close to −γg, which gives small gradients in the
shape of the drop and makes possible the approximation√

1 + |∇u|2 ≈ 1 +
1
2
|∇u|2. (2.4)

This linearization of the minimal surface operator is relevant only from the mathemat-
ical point of view but is not necessary as far as numerical computation is concerned.

Putting γ := 1 + γs/γg and taking into account the nonnegativity of u, we can
replace (2.1) with

Ẽ = γg

[
1
2

∫
Ω

|∇u|2 dx +
∫

Ω

γ(x)χu>0 dx

]
. (2.5)

Functionals of the form (2.5) are studied in [1], where it is shown that their
minimizers without volume constraint are Lipschitz continuous.

In our model, the varying value of γs is the driving force of the droplet motion.
A drop placed on a surface with nonuniform wettability tends to move or deform in
the direction of smaller values of γs. This motion is prevented by the surface tension
of the drop, which forces the drop into a ball. Volume preservation added to these
aspects results in a deformation and possibly translation of the drop.

If the tension gradient is not extremely large, the movements are very slow and
the shape is transforming little by little by pouring of the liquid towards the front
edge. Therefore, the influence of inertial forces and friction can be assumed negligi-
ble. In such situation, it is acceptable to consider the motion as a result of vertical
displacement of the film. This is inevitably the only available motion in a scalar
model that we have adopted here. Nevertheless, the comparison of numerical and
experimental results in [6] suggests that it is an adequate approximation.

The equation of motion is derived by standard Lagrangian approach. Using (2.5)
as the potential energy in the Lagrangian for the drop, considering the kinetic energy
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proportional to u2
t and noting that the resistance force acting against the vertical

motion of the film is proportional to the speed of the film, we get the following
relation

χu>0βutt + αut = γg[Δu − γχ′
ε(u) + χu>0λ].

Here, β is proportional to area density of the region constituting the membrane, α is
a drag coefficient and λ is a Lagrange multiplier originating in the volume constraint.
We have replaced the characteristic function in the second term of (2.5) by a function
χε ∈ C2(R) satisfying

χε (s) =
{

0, s ≤ 0
1, ε ≤ s

and |χ′
ε (s)| ≤ C/ε for s ∈ (0, ε) (see Figure 2.2). The purpose of the smoothing is to

avert the appearance of delta function in the equation.

ε

1

0 u

χε

Fig. 2.2. Smoothing of characteristic function.

If we consider a long time-scale motion (|βutt| << |αut|), it can be sufficiently
expressed by the following parabolic equation

ut = Δu − γχ′
ε (u) + χu>0λ, (2.6)

where we have put μ/γg = 1 in order to simplify the subsequent formulas. The
specific form of the time-dependent function λ can be derived by a volume-preserving
variation of the Lagrangian:

λ =
1
V

∫
Ω

[
uut + |∇u|2 + γuχ′

ε (u)
]

dx. (2.7)

This is a parabolic problem with free-boundary ∂{u > 0} and a complicated term
λ having the form of the integral of the unknown function. Multiplying equation
(2.6) by u and integrating over Ω, we see that any solution of (2.6) preserves volume.
Because of the nonlocal multiplier, the solution of this equation, as it is, seems very
difficult. However, it is possible to solve the problem by the variational method called
discrete Morse flow, which is presented in the following paragraphs. In this method we
use the minimality property of a time-discretized functional, and insert the volume
constraint, which gives rise to the nonlocal term, into the admissible function set.
Thus, we can handle the multiplier without considering it explicitly.

3. Model equation and its properties. In the previous section, we have ob-
tained a model equation for droplet motion. Imposing appropriate initial and bound-
ary conditions, we have the following problem:
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Find u : (0, T )× Ω → R satisfying

ut(t, x) = Δu(t, x) − γ(x)χ′
ε(u(t, x)) + χu>0λ(t) in QT , (3.1)

u(0, x) = u0(x) for x ∈ Ω, (3.2)
u(t, x) = 0 on (0, T )× ∂Ω. (3.3)

Here QT = (0, T )× Ω with a bounded domain Ω ⊂ R
m having a Lipschitz boundary

∂Ω, and λ is given by (2.7).
Remark. It is possible to add also a general “outer force” term f(t, x, u)χu>0 to

the right-hand side of model equation (3.1). However, this would only complicate the
formulas, so we keep only the smoothed delta function representing the contact angle
condition, in order to emphasize its features important for later deliberations on the
sharp contact angle case (ε = 0). For example, gravity acting on a drop on a tilted
plane with inclination angle ω would give the form f(x, u) = −gu cosω + gx sin ω.
This function satisfies assumptions necessary to carry out the proof in the subsequent
section. In a coupled model considering also the motion of the fluid, this term would
include the force exerted on the film by the fluid.

In the present section, we mention some features of the model equation (3.1),
especially the relation that holds on the free boundary when the smoothing parameter
ε is taken to zero.

First, we shall formally discuss the maximum principle for our equation. Let us
consider the set QT ∩ {u < 0}. If u is smooth, then it is an open set. Moreover,
from the definition of χε we see that ut = Δu holds in this set. Since u is zero on
its boundary and u0 ≥ 0 , from the maximum principle we have that u must vanish
inside {u ≤ 0}. This means that the solution of (3.1)–(3.3) is either zero or positive
satisfying ut = Δu−γχ′

ε(u)+λ. We see that the characteristic function in front of the
Lagrange multiplier realizes the obstacle and gives rise to a free boundary. Moreover,
reasoning from the maximum principle, it appears that it will be convenient to set up
the volume preservation condition in the form∫

Ω

χu(t,x)>0u(t, x) dx = V ∀t ∈ [0, T ], (3.4)

so that we can make use of the “cut-off at zero” argument.
Next, we shall formally compute the free boundary condition for the problem

corresponding to (3.1)–(3.3) for ε → 0+. The obtained identity is to be compared with
Young’s equation (2.3), since, besides the ε-smoothing, we have adopted a linearization
of minimal surface operator.

Proposition 3.1. Let us suppose there exists a classical solution uε to (3.1)–
(3.3) and that for ε → 0+ it converges in a sufficiently strong sense to a function v
satisfying in QT ∩{v > 0} the equation vt = Δv+Λ, where Λ = 1

V

∫
Ω(vvt + |∇v|2) dx,

and the equation v ≡ 0 in QT ∩ {v ≤ 0}. We also assume that ∂{v > 0} is a smooth

m-dimensional hypersurface in ΩT ∩{t = τ} for all τ ∈ [0, T ]. Then |∇v|
2 = 2γ holds

on ∂ {v > 0} for ∂{v > 0}�Hm+1-almost all (t, x) ∈ ∂{v > 0}.
Proof. We select an arbitrary ζ ∈ C∞

0 (QT ) and multiply equation (3.1) by the
function ζuε

k

(
≡ ζ ∂uε

∂xk

)
, k = 1, ..., m. Next, we integrate the resulting identity over

QT and obtain (see [2])∫
QT

ζuε
k (Δuε − uε

t + λχuε>0) dz =
∫

QT

γζuε
kχ′

ε (uε) dz. (3.5)
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The simplifying notation z = (x1, ..., xm, t) is used here. Applying Green’s formula,
we derive an equation with only first order derivatives of uε and then take ε to zero.
Noting that [χε (uε)]xk

= χ′
ε (uε)uε

k, and assuming that χε (uε) → χv>0 a.e., we have
for the right-hand side of (3.5),∫

QT

γζuε
kχ′

ε (uε) dz = −

∫
QT

(γζ)kχε (uε) dz −−−→
ε→0

−

∫
QT ∩{v>0}

(γζ)k dz

= −

∫
QT ∩∂{v>0}

γζνk dS. (3.6)

The symbol νk stands for the k-th component of the outer normal ν = (ν1, . . . , νm+1)
to the set {v > 0} ⊂ QT , νm+1 being the time-direction component.

As for the left-hand side of (3.5), we can proceed in the following way:∫
QT

ζuε
k (Δuε − uε

t + λχuε>0) dz

= −

∫
QT

[∇ (ζuε
k)∇uε + ζuε

kuε
t − ζuε

kλ] χuε>0 dz

= −

∫
QT

(
uε

k∇ζ∇uε −
1
2
|∇uε|2ζk + ζuε

kuε
t − ζuε

kλ
)
χuε>0 dz

−−−→
ε→0

−

∫
QT

(
vk∇ζ∇v −

1
2
|∇v|2ζk + ζvkvt − ζvkΛ

)
χv>0 dz

=
∫

QT ∩{v>0}

ζvk(Δv − vt + Λ) dz −

∫
QT ∩∂{v>0}

(
ζvk (∇v, 0) · ν −

1
2
|∇v|2ζνk

)
dS

= −

∫
QT ∩∂{v>0}

(
ζvk (∇v, 0) · ν −

1
2
|∇v|2ζνk

)
dS.

Under the notation Dv = (vx1
, · · · , vxn

, vt), the outer unit normal can be expressed
as ν = −Dv/ |Dv|. Hence, on ∂ {v > 0} we get vk = −νk |Dv| and

−

∫
QT ∩∂{v>0}

(
ζvk (∇v, 0) ·ν−

1
2
|∇v|2ζνk

)
dS = −

1
2

∫
QT ∩∂{v>0}

|∇v|
2
ζνk dS. (3.7)

By (3.6) and (3.7), we conclude that

|∇v|
2 = 2γ on ∂ {v > 0} . (3.8)

for almost all points (t, x) ∈ ∂{v > 0}.
Let us study the relation between the free boundary condition (3.8), which we

have just formally derived, and Young’s equation (2.3). Using (2.3), we find

2γ = 2
(

1 +
γs

γg

)
= 2(1 − cos θ) = θ2 + O(θ4), θ → 0.

On the other hand,

|∇v|2 = tan2 θ = θ2 + O(θ4), θ → 0.

We see that the smoothing χε of the characteristic function in (3.1) is reasonable and
that by the approximation (2.4) we have introduced an error of order O(θ3) in the
contact angle.
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4. Existence of weak solution. Here we show the main result concerning our
problem – the existence of a weak solution to (3.1)–(3.3) that is nonnegative and
satisfies the volume conservation identity (3.4). We assume that γ ∈ L∞(Ω) and
u0 ∈ L∞(Ω) ∩ H1

0 (Ω) are nonnegative. We also assume that u0 is Hölder continuous
and has volume V .

The main idea of the proof is to state and solve a minimization problem corre-
sponding to a smoothing of the original problem. Specifically, we regularize the volume
constraint (3.4) by smoothing the characteristic function. We show the existence and
several important properties of the solution to the smooth problem using the discrete
Morse flow variational technique. Since we also obtain the uniform convergence of
approximate solutions with respect to the smoothing parameter δ, we shall finally be
able to construct a weak solution to the original problem.

To begin with, we introduce the approximate problem parametrized by δ > 0:

uδ
t = Δuδ − γχ′

ε(u
δ) +

(
χ̃δ(uδ) + uδχ̃′

δ(u
δ)

)
λδ in QT , (4.1)

uδ(0, x) = u0(x) in Ω,

uδ(t, x) = 0 on ∂Ω,

where

λδ =

∫
Ω

(
uδ

tu
δ + |∇uδ|2 + γχ′

ε(u
δ)uδ

)
dx

V +
∫
Ω

χ̃′
δ(uδ)(uδ)2 dx

, (4.2)

and χ̃δ(u) is a smoothing of the characteristic function χu>0 (see Figure 4.1):

χ̃δ(u) =

{
0, u ≤ −δ

1, u ≥ 0,

interpolating in (−δ, 0) by a smooth increasing function so that

χ̃′
δ(u) ≤ C/δ for u ∈ (−δ, 0).

Note that the denominator in (4.2) is positive.

−δ

1

0 u

χ̃δ

Fig. 4.1. Smoothing of characteristic function.

A weak solution is defined in the following way.
Definition 4.1. A function uδ ∈ H1(QT ) ∩ L∞(0, T ; H1

0 (Ω)) is called a weak
solution of (4.1), if it satisfies the initial condition and∫ T

0

∫
Ω

(
uδ

tϕ + ∇uδ∇ϕ + γχ′
ε(u

δ)ϕ
)

dx dt (4.3)

=
∫ T

0

λδ

∫
Ω

(
χ̃δ(uδ) + uδχ̃′

δ(u
δ)

)
ϕdxdt ∀ϕ ∈ L2(0, T ; H1

0 (Ω)),
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where λδ is given by (4.2).
We note that λδ ∈ L2(0, T ) and all the integrals in the above equation have sense for
uδ with the stated regularity.

To solve this problem, we make use of the mentioned variational method. The
results are summarized in the following theorem.

Theorem 4.2. There exists a weak solution of the above approximate problem
satisfying

uδ ≥ −δ, (4.4)

the perturbed volume constraint ∫
Ω

χ̃δ(uδ)uδ dx = V (4.5)

and the following estimate

‖uδ
t‖

2
L2(QT ) + ‖∇uδ(t)‖2

L2(Ω) +
∫

Ω

γχε(uδ)(t) dx ≤ C(u0) (4.6)

for a.e. t ∈ (0, T ), where C(u0) does not depend on δ.
Moreover, the solutions are uniformly bounded in [0, T ]× Ω̄ and uniformly Hölder

continuous on Q̄T with respect to the parameter δ.
The rough structure of the proof, based on the result [10], is to use a minimizing

method for a time-discretized functional in order to construct approximate solutions
(see [8]), and to show that these approximations converge to a weak solution. We
divide the time interval (0, T ) equidistantly into N subintervals of length h = T/N ,
N ∈ N, and for each h > 0 we construct an approximate solution uδ,h in the following
manner.

First of all, put uδ,0 = u0, and for n = 1, 2, . . . , N , find a minimizer uδ,n of the
functional

Jδ
n(u) =

∫
Ω

( |u − uδ,n−1|2

2h
+

1
2
|∇u|2 + γχε(u)

)
dx (4.7)

in the admissible function set

Kδ
V =

{
u ∈ H1

0 (Ω);
∫

Ω

χ̃δ(u)u dx = V
}

.

This functional is called the discrete Morse flow corresponding to (4.1). We remark
that both in (4.1) and in (4.7), the role of a penalty is played by the smoothed
characteristic function modifying the volume constraint in the set Kδ

V . The maximum
principle then yields the estimate (4.4).

As the next step, we interpolate the minimizers uδ,n, n = 0, 1, 2, . . . , N in time,
i.e., we introduce the following functions (see Figure 4.2):

ūδ,h(t, x) =

{
u0(x), t = 0
uδ,n(x), t ∈ ((n − 1)h, nh], n = 1, . . . , N

(4.8)

uδ,h(t, x) =

{
u0(x), t = 0
t−(n−1)h

h
uδ,n(x) + nh−t

h
uδ,n−1(x), t ∈ ((n − 1)h, nh].

(4.9)
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Fig. 4.2. Time interpolation of minimizers.

We prove Theorem 4.2 by sending h to zero. Above all, we have to show that
there exists a minimizer of Jδ

n, that the functions uδ,h are bounded in a certain norm
and that they converge to a weak solution of the smooth problem (4.1). Here we omit
the technical proof since it can be recovered from [10] by careful modification of the
constraint.

Now we prove the main result - existence of weak solution to (3.1)–(3.3), the
meaning of which is explained in the following Definition.

Definition 4.3. A function u belonging to the space H1(QT )∩L∞(0, T ; H1
0(Ω))

is called a weak solution to (3.1), provided it satisfies the initial condition (3.2) and
the identities∫ T

0

∫
Ω

(utϕ + ∇u∇ϕ + γχ′
ε(u)ϕ) =

∫ T

0

∫
Ω

λϕ ∀ϕ ∈ C∞
0 (QT ∩ {u > 0}),

u ≡ 0 in QT \ {u > 0}, (4.10)

with λ defined in (2.7).
Theorem 4.4. There exists a unique weak solution to the problem (3.1)–(3.3)

that is Hölder continuous in [0, T ]× Ω̄.
Proof. Recollecting (4.6) provides us with a subsequence of {uδ}δ>0 converging

weakly in H1(QT ):

uδ
t ⇀ ut weakly in L2(QT ), (4.11)

∇uδ ⇀ ∇u weakly∗ in L∞(0, T ; L2(Ω)),
uδ → u strongly in L2(QT ).

Moreover, in virtue of the uniform Hölder continuity and boundedness, we can use
the Arzelà-Ascoli theorem to extract another subsequence converging uniformly on
QT .

We fix an arbitrary function ϕ ∈ C∞
0 (QT ∩ {u > 0}) and denote its support as

Sϕ. Then we have

uδ ⇒ u uniformly in Sϕ. (4.12)

Our goal is to show (4.10) for this u and ϕ by passing to the limit as δ → 0+ in
(4.3). First, we have by (4.11)∫ T

0

∫
Ω

(
uδ

tϕ + ∇uδ∇ϕ
)

dx dt →

∫ T

0

∫
Ω

(utϕ + ∇u∇ϕ) dx dt.

Since χ′
ε is continuous and bounded and |γχ′

ε(uδ)ϕ| ≤ Cγ ∈ L1(Ω), we obtain∫ T

0

∫
Ω

γχ′
ε(u

δ)ϕdxdt →

∫ T

0

∫
Ω

γχ′
ε(u)ϕdxdt.
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Also, by the uniform convergence (4.12), we see that uδ > 0 on Sϕ for δ small enough.
Consequently, we have for small δ the key identity∫

Ω

(
χ̃δ(uδ) + uδχ̃′

δ(u
δ)

)
ϕdx =

∫
Ω

χ̃δ(uδ)ϕdx =
∫

Ω

ϕdx.

The definition of support of test function ϕ becomes relevant here, leading us back
to the characteristic function in (3.1). Finally, due to an estimate on approximate
Lagrange multipliers, we have the uniform boundedness of λδ in L2(0, T ). Thus,
reselecting a subsequence, there is a function λ̃ ∈ L2(0, T ) such that

λδ ⇀ λ̃ weakly in L2(0, T ).

We have arrived at the following identity:∫ T

0

∫
Ω

(utϕ + ∇u∇ϕ + γχ′
ε(u)ϕ) dx dt =

∫ T

0

λ̃

∫
Ω

ϕdxdt. (4.13)

It remains to show that λ̃ corresponds to the form of λ from (2.7), that u is
nonnegative and that it satisfies the volume condition (2.2). The nonnegativity of u
is seen from (4.4) and the uniform convergence. Volume preservation is shown, for
example, in the following way:∣∣∣ ∫

Ω

uχu>0 dx − V
∣∣∣ =

∣∣∣ ∫
Ω

(
uχu>0 − uδχ̃δ(uδ)

)
dx

∣∣∣
=

∣∣∣ ∫
Ω

(
uχ̃δ(u) − uδχ̃δ(uδ)

)
dx

∣∣∣
≤ C

∫
Ω

|u − uδ| dx → 0 for δ → 0 + .

Now, the form of λ̃ would be ensured if we could put

ϕ(t, x) =

{
u(t, x), t ≤ t0

0, t > t0
(4.14)

in (4.13). We cannot do so directly because this function does not have compact
support inside {u > 0} . We also cannot apply any approximation technique. Indeed,
we only know that function u is a Hölder continuous H1-function, which is not good
enough information to get necessary regularity (Lipschitz continuity) of the boundary
of {u > 0}. Thus, we cannot use approximations by functions from C∞

0 ({u > 0}).
Still, we notice that (4.14) is an admissible function in (4.3). Then we get∫ t0

0

∫
Ω

(
uδ

tu + ∇uδ∇u + γχ′
ε(u

δ)u
)
dx dt =

∫ t0

0

λδ

∫
Ω

(
χ̃δ(uδ) + uδχ̃′

δ(u
δ)

)
u dx dt.

(4.15)
For the left-hand side terms of (4.15), the convergences from (4.11) are sufficient. In
the remaining terms, we use the uniform convergence, boundedness of uδ from below
(see (4.4)), properties of the function χ̃δ and the following estimates:∣∣ ∫

Ω

χ̃δ(uδ)u dx − V
∣∣ =

∣∣ ∫
Ω

(
χ̃δ(uδ)uδ + χ̃δ(uδ)(u − uδ)

)
dx − V

∣∣
=

∣∣ ∫
Ω

χ̃δ(uδ)(u − uδ) dx
∣∣

≤ C max
QT

|u − uδ| → 0 as δ → 0,
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∣∣ ∫
Ω

uδχ̃′
δ(u

δ)u dx
∣∣ =

∣∣ ∫
Ω

(
(uδ)2χ̃′

δ(u
δ) + uδχ̃′

δ(u
δ)(u − uδ)

)
dx

∣∣
≤ Cδ + C max

QT

|u − uδ| → 0 as δ → 0.

Hence, taking δ to zero in (4.15) yields∫ t0

0

λ̃ dt =
1
V

∫ t0

0

∫
Ω

(
utu + |∇u|2 + γχ′

ε(u)u
)
dx dt,

which immediately implies λ̃(t) = λ(t) almost everywhere in (0, T ).
The uniqueness follows from the uniqueness of the solution obtained by the

method of variational inequalities (see Remark below).
Remark. We show that the weak solution constructed above is the same as the

solution obtained by the technique of variational inequality. More precisely, we prove
that our solution satisfies the relation∫ T

0

∫
Ω

[
(−ut − γχ′

ε(u))(z − u) −∇u∇(z − u)
]
dx dt ≤ 0 ∀z ∈ K, (4.16)

where

K =
{
u ∈ L2(0, T ; H1

0 (Ω)); u ≥ 0,

∫
Ω

u dx = V
}
.

Since solution of (4.16) is unique (this can be seen taking two solutions u, v ∈ K,
setting z = v in (4.16) and z = u in the corresponding relation for v, adding the
resulting inequalities and using Gronwall’s lemma), we conclude that there is a unique
weak solution in the sense of Definition 4.3, which is identical to the unique solution
in the sense of Yosida approximation.

To start with, take any z ∈ K ∩ C(0, T ; H1
0 (Ω)) and define function z̄h by

z̄h(t, x)|t∈(nh,nh+h) = zn(x) = z(nh, x), x ∈ Ω.

Then for ε ∈ (0, 1) the function uδ,n + ε(zn − uδ,n) is nonnegative and has volume V ,
thus is an admissible variation for the functional (4.7), yielding

1
ε

(
Jδ

n(uδ,n) − Jδ
n(uδ,n + ε(zn − uδ,n))

)
≤ 0.

Letting ε → 0+ gives∫ T

0

∫
Ω

[(
− uδ,h

t − γχ′
ε(ū

δ,h)
)
(z̄h − ūδ,h) −∇ūδ,h∇(z̄h − ūδ,h)

]
dx dt ≤ 0.

Using an analogy for (4.11) in the limit as h → 0+, we find∫ T

0

∫
Ω

[(
− uδ

t − γχ′
ε(u

δ)
)
(z − uδ)−∇uδ∇z

]
dx dt + lim inf

h→0

∫ T

0

∫
Ω

|∇ūδ,h|2 dx dt ≤ 0.

Hence, by the lower semicontinuity of the Dirichlet integral, we obtain∫ T

0

∫
Ω

[(
− uδ

t − γχ′
ε(u

δ)
)
(z − uδ) −∇uδ∇(z − uδ)

]
dx dt ≤ 0.

Results (4.11) and the same reasoning as above finally give (4.16).
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5. Conclusion. We have proved the existence, uniqueness and certain regularity
of a weak solution to a parabolic free boundary problem with integral constraint. The
equation can describe slow motion of drops on surfaces, where the contact angles are
smoothed. The volume constraint results in a time-dependent outer force term having
a nonlocal form depending on the solution. The problem was solved by the discrete
Morse flow method, which is a variational method based on the minimization of a
time-discretized functional. The constraints can then be included in the set of func-
tions admissible for minimization. The possibility of direct application to numerical
schemes and independence of convexity of the problem distinguishes the construc-
tion of approximate solutions in the present proof from the subdifferential technique
using Yosida approximation. In the future, we aim at employing the independence
of convexity to study constrained evolutionary equations with delta function terms,
corresponding to sharp contact angles in the droplet model.
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