A NOTE ON THE EFFICIENCY OF TAMURA＇S \＄Q \＄

Yanagawa，Takashi
Department of General Education，Kumamoto University
https：／／doi．org／10．5109／13042

出版情報：統計数理研究． 14 （1／2），pp．25－30，1970－03．Research Association of Statistical Sciences バージョン：
権利関係：

A NOTE ON THE EFFICIENCY OF TAMURA'S \boldsymbol{Q}

By

Takashi Yanagawa*

(Received January 12, 1970)

1. Introduction

Let $X_{1}, X_{2}, \cdots, X_{m}$ and $Y_{1}, Y_{2}, \cdots Y_{n}$ be random samples from the symmetric and continuous c.d.f. $F(x)$ and $G(x)=F(x / \theta)$ respectively.

For testing the statistical hypothesis $H: \theta=1$ against the alternative $A H: \theta>1$ Tamura [3] has proposed the following test statistics.

$$
\begin{equation*}
Q_{s}^{(1)}=\frac{1}{\binom{m}{s}\binom{n}{2}} \Sigma^{*} \phi\left(x_{\alpha_{1}}, \cdots, x_{\alpha_{s}} ; y_{\beta_{1}}, y_{\beta_{2}}\right) \tag{1}
\end{equation*}
$$

where

$$
\phi\left(x_{1}, x_{2}, \cdots, x_{s} ; y_{1}, y_{2}\right)= \begin{cases}1 & \text { for } y_{1}<x_{1}, \cdots, x_{s}<y_{2} \text { or } y_{2}<x_{1}, x_{2}, \cdots, x_{s}<y_{1} \\ 0 & \text { otherwise }\end{cases}
$$

and the summation Σ^{*} extends over all subscripts α, β such that $1 \leqq \alpha_{1}<\cdots<\alpha_{s} \leqq m$, $1 \leqq \beta_{1}<\beta_{2} \leqq n$.

Among the statistics $Q_{s}^{(1)}, s=1,2, \cdots$, the interesting one would be $Q_{1}^{(1)}$ and $Q_{2}^{(1)}$. It has been proved that these two statistics have the same Pitman efficiencies. Thus $Q_{1}^{(1)}$ would be more practical than $Q_{2}^{(1)}$, since it is very easy to compute.

To make our investigation more precise we shall also consider the following statistics which are the same types of $Q_{s}^{(1)}$.

$$
\begin{equation*}
Q_{s}^{(2)}=\frac{1}{\binom{n}{s}\binom{m}{2}} \sum^{\sum * * \phi\left(y_{n_{1}}, \cdots, y_{n_{s}} ; x_{\beta_{1}}, x_{\beta_{2}}\right), \quad s=1,2, ~} \tag{2}
\end{equation*}
$$

where $\Sigma^{* *}$ extends over all subscripts α, β such that $1 \leqq \alpha_{1}<\cdots<\alpha_{s} \leqq n, 1 \leqq \beta_{1}<\beta_{2}$ $\leqq m$.

The purpose of this paper is to make further comparisons to these test statistics, which will make us to recomend $Q_{1}^{(2)}$ instead of $Q_{1}^{(1)}$ or $Q_{2}^{(1)}$ in practical situations.

In section 2 we shall consider the comparison of $Q_{s}^{(i)}, i, s=1,2$ from the view point of the Bahadur asymptotic efficiency [1]. As pointed by Bahadur [2], Bahadur asymptotic efficiency has some pitfalls since it is an approximate measure of efficiency. Thus our results in section 2 might not be enough reliable. Therefore we shall in section 3 compute the small sample power of these test statistics and give comparisons of these powers for a specific distribution.

[^0]
2. Comparison of $Q_{s}^{(i)}, i, s=1,2$ by the Bahadur asymptotic efficiency

Let denote the mean of $Q_{s}^{(i)}, i, s=1,2$ by $\mu_{i, s}(\theta)$. Then we get

$$
\begin{align*}
& \mu_{1, s}(\theta)=2 \iint_{x<y}[F(y)-F(x)]^{s} d G(x) d(y), \tag{4}\\
& \mu_{2, s}(\theta)=2 \iint_{x<y}[G(y)-G(x)]^{s} d F(x) d F(y)
\end{align*}
$$

Especially in the null case we get

$$
\begin{equation*}
\mu_{1, s}(1)=\mu_{2, s}(1)=\frac{2}{(s+1)(s+2)} . \tag{6}
\end{equation*}
$$

Let $m=\rho N, n=(1-\rho) N$ and denoting the asymptotic variance of ${ }_{2}^{f} Q_{s}^{(i)}$ under null hypothesis by $\sigma_{i, s}^{2}$, then following the manner of Tamura [3] we get

$$
\begin{equation*}
\sigma_{i, s}^{2}=\frac{1}{(s+1)^{2}} \frac{8}{\rho(1-\rho)}\left[\frac{1}{2 s+3}-\frac{2}{(s+2)^{2}}+\frac{[(s+1)!]^{2}}{(2 s+3)!}\right], \quad s=1,2 . \tag{7}
\end{equation*}
$$

Let normalize the statistics $Q_{s}^{(i)}$ as follows.

$$
Q_{N, s}^{(i)}=\frac{\sqrt{ } N\left(Q_{s}^{(i)}-\mu_{s}(1)\right)}{\sigma_{i, s}}, \quad i=1,2 .
$$

Then we get under non null hypothesis

$$
\begin{equation*}
E\left[\frac{Q_{i N}^{(i) s}}{\sqrt{N} N^{-}}\right]=\frac{1}{\sigma_{i, s}}\left(\mu_{i, s}(\theta)-\mu_{i, s}(1)\right) . \tag{8}
\end{equation*}
$$

Thus by using Chebychev's inequality and the definition of the asymptotic slope, the asymptotic slope $C\left(Q_{s}^{(i)} ; \theta\right)$ of statistic $Q_{s}^{(i)}$ is obtained, after some calculations, as follows.

$$
C\left(Q_{s}^{(i)}: \theta\right)=\frac{1}{\sigma_{i, s}^{2}}\left(\mu_{i, s}(\theta)-\mu_{i, s}(1)\right)^{2} .
$$

Then from (4), (5) and (7) we get

$$
\begin{align*}
& C\left(Q_{1}^{(1)}: \theta\right)=720 \rho(1-\rho)\left(\int F G d G-\frac{1}{3}\right)^{2}, \tag{9}\\
& C\left(Q_{2}^{(1)}: \theta\right)=180 \rho(1-\rho)\left(\int F^{2} d G-\frac{1}{3}\right)^{2}, \\
& C\left(Q_{1}^{(2)}: \theta\right)=720 \rho(1-\rho)\left(\int F G d F-\frac{1}{3}\right)^{2}, \\
& C\left(Q_{2}^{(2)}: \theta\right)=180 \rho(1-\rho)\left(\int G^{2} d F-\frac{1}{3}\right)^{2} .
\end{align*}
$$

By integration by part it can be easily shown

$$
C\left(Q_{1}^{(1)}: \theta\right)=C\left(Q_{2}^{(2)}: \theta\right), \quad C\left(Q_{2}^{(1)}: \theta\right)=C\left(Q_{1}^{(2)}: \theta\right)
$$

Further

$$
\begin{gathered}
C\left(Q_{2}^{(1)}: \theta\right)-C\left(Q_{1}^{(1)}: \theta\right)=180 \rho(1-\rho)\left[\int F^{2} d G-2 \int F G d G+\frac{1}{3}\right]\left[\int F^{2} d G+2 \int F G d G-1\right] \\
=180 \rho(1-\rho)\left[\int(F-G)^{2} d G\right]\left[\left(\int F^{2} G d-\frac{1}{3}\right)+2\left(\int G F d G-\frac{1}{3}\right)\right] .
\end{gathered}
$$

But it is seen that $\int F^{2} d G$ is an increasing function of $\theta>0$ for $G(x)=F(x / \theta)$. Thus we get

$$
\int F^{2} d G>\frac{1}{3} \quad \text { for } \theta>1
$$

Similarly

$$
\int F G d G>\frac{1}{3} \quad \text { for } \theta>1
$$

Thus we get

$$
C\left(Q_{2}^{(1)}: \theta\right)>C\left(Q_{1}^{(1)}: \theta\right) \quad \text { for } \theta>1 .
$$

Namely it has been proved that for testing the hypothesis $H: \theta=1$ against the alternative $A H: \theta>1$,
(i) Bahadur asymptotic efficiency of $Q_{2}^{(1)}$ and $Q_{1}^{(1)}$ are respectively equivalent to that of $Q_{1}^{(2)}$ and $Q_{2}^{(2)}$,
(ii) $Q_{2}^{(1)}$ (or $\left.Q_{1}^{(2)}\right)$ is more efficient than $Q_{1}^{(1)}$ (or $\left.Q_{2}^{(2)}\right)$ or equivalently
(ii)' $Q_{1}^{(2)}$ (or $Q_{2}^{(1)}$) is more efficient than $Q_{1}^{(1)}$ (or $Q_{2}^{(2)}$).

Thus against Tamura's proposal, $Q_{1}^{(2)}$ instead of $Q_{1}^{(1)}$ would be recomended in the practical situations.

3. Small sample comparisons of $\boldsymbol{Q}_{s}^{(i)}, \boldsymbol{i}, \boldsymbol{s}=1,2$

Since the results given in the section 2 are asymtotic and approximate, behaviours of statistics $Q_{N, s}^{(i)}, i, s=1,2$ must be discussed in small sample. We cannot unfortunately deal with them in the general form, therefore we only check in the simple and special cases. When $m=n=4$, the orderings of X 's and Y 's which have larger values of $Q_{1}^{(i)}, i=1,2$ are respectively given in the following table.

Let the size α of test be $1 / 70$, then the critical regions of $Q_{s}^{(1)}, s=1,2$ contain only an ordering $Y Y X X X X Y Y$ and that of $Q_{1}^{(2)}$ and $Q_{2}^{(2)}$ are constructed by above five and seventeen orderings in the table respectively in the randomized form. In the case $\alpha=5 / 70$, the critical regions of both $Q_{2}^{(1)}$ and $Q_{1}^{(2)}$ are constructed by above five orderings and that of $Q_{1}^{(1)}$ and $Q_{2}^{(2)}$ are constructed respectively by above six and seventeen ordering in the randomized form. When $F(x)$ is symmetrical, symmetric orderings have the same probability, for example

$$
P_{r}(Y Y X X X Y X Y)=P_{r}(Y X Y X X X Y Y) .
$$

Now we assume that $F(x)$ be the uniform distribution in $(-1 / 2,1 / 2)$, then after some computation we get

$$
\begin{aligned}
& P_{r}(Y Y X X X X Y Y)=72 \iint G^{2}(x)[F(y)-F(x)]^{2}[1-G(y)]^{2} d F(x) d F(y) \\
& \quad=-\frac{1}{70 \bar{\theta}^{4}}\left[\frac{105}{4}(\theta-1)^{4}+42(\theta-1)^{3}+28(\theta-1)^{2}+8(\theta-1)+1\right] \quad \text { for } \theta>1 .
\end{aligned}
$$

Table. Ordering of $Q_{1}^{(i)}, i, s=1,2, m=n=4$.

$Q_{1}^{(1)}$		$Q_{2}^{(1)}$		$Q_{1}^{(2)}$		$Q_{2}^{(2)}$	
ordering	value of $4\binom{4}{2} Q_{1}^{(1)}$	ordering	value of $\binom{4}{2}\binom{4}{2} Q_{2}^{(1)}$	ordering	value of $4\binom{4}{2} Q_{1}^{(2)}$	ordering	value of $\binom{4}{2}\binom{4}{2} Q_{2}^{(2)}$
$Y Y X X X X Y Y$	16	$Y Y X X X X Y Y$	24	$Y Y X X X X Y Y$	0	$Y Y X X X X Y Y$	0
$Y Y X X X Y X Y$	15	$Y Y X X X Y X Y$	18	$Y Y Y X X X X Y$	0	$Y Y X X X Y X Y$	0
$Y X Y X X X Y Y$	15	$Y Y Y X X X X Y$	18	$Y X X X X Y Y Y$	0	$Y Y X X Y X X Y$	0
$Y Y X X Y X X Y$	1.4	$Y X Y X X X Y Y$	1.8	$X X X X Y Y Y Y$	0	$Y Y X Y X X X Y$	0
$Y X X Y X X Y Y$	1.4	$Y X X X X Y Y Y$	1.8	$Y Y Y Y X X X X$	0	$Y Y Y X X X X Y$	0
$Y X Y X X Y X Y$	14	$Y Y X X Y X X Y$	15	$Y Y X X X Y X Y$	3	$Y X Y X X X Y Y$	0
$Y Y X Y X X X Y$	13	$Y Y X Y X X X Y$	15	$Y Y X Y X X X Y$	3	$Y X X Y X X Y Y$	0
$Y X X X Y X Y Y$	13	$Y X X Y X X Y Y$	15	$Y X Y X X X Y Y$	3	$Y X X X Y X Y Y$	0
$Y X X Y X Y X Y$	1.3	$Y X X X Y X Y Y$	15	$Y X X X Y X Y Y$	3	$Y X X X X Y Y Y$	0
$Y X Y X Y X X Y$	13			$X Y X X X Y Y Y$	3	$X Y X X X Y Y Y$	0
$Y Y Y X X X X Y$	12			$Y Y Y X X X Y X$	3	$Y Y Y X X X Y X$	0
$Y X Y Y X X X Y$	12	:		$X X X Y X Y Y Y$	3	$X X Y X X Y Y Y$	0
$Y X X Y Y X X Y$	12			$Y Y Y X Y X X X$	3	$Y Y Y X X Y X X$	0
$Y X X X Y Y X Y$	12			$Y Y X X Y X X Y$	4	$X X X Y X Y Y Y$	0
$Y X X X X Y Y Y$	12			$Y X X Y X X Y Y$	4	$Y Y Y X Y X X X$	0
$X Y Y X X X Y Y$	12			$X X Y X X Y Y Y$	4	$X X X X Y Y Y Y$	0
$Y Y X X X Y Y X$	12			$Y Y Y X X Y X X$	4	$Y Y Y Y X X X X$	0

From the similar computations we get for $\theta>1$

$$
\begin{aligned}
& P_{r}(Y Y Y X X X X Y)=\stackrel{1}{70 \theta^{1}}\left(\frac{35}{2} a^{4}+28 a^{3}+21 a^{2}+8 a+1\right) \text {, } \\
& \left.\begin{array}{l}
P_{r}(Y Y X X X Y X Y) \\
P_{r}(Y Y X X Y X X Y) \\
P_{r}(Y Y X Y X X X Y)
\end{array}\right)=\begin{array}{c}
1 \\
70 \theta^{4}
\end{array}\left(21 a^{3}+21 a^{2}+8 a+1\right), \\
& P_{r}(Y X Y X X Y X Y)=\begin{array}{c}
1 \\
70 \theta^{4}
\end{array}\left(14 a^{2}+8 a+1\right), \\
& P_{r}(Y Y Y Y X X X X)=\frac{1}{70 \theta^{4}}\left(\frac{35}{8} a^{4}+7 a^{3}+7 a^{2}+4 a+1\right) \text {, } \\
& \left.\begin{array}{l}
P_{r}(Y Y Y X X X Y X) \\
P_{r}(Y Y Y X X Y X X) \\
P_{r}(Y Y Y X Y X X X)
\end{array}\right)=\begin{array}{cc}
1 \\
70 \theta^{4} & \left(7 a^{3}+7 a^{2}+4 a+1\right),
\end{array}
\end{aligned}
$$

where $a=\theta-1$.
Thus the power of $Q_{s}^{(i)}$, denoted by $\gamma_{s}^{(i)}$, is given for $\alpha=1 / 70$

$$
\begin{array}{ll}
\gamma_{1}^{(1)}=\gamma_{2}^{(1)}=\left(\frac{105}{4} a^{4}+42 a^{3}+28 a^{2}+8 a+1\right) / 70 \theta^{4} & \text { for } \theta>1, \\
\gamma_{1}^{(2)}=\left(70 a^{4}+112 a^{3}+84 a^{2}+32 a+5\right) / 350 \theta^{4} & \text { for } \theta>1, \\
\gamma_{2}^{(2)}=\left(70 a^{4}+280 a^{3}+252 a^{2}+104 a+17\right) / 1190 \theta^{4} & \text { for } \theta>1 . \tag{15}
\end{array}
$$

Comparing (13), (14) and (15) we get

$$
\begin{equation*}
\gamma_{1}^{(1)}=\gamma_{2}^{(1)}>\gamma_{1}^{(2)}>\gamma_{2}^{(2)} \quad \text { for } \theta>1 \tag{16}
\end{equation*}
$$

In the case $\alpha=5 / 70$ we get

$$
\begin{array}{ll}
\gamma_{1}^{(1)}=\left(\begin{array}{c}
315 \\
4
\end{array} a^{4}+336 a^{3}+322 a^{2}+120 a+15\right) / 210 \theta^{4} & \text { for } \theta>1, \\
\gamma_{1}^{(2)}=\left(70 a^{4}+112 a^{3}+84 a^{2}+32 a+5\right) / 70 \theta^{4} & \text { for } \theta>1, \\
\gamma_{2}^{(1)}=\left(\begin{array}{c}
245 \\
4
\end{array} a^{4}+140 a^{3}+112 a^{2}+40 a+5\right) / 70 \theta^{4} & \text { for } \theta>1, \\
\gamma_{2}^{(2)}=\left(70 a^{4}+280 a^{3}+252 a^{2}+104 a+17\right) / 238 \theta^{4} & \text { for } \theta>1 . \tag{20}
\end{array}
$$

Comparing (17), (18), (19) and (20) we get

$$
\left(\begin{array}{ll}
\gamma_{1}^{(2)}>\gamma_{2}^{(1)}>\gamma_{1}^{(1)}>\gamma_{2}^{(2)} & \text { for } \theta>5.047, \tag{21}\\
\gamma_{2}^{(1)}>\gamma_{1}^{(2)}>\gamma_{1}^{(1)}>\gamma_{2}^{(2)} & \text { for } 1.863<\theta \leqq 5.047, \\
\gamma_{2}^{(1)}>\gamma_{1}^{(1)}>\gamma_{1}^{(2)}>\gamma_{2}^{(2)} & \text { for } 1<\theta \leqq 1.863,
\end{array}\right.
$$

(16) and (21) support the results in section 2. Namely, let denote by $B\left(T^{(1)}: T^{(2)}\right)$ the Bahadur asymptotic efficiency of $T^{(1)}$ relative to $T^{(2)}$, then we have following correspondence between the results of section 2 and section 3 .

Results in section 2	Results in sectio
$B\left(Q_{1}^{(1)}: Q_{2}^{(1)}\right)<1$	$\gamma_{1}^{(1)}<\gamma_{2}^{(1)}$
$B\left(Q_{1}^{(2)}: Q_{2}^{(2)}\right)>1$	$\gamma_{1}^{(2)}>\gamma_{2}^{(2)}$
$B\left(Q_{1}^{(1)}: Q_{1}^{(2)}\right)<1$	$\gamma_{1}^{(1)}<\gamma_{1}^{(2)}$
$B\left(Q_{2}^{(1)}: Q_{2}^{(2)}\right)>1$	$\gamma_{2}^{(1)}>\gamma_{2}^{(2)}$
$B\left(Q_{1}^{(1)}: Q_{2}^{(2)}\right)=1$	$\gamma_{1}^{(1)}>\gamma_{2}^{(2)}$
$B\left(Q_{2}^{(1)}: Q_{1}^{(2)}\right)=1$	$\gamma_{2}^{(1)} \geqslant \gamma_{1}^{(2)}$.

4. Acknowledgements.

I am grateful to Professor Tamura of Kyushu Institute of Design for suggesting this investigation.

References

[1] Bahadur, R. R. (1960). Statistic comparison of tests. Ann. Math. Statist. 31, 276-295.
[2] Bahadur, R.R. (1967). Rates of convergence of estimates and tests statistics. Ann. Math. Statist. 38, 303-324.
[3] Tamura, R. (1965). Nonparametric tests for scale. Bull. Math. Statist. 12, 89-94.

[^0]: * Department of General Education, Kumamoto University.

