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 §1. Introduction and Summary. 

   The purpose of this paper is to discuss some nonparametric estimators 
of a location parameter, especially their asymptotic relative efficiencies 
relative to the sample mean. 

   Let X1, X2,• • • , X n be a random sample from the population with 
cumulative distribution function F(x — 0), where 0 is a location parameter 
and F(x) is assumed to belong to the familyof all distribution functions 
that are symmetric about the origin and absolutely continuous with respect 
to the Lebesgue measure. Let e p be the median of the means of all p-tuple 

(X11, Xip), (X) in number, drawn from X1, X2,••', XN, i.e. 

(1. 1)eP—                       —Med X'+ X i2 + • • •-1-XiP 

which we shall propose as an estimator of 0. 
   In the simplest case p =1, e, is the sample median. In a recent paper 

[2] J. L. Hodges and E. L. Lehmann derived the estimator 02 of 0 from 
the one sample Wilcoxon statistic. Some of their results are as follows. 
The asymptotic efficiency of 01 relative to the sample mean X, denoted 
A.R.E. (e 1 X) , in the sence of reciprocal ratio of asymptotic variances, is 
4af2A), where f denotes the density corresponding to F and a f2 its variance, 
while A.R.E. (02 X) =12a (ffix)dx) 2. The infimum of these efficiencies with 
respect to the underlying distribution are well known to be 0 and 0.864, 
respectively. Our investigation is a generalization of these results. 

   In Section 2 we shall discuss some properties of Op. In Section 3 we 
shall state our main results that the infimum of A.R.E. (0p' X) with respect 
to the population distribution is always greater than or equal to 0.864 for 
even p, but not so for odd p, even if p>3. In Section 4 we shall consider 
the case in which N observations are divided into p groups and define 
alternative estimators of 0 and recomend some of them as estimators of 0.

   §2. Some properties of Op. 

   By means of a rank test statistic T (x), X = (X i,• • • ,X N), which satisfies 

the condition (1) T (x+ a) is a nondecreasing function of a for all x, (2) 

                        11
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EoT(x)=P, where It is independent of F and E, denotes the expectation 
under 0-0, Hodges and Lehmann [2] defined the estimator of 0 as follows. 

(2. 1) e* +0*                     2 ' 

where 0*=inf0; T(x-0)<P; and 0** suy 0 ; T(x-0)>,e2. 

   If we put              

1  (2. 2) T(X)—N.7;11•••ip); Xi1+•••+Xip>0, i1<i2<•••<ip; , 

        cp) 
where means the number of p-tuble (i1i2•••ip) such that Xi ,+ Xi, + • • • + Xip 
>0, then the estimator Op and 0 defined in (1. 1) and (2. 1), respectively, 
are seen to be identical. Therefore all results in [2] hold for the estimator 

p, i.e. (a) the distribution of ep is absolutely continuous with respect to 
the Lebesgue measure, (b) the distribution of Op is symmetric about 0, so 
that Op is an unbiased estimator of 0, (c) Op is translation invariant, (d) the 
asymptotic relative efficiency of the test based on the test statistic T(x) 
defined in (2. 2) with respect to t-test is equal to A.R.E. (Op' X), (e) we 
shall have the lemma below (see [2] p. 607). 

   Lemma 2.1. For T(X) and bp defined by (2. 2) and (2 . 1), respe-
ctively, and for all a 

           P3T(X—a)<,tt _<P3öp<a<PT(X—a)<P;. 

   Let 

(2. 3) Gp(y)= 1.• •IF(y— x2— xp)f(x2)•••f(xp)dx2•••dxp, 

(2. 4)izp(F) f(x)Cn_i(0)dx, 

and let gp(y) be the p.d.f. of Gp(y). Then we obtain the following theorem. 
   Theorem 2.1. Suppose Gp(y) has the derivative gp(o)NO at y=0. 

Then N1" (0 p 0 ) has a limiting normal distribution with mean 0 and 
variance (2p(F)-1/4)/e(o). 

   Proof For any real u, let 

(2. 5)UN=1E coN(Xtil• • •, Xip), 
                                  (A 1i1<i2<...<iP 

where Ca N(X1,• • 'ap) =1 if x1 + ••• xp>pu/N1",=0 otherwise. Note that At 
EoT (X) = 1/2 and T (X — u/ N1/2) = UN, then from above (c) and Lemma 2. 1 

           lim Po N1/2 (b p— 0) <u ; =lim P,,ep<u/N12; 
                           N->co
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               =lim  130.fT(X—u/N'2)<  1 
 2  ) 

               =lim l',,1\11'2(UN—E0UN)<N12 (1 /2 — ElIN) i • 
                       N-

Since UN is a U-statistic, for which co, is uniformly bounded, it follows 
from the general theory of U-statistic [3] that N12(UN—E,UN) has a 
limiting normal distribution with mean 0 and variance p2 [Poxi+ X2+ • • • + 
X p>0, X 1+ r2 + (P0 X1+ • • • + X p>OD21=p2 (2p(F) —1/4), where 

the X,' and X; are independent and identically distributed with c.d.f. F(x). 
On the other hand N"(1/2—EoUN) = N1/2 (G p(pu / N1/2) — 1/2) = N1'2 (G p(pu / 
N1/2) — Gp(0))—>Pugp(0) , as N-->Ga , which completes the proof. 

   §3. Asymptotic efficiency of bp 

   It is well known that Ni"(X— 0) has a limiting normal distribution 
with mean 0 and variance 02.f. Therefore from Theorem 2. 1 

(3. 1) p X) =02fg;(0)/ (2p(F)-4) , 
 „1 (3. 2) A.R.E.(o 00) = g2,(0) (20(F) — -)/g:,(0)(2p(F) —. 

      44 

Especially 

          A.R.E.(O i)=e,(0) / 4f2 (0) (2,(F) , 

          A.R.E.(e 02) = gl (0)/12 (If (x) dx)2 ( p(F) — . 

   Now we shall evaluate the value of A.R.E. (O p X). For this purpose 
we require following two lemmas. 

   Lemma 3. 1. Let X1,1, , X1,N be independent random samples 

from the population with c.d.f. F(x-01), i=1, 2, ••• , c, and let 

                  IN 
      = 1 E 0) , 

                (inc"4=s1 
where Zili2 ir,a = X i , and co Z s)= 1 if Z,,--F-Zs>0, =0 otherwise. 
Then the random vector with components N112(U("tr)—E0U("—r)) has a 
normal distribution with mean 0 and covariance matrix 

(4 12(t0'"-Jr) —, where 
(3. 3) 22(1(.;;: = i+Zii...ir, 2>0,Zji...jr, 1±Zii..jr, 3>0• 

   Proof is obuious from the general theory of generalized U-statistic (see
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 [3] P. 964.). 
   Lemma 3. 2. For 2,(F) defined by (2. 4) it holds that for all F E 

(3. 4)1                       4_<_22,n(F)<3m+ 1, m=1, 2,•••.                            12m 

   Proof The left inequality is easy from the Schwarz' inequality; 21,(F) 
= ff(x)GL-1(x)dx>( ff(x)G2m-i(x)dx)2 = (P0X1-1- -FX2,n>002= 1/4, for 
the distribution of X1, X2, ••• , X2m is symmetric about the origin. To 

prove the right inequality, consider the random vector Y with components 

(3. 5)                               43;2' • iMM' 

where Yi„.2...ini=N1/2(U'ini)—E,U(i'-im)) and U"1-i.) are defined in Lemma 3. 

1. By (3. 3) the asymptotic covariance of Yi,...i,n and 17;,...im is given by 

                     —-41-2=0;if i1,•••,i„„ji,•••,j„,are all different 

                    1 

                            =
3; if (iii2.•.i.)=Cji.12...../..) 

                      

, =4( /12m(F)--41-) ; otherwise. 

Hence the asymptotic convariance matrix of Y, denoted by E., is written 

as follows. 

                   (j11•••ii.)   (imi• im.) (ill imi)   (iim•••i..) 

       (iii•••ii.) 1/31                                 4(22.(F) — 4  )•••4(22,n(F)—4 ) 
    • 

• 0• 

                                                               • 

                                                                                                                             • 

 •
••                             • 

   0 •• 
                                                                                                                                                   • (3. 6)• •                            1/3 4(22,n(F)— 14)•••4(22,n(F)--14-) 

E., . 

        ••i.1) 4 (22m (F)— 74-) • • • 4 (22m (F) 41 ) 1/3 

                                                                                                                                 • 

                                                                                           •                • 0 

   •

• •                             •                                                                                     • 

                             0 • • 

                                                         • 

      11            4(22,n(F)—  4 )•••4(22.(F) — 4)• • 1/3 

Put 22. (F) — 1/4= r/12, then the determinant of E . is
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 1 0 r• • •r 
                        •• 

                        .. 

                       0 •  1r •• • r 

(3. 7)detE.=/\ 2m0i)2m                           1m2r2) 
                3 )r• • •r1 o3 

                     r • • • r0 1I 

Since det E„,>0, we have r_.<1/m, which implies 22m (F)�(3m + 1)/12m, 
as was to be proved. 

   We shall denote by the family of distributions which belong to 
and satisfy the condition of the theorem 2. 1. 

   Theorem 3. 1. Suppose that p is even. Then 

                  inf A.R.E. (0;1X)>0.864. 
                 FE 

   Proof We shall put p = 2m, m =1, 2, • • then 

        g2.(0) = fg„2,(x) dx. From (3. 1) and lemma 3. 2., 

          inf A.R.E.(b2„, X)=inf c2fg2., (0)                              2
2m (F)— 1/4 

                                                 2 

             1204( fg2 (X) dx) inf 12a4( fg,n(x)dx)2 
             inf 12m (22„, (F) — 1/4) —>sup 12m (22. (F) — 1/4) 

                                                 2 

            >inf.12 6g,„dx) , 
where crg,n is the variance of p.d.f. gm.It has been shown by Hodges and 
Lehmann [1] that 

(3. 8)gm(x)----  20V35(5 — x2) if x2<5, = 0 otherwise 

attains the infimum value 0.864 of the last expression. This completes 
the proof. 

   Remark. For even m there exists no underlying distribution F(x) 
which satisfies (3. 8), since the characteristic function is 

         (3/5^ 5 )[(1/t3) sin t^ 5 — (V 5 /t2) cos t^ 5 ], 
which is negative for some t. The author presents a conjecture A.R.E. 

(b2. X) >0.864 for all m>1. 
   The above theorem does not hold for odd p, as is seen in Table II for 

p=3. In order to give an evaluation for odd p, we shall consider the 
random variable Zii2...ir, a, a =1, 2, • • N, given in lemma 3. 1 and the 

statistic = N-1E where 1k (Z) = 1 if Z>0, = 0 other-
                                     i=i 

wise. A similar procedure as lemmas 3. 1 and 3. 2 will lead us to obtain
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 (3.  9)1 <2P4p(F)<1±-1),2, ••• 

                            Though the upper bound of (3. 9) is somewhat larger than that of 
(3. 4) for even p, it gives an evaluation of 2p(F) for odd p. Therefore we 
shall try to evaluate the value of A.R.E. p X) for odd p by means of 
(3. 9). Let be the family of distributions which are unimodal and belong 
to ?. Then 

   Lemma 3. 3:1) If F(x) Eu, then Gp(y) Eu. 
   Proof It is sufficient to show that if X and Y are independent random 

variables with c.d.f. F(x) Eu and G(y) E 1, respectively, then the c.d.f. 
H(z) of the random variable Z=X+Y belongs to ?7,. Since H(z) E is 
obvious, we shall show the unimodality of H(z). Let the p.d.f. of F, G 
and H be f, g and h, respectively. Then for arbitrary 2.2>z1>0, 

   h(z2) — h(z1) = (z2 — y) — f (z — y) g(y) dy 

                 (zi+z,)/2 

        3f(z2—y)—f(zi—y)g(Y)dY+ y) g(y)dy 
                                                                   (.-1-z2)/2 

           31.(z2—y)—f(zi—y)g-(y)—g(z1+z2—y)dy. 
                 (zi+z2)/2 

Now z2—y' z1—y and y >_Izi+z2—y for y>(z1+z2)/2, so that from 
symmetry and unimodality of F, G, it follows that f(z2—y)>/(zi—y), g(y) 
�_g(z1-i-z2—y) for y>(z,+z2)/2. Hence h(z2)<h(zi), as was to be proved. 

   Let ?: be the family of distributions which are unimodal and belong 
to W From lemma 3. 3 g2. (0)>_g2._, (x) for any F E Therefore 

g2. (0) = ff(x)g2._1(x)dx_<g2-1(0). Hence from theorem 3. 1, 

                                                        2 

                                                  a 

                   inf0.21-g22._,(0)>_infgl„, (0) 
            FEau*FEau* 

                        >0.864, for m=1, 2, ••..                     12
m 

Combining this with (3. 9), we obtain the theorem below. 
   Theorem 3. 2. For odd p it holds that 

(3. 10)inf A.R.E. FX)>0.288-2-P—       FEau*+i 

   Some numerical values of gp(0), 2p(F) and A.R.E. (bpX) for normal, 
uniform and double exponential distributions are given in the following 
tables. 

(1) The lemma and the proof was given in more generaliged form by professor K. Isii, Osaka 
   University.
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                   Table I  f(x) = (1/1/2n) exp (-x2/2) 

 P124510               120 

  gp (0)0.39890.28290.19950.17840.12620.0892 
  2p (F)0. 50000.33330.29020.28200.26590.2579 

A.R.E. (Bp X)0. 63660.95000.9894 , 0.99330.99830.9996 

                             11                 TableIIf(x)=1 xE (-2--                                        '2) , =0 otherwise 

            II  PI123456 

  gp (0)1.00001.00000.7500  0.66670.59900.5500 
  2p (F)0. 50000.33330.30520.29090.28250.2771 

A.R.E. (bp  X)0. 33331.00000.84900.90610.91920.9296 

                          Table III f(x)= 21 e- 'x 

   

11 
 P123456 

  gp (0)0.50000.25000.1875  0.1563 1 0.13670.1230 
   2p (F)0. 50000.33330.3032 I 0.2908 I 0.28090.2761 

A.R.E. (Bp I X)2.00001.50001.32071.24391.21181.1582

   It would be interesting to compute the numerical values of A.R.E. 

 pl X) with respect to the following distributions. 

(3. 11)e27-f(x) - e 2 +2±e-,05.                                  <<1 

             1 12  
(3. 12)f(x)=                  (14_1 ± a) 21-h(l+a)12 exp2X+'}- 1 <a< 1. 

                  2 

   These two families include a normal distribution (E =1, a 0) as well 
as a double exponential distribution (E = 0, a =1) . It is expected that for 
any 13-3, 4, there exists a value of 5 or a for which A.R.E. (bp' X) 
attains its maximum value >1 at p. 

   §4. Alternative estimators of 0 

   Suppose that N observations )(1, X21••*1 X N are divided in some way 
into p groups, which denoted by (Xi'), • • (Xl",• • • , (X,••, 
X4)) where n,= i--- 1, 2, • • p and P 1 + P2 + • • • P p= 1. Then we can 
construct several alternative estimators of e such as 

(4. 1)pmedXi +Xi+••• X. 

                            is 1, 2, • • .,n,x 
                               a=1, 2,•••,p
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(4. 2)1P                       6"), wheremedX=(')+X       - a=1i<j2 

 j  1, •, 

(4. 3)'Or* =medi+X' , whereXi') 

                         9 

             i>j 

                           j= 1, 2,•••,n 

                        provided n1—n2 • • • = np = n. 

   Theorem 4. 1. 

   (1) Under the same condition as in theorem 3. 1., N1'2 (67-0) has 
a limiting normal distribution with mean 0 and variance P'(pi-'+•••+PT1) 
(2p(F)-1/4)gT2(0). 

   (2) Suppose that G2(y) has the derivative g2(0)  / 0 at y=0. Then 
N1/2 (bp*-0)has a limiting normal distribution with mean 0 and variance 
p-2 (p11+ pT1+ pp 1) [12gRO)]-1. 

   (3) Under the same condition as in (1) N'"(er* —0) has a limiting 
normal distribution with mean 0 and variance 12[pg22p(0)]-1. 
   Proof (1) Since OP can be represented by a U-statistic T*(X)--- (11)••• 
 1; Xt1--[-X12+•••±Xip>0, is= 1, 2, ••• , n; a= 1, 2, • • • , pCin the 

same way as (2. 1), the proof is analogous to that of theorem3. 1. (2) 
follows from the relation N' 2 (Bp* — (9) = p-i p;'/2ny2 (b(-) — 0) , where nY2(0(a) 

                                                                    a=1 

—0), a =1, 2,• • •, p, are independent and asymptotically normally distribut-
ed with mean 0 and variance [12 g2(0)1-4. 

   (3) lim PoN"2(ep**—(9)<u=lim Pon1/2O:**<p-1/2u}. Since Xi, i= 1, 
   N-.00n->0. 

  •,n, are independent and identically distriduted with p.d.f. pgp(px) when 
0,0, from the theorem 3. 1. n'12 ;0;** has a limiting normal distribution with 
mean 0 and variance [12/02 epo] -1, as was to be proved. 

   It is seen by the theorem that for N fixed n,=n2=•••=np is the best 
choice of the group sizes in order to make the asymptotic variance of bp 
or OP minimum. In this case the estimator b; has the same asymptotic 
distribution as bp. Now since -q as well as e2 has the same asymptotic 
distribution as op, considering a trouble involved in computing ep and O:, 
we might as well recomend ep, * as an estimator of 0 when N is large and 
ni=--n2.••=np. 

   On the other hand for arbitrary n1, n2,•••,np it will be preferable to use 

p, p= 2m, m=1, 2,• • •, as an estimator of 0, for b*p or has a large loss 
of efficiency in this case. 

   Since A.R.E. (bp** X) = 12p02,g22p(0) = 12 a ig;'(x)dx)2 , the infimum 
of A.R.E. (bp** X) never falls below 0.864. 

Therefore bp** will also be recommended for a practical use as an estimator
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of 0 when sample size is large and  n,  -•••  --np.

   § 5. Acknowledgement. 

   The author should like to express his deepest gratitude to Prof. T. 

Kitagawa Kyasha University, who suggested the problem and gave kind 

criticism and encouragement. The author also wishes his hearty thanks to 

Profs. M. Okamoto and K. Isii, Osaka University, for their generous help 

and guidance during the course of the entire work.

                                     References 

(1) Hodges, J.L.Jr. and Lehmann, E.L. (1956). The efficiency of some nonparametric competitors 
  of the t-test. Ann. Math. Statist. 27. 324-355. 

(2) Hodges, J.L.Jr. and Lehmann, E.L. (1963). Estimates of location based on rank test. Ann. 
  Math. Statist. 34. 599-611. 

(3) Lehmann, E.L. (1963). Robust estimation in Analysis of Variance. Ann. Math. Statist 34. 
  957-966.

Osaka University


