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§1. Introduction and Summary.

The purpose of this paper is to discuss some nonparametric estimators
of a location parameter, especially their asymptotic relative efficiencies
relative to the sample mean.

Let X, X,-+, X, be a random sample from the population with
cumulative distribution function F(x—6), where 6 is a location parameter
and F(x) is assumed to belong to the family % of all distribution functions
that are symmetric about the origin and absolutely continuous with respect
to the Lebesgue measure. Let 0, be the median of the means of all p-tuple

(X X X, (YY) in number, drawn from X, Xo, Xy, .

p.
(1. 1) ép:Medel+X(2+ +X{p

b
i1 <ip < <ip p

which we shall propose as an estimator of 6.

In the simplest case p=1, 0, is the sample median. In a recent paper
(2] J. L. Hodges and E. L. Lehmann derived the estimator 0, of ¢ from
the one sample Wilcoxon statistic. Some of their results are as follows.
The asymptotic efficiency of (51 relative to the sample mean X, denoted
A.R.E. (8,/X), in the sence of reciprocal ratio of asymptotic variances, is
40}fl,, where f denotes the density corresponding to F' and ¢/ its variance,
while A.R.E. (6, X)=1207(Jf%dx)%. The infimum of these efficiencies with
respect to the underlying distribution are well known to be 0 and 0.864,
respectively. Our investigation is a generalization of these results.

In Section 2 we shall discuss some properties of 6,. In Section 3 we
shall state our main results that the infimum of A.R.E. (¢, X) with respect
to the population distribution is always greater than or equal to 0.864 for
even p, but not so for odd p, even if p=>3. In Section 4 we shall consider
the case in which N observations are divided into p groups and define
alternative estimators of ¢ and recomend some of them as estimators of 0.

§2. Some properties of 5],.

By means of a rank test statistic T(x), X=(X,,---,Xx), which satisfies
the condition (1) T(x+a) is a nondecreasing function of a for all x, (2)
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ET(x)=#, where # is independent of F and E, denotes the expectation
under 00, Hodges and Lehmann [27] defined the estimator of ¢ as follows.

- ﬁ*,i_g**
. f = LA
2. D 9
where 0*=inf|0; T(x—0)<<r{ and 0**=sup|0; T (x—0)>ul.
If we put

2. D TX) :/Tif 2ty s Xt o+ X0, >0, 6<<to<lo <4, 4,
\p

where # means the number of p-tuble (i:7.--+i,) such that Xo+Xon++ Xy
>0, then the estimator 9p and 6 defined in (I. 1) and (2. 1), respectively,
are seen to bz identical. Therefore all results in [2] hold for the estimator
dj,, i.e. (a) the distribution of 6 is absolutely continuous with respect to
the Lebesgue measure, (b) the d1str1but10n of 4, is symmetric about 4, so
that 6,, is an unbiased estimator of ¢, (c) 0,is translation invariant, (d) the
asymptotic relative efficiency of the test based on the testAstatistic T(x)
defined in (2. 2) with respect to t-test is equal to A.R.E. (6, X), (e) we
shall have the lemma below (see (2] p. 607).

Lemma 2.1. For T(X) and 6, defined by (2. 2) and (2. 1), respe-
ctively, and for all a

PiT(X—a)<r{ <P{§,<a|<PiT(X—a)<ui.
Let

(2. 3) G,(y) :j---JF(y‘ Ke— = 2,) [ (x2) - f(x,) dxye - dxy,

2. & 2,(F) — J'rf(x)Gi_l(ﬁ)dx,

and let g,(y) be the p.d.f. of G,(y). Then we obtain the following theorem.

Theorem 2.1. Suppose G,(y) has the derivative g,(0)=<0 at y=0.
Then N2 (0 —0) has a limiting normal distribution with wmean 0 and
variance (X,(F)—1/4)/g;(0).

Proof For any real u, let

(. 5 Uy= {V ST on(Xinr X,
<p )11<!z< <xp

where ¢y(xy,+x,) =1 if %+ +x,>pu/N"’,=0 otherwise. Note that #=—
ET(X)=1/2 and T(X—u/N"*) =Uy, then from above (¢) and Lemma 2. 1

11m P@ le(ﬁ —0><u ﬁllm P(]Iﬁ <u/NIZ

N—oo
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~lim P{T(X-u/N'H< ! |

[Nl

=lm P {N"*(Uy—EUx)<N"*(1/2—EUx) .

N

Since Uy is a U-statistic, for which ¢y is uniformly bounded, it follows
from the general theory of U-statistic [3] that N'*(Uy—E,Usy) has a
limiting normal distribution with mean 0 and variance p*[Po{X,;+ X+ -+
X,>0, X+ Xo+ +X>00— (Pl X+ -+ X, >00)=p(2,(F) —1/4), where
the X, and X; are independent and identically distributed with c.d.f. F(x).
On the other hand N'*(1/2—EUy) =N"*(G,(pu/N**)—1/2) =N"*(G,(pu/
N7 —G,(0)) —pug,(0), as N—e<, which completes the proof.

§3. Asymptotic efficiency of 5},

It is well known that NY2(X—6) has a limiting normal distribution
with mean 0 and variance o7 Therefore from Theorem 2. 1

3. D A.RE.(6, X):af,gg(o)/<zp(p)_7ll,_) ,
3. 2) A.RE.(0,9,)=g5(0)(2,(F) ~}1 )/ ) (2P —fjl ).
Especially

ARE.(6,8,)=g5(0)/4f*(0) (2,(F) ‘711> ’

ARE.(8,8,) =g5(0)/12 (If*(x)dx)* ( 2,(F) - i ) -

Now we shall evaluate the value of A.R.E. (6, X). For this purpose
we require following two lemmas.

Lemma 3. 1. Let Xy, Xip, -+, X,y be independent random samples
from the population with c.d.f. F(x—10)), i=1, 2, -, ¢, and let

U(zng»-zr) gDCZi]iz-"in -3 Zj]j?---jr! 8):

l‘l
o=

where Ziiyeinag =Xi, avot Xivy o @A 0(Zyy Zg)=11f Zo+Zs>0, =0 otherwise.
Then the random vector with components N7*(UY ™ —EU") has a
normal distribution with mean 0 and covariance matrix

~

(4[&“%&'5? Jredn) —711» J‘) , where

(3- 3) /12(”(67,; jl.‘.jr):P()%Zilw-in 1+Z{1-~ir: 2 >0’ Zjl"'jri 1 +Zj1---jr’ 3 >0§0

Proof is obuious from the general theory of generalized U-statistic (see
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(3] P. 964.).

Lemma 3. 2. For 1,(F) defined by (2. 4) it holds that for all FE€F

1

4gz2m<F><3m""1 m=—1, 2.

@ D - 12m’

Proof The left inequality is easy from the Schwarz’ inequality ; 4,(F)
= ff(x)G§M-1(x)dx2( Jf(x)sz_i(xMx)z = (Po{ X+ +X..>01)*=1/4, for

the distribution of X, X, -+, X.. is symmetric about the origin.

To

prove the right inequality, consider the random vector Y with components

Y
3. 5 Y;

Y;
Y

- Y

miima"  mm?

.,Yj

11%127 fim? 21100 fam?

11te1" tmy? 12829 tma? imtom™ imm?

where Yi.., =NV U —EU% ) and U%"» are defined in Lemma 3.
1. By (3. 3) the asymptotic covariance of Y;,...,, and Y., is given by

4[12“1(;%”"'""'")—-}1—] =0; if 45, @m Juojm are all different

, = é S A Giada i) = (o o)

, =4(12m(F)—711—> ; otherwise.

Hence the asymptotic convariance matrix of Y, denoted by 2,, is written

as follows.

<i11"'i1m> ...... (Zmllmm> (iu"'iml)
. . 1
(ueeion) /3 4(22”,@ _'Z>"'
: 0 :
@3. 6) . 0 :
. o . 1
. (ot L) 1/3 4(;.2,,,(}?) —I)"'

" (lulml) 4('12m(F> _711*> "'4<Z2m<F> _‘31") 1/3.

. .
.
.

: : : 0
Lim® T 4(/12,,,(}7) — %)4(,{%(];‘) _%)

Put 4;,(F) —1/4=7/12, then the determinant of 2, is

..... (im®* Gm)

AP~

AP~

" 1/8

)

) .
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I, 0 7eeer
3.7 det zm:(%)m ‘r) i Z “;‘:(éym(l—mgrz)
;...; 0 '1?

Since det 2,>>0, we have 7<{1/m, which implies 4., (F)<<(3m+1)/12m,
as was to be proved.

We shall denote by $* the family of distributions which belong to ¥
and satisfy the condition of the theorem 2. 1.

Theorem 3. 1. Suppose that p is even. Then

inf A.RE. (g, X)>>0.864.
FES

Proof We shall put p=2m, m=1, 2,--, then

Zin(0) = fg,f(x) dx. From (3. 1) and lemma 3. 2.,

inf A.R.E.(0. X)=inf 7 06%3"(_0)1/4

12053 [giC0dz) _inf 12053 [giCodx)
nlem(lzm(F)—l/li)_sup 12m (A0 (F) —1/4)

>inf 12 ag,f(fgf.(x)de,

where o, is the variance of p.d.f. g.. It has been shown by Hodges and
Lehmann (1] that

— 2 2 —
(8. 8) u(x) = 720 o (5—x* if £°<5, =0 otherwise

attains the infimum value 0.864 of the last expression. This completes
the proof.

Remark. For even m there exists no underlying distribution F(x)
which satisfies (3. 8), since the characteristic function is

3/5 B[/t sin t/' 5 —G 5 /t2) cos /51,
which is negative for some f£. The author presents a conjecture A.R.E.
(0., X)>0.864 for all m>1.
The above theorem does not hold for odd p, asis seen in Table II for

p=38. In order to give an evaluation for odd p, we shall consider the
random variable Z,..ip @ a=1, 2, ---, N, given in lemma 3. 1 and the

statistic Udizwi,y = N’IZ} YV (Zisiywir a)» Where ¥ (Z)=1 if Z>0, = 0 other-
wise. A similar procedure as lemmas 3. 1 and 3. 2 will lead us to obtain
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(3. 9) i</p(F)<1 pp p=1, 2, -

Though the upper bound of (3. 9) is somewhat larger than that of
(3. 4) for even p, it gives an evaluation of 2,(F) for odd p. Therefore we
shall try to evaluate the value of A.R.E. (6,X) for odd p by means of
(8. 9. Let %, be the family of distributions which are unimodal and belong
to ¥ Then

Lemma 2.3.° If F(x) €%, then G,(y) € F..

Proof It is sufficient to show that if X and Y are independent random
variables with c.d.f. F(x) € ¥, and G(y) €, respectively, then the c.d.f.
H(z) of the random variable Z=X+Y belongs to ¥. Since H(z) €F is
obvious, we shall show the unimodality of H(z). Let the p.df. of F, G
and H be f, g and A, respectively. Then for arbitrary z.>z,>>0,

Bz — h(z) = j f(zam ) —fzi—) 1g(y)dy

(z1+22)/2

:J %f(zz—y)—f(zl—y)%g(y)dyﬂLj {f(ze—y) —fzi—y)ig(y)dy

(z1+22)/2

f(ze—y) —f(zi—)118(y) —g(zi+ 2. —y) dy

(21+22)/2
Now |z.—y' <'z,—y|and y =>z:+2.—y for y>(z:+2.)/2, so that from
symmetry and unimodality of F, G, it follows that f(z.—y)>f(zi—y), g(y)
<g(z,+2,—y) for y>(2,+2,)/2. Hence h(z,)<<h(z,), as was to be proved.
Let & be the family of distributions which are unimodal and belong
to ¥*. From lemma 3. 3 g (0)>gwm—1 (x) for any FE€F. Therefore

G (0) = ff(x)gz,n_l(x) dx<g:u_1(0). Hence from theorem 3. I,
. 2 2 . Eij'i 2
Figg}ﬂ’*afg 2m—1(0)—>—F7é7§;71 m g2m<0)

>Q&1 for m=1, 2,

12m

Combining this with (3. 9), we obtain the theorem below.
Theorem 3. 2. For odd p it holds that

(3. 10) inf ARE. (8,X)=0.288 20
FET,* p+1
Some numerical values of g,(0), 4,(F) and A.R.E. (6,X) for normal,
uniform and double exponential distributions are given in the following
tables.

(1) The lemma and the proof was given in more generaliged form by professor K. Isii, Osaka
University.
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Table I f(x) — (1/V/22) exp (—x2/2)

P 1 2 ‘ 4 5 i 10 20
g (0) 0. 3989 0. 2829 0.1995 0. 1784 0. 1262 0. 0892
2 (F) 0. 5000 0.3333  0.2902 0. 2820 0. 2659 0. 2579
ARE. (b, X) 0.6 0. 9500 0.9894 | 0.9933 0.9983 = 0.9996

1 1 [ 2wl
Table I f(x)=1 xe( 5 727), =0 otherwise

» | 1 ‘ 2 3 4 5 6
g (O 1..0000 10000 | 0.7500 0.6667 0. 5990 0. 5500
1 (F) 0. 5000 0.3333 | 0.302 | 0.2009 . 0.28% 0.2771
ARE. (0, X)  0.3333 1.0000 | 0.8490 0. 9061 0.9192 0.9296

Table TIX f(x):é e

p 1 2 ‘ 3 4 ! 5 6
g (O 0. 5000 0. 2500 0. 1875 0.1563 | 0.1367 0.1230
1 (F) 0. 5000 0.3333 0. 3032 0.2908 | 0.2809 0.2761
ARE. (8,]X) 2.0000 1. 5000 1.3207 1.2439 ' 1.2118 | 1.1582

R jt would be interesting to compute the numerical values of A.R.E.
(0, X) with respect to the following distributions.

(3. 11 f(x)~4~—e 2+<-1-§f—)e~’, 0<<e<<1
flo)= ! ~—»—exp{~l x el —1<a<l
(3- 12) <1+lja>21+(1+w)/2 2 [, -
9

These two families include a normal distribution (¢=1, a=0) as well
as a double exponential distribution (e=0, a=1). It is expected that for
any p=3, 4,- there exists a value of ¢ or a for which A.RE. (6,X)
attains its maximum value >>1 at p.

§4. Alternative estimators of ¢

Suppose that N observations X;, X+, Xy are divided in some way
into p groups, which denoted by (X{",--, X, (X Py, X2Yyeee, (X2,
X») where n.=oN, i=1, 2,-+, p and o, +ps+ - +,0,,—1. Then we can
construct several alternative estimators of ¢ such as

4.1 45 med Lot X 4o X,
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~ ¥4 () L ga:)

(4. 2) O3 == L S0, where 8@ med X+ T X" ,

b a= l<] 2

5,j=1, 2,, n

(4. 3) b —medXiT i where X, =1 3 x@

i>j 2 D a=t

i, =1, 2,

provided #n,=mn,= " =n,-=n.

Theorem 4. 1.

(1) Under the same condition as in theorvem 3. 1., N* (55—0) has
a limiting normal distribution with mean 0 and variance p~*(o7'+ -+ ;!
(4,(F)—1/4)g,°(0).

(2) Suppose that G.(y) has the derivative g.(0)#0 at y—0. Then
N2 (0% —0)has a limiting normal distribution with mean 0 and variance
P (ot o'+ +orh) [12g7(0)]7%

(8) Under the same condition as in (1) N”’Z(é‘j**-ﬁ) has a limiting
normal distribution with mean 0 and variance 12[pg;,(0)]17".

Proof (1) Since 8f can be represented by a U-statistic T (X ) =| <’§1> .

(1)1 g%(h Zp) X';+ Xt er[,/O 2,1 =1, 2,+,m; Qf——l, Lyttt } in the
same way as (2. 1), the proof is analogous to that of theorem3. 1. (2)
follows from the relation N*2(8;%—0) p-lzp—w V2(f@ —0), where nl*(8@

—0), a=1, 2,-++, p, are independent and asymptotmally normally distribut-
ed with mean 0 and variance [12 g.(0)%]"%

(3 lim Py NV2(05% —0) <y =lim P! w203+ <p~yt, Since X i=1,
2,1, are mdependent and 1dentlcally “distriduted with p.d.f. pg,(px) when
6—=0, from the theorem 3. 1.#n"* 0*"” has a limiting normal distribution with
mean 0 and variance [12p* gfp(o)]‘l, as was to be proved.

It is seen by the theorem that for N fixed #n;=#n,=---=m, is the best
choice of the group sizes in order to make the asymptotic variance of 83
or 0% minimum. In this case the estimator 67 has the same asymptotic
distribution as #,. Now since 65 as well as 0, has the same a§ympto’gic
distribution as 5?"*‘, considering a trouble involved in computing 6, and 6},
we might as well recomend 6;* as an estimator of 0 when N is large and
Ni=Ng =W

On the other hand for arbitrary #;, #.---,%, it will be preferable to use
6, p=2m, m—1, 2,---, as an estimator of 0, for 6% or 0;* has a large loss
of efficiency in this case.

Since ARE. (0% X) = 12poighy(0) = 12 o, ( [g5(x)dx) , the infimum
of A.R.E. (%% X) never falls below 0.864.
Therefore 9;‘\ will also be recommended for a practical use as an estimator
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of ¢ when sample size is large and #n,==- =#,.
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