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Abstract

Estimating an autoregressive function and its derivatives is important to an-
alyze chaotic time series, especially to estimate the Lyapunov exponent. In this
article, we propose an adaptive variable selection method to estimate a nonlinear
autoregressive function and its derivatives. Our method has a number of advan-
tages. Since an attractor of chaotic time series is bounded, most kernel-based local
mean nonparametric methods have the bias near the boundary of the attractor. In
contrast, the order of the bias of our method is higher than that of most existing
methods. To estimate derivatives of nonlinear function, we approximate it locally
using a linear function. Since correlation dimension of the attractor is not integer,
local linear regression has multicollinearity at many points and makes the variance
of the estimator of the nonlinear function large. Our method reduces this problem
by adaptive variable selection in local linear regression problem.

Key Words and Phrases: Nonlinear time series analysis, Nonparametric regression, Local linear

smoother, Principal component analysis.

1. Introduction

In an analysis of data from nonlinear autoregressive time series with dynamic noise,
a central issue is whether randomness of the data is caused solely by the dynamic noise
or by the nonlinearity of the autoregressive model as well. This article investigates
the estimation of the Lyapunov exponent for the nonlinear autoregressive time series
model to quantify the sensitive dependence on an initial value. Cheng and Tong (1993)
considered a nonlinear autoregressive model

Xt = F (Xt−1, Xt−2, . . . , Xt−d) + εt,

and related the intuitive geometric reconstruction of phase space in theoretical physics
with statistical theory of the determination of order of a nonlinear autoregressive model.
They called the order d embedding dimension, and Cheng and Tong (1995) proposed
estimators of F and d using Nadaraya-Watson kernel estimator and cross-validation
method. Fueda and Yanagawa (2001) introduced the delay time τ to Cheng and Tong’s
autoregressive model

Xt = F (Xt−τ , Xt−2τ , . . . , Xt−dτ ) + εt
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Figure 1: Left:The attractor of Henon map with noise. Right:Plot of {(Xt−2, Xt−1, Xt)}

to embed the time series in a lower dimensional space, which is desirable from the
view point of curse of dimensionality. They proposed estimators of F , d and τ , and
proved their consistency. Yonemoto and Yanagawa (2001) pointed out that Fueda and
Yanagawa’s method often fails to estimate the d and τ , when the size of data is rather
small. They proposed a new method of estimation and confirmed that their method
works well by simulation.

To consider the distribution of these models, we put

Xt =
(
Xt−(d−1), Xt−(d−2), . . . , Xt−1, Xt

)T

and we call a set {Xt|d ≤ t ≤ N} as an attractor. For Henon map:

F (Xt−1, Xt−2) = 1− 1.4X2
t−1 + 0.3Xt−2

and V ar(εt) = 0.012, a plot of the attractor and embedding to 3-dimensional space are
shown in Fig.1.

Grassberger and Procaccia (1983a,b) put

CN (r) =
(

N
2

)−1 N∑

i<j

I (||Yi − Yj || ≤ r) ,

where I denotes the indicator function, || · || is a L2-norm and r > 0, and they called
C (r) = limN→∞CN (r) the correlation integral and introduced the correlation dimen-
sion as

p = lim
r→0

log C (r)
log r

if the limit exists. The correlation dimension of sample from continuous distribution such
as Gaussian distribution is integer, and non-integer correlation dimension is considered
as one of the characteristics of chaotic time series. Kawaguchi and Yanagawa (2001)
discussed the method of estimating correlation dimension.
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In this article we investigate a nonlinear autoregressive time series model with
flexible delay time,

Xt = F (Xt−τ1 , Xt−τ2 , . . . , Xt−τD
) + εt, (1)

where D and τ1, . . . , τD are positive integer and εt is the dynamic noise. We use the
local linear regression proposed by Stone (1977) to estimate the autoregressive function
F . Nadaraya-Watson type kernel estimator has the bias near the boundary of support
of data and the attractor of chaotic time series is bounded, but local linear regression
reduces the bias near the boundary (Wand and Jones (1995)). Fan, Hu and Truong
(1994) considered a class of kernel estimators based on local linear regression estimator
and showed the asymptotic normality of these estimators. Cleveland (1979) proposed
the local polynomial regression estimator, which is the extension of the local linear
regression estimator. We also propose cross-validation of weighted sum of squares to
select a suitable set of delay times.

Next we discuss the estimation of derivatives of the autoregressive function to
estimate the Lyapunov exponent, which was discussed in Eckmann and Ruelle (1985).
Let τ be the greatest common denominator of τ1, . . . , τD in model (1). Then there exist
integers c1, ..., cD such that τk = ckτ, (k = 1, . . . , D). Let a function G : RcD → RcD be

G




x1

x2

...
xcD


 =




F (xc1 , . . . , xcD
)

x1

...
xcD−1


 .

Then Lyapunov exponent of deterministic dynamical system

Xt = F (Xt−τ1 , Xt−τ2 , . . . , Xt−τD ),

which is called skeleton of model (1), is defined as

lim
n→∞

1
2n

log |µn(x0)|

when the limit exists, where µn(x0) is the largest eigenvalue of a positive definite matrix
Tn(x0)T Tn(x0) and

Tn(x0) = G′
(
Gn−1(x0)

)
G′

(
Gn−2(x0)

) · · ·G′ (G(x0))G′ (x0) .

Yonemoto and Yanagawa (2004) proposed a consistent estimator of Lyapunov exponent.
It is necessary to estimate the derivatives of autoregressive function for Yonemoto and
Yanagawa’s method working well. However, for chaotic time series whose correlation
dimension is not integer, the estimator of derivatives tends to unstable.

For above example of Henon map, the number of variables of the autoregressive
function should be 2, but as Figure 1 shows, observed data lies on a one dimensional
line at some points and variance of the estimator of derivatives at such point tends to
be large. Thus we have to reduce the number of variables.

One of the important approaches is the projection pursuit regression proposed by
Friedman and Stuetzle (1981). A simple approach is the average derivative estimation
proposed by Härdel and Stoker (1989). The sliced inverse regression (SIR) method
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proposed by Li (1991) is one of the most powerful method for dimension reduction.
However, Xia, et al. (2002) pointed out that in autoregressive time series analysis the
SIR method requires time reversibility which is the exception rather than rule in time
series analysis. The minimum average variance estimation proposed Xia, et al. (2002) is
a natural extension of Cheng and Tong (1995), which proposed the method of variable
selection, to the method of estimation of dimension reduction space.

For chaotic time series model, the direction with which the derivatives should be
estimated differs at each part of support of the time series data. In this article, we will
propose a new method to select the directions for estimating derivatives. Our approach
is inspired by the idea of principal component selection of linear regression problem and
local linear smoothers described in Fan and Gijbels (1996).

The remainder of this article is organized as follows. Section 2 states the method of
selecting embedding dimension d and delay times (τ1, τ2, . . . , τd) and that of estimating
the autoregressive function F . Section 3 presents adaptive variable selection to estimate
derivatives of the autoregressive function.

2. Estimation of Autoregressive Function

2.1. Estimation method

In this section, we use the method of estimating the autoregressive function. To
reduce the bias near the boundary of the attractor and estimate the derivative, we use
the local linear regression to estimate the autoregressive function.

Consider the non-linear autoregressive model (1). We assume that {Xt} is a
discrete-time strictly stationary time series with E

[
X2

t

]
< ∞, and for any t,

E
[
εt|At−1

1 (X)
]

= 0, almost surely. (2)

and
E

[
ε2
t |At−1

1 (X)
]

= σ2, (σ > 0), almost surely,

where At
s(X) denotes the sigma algebra generated by (Xs, . . . , Xt), for s ≤ t. Note that

from (1) and (2), it follows that

F (Xt−τ1 , . . . , Xt−τD ) = E [Xt|Xt−τ1 , . . . , Xt−τD ]

with E [εt|Xt−τ1 , . . . , Xt−τD
] = 0.

The embedding dimension and the delay times are defined as follows.

Definition 2.1. The time series {Xt} is said to have the embedding dimension D
with the delay times τ1, . . . , τD if and only if there exists positive integers D < ∞ and
τ1 < · · · < τD < ∞ such that

E [Xt|Xt−t1 , Xt−t2 , . . . , Xt−td
] 6= E [Xt|Xt−τ1 , Xt−τ2 , . . . , Xt−τD ] a.e.

for any t1, . . . , td such that {t1, . . . , td} 6⊃ {τ1, . . . , τD} , and

E [Xt|Xt−t1 , Xt−t2 , . . . , Xt−td
] = E [Xt|Xt−τ1 , Xt−τ2 , . . . , Xt−τD

] a.e.

for any t1, . . . , td such that {t1, . . . , td} ⊃ {τ1, . . . , τD}.



An adaptive variable selection for nonlinear autoregressive time series model 113

This is a natural extension of the embedding dimension and the delay time defined in
Fueda and Yanagawa (2001).

For simplicity we put

Ft1,...,td
(x1, . . . , xd) = E [Xt|Xt−t1 = x1, . . . , Xt−td

= xd] .

Denoting the variances of residuals by

σ2(t1, . . . , td) = E
[
(Xt − Ft1,...,td

(Xt−t1 , . . . , Xt−td
))2

]
.

By definition of the embedding dimension and delay times, we have the following lemma.

Lemma 2.2. For positive integers d and t1, . . . , td,
i) If {t1, . . . , td} ⊃ {s1, . . . , sd′}, then

σ2(s1, . . . , sd′)− σ2(t1, . . . , td)
= E

[
(Fs1,...,sd′ (Xt−s1 , . . . , Xt−sd′ )− Ft1,...,td

(Xt−t1 , . . . , Xt−td
))2

]

≥ 0.

ii) If {t1, . . . , td} ⊃ {τ1, . . . , τD}, then

σ2(t1, . . . , td) = σ2(τ1, . . . , τD).

iii) If {t1, . . . , td} 6⊃ {τ1, . . . , τD}, then

σ2(t1, . . . , td) > σ2(τ1, . . . , τD).

Proof. i) For simplicity, we write Fs1,...,sd′ (Xt−s1 , . . . , Xt−sd′ ) as Fs1,...,sd′ and
Ft1,...,td

(Xt−t1 , . . . , Xt−td
) as Ft1,...,td

.

0 ≤ E
[
(Fs1,...,sd′ (Xt−s1 , . . . , Xt−sd′ )− Ft1,...,td

(Xt−t1 , . . . , Xt−td
))2

]

= E
[
((Xt − Ft1,...,td

)− (Xt − Fs1,...,sd′ ))
2
]

= σ2(t1, . . . , td) + σ2(s1, . . . , sd′)
−2E[(Xt − Ft1,...,td

)(Xt − Ft1,...,td
+ Ft1,...,td

− Fs1,...,sd′ )]
= σ2(t1, . . . , td) + σ2(s1, . . . , sd′)

−2
(
σ2(t1, . . . , td) + E[(Xt − Ft1,...,td

)(Ft1,...,td
− Fs1,...,sd′ )]

)

= σ2(s1, . . . , sd′)− σ2(t1, . . . , td)
−2E

[
(Xt − Ft1,...,td

)E[Ft1,...,td
− Fs1,...,sd′ |Xt−t1 , . . . , Xt−td

]
]

= σ2(s1, . . . , sd′)− σ2(t1, . . . , td).

ii) From the definition of {τ1, . . . , τD} we have

Ft1,...,td
(Xt−t1 , . . . , Xt−td

) = Fτ1,...,τD (Xt−τ1 , . . . , Xt−τD ) a.e.,

and from Lemma 2.2 i) we have

σ2(t1, . . . , td)− σ2(τ1, . . . , τD)
= E

[
(Ft1,...,td

(Xt−t1 , . . . , Xt−td
)− Fτ1,...,τD (Xt−τ1 , . . . , Xt−τD ))2

]

= 0.
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iii) Let {s1, . . . , sd′} = {t1, . . . , td} ∪ {τ1, . . . , τD}. From the definition of {τ1, . . . , τD}
we have

Fs1,...,sd′ (Xt−s1 , . . . , Xt−sd′ ) = Fτ1,...,τD
(Xt−τ1 , . . . , Xt−τD

) a.e.

6= Ft1,...,td
(Xt−t1 , . . . , Xt−td

),

and from Lemma 2.2 i) and ii) we have

σ2(t1, . . . , td)− σ2(τ1, . . . , τD)
= σ2(t1, . . . , td)− σ2(s1, . . . , sd′) + σ2(s1, . . . , sd′)− σ2(τ1, . . . , τD)
= E

[
(Ft1,...,td

(Xt−t1 , . . . , Xt−td
)− Fs1,...,sd′ (Xt−s1 , . . . , Xt−sd′ ))

2
]

> 0.

ut
For each d > 0, 0 < t1 < t2 < · · · < td, and any given z = (z1, z2, . . . , zd)

T ∈ Rd, a
local linear expansion of Ft1,...,td

(x) at z is

Ft1,...,td
(Xt−t1 , . . . , Xt−td

) ≈ β0 +
d∑

j=1

βj(Xt−tj
− zj), (3)

where β0 = Ft1,...,td
(z) and

βj =
∂Ft1,...,td

(x1, . . . , xd)
∂xj

∣∣∣∣
(x1,...,xd)=z

, j = 1, . . . , d.

Note that the right-hand side of (3) is the tangent plane of Ft1,...,td
at z. The residuals

are then

Xt − Ft1,...,td
(Xt−t1 , . . . , Xt−td

) ≈ Xt −

β0 +

d∑

j=1

βj(Xt−tj − zj)


 .

Let X = {X1, X2, . . . , XN} be the observed data, L be sufficiently large for τD ≤ L.
Following the idea of local linear smoothing estimation, we can estimate σ2(t1, . . . , td)
by exploiting the approximation

N∑

t=L+1

(Xt − Ft1,...,td
(Xt−t1 , . . . , Xt−td

))2

≈
N∑

t=L+1


Xt −


β0 +

d∑

j=1

βj(Xt−tj − zj)







2

Kd,h (Xt − z) ,

where Xt = (Xt−τ1 , Xt−τ2 , . . . , Xt−τd
)T ∈ Rd, Kd,h(·) is a weight function such that

Kd,h(z) =
1
hd

Kd

(
1
h

z

)
, z ∈ Rd,
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where Kd is a d−dimensional kernel function. We consider a minimizing problem of the
weighted sum of squares

D (β, z) =
N∑

t=L+1


Xt −


β0 +

d∑

j=1

βj(Xt−tj
− zj)







2

Kd,h (Xt − z) .

By solving the normal equation, we calculate the minimizer of the weighted sum of
squares as

β(z) = (β0(z), β1(z), . . . , βd(z))T =
(
M(z)T W (z)M(z)

)−1
M(z)T W (z)Y , (4)

where

M(z) =




1 XL+1−τ1 − z1 · · · XL+1−τd
− zd

1 XL+2−τ1 − z1 · · · XL+2−τd
− zd

...
...

. . .
...

1 XN−τ1 − z1 · · · XN−τd
− zd


 ,

W (z) = diag [Kd,h(XL+1 − z), . . . , Kd,h(XN − z)] ,

and Y = (XL+1, XL+2, . . . , XN )T . Then we put F̂t1,...,td
(z) = β0(z) as an estimator of

Ft1,...,td
(z). This local linear estimator is similar to Nadaraya-Watson kernel estimator;

however, the bias of this estimator is smaller than the one of Nadaraya-Watson kernel
estimator. See ex. Fan and Gijbels (1996).

2.2. Delay Time Selection

As a criterion to select delay times of the autoregressive function, we shall select d
and t1, t2, . . . , td which minimize

1
N − L

N∑

t=L+1

D (β(Xt),Xt) .

Many methods were proposed to estimate this value. Akaike (1973), Takeuchi (1976)
and Konishi and Kitagawa (1996) estimated the bias of the estimator of Kullback-
Leibler divergence and proposed information criteria. Taniguchi and Kakizawa (2000)
generalized Takeuchi’s information criterion replacing Kullback-Leibler divergence with
general distance. Other method is a simple and traditional cross-validation, which delete
one sample to make unbiased estimator. We now extend the cross-validation method of
Cheng and Tong (1993) and Fueda and Yanagawa (2001). A similar extension may be
effected by using the approach of Auestad and Tjφstheim (1990), which is asymptotically
equivalent to the cross-validation method.

Put

CV (d, t1, . . . , td) =
1

N − L

N∑

t=L+1

(
Xt − F̂

(−t)
t1,...,td

(Xt)
)2

,
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where F̂
(−t)
t1,...,td

(Xt) = β
(−t)
0 and β(−t) =

(
β

(−t)
0 , β

(−t)
1 , . . . , β

(−t)
d

)T

∈ Rd+1 is the mini-
mizer of a weighted sum of squares

N∑

s=L+1,s6=t


Xs −


β0 +

d∑

j=1

βj(Xs−tj
−Xt−tj

)







2

Kd,h (Xs −Xt) .

Thus we estimate the embedding dimension and the delay times as the minimizer of
CV (d, t1, . . . , td), and denote them by D̂ and τ̂1, . . . , τ̂D̂.

To investigate the asymptotic properties of the estimator, we need the following
assumptions:

1. {Xt} is strictly stationary and ergodic.

2. The kernel Kd is a compactly supported, bounded kernel such that
∫

zzT Kd(z)dz =
µ2(K)I, where µ2(Kd) 6= 0 is scalar and I is the d×d identity matrix. In addition,
the kernel Kd is spherically symmetric, that is K(z)dz = −K(z)dz for all z ∈ Rd.

3. Let fX(x1, . . . , xd) be the stationary joint density of (Xt−t1 , . . . , Xt−td
) and supp(fX)

be the support of fX . For x ∈ supp(fX), fX is continuously differentiable at x
and all second-order derivatives of Fτ1,...,τD are continuous at x.

4. h → 0 and nhd →∞ as n →∞.

5. There is a convex set S with nonnull interior such that

inf
x∈S

f(x) > 0.

Theorem 2.3. Suppose that the assumption 1-5 hold.
1. For t1, . . . , td such that {t1, . . . , td} ⊃ {τ1, . . . , τD}, and z = (zt1 , . . . , ztd

)T ∈ Rd such
that fX(z) > 0,

E[F̂t1,...,td
(zt1 , . . . , ztd

)− Fτ1,...,τD
(zτ1 , . . . , zτD

)|X ] =
1
2
µ2(K)tr

(
∂2F

∂z∂zT

)
h2 + op(h2)

(5)
and

V ar(F̂t1,...,td
(zτ1 , . . . , zτD

)|X ) =
R(K)σ2

nhdf(z)
+ op(n−1h−d) (6)

2. limn→∞ Pr
{{τ̂1, . . . , τ̂D̂} 6⊃ {τ1, . . . , τD}

}
= 0.

Proof.
1. Since {t1, . . . , td} ⊃ {τ1, . . . , τD}, we have Ft1,...,td

(zt1 , . . . , ztd
) = Fτ1,...,τD

(zτ1 , . . . , zτD
)

from Lemma 2.2 i). Then, we have (5) and (6) from Theorem 2.1 of Ruppert and Wand
(1994).
2. From ergodicity of {Xt}, we have

CV (d, t1, . . . , td) = σ(t1, . . . , td) + OP (n−1/2).

Thus for {t1, . . . , td} 6⊃ {τ1, . . . , τD}, from Lemma 2.2 iii)

Pr
{{t1, . . . , td} = {τ̂1, . . . , τ̂D̂}

} ≤ Pr{CV (t1, . . . , td) ≤ CV (τ1, . . . , τD)} → 0

as n →∞. ut
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3. Estimation of Derivatives

In this section, we discuss the estimation of derivatives of the autoregressive func-
tion. The most important character of chaos is the sensitive dependence on initial value
and noise, which is measured by the derivatives of the autoregressive function. Usually,
the local linear regression β̂(z) given in (4) gives the estimator of the autoregressive
function as

∂F̂

∂zi
(z) = β̂i(z) for i = 1, 2, . . . , d,

(Fan and Gijbels (1996)). However, as Figure 1 shows, observed data looks like to lie
on a one dimensional line at some points. This locally collinear phenomenon occurred
because the correlation dimension of chaotic time series is not integer. Though the
common way to reduce collinearity is variable selection, we can delete neither Xt−1 nor
Xt−2 for Henon map: F (Xt−1, Xt−2) = 1−1.4X2

t−1+0.3Xt−2. To get a stable estimator
of derivatives, we introduce adaptive variable selection based on the principal component
analysis.

3.1. Directions for Estimating Derivatives

Let D̂ and τ̂1, . . . , τ̂D̂ be the embedding dimension and delay times which were
selected in section 2. For simplicity we omit τ̂1, . . . , τ̂D̂ from Fτ̂1,...,τ̂D̂

. Let F̂ (z) be the
estimator of F (z) estimated in section 2 for z = (z1, z2, . . . , zd)

T ∈ Rd. we consider a
weighted sum of squares

D1 (β, z) =
N∑

t=L+1


Xt − F̂ (z)−




d∑

j=1

βj(Xt−tj − zj)







2

Kd,h (Xt − z) , (7)

where β = (β1, . . . , βd)
T ∈ Rd is a vector of coefficient. A standard way to solve this

minimization problem is rewriting

D1 (β, z) =
∣∣∣
∣∣∣W (z)1/2Y1(z)−W (z)1/2M1(z)β

∣∣∣
∣∣∣
2

,

where

M1(z) =




XL+1−τ1 − z1 · · · XL+1−τd
− zd

XL+2−τ1 − z1 · · · XL+2−τd
− zd

...
. . .

...
XN−τ1 − z1 · · · XN−τd

− zd


 ,

Y1(z) =
(
XL+1 − F̂ (z), XL+2 − F̂ (z), . . . , XN − F̂ (z)

)T

and
W (z)1/2 = diag

[
Kd,h(XL+1 − z)1/2, . . . , Kd,h(XN − z)1/2

]
,

and || · || is a L2-norm. However the variance of estimator is large if the determinant
of M1(z)T W (z)M1(z) is very small. Nonaka, Ando and Konishi (2003) introduced
a penalty term to regularize the normal equation. In this article, we investigate the
following principal component selection for the multicollinearty problem.
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Since M1(z)T W (z)M1(z) is a non-negative definite matrix, there is an orthogonal
matrix V = (v1, . . . , vd) such that

V T M1(z)T W (z)M1(z)V = diag [λ1, . . . , λd] ,

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. For this matrix V , we may rewrite

D1 (β, z) = D1 (V β′,z) =
∣∣∣
∣∣∣W (z)1/2Y1 −W (z)1/2M1(z)V β′

∣∣∣
∣∣∣
2

where β′ = (β′1, . . . , β
′
d)

T = V T β. The minimizer of D1 is given by

β̂(z) = V diag [1/λ1, . . . , 1/λd]V T M1(z)T W (z)Y1.

However, due to multicollinearty, if some of λ’s are sufficiently small so we may regard
λ’s as

λ1 ≥ λ2 ≥ · · · ≥ λp > 0 ; λp+1 ; · · · ; λd,

then the minimizer β̂(z) is unstable. In such case we have

V T M1(z)T W (z)M1(z)V ; diag [λ1, . . . , λp, 0, . . . , 0] ,

and
W (z)1/2M1(z)vi ; 0 for i = p + 1, . . . , d.

So we have

D1 (V β′, z) ;

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
W (z)1/2Y1 −W (z)1/2M1(z) (v1, . . . , vp)




β′1
...

β′p




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

and note that the right hand side does not depend on β′p+1, . . . , β
′
d. To get a stable min-

imizer, we omit the principal components W (z)1/2M1(z)vi (i = p + 1, . . . , d) and put
β′p+1 = · · · = β′d = 0. Now we have a new design matrix W (z)1/2M1(z) (v1, . . . , vp) and
call v1, . . . , vp principal directions. Then we state minimizing problem D1

(
(β′1, . . . , β

′
p)

T ,z
)

with respect to p parameters β′1, . . . , β
′
p. The minimizer is given by

β̂′(p, z) = (β′1, . . . , β
′
p)

T

=







vT
1
...

vT
p


M1(z)T W (z)M1(z) (v1, . . . , vp)




−1 


vT
1
...

vT
p


 M1(z)T W (z)Y1

= diag [1/λ1, . . . , 1/λp]




vT
1
...

vT
p


M1(z)T W (z)Y1.

So we have the minimizer of D1 (β,z) as

β̂(p, z) = (v1, . . . , vp) β̂′(p,z)

= (v1, . . . , vp) diag [1/λ1, . . . , 1/λp]




vT
1
...

vT
p


M1(z)T W (z)Y1.
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3.2. Number of Principal Directions

Finally we should select the number of principal directions p. In this section we
again use cross-validation. Since the cross-validation method for non-linear problem
incorporates many computational costs, we apply the one for weighted least square
linear regression problem. Let

CV (p, z) =
N∑

t=L+1

Kd,h(Xt − z)

(
Xt − X̂t

1− htt

)2

,

where X̂t = Xtβ̂(p, z) and
htt = Kd,h(0)(Xt − z)

× (v1, . . . , vp)







vT
1
...

vT
p


M1(z)T W (z)M1(z) (v1, . . . , vp)




−1 


vT
1
...

vT
p


 (Xt − z)T .

For each z, denote the minimizer of CV (p, z) as p̂(z), then the estimators of the deriva-
tives of Fτ̂1,τ̂D̂

are given by
∂F̂

∂x
(z) = β̂(p̂(z), z).

4. Discussion

In this article, though consistency of (τ̂1, . . . , τ̂D̂) is not proved, F̂τ̂1,...,τ̂D̂
is a consis-

tent estimator of F . However, if D̂ is much larger than D, the variance of the estimator
F̂τ̂1,...,τ̂D̂

is large. It means we should not select a D̂ that is too large. Fueda and Yana-
gawa (2001) proved the consistency of their estimator of embedding dimension and delay
time using cross-validation with kernel estimator, and Xia, et al. (2002) proved consis-
tency of their estimator of the dimension of the effective dimension reduction (EDR)
space using cross-validation with local linear estimator. However they required a very
complicated assumption and their rates of convergence are very slow. It is not surpris-
ing because Stone (1974) showed that cross-validation criterion and Akaike’s information
criterion (AIC) are asymptotically equivalent for model selection, and Fujikoshi (1985)
showed AIC is not consistent for estimating the true model.

Yonemoto and Yanagawa (2001)’s improvement in Fueda and Yanagawa (2001)’s
estimator may works well for this estimator. That is, let

CV ∗ = min CV (t1, . . . , td)

and
T = {(d, t1, . . . , td)|CV (t1, . . . , td) < (1 + ε)CV ∗},

where ε = 0.05 or 0.1. Then Yonemoto and Yanagawa (2001)’s improvement suggests
to use

D∗ = min{d|(d, t1, . . . , td) ∈ T }
and

(τ∗1 , . . . , τ∗D∗) = argmin{d|(d, t1, . . . , td) ∈ T }.
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However, their performance has not checked yet.
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Härdel, W. and Stoker, T. M. (1989). Investigating smooth multiple regression by
method of average derivatives, J. Am. Statist. Ass., 84, 986-995.

Kawaguchi, A. and Yanagawa, T. (2001). Estimating correlation dimension in chaotic
time series, Bulletin of Informatics and Cybernetics, 33, 1, 63-71.

Konishi, S. and Kitagawa, G. (1996). Generalized information criteria in model selec-
tion, Biometrika, 83, 875-890.

Li, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion), J.
Am. Statist. Ass., 86, 316-342.

Nonaka, Y., Ando, T. and Konishi, S. (2003). Nonlinear regression modeling using reg-
ularized local likelihood, Bulletin of the Computational Statistics of Japan, 16, 43-57.

Ruppert, D. and Wand, M. P. (1994). Multivariate weighted least squares regression,
Ann. Statist., 22, 1346-1370.

Stone, C. J. (1974). Cross-validatory choice and assessment of statistical predictions
(with discussion), J. R. Statist. Soc. B, 36, 111-147.

Stone, C. J. (1977). Consistent nonparametric regression, Ann. Statist, 5, 595-620.

Takeuchi, K. (1976). Distribution of information statistics and criteria for adequacy of
models, Mathematical Science, 153, 12-18.

Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for
Time Series, Springer-Verlag, New York.

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing, Monographs on statistics and
applied probability 60, Chapman and Hall, London.

Xia, Y., Tong, H., Li, W. K. and Zhu, L. X. (2002). An adaptive estimation of dimen-
sion reduction space, J. R. Statist. Soc. B, 64, Part 3, 363-410.

Yonemoto, K. and Yanagawa, T. (2001). Estimating the embedding dimension and de-
lay time of chaotic time series by an autoregressive model, Bulletin of informatics
and cybernetics, 33, 1, 53-62.

Yonemoto, K. and Yanagawa, T. (2004). Estimating the Lyapunov Exponent from
Chaotic Time Series with Dynamic Noise, MHF Preprint Series, MHF2004-1, Faculty
of Mathematics, Kyushu University, 2004.

Received October 29, 2003
Revised September 27, 2004


