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Abstract

As an estimator of an estimable parameter, Toda and Yamato (2001) intro-
duce Y-statistic which is a convex combination of U-statistics including V-statistic
and LB-statistic. We give the Edgeworth expansions of studentized Y-statistic
about the estimable parameter using a jackknife variance estimator, with remain-
der o(n−1).

Key Words and Phrases: Edgeworth expansion, Convex combination of U-statistics, Studenti-

zation.

1. Introduction

Let θ(F ) be an estimable parameter of an unknown distribution F . Let g(x1, ..., xk)
be the symmetric kernel of degree k(≥ 2) for this parameter θ(F ). In this paper, we
assume that the kernel g is not degenerate. Let X1, . . . , Xn be a random sample of size
n from the distribution F . Let X be a random variable having the distribution F .

As an estimator of θ(F ), a convex combination Yn of U-statistics is introduced by
Toda and Yamato (2001) as follows: Let w(r1, . . . , rj ; k) be a nonnegative and symmetric
function of positive integers r1, . . . , rj such that j = 1, . . . , k and r1 + · · ·+rj = k, where
k is the degree of the kernel g and fixed. We assume that at least one of w(r1, . . . , rj ; k)’s
is positive. For j = 1, . . . , k, let g(j)(x1, ..., xj) be the kernel given by

g(j)(x1, . . . , xj) =
1

d(k, j)

∑+

r1+···+rj=k
w(r1, . . . , rj ; k)g(x1, . . . , x1︸ ︷︷ ︸

r1

, . . . , xj , . . . , xj︸ ︷︷ ︸
rj

),

(1)
where the summation

∑+
r1+···+rj=k is taken over all positive integers r1, ..., rj satisfying

r1 + · · · + rj = k with j and k fixed and d(k, j) =
∑+

r1+···+rj=kw(r1, . . . , rj ; k) for

j = 1, 2, ..., k. Let U
(j)
n be the U-statistic associated with this kernel g(j)(x1, . . . , xj)
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for j = 1, . . . , k. The kernel g(j)(x1, . . . , xj) is symmetric because of the symmetry of
w(r1, . . . , rj ; k). If d(k, j) is equal to zero for some j, then the associated w(r1, . . . , rj ; k)’s
are equal to zero. In this case, we let the corresponding statistic U

(j)
n be zero. The

statistic Yn is given by

Yn =
1

D(n, k)

k∑

j=1

d(k, j)
(

n

j

)
U (j)

n , (2)

where D(n, k) =
∑k

j=1 d(k, j)
(
n
j

)
. Since w’s are nonnegative and at least one of them is

positive, D(n, k) is positive. Note that U
(k)
n is equal to the U-statistic Un given below

for w(1, . . . , 1; k) > 0, because of g(k) = g.

Another type of a linear combination of U-statistics, Ln, is introduced by (3.3) of
Sen (1977). While Yn and Ln are both linear combination of U-statistics, Yn is different
from Ln in the mean that the weight function w’s determines Yn as an estimator of θ.
Since the coefficients of U

(·)
n on the right-hand side of (1.2) are non-negative and their

sum is equal to one, the linear combination given by (1.2) is also a convex combination.

For example, let w be the function given by w(1, 1, . . . , 1; k) = 1 and w(r1, . . . , rj ; k)
= 0 for positive integers r1, . . . , rj such that j = 1, . . . , k − 1 and r1 + · · · + rj =
k. Then the corresponding statistic Yn is equal to U-statistic Un, which is given by
Un =

(
n
k

)−1 ∑
1≤j1<···<jk≤n g(Xj1 , . . . , Xjk

), where
∑

1≤j1<···<jk≤n denotes the summa-
tion over all integers j1, . . . , jk satisfying 1 ≤ j1 < · · · < jk ≤ n.

Let w be the function given by w(r1, . . . , rj ; k) = 1 for positive integers r1, . . . , rj

such that j = 1, . . . , k and r1 + · · ·+rj = k. Then the corresponding statistic Yn is equal
to the LB-statistic Bn given by Bn =

(
n+k−1

k

)−1 ∑
r1+···+rn=k g(X1, . . . , X1, . . . , Xn, . . . ,

Xn), where the numbers of X1,...., Xn are r1,...,rn, respectively, and
∑

r1+···+rn=k de-
notes the summation over all non-negative integers r1, ..., rn satisfying r1 + · · ·+ rn = k.

Let w be the function given by w(r1, . . . , rj ; k) = k!/(r1! · · · rj !) for positive integers
r1, . . . , rj such that j = 1, . . . , k and r1 + · · ·+ rj = k. Then the corresponding statistic
Yn is equal to the V-statistic Vn given by Vn = n−k

∑n
j1=1 · · ·

∑n
jk=1 g(Xj1 , . . . , Xjk

).
(See Toda and Yamato (2001).)

Let w be the function given by w(r1, . . . , rj ; k) = k!/(r1 · · · rj) for positive inte-
gers r1, . . . , rj such that j = 1, . . . , k and r1 + · · · + rj = k. Then, for example, the
corresponding statistic Yn for the third central moment of the distribution F is given
by Sn = n(n2 + 1)−1

∑n
i=1(Xi − X̄)3, where X̄ is the sample mean of X1, . . . , Xn (see

Nomachi et al. (2002)).

The Edgeworth expansion of the standardized Y-statistic Yn about θ is obtained
with remainder o(n−1) by Yamato et al. (2003). It also gives the Edgeworth expansion
of the studentized Y-statistic with remainder o(n−1/2). For the studentization of Y-
statistic Yn given by (1.2), we use a jackknife variance estimator. That is, as a variance
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estimator of
√

nYn, we use σ̂2
n given by

σ̂2
n = (n− 1)

n∑

i=1

(Y (i)
n − Yn)2 (3)

where Y
(i)
n is the Y-statistic given by (1.2) computed from a sample of size n − 1 with

Xi left out.

Our purpose is to get an Edgeworth expansion of the studentized statistic Yn given
by (1.2), using the jackknife variance estimator σ̂2

n with remainder term o(n−1). For
the studentized U-statistic, Helmers (1991) and Maesono (1995) obtained its Edgeworth
expansion using a jackknife variance estimator with remainder term o(n−1/2). Maesono
(1997) get an Edgeworth expansion using a jackknife variance estimator with remainder
term o(n−1). Maesono (1996) gave an Edgeworth expansion of

√
n[Ln − E(Ln)]/σ̃n,

where σ̃2
n is a jackknife variance estimator of

√
n[Ln − E(Ln)].

In Section 2, we give an Edgeworth expansion of
√

n[Yn − E(Yn)]/σ̂n, following
Maesono (1996). In Section 3, using the result of Section 2 we shall derive another
Edgeworth expansion about parameter θ, that is, the expansion of

√
n[Yn − θ]/σ̂n. We

give some examples in Section 4. In Section 5, we give supplementary propositions nec-
essary for the previous sections.

2. Studentized Y-statistic about its expectation

In the following sections, we assume d(k, k) > 0. Then, with δk = kd(k, k −
1)/d(k, k) it holds that

d(k, k)
D(n, k)

(
n

k

)
= 1− δk

n
+ O

( 1
n2

)
, (4)

and
d(k, k − 1)

D(n, k)

(
n

k − 1

)
=

δk

n
+ O

( 1
n2

)
. (5)

For the U-statistic Un, d(k, k)n(k)/[D(n, k)k!] = 1 and δk = 0. For the V-statistic Vn

and the S-statistic Sn, δk = k(k − 1)/2. For the LB-statistic Bn, δk = k(k − 1) (see
Nomachi et al. (2002)).

We put

ψc(x1, . . . , xc) = E
[
g(X1, . . . , Xk) | X1 = x1, . . . , Xc = xc

]
, c = 1, 2, 3

and
g(1)(x1) = ψ1(x1)− θ,

for c = 2, 3

g(c)(x1, . . . , xc) = ψc(x1, . . . , xc)−
c−1∑

i=1

∑

1≤l1<···<li≤c

g(i)(xl1 , . . . , xli)− θ.
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For the kernel g(k−1)(x1, . . . , xk−1) , we put

θk−1 = Eg(j)(X1, . . . , Xk−1),

ψ(k−1),1(x1) = E
[
g(k−1)(X1, . . . , Xk−1) | X1 = x1

]
,

and
g
(1)
(k−1)(x1) = ψ(k−1),1(x1)− θk−1.

We put

σ2
1 = E

[{g(1)(X)}2], σ2
2 = (k − 1)2E

[{g(2)(X1, X2)}2
]
,

ν = σ2
2 +

2(k − 1)δk

k
E[g(1)(X)g(1)

(k−1)(X)]− 2δkσ2
1 ,

f1(x) =
1
2
[{g(1)(x)}2 − σ2

1

]
+ (k − 1)E

[
g(1)(X2)g(2)(x,X2)

]

and

f2(x, y) = − g(1)(x)g(1)(y) + (k − 1)
{

g(2)(x, y)[g1(x) + g1(y)]

− E
[
g(2)(x,X3)g(1)(X3)

]− E
[
g(2)(y,X3)g(1)(X3)

]}

+ (k − 1)2E
[
g(2)(x,X3)g(2)(y,X3)

]

+ (k − 1)(k − 2)E
[
g(3)(x, y,X3)g(1)(X3)

]
,

which satisfy the relations Ef1(X) = 0 and E[f2(X1, X2)|X1] = 0 a.s. (almost surely),
respectively. Furthermore we put

τ =
3E[f2

1 (X1)]
2σ4

1

− ν

2σ2
1

,

ζ = E
[
f1(X1)g(1)(X1)

]

and

a1(x) =
δk

k

[
(k − 1)g(1)

(k−1)(x)− kg(1)(x)
]
+ τg(1)(x)

− 1
σ2

1

{
[f1(x)g(1)(x)− ζ] +

(
E

[
f2(x,X2)g(1)(X2)

]− 3ζ

σ2
1

f1(x)
)

+(k − 1)E
[
g(2)(x,X2)f1(X2)

]}
,

a2(x, y) = (k − 1)g(2)(x, y)− 1
σ2

1

[
f1(x)g(1)(y) + f1(y)g(1)(x)

]
,

a3(x, y, z) = (k − 1)(k − 2)g(3)(x, y, z)

− 1
σ2

1

{
(k − 1)

[
f1(x)g(2)(y, z) + f1(y)g(2)(x, z) + f1(z)g(1)(x, y)

]

+g(1)(x)
[
f2(y, z)− 3

σ2
1

f1(y)f1(z)
]
+ g(1)(y)

[
f2(x, z)− 3

σ2
1

f1(x)f1(z)
]

+g(1)(z)
[
f2(x, y)− 3

σ2
1

f1(x)f1(y)
]}

,
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which satisfy the relations E[a1(X)] = 0, E[a2(X1, X2)|X1] = E[a2(X1, X2)|X2] = 0
and E[a3(X1, X2, X3)|X1, X2] = 0 a.s. because of Ef1(X) = 0, E[f2(X1, X2)|X1] = 0
and E[g(2)(X1, X2)|X2] = 0 a.s. We define

λ1 = E[g(1)(X1)]3,

λ2 = E[g(1)(X1)g(1)(X2)g(2)(X1, X2)],

λ3 = E[g(1)(X1)]4,

λ4 = E[
(
g(1)(X1)

)2
g(1)(X2)g(2)(X1, X2)],

λ5 = E[g(1)(X1)g(1)(X2)g(2)(X1, X3)g(2)(X2, X3)],

λ6 = E[g(1)(X1)g(1)(X2)g(1)(X3)g(3)(X1, X2, X3)],

λ7 = E[g(1)(X1)a1(X1)],

κ3 = σ−3
1 (λ1 + 3λ2),

κ4 = σ−4
1 (λ3 − 3σ4

1 + 12λ4 + 12λ5 + 4λ6)

and

Qn(x) = Φ(x)− φ(x)
{

κ3

6
√

n
(x2 − 1) +

κ4

24n
(x3 − 3x)

+
κ2

3

72n
(x5 − 10x3 + 15x) +

x

nσ2
1

(
λ7 +

1
4
E

[
a2
2(X1, X2)

])}
.

Lemma 2.1. (Maesono (1996)) If E|g(Xi1 , ..., Xik
)|2 < ∞ for 1 ≤ i1 ≤ · · · ≤ ik ≤

k, and E|g(X1, X2, X3, ..., Xk)|4+ε < ∞ and E|g(X1, X1, X2, ..., Xk)|4+ε < ∞ for ε > 0,
then we have

σ̂2
n = k2σ2

1 +
2k2

n

n∑

i=1

f1(Xi) +
2k2

n(n− 1)

∑

1≤i<j≤n

f2(Xi, Xj) +
k2ν

n
+ o∗p(n

−1)

and

kσ1σ̂
−1
n = 1− 1

nσ2
1

n∑

i=1

f1(Xi)− 1
n2σ2

1

∑

1≤i<j≤n

[
f2(Xi, Xj)− 3

σ2
1

f1(Xi)f1(Xj)
]

+
1
n

{3E[f2
1 (X1)]

2σ4
1

− ν

2σ2
1

}
+ o∗p(n

−1) (6)

where o∗p(n
−1) is a quantity satisfying P

(|o∗p(n−1)| ≥ cn−1(log n)−1
)

= o(n−1) for a
constant c > 0.

Thus by Maesono (1996) we have the following: Assume that E|g(Xi1 , ..., Xik
)|2 <

∞ for 1 ≤ i1 ≤ · · · ≤ ik ≤ k, E|g(X1, X2, X3, ..., Xk)|9 < ∞ and E|g(X1, X1, X2, ...,
Xk)|4+ε < ∞ for ε > 0. Then we have

σ̂−1
n

√
n
(
Yn − E[Yn]

)
=
√

n

σ1
U∗

n −
ζ√
nσ3

1

+ o∗p(n
−1), (7)
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where

U∗
n =

1
n

n∑

i=1

{
g(1)(Xi)+

a1(Xi)
n

}
+

1
n2

∑

1≤i<j≤n

a2(Xi, Xj)+
1
n3

∑

1≤i<j<l≤n

a3(Xi, Xj , Xl).

For Edgeworth expansion of the statistic, we use the result of Lai and Wang (1993)
which needs the following conditions.

Condition (C): E | g(2) |r< ∞ for some r > 2 and there exists K Borel func-
tions hj : R → R such that K(r − 2) > 8(4r − 5), Eh2

j (X1) < ∞ (j = 1, . . . , K), and
the covariance matrix of (W1, . . . ,WK) is positive definite, where Wj = (Lhj)(X1) and
(Lh)(x) = E[a2(x,X2)h(X2)].

In case of k ≥ 3, the original condition of Lai and Wang (1993) contains the
term I[E|g(3)(X1,X2,X3)|>0], which equals 1 since g(3)(X1, X2, X3) is not zero a.s. under
the assumption that the kernel g is not degenerate, that is, σ2

1 > 0. It also contains
E | g(2) |r< ∞ for some r > 2. This condition is satisfied with r = 4 under our condition
E[| ψ3(X1, X2, X3) |4] < ∞, which is necessary for the condition (A4) of Lai and Wang
(1993).

Condition (D): There exist constants cj and Borel functions hj : R → R such that
Ehj(X1) = 0, E | hj(X1) |r< ∞ for some r ≥ 5 and a2(X1, X2) =

∑K
j=1 cjhj(X1)hj(X2)

a.s.; moreover, for some 0 < ε < min{1, 2(1− 11r−1/3)},

lim sup
|t|→∞

sup
|s1|+···+|sK |≤|t|−ε

∣∣∣E exp
(
it

[
g(1)(X1) +

K∑

j=1

sjhj(X1)
])∣∣∣ < 1. (8)

The asymptotic expansion of the statistic
√

nσ−1
1 U∗

n is given by the following.

Lemma 2.2. (Maesono (1996)) Assume that E[g(1)(X1))]4 < ∞, σ2
1 > 0,

E[|a1(X1)|3 + |a3(X1, X2, X3)|4] < ∞ and lim sup|t|→∞ |E
[
exp{itg(1)(X1)}

]| < 1. If
either condition (C) or (D) is satisfied, we have

sup
−∞<x<∞

∣∣∣P
(√

nσ−1
1 U∗

n ≤ x
)−Qn(x)

∣∣∣ = o(n−1). (9)

For example, by Minkowski’s inequality and Schwarz’s one, one of the above con-
ditions E[|a1(X1)|3 + |a3(X1, X2, X3)|4] < ∞ is satisfied if

E|g(1)(X1)|12 < ∞, E|g(2)(X1, X2)|12 < ∞,

E|g(3)(X1, X2, X3)|12 < ∞, E|g(1)
(k−1)(X1)|3 < ∞.
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We define

e1 = E[g(1)(X1)]3,

e2 = (k − 1)E[g(1)(X1)g(1)(X2)g(2)(X1, X2)],

e3 = E[g(1)(X1)]4,

e4 = (k − 1)E[
(
g(1)(X1)

)2
g(1)(X2)g(2)(X1, X2)],

e5 = (k − 1)2E[g(1)(X1)g(1)(X2)g(2)(X1, X3)g(2)(X2, X3)],

e6 = (k − 1)(k − 2)E[g(1)(X1)g(1)(X2)g(1)(X3)g(3)(X1, X2, X3)],

v1 = σ−3
1 (2e1 + 3e2),

v2 = σ−3
1 (e1 + 3e2),

v3 = −σ−6
1 (2e1 + 3e2)2,

v4 = 6σ−4
1 (e3 − 6σ4

1 + 12e4 + 6e5 + 4e6)− 2σ−6
1 (2e1 + 3e2)(2e1 + 9e2),

v5 = 3σ−6
1 (4e2

1 + 12e1e2 + 3e2
2) + 18σ−4

1 (σ2
1σ2

2 − e3 + 2σ4
1 − 4e4 − 2e5).

Using f12(x) = E[g(1)(X2)g(2)(x,X2)] which appears in the second term of f1, we
can write

e2 = (k − 1)E[g(1)(X1)f12(X1)], e4 = (k − 1)E
[{g(1)(X1)}2f12(X1)

]
,

e5 = (k − 1)2E[{f12(X1)}2].

Furthermore, we define

Hn(x) = Φ(x) + φ(x)
1

6
√

n
(v1x

2 + v2) + φ(x)
1

72n
(v3x

5 + v4x
3 + v5x).

Between Qn and Hn, it holds that

Qn

(
x +

ζ√
nσ3

1

)
= Hn(x) + o(n−1). (10)

The asymptotic expansion of the statistic σ̂−1
n

√
n(Yn − EYn) is given by the fol-

lowing.

Lemma 2.3. (Maesono (1996)) Assume that E|g(Xi1 , ..., Xik
)|2 < ∞ for 1 ≤ i1 ≤

· · · ≤ ik ≤ k, E|g(X1, X2, ..., Xk)|9 < ∞, E|g(X1, X1, X2, ..., Xk)|4+ε < ∞ for ε > 0,
and E[g(1)(X1))]4 < ∞, σ2

1 > 0. Furthermore we assume that E[|a1(X1)|3 + |a3(X1, X2,
X3)|4] < ∞ and lim sup|t|→∞ |E

[
exp{itg(1)(X1)}

]| < 1. If either condition (C) or (D)
is satisfied, we have

sup
−∞<x<∞

∣∣∣P
(
σ̂−1

n

√
n(Yn − EYn) ≤ x

)−Hn(x)
∣∣∣ = o(n−1). (11)
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3. Studentized Y-statistic about θ

At first, we note that

σ̂−1
n

√
n(Yn − θ) = σ̂−1

n

√
n(Yn − EYn) + σ̂−1

n

√
n(EYn − θ). (12)

By Nomachi et al. (2002), (3.5), we have

√
n(EYn − θ) =

µk√
n

+ O(n−3/2) (13)

where µk = δk(θk−1 − θ).

If we put R2n = o∗p(n−1), then
√

n(EYn−θ)R2n = o∗p(n−1). Because for a constant
c > 0 we have P

(|√n(EYn − θ)R2n| ≥ cn−1(log n)−1
) ≤ P

(|R2n| ≥ cn−1(log n)−1
)

=
o(n−1), since

√
n(EYn − θ) ≤ 1 for a large n. We multiply (2.3) by (3.2), and use this

fact. Then, we get

kσ1σ̂
−1
n

√
n(EYn − θ) =

µk√
n

{
1− 1

nσ2
1

n∑

i=1

f1(Xi)
}

+ R∗n + o∗p(n
−1) (14)

where E|R∗n| = O(n−3/2). Thus from (2.4) , (3.1) and (3.3) we get

σ̂−1
n

√
n(Yn − θ) =

√
n

σ1
U∗∗

n +
1√
n

{
− ζ

σ3
1

+
µk

kσ1

}
+ R∗n + o∗p(n

−1), (15)

where

U∗∗
n =

1
n

n∑

i=1

{
g(1)(Xi)+

a∗1(Xi)
n

}
+

1
n2

∑

1≤i<j≤n

a2(Xi, Xj)+
1
n3

∑

1≤i<j<l≤n

a3(Xi, Xj , Xl),

(16)
and

a∗1(Xi) = a1(Xi)− µk

kσ3
1

f1(Xi).

We can also obtain the expansion (3.4) by multiplying (2.3) and the following (3.6).
For the detail of this multiplication, see Appendix.

Lemma 3.1. (Yamato et al. (2003)) Assume that d(k, k) > 0 and
E|g(Xi1 , ..., Xik

)|2 < ∞ for 1 ≤ i1 ≤ · · · ≤ ik ≤ k. Then, we have

√
n(Yn − θ) = Y ∗∗

n +
µk√
n

+ R′n, (17)

where E | R′n |2= O(n−3) and

Y ∗∗
n = k

(
1− δk

n

) 1
n1/2

n∑

i=1

g(1)(Xi) + (k − 1)δk
1

n3/2

n∑

i=1

g
(1)
(k−1)(Xi)

+ k(k− 1)
1

n3/2

∑

1≤i<j≤n

g(2)(Xi, Xj) + k(k− 1)(k− 2)
1

n5/2

∑

1≤i<j<l≤n

g(3)(Xi, Xj , Xl).
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In the asymptotic evaluation of of σ̂−1
n

√
n(Yn− θ) with remainder term o(n−1), we

can neglect at first the term o∗p(n
−1) of (3.4) by using the relation given by Lemma 5.3

and then the terms R∗n of (3.4) by using the relation given by Lemma 5.2. Thus, we can
get the following.

Lemma 3.2. Assume that d(k, k) > 0, E|g(Xi1 , ..., Xik
)|2 < ∞ for 1 ≤ i1 ≤ · · · ≤

ik ≤ k, E|g(X1, X2, X3, ..., Xk)|9 < ∞ and E|g(X1, X1, X2, ..., Xk)|4+ε < ∞ for ε > 0.
Then, we have

sup
−∞<x<∞

∣∣∣∣P
(
σ̂−1

n

√
n(Yn − θ) ≤ x

)
− P

(√
n

σ1
U∗∗

n +
1√
n

{
− ζ

σ3
1

+
µk

kσ1

}
≤ x

)∣∣∣∣ = o(n−1).

(18)

U∗∗
n is different from U∗

n only in the term a∗1. Thus the Edgeworth expansion of
U∗∗

n is different from U∗
n in the term λ7. By Lemma 2.2, we get the following.

Lemma 3.3. Assume that d(k, k) > 0. Furthermore, we assume that
E|g(Xi1 , ..., Xik

)|2 < ∞ for 1 ≤ i1 ≤ · · · ≤ ik ≤ k, E[g(1)(X1)]4 < ∞, σ2
1 > 0,

E[|a1(X1)|3 + |a3(X1, X2, X3)|4] < ∞ and lim sup|t|→∞ |E
[
exp{itg(1)(X1)}

]| < 1. If
either condition (C) or (D) is satisfied, we have

sup
−∞<x<∞

∣∣∣P
(√

nσ−1
1 U∗∗

n ≤ x
)−Q∗n(x)

∣∣∣ = o(n−1) (19)

where Q∗
n(x) is obtained from Qn(x) by replacing λ7 with

λ∗7 = λ7 − µk

kσ3
1

(1
2
e1 + e2).

The last term of the above right-hand side is due to the bias of the Y-statistic. We
also know that

Q∗
n(x) = Qn(x)− µk

nkσ5
1

(1
2
e1 + e2

)
xφ(x). (20)

By (2.6), we have

Qn

(
x +

ζ√
nσ3

1

− µk√
nkσ1

)
= Hn

(
x− µk√

nkσ1

)
+ o(n−1) (21)

and by Lemma 5.4

Hn

(
x− µk√

nkσ1

)
= Φ(x) + φ(x)

1
6
√

n

(
v1x

2 + v2 − 6
µk

kσ1

)

+φ(x)
1

72n

(
v3x

5+
(
v4+12

v1µk

kσ1

)
x3+

[
v5+12

µk

kσ1
(v2−2v1)

]
x−36

( µk

kσ1

)2
)

+O(n−3/2).

(22)

By (3.9), (3.10), (3.11) and Lemma 5.4, we can get

Q∗n
(
x +

1√
n

{ ζ

σ3
1

− µk

kσ1

})
= H∗

n(x) + O(n−3/2), (23)
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where

H∗
n(x) = Φ(x) + φ(x)

1
6
√

n

(
v1x

2 + v2 − 6µk

kσ1

)
+ φ(x)

1
72n

{
v3x

5 +
(
v4 +

v1µk

kσ1

)
x3

+
[
v5 + 12

µk

kσ1
(v2 − 2v1)− 72

µk

kσ5
1

(1
2
e1 + e2

)]
x− 36

( µk

kσ1

)2
}

.

Thus, by (3.7), (3.8), (3.11) and (3.12) we get the following.

Theorem 3.4. Assume that d(k, k) > 0, E|g(Xi1 , ..., Xik
)|2 < ∞

for 1 ≤ i1 ≤ · · · ≤ ik ≤ k, E[g(1)(X1)]4 < ∞, σ2
1 > 0, E|g(X1, X2, ..., Xk)|9 < ∞, and

E|g(X1, X1, X2, ..., Xk)|4+ε < ∞ for ε > 0. Furthermore we assume that
lim sup|t|→∞ |E

[
exp{itg(1)(X1)}

]| < 1 and E[|a1(X1)|3 + |a3(X1, X2, X3)|4] < ∞. If
either condition (C) or (D) is satisfied, we have

sup
−∞<x<∞

∣∣∣P
(
σ̂−1

n

√
n(Yn − θ) ≤ x

)−H∗
n(x)

∣∣∣ = o(n−1). (24)

As stated after Lemma 2.2, one of the conditions of Theorem 3.4 E[|a1(X1)|3 +
|a3(X1, X2, X3)|4] < ∞ is satisfied if E|g(1)(X1)|12 < ∞, E|g(2)(X1, X2)|12 < ∞, and
E|g(3)(X1, X2, X3)|12 < ∞, E|g(1)

(k−1)(X1)|3 < ∞.

Corollary 3.5. Especially, let the degree k be 2. Assume that d(k, k) > 0,
E|g(X1, X1)|4+ε < ∞ for ε > 0, E[g(1)(X1)]4 < ∞, σ2

1 > 0, and E|g(X1, X2)|9 < ∞.
Furthermore we assume that lim sup|t|→∞ |E

[
exp{itg(1)(X1)}

]| < 1 and E[|a1(X1)|3 +
|a3(X1, X2, X3)|4] < ∞. If either condition (C) or (D) is satisfied, we have (3.13).

In the case of k = 2, the condition E[|a1(X1)|3 + |a3(X1, X2, X3)|4] < ∞ is satisfied
if E|g(1)(X1)|12 < ∞, E|g(2)(X1, X2)|12 < ∞, and E|g(1)

(k−1)(X1)|3 < ∞.

The difference of the Edgeworth expansions of the studentized Y-statistic about its
expectation and θ is the following.

Corollary 3.6.

H∗
n(x) = Hn(x)− φ(x)

µk√
nkσ1

+ φ(x)
1

72n

{
v1µk

kσ1
x3

+
[
12

µk√
nkσ1

(v2 − 2v1)− 72
µk√
nkσ5

1

(
1
2
e1 + 22)

]
x− 36

( µk√
nkσ1

)2
}

. (25)

Especially, if θk−1 = θ then H∗
n(x) = Hn(x).

The condition θk−1 = θ above is equivalent to Eg(X1, X1, X2, X3, . . . , Xk−1) =
Eg(X1, X2, . . . , Xk). The difference between the Edgeworth expansions about its ex-
pectation and θ appears at the term related with µk which arise from the bias. The
value of the difference depends on each Y-statistic. The values of µk for V-statistic,
S-statistic and LB-statistic are as follows.

µk = δk(θk−1 − θ), δk =





k(k − 1)
2

(V, S− statistic)

k(k − 1) (LB− statistic).
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By Remark 3 of Maesono (1996), Hn(x) is equal to the Edgeworth expansion of
studentized U-statistic using the jackknife variance estimator. Hence, if θk−1 = θ, then
the Edgeworth expansion of studentized Y-statistic about θ using the jackknife variance
estimator is equal to the one of studentized U-statistic using the jackknife variance
estimator. This is also read from (3.1) and (3.2).

4. Examples

We give examples of the Edgeworth expansion of the studentized Y-statistic about
estimable parameter θ.

Example 4.1 We consider the third central moment θ =
∫

(x − µ)3dF (x), where
µ is the mean of F . Its kernel g(x1, x2, x3) is given by

1
3
(x3

1 + x3
2 + x3

3)−
1
2
(x2

1x2 + x2
1x3 + x1x

2
2 + x2

2x3 + x1x
2
3 + x2x

2
3) + 2x1x2x3.

For this kernel, we have g(k−1)(x1, x2) = g(2)(x1, x2) = 0 and g(k−2)(x1) = g(1)(x1) = 0
and so θk−1(= θ2) = 0 θk−2(= θ1) = 0. Therefore, we have

Yn =
d(k, k)
D(n, k)

(
n

k

)
Un =

d(3, 3)n2

6D(n, 3)

n∑

j=1

(Xj − X̄)3 (26)

where X̄ =
∑n

j=1 Xj/n. We assume that the distribution F has a density. We also as-
sume E|X|27 < ∞ and denote jth moment of X about the origin by m′

j (j = 2, 3, ..., 12).
In order to study the statistical properties of Yn, by (4.1) the mean µ is assumed to be
zero, without loss of generality. Thus, in this case θ = m′

3 and µk = −δkm′
3. We consider

the two cases that the distribution F is symmetric or not.
Example 4.1.1 We assume that the distribution F is symmetric about zero. In

this case, by the symmetry m′
j = 0 (j = 3, 5, ..., 11) and θ = 0. Then, we have

g(1)(x1) =
1
3
(x3

1 − 3x1m
′
2),

g(2)(x1, x2) = ψ2(x1, x2)− g(1)(x1)− g(1)(x2)− θ

=
1
2
(−x2

1x2 − x1x
2
2 + x1m

′
2 + x2m

′
2),

g(3)(x1, x2, x3) = 2x1x2x3.

By the computation based on these, we get

e1 = 0, e2 = 0,

e3 =
1
81

(m′
12 − 12m′

10m
′
2 + 54m′

8m
′2
2 − 108m′

6m
′3
2 + 81m′

4m
′4
2),

e4 =
1
27

(−m′
8m

′
4 + 3m′

8m
′2
2 + 7m′

6m
′
4m

′
2 − 21m′

6m
′3
2

−15m′2
4m

′2
2 + 54m′

4m
′4
2 − 27m′6

2),

e5 =
1
9
(m′3

4 − 7m′2
4m

′2
2 + 15m′

4m
′4
2 − 9m′6

2),

e6 =
4
27

(m′3
4 − 9m′2

4m
′2
2 + 27m′

4m
′4
2 − 27m′6

2).
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Furthermore,

σ2
1 =

1
9
(m′

6 − 6m′
4m

′
2 + 9m′3

2), σ2
2 = 2(m′

4m
′
2 −m′3

2).

Thus we get

v1 = 0, v2 = 0, v3 = 0,

v4 =
6

(m′
6 − 6m′

4m′
2 + 9m′3

2)2

×
{

m′
12 − 12m′

10m
′
2 − 36m′

8m
′
4 + 162m′

8m
′2
2 − 6m′2

6 + 324m′
6m

′
4m

′
2

−972m′
6m

′3
2 + 102m′3

4 − 1566m′2
4m

′2
2 + 4779m′

4m
′4
2 − 3240m′6

2

}
,

v5 =
18

(m′
6 − 6m′

4m′
2 + 9m′3

2)2

×
{
−m′

12 + 12m′
10m

′
2 + 12m′

8m
′
4 − 90m′

8m
′2
2 + 2m′2

6 − 90m′
6m

′
4m

′
2

+378m′
6m

′3
2 − 18m′3

4 + 270m′2
4m

′2
2 − 945m′

4m
′4
2 + 486m′6

2

}

and
E[g(1)(X1)f1(X1)] =

1
2
e1 + e2 = 0.

Now we check the condition (D): We can write 2g(2)(x, y) = (x + y)(m′
2− xy) = −(x2 +

x−m′
2)(y

2 + y −m′
2) + (x2 −m′

2)(y
2 −m′

2) + xy. We can also write

f1(x)g(1)(y)+f1(y)g(1)(x) = [f1(x)+g(1)(x)][f1(y)+g(1)(y)]−f1(x)f1(y)−g(1)(x)g(1)(y).

Thus we have a2(x, y) =
∑6

j=1 cjhj(x)hj(y) where

h1(x) = x2 + x−m′
2, h2(x) = x2 −m′

2, h3(x) = x,

h4(x) = f1(x) + g(1)(x), h5(x) = f1(x), h6(x) = g(1)(x),

and

c1 = −1
2
(k − 1), c2 =

1
2
(k − 1), c3 =

1
2
(k − 1), c4 = − 1

σ2
1

, c5 = c6 =
1
σ2

1

.

In this example we can write f1 as follows:

f1(x) =
1
18

[
(x3 − 3xm′

2)
2 − 9σ2

1 + 6(m′
4 − 3m′2

2)(m
′
2 − x2)

]
.

Thus for any s1, ..., sK (−∞ < s1, ..., sK < ∞), g(1)(x) +
∑K

j=1 sjhj(x) is a polynomial
of degree 6 with respect to x. Therefore the distribution of g(1)(X)+

∑K
j=1 sjhj(X) has

the density for any s1, ..., sK (−∞ < s1, ..., sK < ∞) and by Lemma 5.1 the condition
(D) is satisfied. We note that the check of the condition (D) of the example (1) of 5 of
Yamato et al. (2003) is corrected and may be done like as the above.
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Under our assumption, µk = δk(θk−1− θ) = 0 and the Edgeworth expansion of the
studentized Y-statistic about estimable parameter θ is given by

H∗
n(x) = Φ(x) + φ(x)

1
72n

{
v4x

3 + v5x
}
.

That is, there is no difference of the Edgeworth expansions of the studentized Y-statistic
about its expectation and θ. Thus, if the distribution F is symmetric then there is
no difference among the Edgeworth expansions of the studentized Y-statistic about its
expectation and θ. By Remark 3 of Maesono (1996), this expansion H∗

n(x) is also equal to
the Edgeworth expansion of studentized U-statistic using a jackknife variance estimator.

Example 4.1.2 We assume that the distribution F is not symmetric about zero.
In this case, θ = m′

3 and µk = −δkm′
3. Now, we have

g(1)(x1) =
1
3
x3

1 −m′
2x1 −m′

3,

g(2)(x1, x2) =
1
2
(−x2

1x2 − x1x
2
2 + x1m

′
2 + x2m

′
2),

g(3)(x1, x2, x3) = 2x1x2x3.

Thus, by the same reason as in Example 4.1.1, Condition (D) is satisfied. By the
computation based on these functions, we get

e1 =
1
27

(m′
9 − 9m′

7m
′
2 − 3m′

6m
′
3 + 27m′

5m
′2
2

+18m′
4m

′
3m

′
2 + 2m′3

3 − 54m′
3m

′3
2),

e2 =
2
9
(−m′

5m
′
4 + 3m′

5m
′2
2 + 4m′

4m
′
3m

′
2 − 12m′

3m
′3
2),

e3 =
1
81

(m′
12 − 12m′

10m
′
2 − 4m′

9m
′
3 + 54m′

8m
′2
2 + 36m′

7m
′
3m

′
2

+6m′
6m

′2
3 − 108m′

6m
′3
2 − 108m′

5m
′
3m

′2
2 − 36m′

4m
′2
3m

′
2

+81m′
4m

′4
2 − 3m′4

3 + 162m′2
3m

′3
2),

e4 =
1
27

(−m′
8m

′
4 + 3m′

8m
′2
2 −m′

7m
′
5 + 4m′

7m
′
3m

′
2 + 7m′

6m
′
4m

′
2

−21m′
6m

′3
2 + 6m′2

5m
′
2 + 4m′

5m
′
4m

′
3 − 45m′

5m
′
3m

′2
2

−15m′2
4m

′2
2 − 16m′

4m
′2
3m

′
2 + 54m′

4m
′4
2 + 84m′2

3m
′3
2 − 27m′6

2),

e5 =
1
9
(m′2

5m
′
2 + 2m′

5m
′
4m

′
3 − 14m′

5m
′
3m

′2
2 + m′3

4 − 7m′2
4m

′2
2

−8m′
4m

′2
3m

′
2 + 15m′

4m
′4
2 + 40m′2

3m
′3
2 − 9m′6

2),

e6 =
4
27

(m′3
4 − 9m′2

4m
′2
2 + 27m′

4m
′4
2 − 27m′6

2)

Furthermore,

σ2
1 =

1
9
(m′

6 − 6m′
4m

′
2 −m′2

3 + 9m′3
2), σ2

2 = 2(m′
4m

′
2 + m′2

3 −m′3
2).

Thus we can get v1, v2, v3, v4, and v5, which are tedious and we omit to write them.
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We also have

1
2
e1 + e2 =

1
54

(m′
9 − 9m′

7m
′
2 − 3m′

6m
′
3 − 12m′

5m
′
4 + 63m′

5m
′2
2

+66m′
4m

′
3m

′
2 + 2m′3

3 − 198m′
3m

′3
2).

The Edgeworth expansion H∗
n(x) is given by (3.12) with

µk =




−k(k − 1)

2
m′

3 (V,S− statistic)

−k(k − 1)m′
3 (LB− statistic).

In the relation (3.14), H∗
n(x) is different from Hn(x) with this µk.

Example 4.2 We consider the kernel g(x1, x2, ..., xk) = x1x2 · · ·xk (k ≥ 3). This
kernel yields estimable parameter θ(F ) = µk, where µ is the mean of the distribution F .
We assume that the distribution F has the density. We also assume that F is symmetric
about the mean µ (> 0), and E|X|9 < ∞ in case of k = 3, 4 and E|X2k+ε| < ∞ in case
of k ≥ 5. We shall denote the central moments about the mean by mj (j = 2, 4). Now,
we have

g(1)(x1) = µk−1(x1 − µ),
g(2)(x1, x2) = µk−2(x1 − µ)(x2 − µ),

g(3)(x1, x2, x3) = µk−3(x1 − µ)(x2 − µ)(x3 − µ).

The computation based on these values yields

e1 = 0, e2 = (k − 1)µ3k−4m2
2, e3 = µ4k−4m4, e4 = 0,

e5 = (k − 1)2µ4k−6m3
2, e6 = (k − 1)(k − 2)µ4k−6m3

2.

Furthermore,
σ2

1 = µ2k−2m2, σ2
2 = (k − 1)2µ2k−4m2

2.

Thus we get

v1 =
3(k − 1)

√
m2

µ
, v2 =

3(k − 1)
√

m2

µ
, v3 = −9(k − 1)2m2

µ2
,

v4 = 6ξ−4
1 (e3 − 6ξ4

1 + 12e4 + 6e5 + 4e6)− 2ξ−6
1 (2e1 + 3e2)(2e1 + 9e2)

=
6{µ2m4 − 6µ2m2

2 + (k − 1)(k − 5)m3
2}

µ2m2
2

,

v5 = 3ξ−6
1 (4e2

1 + 12e1e2 + 3e2
2) + 18ξ−4

1 (ξ2
1ξ2

2 − e3 + 2ξ4
1 − 4e4 − 2e5)

= −9{2µ2m4 − 4µ2m2
2 + (k − 1)(2k − 3)m3

2}
µ2m2

2

.

Now we check the condition (D): By the relation derived in Example 4.1, we have
a2(x, y) =

∑4
j=1 cjhj(x)hj(y) where

h1(x) = x− µ, h2(x) = f1(x) + g(1)(x), h3(x) = f1(x), h4(x) = g(1)(x),
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and

c1 = −1
2
µk−2(k − 1), c2 = − 1

σ2
1

, c3 = c4 =
1
σ2

1

.

In this example we can write f1 as follows:

f1(x) =
1
2
µ2k−3

[
µ(x− µ)2 + 2(k − 1)m2(x− µ)− µm2

]
.

Thus for any s1, ..., sK (−∞ < s1, ..., sK < ∞), g(1)(x) +
∑K

j=1 sjhj(x) is a polynomial
of degree 2 with respect to x. Therefore the distribution of g(1)(X)+

∑K
j=1 sjhj(X) has

the density for any s1, ..., sK (−∞ < s1, ..., sK < ∞) and by Lemma 5.1 the condition
(D) is satisfied.

The values of µk for V-statistic, S-statistic and LB-statistic are

µk =





k(k − 1)
2

(m2
2 + µ2 − µ3)µk−3 (V,S− statistic)

k(k − 1)(m2
2 + µ2 − µ3)µk−3 (LB− statistic).

These values give the difference among the Edgeworth expansions H∗
n(x). The Edge-

worth expansions H∗
n(x) are given by (3.14) with the above values.

Example 4.3 We consider the kernel

g(x1, x2, x3) =
1
3
{I(x1 > x2 + x3) + I(x2 > x1 + x3) + I(x3 > x1 + x2)}, (27)

where I(A) is the indicator function of an event A. This kernel yields the estimable
parameter θ(F ) = E

[
1 − F (X1 + X2)

]
which measures the degree to which a life dis-

tribution F has the NBU (new better than used) property. If X1 and X2 are random
variables having the life distribution F , the NBU property is denoted by P (X1 > x) ≥
P (X2 > x + y|X2 > y) for x, y > 0. (See, Hollander and Proschan (1972), and Lee
(1990)). We note that

ψ1(x) =
1
3
E

[
F (x−X3)

]
+

2
3
E

[
1− F (x + X3)

]
,

ψ2(x1, x2) =
1
3
[
F (|x2 − x1|) + 1− F (x1 + x2)

]
.

For the corresponding U-statistic, we shall derive Edgeworth expansion in cases that F
are the uniform distribution U(0,1) and the exponential distribution e(1) with parame-
ter 1. Since the kernel (4.2) is scale invariant, the Edgeworth expansion for the uniform
distribution U(0,1) is equal to the one for the uniform distribution U(0, α), α > 0. The
Edgeworth expansion for the exponential distribution e(1) is also equal to the one for
the exponential distribution e(α), α > 0.

Example 4.3.1 We assume that F is the uniform distribution U(0,1). Then θ(F ) =
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1/6, and

g(1)(x1)

=
1
2
x2

1 −
2
3
x1 +

1
6

(0 < x < 1),

g(2)(x1, x2)

=





1
3

[|x1 − x2| − (x1 + x2)
]− 1

2 (x2
1 + x2

2) + 2
3 (x1 + x2)− 1

6 (0 < x1 + x2 < 1)

1
3 |x1 − x2| − 1

2 (x2
1 + x2

2) + 2
3 (x1 + x2)− 1

2 (x1 + x2 > 1).

By using the expression of g(1) and g(2) to

E[g(1)(X2)g(2)(X1, X2)|X1 = x1] =
∫

0<x2<1,0<x1+x2<1

g(1)(x2)g(2)(x1, x2)dx2

+
∫

0<x2<1,x1+x2≥1

g(1)(x2)g(2)(x1, x2)dx2,

we get

E[g(1)(X2)g(2)(X1, X2)|X1 = x1]

=
1
3

{
2x1

∫ x1

0

g(1)(x2)dx2 −
∫ x1

0

x2g
(1)(x2)dx2 +

∫ 1

x1

x2g
(1)(x2)dx2

}

−
∫ 1

0

[g(1)(x2)]2dx2 +
1
3

{
(1− x1)

∫ 1−x1

0

g(1)(x2)dx2 −
∫ 1−x1

0

x2g
(1)(x2)dx2

}
.

Thus we get

E[g(1)(X2)g(2)(X1, X2)|X1 = x1] =
1
24

x4
1 −

5
54

x3
1 +

1
18

x2
1 −

1
270

.

By the computation based on these functions using Mathematica ver. 4.0, we get

σ2
1 =

1
270

.= 0.0037, σ2
2 =

1
135

.= 0.0074

and

e1 =
1

140
.= 0.00714, e2

.= − 1
4536

= −0.00022, e3 =
1

280
.= 0.00357,

e4 = − 19
1360800

.= −0.00001, e5 =
1

72900
.= 0.000014.

Since we can write
e6 = (k − 1)(k − 2)E[g(1)(X1)h(X1)]

where h(x) =
∫
0<y+z<x

g(1)(y)g(1)(z)dydz, we have

e6 = − 1
272160

.= −0.0000037.
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Thus we get

v1 =
309

√
30

28
.= 60.44510, v2 =

21
√

30
4

.= 28.7554, v3 = −1432215
292

.= −4904.8459,

v4 = −4878216261
960400

.= −5079.35887, v5 =
2495655

392
.= 6366.4668.

Now we check the condition (C): We take h(y) = yl (0 < y < 1, l = 1, 2, ...) for
(Lh)(x) = E[a2(x,X2)h(X2)] (0 < x < 1). Since f1 and g(1) are polynomials of degrees 4
and 2, respectively, the term related to f1 and g(1) in E[a2(x, X2)h(X2)] is a polynomial
of degree 4. Among the terms of g(2), |x− y| yields the integral

∫ 1

0

|x− y|yldy =
2

(l + 1)(l + 2)
xl+2 − 1

l + 1
x +

1
l + 2

(0 < x < 1)

which is a polynomial of degree l + 2. Among the terms of g(2), the other term yields
a polynomial of degree 2. That is, (Lh)(x) (0 < x < 1) is a polynomial of degree
l + 2 for h(y) = yl (0 < y < 1, l = 2, 3, ...). Thus if we choose hj(y) = yj for
j = 2, 3, ..., K, then h1(x1),...,hK(x1) are linearly independent and the covariance ma-
trix of (h1(X1),...,hK(X1)) is positive definite. Thus the condition (C) is satisfied.

The values of µk for V-statistic, S-statistic and LB-statistic are

µk =





1
4

(V, S− statistic)

1
2

(LB− statistic).

These values give the difference among the Edgeworth expansions H∗
n(x). The Edge-

worth expansions H∗
n(x) are given by (3.14) with the above values.

Example 4.3.2 We assume that F is the exponential distribution e(1) . Then
θ(F ) = 1/4, and

g(1)(x1) =
1
12
− 1

3
x1e

−x1 , (x1 > 0)

g(2)(x1, x2) = − 1
12

+
1
3
[
x1e

−x1 + x2e
−x2 − e−|x1−x2| + e−(x1+x2)

]
(x1, x2 > 0).

By using the expression of g(1)(x1) and g(2)(x1, x2) to

E[g(1)(X2)g(2)(X1, X2)|X1 = x1]

=
∫ x1

0

g(1)(x2)g(2)(x1, x2)dx2 +
∫ ∞

x1

g(1)(x2)g(2)(x1, x2)dx2,

we get

E[g(1)(X2)g(2)(X1, X2)|X1 = x1] = − 5
3888

− 8
81

e−2x1 +
8
81

e−x1− 2
27

x1e
−2x1− 1

36
x1e

−x1 .
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By the computation based on these functions using Mathematica ver. 4.0, we get

σ2
1 =

5
3888

.= 0.001286, σ2
2 =

251
972

.= 0.25823

and

e1 =
1

31104
.= 0.000032, e2 = − 5

69984
.= −0.000071, e3 =

2171
583200000

.= 0.0000037,

e4 =
−10127

9447840000
.= −0.000001, e5 =

2083
157464000

.= 0.000013.

By the method similar to Example 4.3.1, we have

e6 =
1

1119744
.= 0.00000089.

Thus we get

v1 = −21
√

3
5
√

5
.= −3.253306, v2 = −51

√
3

10
√

5
.= −3.95044, v3 = −1323

125
.= −10.584,

v4 = −787836542389301
134369280000000

.= −5.86322, v5 =
7274727
78125

.= 93.11651.

Now we check the condition (C): We take h(y) = e−ly (y > 0, l = 1, 2, ...) for (Lh)(x) =
E[a2(x,X2)h(X2)] (x > 0). The terms related to f1 and g(1) in E[a2(x,X2)h(X2)]
contain exponential functions e−x or e−2x. Among the terms of g(2), e−|x−y| yields the
integral ∫ ∞

0

e−|x−y|e−lydy =
1

(l − 1)
e−x − 2

(l − 1)(l + 1)
e−lx (x > 0)

which contain exponents e−x and e−lx. Among the terms of g(2), the other terms are
constant or contain a exponential function e−x. That is, (Lh)(x) contains exponent e−x,
e−2x and e−lx for h(y) = e−ly (l = 2, 3, ...). Thus if we choose hj(y) = e−(j+1)y (y > 0)
for j = 1, 2, ..., K, then h1(x1),...,hK(x1) are linearly independent and the covariance
matrix of (h1(X1),...,hK(X1)) is positive definite. Thus the condition (C) is satisfied.

The values of µk for V-statistic, S-statistic and LB-statistic are

µk =





− 5
12

(V, S− statistic)

−5
6

(LB− statistic).

These values give the difference among the Edgeworth expansions H∗
n(x). The Edge-

worth expansions H∗
n(x) are given by (3.14) with the above values.

Next, we consider about the kernel of degree 2.

Example 4.4 We consider the variance θ =
∫

(x − µ)2dF (x). Its kernel g(x1, x2)
is given by

1
2
(
x2

1 + x2
2 − 2x1x2

)
.
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For this kernel, we have g(k−1)(x1) = g(1)(x1) = 0 and so θk−1(= θ1) = 0. Therefore, we
have

Yn =
d(k, k)
D(n, k)

(
n

k

)
Un =

d(2, 2)n
2D(n, 2)

n∑

j=1

(Xj − X̄)2. (28)

We assume that the distribution F has a density. We also assume E | X |18< ∞
and denote jth moment of X about the origin by m′

j (j = 2, 3, ..., 6).
In order to study the statistical properties of Yn, by (4.3) the mean µ is assumed to
be zero, without loss of generality. Thus, in this case θ = m′

2 and µk = −δkm′
2. We

consider the two cases that the distribution F is symmetric or not.

Example 4.4.1 We assume that the distribution F is symmetric about zero. In
this case, by the symmetry m′

j = 0 (j = 3, 5, 7). Then, we have

g(1)(x1) =
1
2
(x2

1 −m′
2), g(2)(x1, x2) = −x1x2, f12(x1) = 0.

By the computation based on these, we get

e1 =
1
8
(m′

6 − 3m′
4m

′
2 + 2m′3

2),

e2 = 0,

e3 =
1
16

(m′
8 − 4m′

6m
′
2 + 6m′

4m
′2
2 − 3m′4

2),

e4 = 0, e5 = 0, e6 = 0.

Furthermore,

σ2
1 =

1
4
(m′

4 −m′2
2), σ2

2 = m′2
2.

Thus we get

v1 =
2

(m′
4 −m′2

2)3/2

{
m′

6 − 3m′
4m

′
2 + 2m′3

2

}
,

v2 =
1

(m′
4 −m′2

2)3/2

{
m′

6 − 3m′
4m

′
2 + 2m′3

2

}
,

v3 = − 4
(m′

4 −m′2
2)3

{
m′

6 − 3m′
4m

′
2 + 2m′3

2

}2

,

v4 =
2

(m′
4 −m′2

2)3

{
3m′

8m
′
4 − 3m′

8m
′2
2 − 4m′2

6 + 12m′
6m

′
4m

′
2 − 4m′

6m
′3
2

−18m′3
4 + 36m′2

4m
′2
2 − 33m′

4m
′4
2 + 11m′6

2

}
,

v5 =
3

(m′
4 −m′2

2)3

{
−6m′

8m
′
4 + 6m′

8m
′2
2 + 4m′2

6 − 8m′
6m

′3
2

+12m′3
4 − 12m′2

4m
′2
2 − 6m′

4m
′4
2 + 10m′6

2

}

and
1
2
e1 + e2 =

1
16

(m′
6 − 3m′

4m
′
2 + 2m′3

2).
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Now we check the condition (D): Since g(2)(x1, x2) = −x1x2, by the same reason stated
at the Example 4.1.1 we have a2(x, y) =

∑6
j=1 cjhj(x)hj(y) where

h1(x) = x, h2(x) = f1(x) + g(1)(x), h3(x) = f1(x), h4(x) = g(1)(x),

and

c1 = −1, c2 = − 1
σ2

1

, c3 = c4 =
1
σ2

1

.

In this example we can write f1 as follows:

f1(x) =
1
8

{
(x2 −m′

2)2 − (m′
4 −m′2

2)
}

Thus for any s1, ..., sK (−∞ < s1, ..., sK < ∞), g(1)(x) +
∑K

j=1 sjhj(x) is a polynomial
of degree 4 with respect to x. Therefore the distribution of g(1)(X)+

∑K
j=1 sjhj(X) has

the density for any s1, ..., sK (−∞ < s1, ..., sK < ∞) and by Lemma 5.1 the condition
(D) is satisfied.

Example 4.4.2 We assume that the distribution F is not symmetric about zero.
Then, we have

g(1)(x1) =
1
2
(x2

1 −m′
2), g(2)(x1, x2) = −x1x2, f12(x1) = −1

2
m′

3x1.

By the computation based on these, we get

e1 =
1
8
(m′

6 − 3m′
4m

′
2 + 2m′3

2),

e2 = −1
4
m′2

3,

e3 =
1
16

(m′
8 − 4m′

6m
′
2 + 6m′

4m
′2
2 − 3m′4

2),

e4 =
1
8
(−m′

5m
′
3 + 2m′2

3m
′
2),

e5 =
1
4
m′2

3m
′
2, e6 = 0.

Furthermore

σ2
1 =

1
4
(m′

4 −m′2
2), σ2

2 = m′2
2.
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Thus we get

v1 =
2

(m′
4 −m′2

2)3/2

{
m′

6 − 3m′
4m

′
2 − 3m′2

3 + 2m′3
2

}
,

v2 =
1

(m′
4 −m′2

2)3/2

{
m′

6 − 3m′
4m

′
2 − 6m′2

3 + 2m′3
2

}
,

v3 = − 4
(m′

4 −m′2
2)3

{
m′

6 − 3m′
4m

′
2 − 3m′2

3 + 2m′3
2

}2

,

v4 =
2

(m′
4 −m′2

2)3

×
{

3m′
8m

′
4 − 3m′

8m
′2
2 − 4m′2

6 + 12m′
6m

′
4m

′
2 + 48m′

6m
′2
3 − 4m′

6m
′3
2

−72m′
5m

′
4m

′
3 + 72m′

5m
′
3m

′2
2 − 18m′3

4 + 36m′2
4m

′2
2 + 72m′

4m
′2
3m

′
2

−33m′
4m

′4
2 − 108m′4

3 − 120m′2
3m

′3
2 + 11m′6

2

}
,

v5 =
3

(m′
4 −m′2

2)3

×
{
−6m′

8m
′
4 + 6m′

8m
′2
2 + 4m′2

6 − 24m′
6m

′2
3 − 8m′

6m
′3
2 + 48m′

5m
′
4m

′
3

−48m′
5m

′
3m

′2
2 + 12m′3

4 − 12m′2
4m

′2
2 − 72m′

4m
′2
3m

′
2 − 6m′

4m
′4
2

+12m′4
3 + 96m′2

3m
′3
2 + 10m′6

2

}

and
1
2
e1 + e2 =

1
16

(m′
6 − 3m′

4m
′
2 − 4m′2

3 + 2m′3
2).

Now we check the condition (D): Since

f1(x) =
1
8

{
(x2 −m′

2)2 − (m′
4 −m′2

2)
}
− 1

2
m′

3x,

by the same reason as Example 4.4.1, the condition (D) is satisfied.

Example 4.5 We consider the kernel g(x1, x2) = x1x2. This kernel yields es-
timable parameter θ(F ) = µ2. We assume that the distribution F has the density. We
also assume that F is symmetric about the mean µ (> 0) and EX9 < ∞. The values
e2, e3 and e5 are given by putting k = 2 in Example 4.2 and, e1 = e4 = e6 = 0.

Example 4.6 We consider the kernel

g(x1, x2) = I(x1 + x2 > 0),

which appears in the Wilcoxon one-sample statistic. We assume that the distribution F
has the density and symmetric about zero. Then the value of the estimable parameter
θ is equal to E[I(X1 + X2 > 0)] = 1/2. We have also

g(1)(x1) = I(x1 > 0), θ1(= θk−1) = EI(X1 > 0) =
1
2
.
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Therefore µ2(= µk) = 0. We note that 1 − F (−x) = F (x) and F (X) has the uniform
distribution U(0,1). We have

g(1)(x1) = F (x1)− 1
2
, g(2)(x1, x2) = I(x1 + x2 > 0)− F (x1)− F (x2) +

1
2
,

and
f1(x1) = 0, f12(x1) =

1
2
{
F (x1)− F 2(x1)− 1

6
}
,

where we use the relation E[F (X2)I(x1 + X2 > 0)] =
∫∞
−x1

F (x2)dF (x2) = [1 −
F 2(−x1)]/2 = [2F (x1) − F 2(x1)]/2. Furthermore, using the relation E[F (X2)I(X1 +
X2 > 0)] = E[2F (X1)− F 2(X1)]/2 = 1/3, we get

σ2
1 =

1
12

, σ2
2 =

1
12

.

Thus we get

e1 = e2 = 0, e3 =
1
80

, e4 = − 1
360

, e5 =
1

720
, e6 = 0

and
v1 = v2 = v3 = 0, v4 = −234

5
, v5 =

216
5

.

Now we check the condition (C): We assume E|g(2)|r < ∞ (r > 2) and take K
such that K > 8(4r − 5)/(r − 2). We take h(y) = yl (l = 1, 2, ..., K) for (Lh)(x) =
E[a2(x,X2)h(X2)]. Under the condition that F has the K-th moment,

∫∞
−x

yldF (y),
l = 1, ..., K, are linearly independent. Since a2(x, y) = g(2)(x1, x2) = I(x1 + x2 >
0)−F (x1)−F (x2) + 1

2 , under the same condition, (Lh1)(x1),..., (LhK)(x1) are linearly
independent and the covariance matrix of (Lh1)(X1),..., (LhK)(X1) is positive definite,
where hl(y) = yl, l = 1, ..., K.

Example 4.7 We consider the kernel

g(x1, x2) =
1
2

max(x1, x2) =
1
2
[x1I(x1 ≥ x2) + x2I(x1 < x2)],

which gives the probability weighted moment

θ = β1 =
1
2
E[max(X1, X2)] = E[XF (X)].

We assume that the distribution F has the uniform distribution U(0,1). Then we have
β1 = 1/3, g(1)(x1) = x1/2, and θ1 = 1/4. Furthermore, we have

2ψ1(x1) = E[x1I(x1 ≥ X2) + X2I(x1 < X2)] =
1
4
(1 + x2

1),

g(1)(x1) =
1
4
x2

1 −
1
12

,

g(2)(x1, x2) =
1
2

max(x1, x2)− 1
4
(x2

1 + x2
2)−

1
6
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and
f1(x1) =

1
24

x4
1 −

1
24

x2
1 +

1
180

, f12(x1) =
1
96

x4
1 −

1
48

x2
1 +

7
1440

.

Therefore we have
σ2

1 =
1

180
, σ2

2 =
1

360
.

Thus we get

e1 =
1

3780
, e2 = − 1

3780
, e3 =

1
15120

, e4 = − 1
113400

, e5 =
1

75600
, e6 = 0

and

v1 = −2
√

5
7

, v2 = −4
√

5
7

, v3 = −20
49

, v4 = −34, v5 =
267
49

.= 5.45.

Now we check the condition (C): We take h(y) = yl+1 (l = 1, 2, ..., K) for (Lh)(x) =
E[a2(x,X2)h(X2)] and a suitably large K(> 56). Since

∫ 1

0
yl+1 max(x, y)dy is a polyno-

mial of degree l + 3 in x, (Lh1)(x1),..., (LhK)(x1) are linearly independent. Hence the
covariance matrix of (Lh1)(X1),..., (LhK)(X1) is positive definite.

5. Appendix

About the condition (D) by Lai and Wang (1993) for Edgeworth expansion, we
give a sufficient condition.

Lemma 5.1. We assume that the distribution of g(1)(X) +
∑K

j=1 sjhj(X) has the
density for any s1, ..., sK (−∞ < s1, ..., sK < ∞). Then, the relation (2.5) holds, pro-
vided the assumptions of Condition (D) preceding (2.5).

Proof. Since the distribution of g(1)(X)+
∑K

j=1 sjhj(X) has the density for any
s1, ..., sK , we get

E exp
(
it

[
g(1)(X) +

K∑

j=1

sjhj(X)
]) → 0 as |t| → ∞ for−∞ < s1, ..., sK < ∞.

Thus,

sup
|s1|+···+|sK |≤1

| E exp
(
it

[
g(1)(X) +

K∑

j=1

sjhj(X)
]) |→ 0 as |t| → ∞.

On the other hand, for a sufficiently large |t| satisfying |t|−ε < 1 with ε given in Condition
(D),

0 ≤ sup
|s1|+···+|sK |≤|t|−ε

| E exp
(
it

[
g(1)(X) +

K∑

j=1

sjhj(X)
]) |

≤ sup
|s1|+···+|sK |≤1

| E exp
(
it

[
g(1)(X) +

K∑

j=1

sjhj(X)
]) |,

which converges to 0 as |t| → ∞, because of the previous reason. Thus, (2.5) holds.
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From the proof of Lemma 1.3 in p. 261 of Shorack (2000), we have the following.

Lemma 5.2. (Shorack (2000)) For any random variables W and ∆, it holds that

sup
x
| P (W + ∆ ≤ x)− P (W ≤ x) |≤ 4(E | W∆ | +E | ∆ |).

Lemma 1.7 of Petrov (1994) yields the following.

Lemma 5.3. (Lemma 3 of Maesono (1996)) Let H be a bounded function and δ be
a positive constant. For any random variables W and ∆, it holds that

sup
x
| P (W + ∆ ≤ x)−H(x) |≤ sup

x
| P (W ≤ x)−H(x) | +P (|∆| ≥ δ)

+ sup
x
|H(x + δ)−H(x)|.

By the Taylor expansion, we can get the following lemma.

Lemma 5.4. For a positive constant c, the following relations hold uniformly with
respect to x ∈ (−∞,∞).

Φ(x− c√
n

) = Φ(x)− c√
n

φ(x)− c2

2n
xφ(x) + O(

1
n3/2

),

φ(x− c√
n

) = φ(x) +
c√
n

xφ(x) +
c2

2n
(x2 − 1)φ(x) + O(

1
n3/2

),

(x− c√
n

)φ(x− c√
n

) = xφ(x) +
c√
n

(x2 − 1)φ(x) +
c2

2n
(x3 − 3x)φ(x) + O(

1
n3/2

),

(x− c√
n

)2φ(x− c√
n

) = x2φ(x) +
c√
n

(x3 − 2x)φ(x) +
c2

2n
(x4 − 5x2 + 2)φ(x)

+ O(
1

n3/2
),

(x− c√
n

)3φ(x− c√
n

) = x3φ(x) +
c√
n

(x4 − 3x2)φ(x) +
c2

2n
(x5 − 7x3 + 6x)φ(x)

+ O(
1

n3/2
),

(x− c√
n

)5φ(x− c√
n

) = x5φ(x) +
c√
n

(x6 − 5x4)φ(x) +
c2

2n
(x7 − 11x5 + 20x3)φ(x)

+ O(
1

n3/2
).

Multiplication of (2.3) and (3.6). The term associated with µk of (3.4) is
obtained by multiplying the second term of (3.6) and the first term of (2.3). The last
term of a∗1 is obtained by multiplying the second terms of (3.6) and (2.3). The terms of
the expansion associated with a2(x, y), a3(x, y, z) are obtained directly by multiplication
of the right-hand sides of (2.3) and (3.6). Next we consider the first three terms of a1(x),
which are

δk

k

[
(k − 1)g(1)

(k−1)(x)− kg(1)(x)
]
, τg(1)(x), − 1

σ2
1

[
f1(x)g(1)(x)− ζ

]
.
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The terms of the expansion associated with these are also obtained by the same method
as the above. Since the third term of a1 is subtracted the constant ζ, consequently the
constant term associated with ζ appears in the second term of (3.4).

Now we consider the terms associated with the last two terms of a1(x) which are

− 1
σ2

1

(
E

[
f2(x,X2)g(1)(X2)

]− 3ζ

σ2
1

f1(x)
)
, − 1

σ2
1

(k − 1)E
[
g(2)(x,X2)f1(X2)

]
.

These are obtained by taking the first terms of H-decompositions of

1
n5/2

∑

i<j

[g(1)(Xi) + g(1)(Xj)][f2(Xi, Xj)− 3
σ2

1

f1(Xi)f1(Xj)] (29)

and
1

n5/2

∑

i<j

g(2)(Xi, Xj)[f1(Xi) + f1(Xj)], (30)

respectively. These (5.1) and (5.2) are obtained directly by multiplication of the right-
hand sides of (2.3) and (3.6).
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