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Abstract
A class of classical solutions to tipPainleve equation of typeA; + A})® (a g-difference analog of the
Painlewe Il equation) is constructed in a determinantal form with basic hypergeometric function elements. The
continuous limit of thisg-Painlee equation to the Painlévil equation and its hypergeometric solutions are
discussed. The continuous limit of these hypergeometric solutions to the Airy function is obtained through a
uniform asymptotic expansion of their integral representation.

1 Introduction

In this article we consider the followingrdifference equation

— at’F
(FF—1)(FE—1)=F—+t, 1)

wheret is the independent variable
=qt t=t/q, F=F({)., F=F(@), FE=F({/q), 2)

with |g| < 1 anda is a parameter. Equation (1) was identified as one ofgtdéference Painlév equations by
Ramani and Grammaticos[26] with a continuous limit to the Paélkéwequation (). In this sense eq.(1) is
sometimes regarded agja@nalog of R. Sakai formulated the discrete PairBesquations as Cremona transfor-
mations on a certain family of rational surfaces and developed their classification theory[30]. According to this
theory eq.(1) is a discrete dynamical system on the rational surface characterized by the Dynkin diagram of type
Agl), which posseses the symmetry of thigree Weyl group of typeA; + A'l)(l). Equation (1) may be denoted as
dP%él)) by the notation adopted in [20]. Although eq.(1) is the simplest nontriyidifference Painleéy equation

that admits a Bcklund transformation only a few results are known - its continuous limit[26] and its simplest
hypergeometric solution[28, 8, 9]. The first purpose of this article is to construct “higher-order” hypergeometric
solutions to eq.(1) explicitly in determinantal form.

The second purpose of this article is to consider the continuous limit in some detail. The limiting procedure
works well on the formal level of the definimgdifference equation howeverina application of the procedure
does not work on the level of their solutions. The application of the continuous limit to the series representation
of the basic hypergeometric functions that appear in the solutions does not yield the Airy functions which are the
hypergeometric solutions of,P To obtain the valid limit we follow the procedure used by Prellberg[25] - we
construct an appropriate integral representation of the function and derive an asymptotic expansion by applying a
generalization of the saddle point method.

Our paper is organized as follows. In section 2 we construct hypergeometric solutions to eq.(1). The simplest
solution is obtained in section 2.1, and determinant formula of “higher-order” solutions is presented in section 2.2,
whose proof is given in section 2.3. In section 3 we consider the continuous ligitasl~. The limit on the
formal level is discussed in section 3.1. We discuss the limit on the level of hypergeometric functions in section
3.2. Section 4 is devoted to concluding remarks.
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2 Hypergeometric Solutions and Their Determinant Formula

2.1 The Simplest Solution

The simplest hypergeometric solution to eq.(1) is obtained by looking for the special case where it reduces to the
Riccati equation. Then by linearizing the Riccati equation we obtain a second ordermjidgtarential equation,
which admits basic hypergeometric functions as solutions.

Let us first recall the definition of the basic hypergeometric series[4]

al,...,ar (a,...,ar;q)n n(M11+r-s
“’S( b1 bs'q’) Z(bl..l.,bs;q)n(q;q)n (a2, ®)
where .
(@200 = [@idn @dn=1-a)(1-qa)-(L-d""a). 4)

i=1
Then the simplest hypergeometric solution to eq.(1) is given as follows (see also [8, 9, 28]):

Lemma 2.1. Eq.(1) admits the following particular solution far= g:

¥
F=", S
v ®)
wherey(t) satisfies the lineag-difference equation
Yty =y (6)
The general solution of eq.(6) is given by
0 j logt 0
Y(t) = Al‘/’l( —q ;0 —qt) + B €Toaa 1<P1( _q ;0, qt), (7)
whereA and B are arbitrary g-periodic functions.
Proof. It is easy to see that F is the solution of the Riccati equation
- 1
F==-
= qat, (8)

thenF satisfies eq.(1) witla = g. Equation (8) can be linearized via eq.(5) to eq.(6) by putkng ¢/y and
equating the numerators and denominators of both sides.

We next substitutey = t° Z a,t" into eq.(6). Then we have® = 1, which impliesp = ™ (m € Z).

Iogq
Furthermore we deduce a recurS|on relationgpfrom eq.(6)

Accordingly we obtain two fundamental solutions to eq.(6) as

( 1)n n(n-1)/2 . ~ i:f:Tg; o (_1)nqn(nfl)/2 |
0= Z(q oty (OO ve0 = ) g, @

for m= 0, 1 respectively. This completes the proof of Lemma 211.



2.2 Backlund Transformation and Determinant Formula

Sakai constructed the following transformations for the homogeneous varalesand the parametess, a;, b
on theA" type (Mul.7) surface:

o: (a,a0,b; X:y:2 - (ag,a,a1b; z2(z+ X) : bx(z+ X) : y2)
o@s)2aye0).  (a1,80,b; X:1y:2)
— (1/ag, 1/ag,b; Z(x+ (X +y+2) : y((z+ bX)(X + 2) + y2) : bx(X + 2)?) 9)
wi: (ag,a0,b; x:y: 2 (1/a, af_ao, aib; x(y+a12) :y(y+ 2 : a1y + 2)
Wo = 07(15)(24)(60)V107(15)(24)(60)

The action ofr?

o?: (an,a0b; X:y:2) r— (a1, a0 @b ; YA(X+Y+2) : abZ(Xx+y+2)(Xx+2) : bxyix+2).  (10)

gives rise to eq.(1) by putting

1/2 > \1/4 1/4
_(% _[(P _ 12 (2o ) Y
a—(al) : t—(agal) . 0= (a0a1)"", F‘(ale) < (11)

Note that these transformations satisfy the fundamental relations,
W% = W% =1, Wo()'2 = O'ZWO, W;|_O'2 = O'2W1.

Thenwp andw; can be regarded asaBklund transformations of eq.(1). In particular, the actiod of ow; is
given by

gatF + FF -1
(FF - 1)(F + FF - 1)
Therefore applyind to the “seed” solution in Lemma 2.1, we obtain “higher-order” hypergeometric solutions to

eq.(1) expressible in terms of a rational functionydbr a = g°N** (N € Z). It is observed that the numerators and
denominators of such solutions are factorized and those factors admit the following Casorati determinant formula.

T@=qa TM=t T(F)=

12)

Theorem 2.2. For eachN € Z, we definery(t) by

Y(t) w(oPt) - w(@@ )
Y(a't) 70 IR V(s
. . . (N > O)’
w@ ™) w@™) - @V
() = 1 (N =0), (13)
pa@™t)  w(@3t) - (@M
w(t)  w(g?t) - g(geMR)
: : : (M =-N, N<O0).
p@2) w(@) o @™y

Then 1 r®mea(@)
TN(D) TN

aN (@t Tnaa(t) (N=0)
1 wn()7nea(al)

gV (D) T

F() = (14)

(N <0)

satisfies eq.(1) wita = ¢?N*1,

LActions of these transformations are modified from the original formulae in [30] so that they are subtraction-free. Some typographical
errors have been also fixed.



Theorem 2.2 is the direct consequence of the following proposition.
Proposition 2.3. Thery satisfy the following bilineag-difference equations of Hirota type:

(1) N>0

PV et/ T (Et) — g a2 ()T (at) — Tsa (DT (D) = O, (15)
PV et/ T(a) — 0PV T (DT (D) — s a(at)Tn(t/a) = O. (16)
(2) N<O
NP rnea(t/a)Tn(@?t) + gV Tnea (D)7 (at) — Tnsa (@D Tn(E) = O, (17)
N 2oL (t/a)Tn(l) + PV T ()T () — Tnea (gt T(t/g) = O. (18)

In fact one can derive Theorem 2.2 from Proposition 2.3 as followsNfar0 the bilinear equations egs.(15)
and (16) can be rewritten as

zN_#N+1(t/Q)( N ﬂN+1(t)): N _ oy Mna(t/9)  vn(@)
@ T )7 T TR0 w2 19)

respectively by introducing the variables

N4 () () = ™(qt)

t) = , = . 20
0= NG 0
Putting
— iVN(qt) — iTN+1(qt)TN(t) (21)
N ovn(®) oV rnsa® (@)’
and eliminating:y andun.1 from eq.(19) through the use of the identity
VN(qt) _ #N+1(t) (22)

() oan()

we obtain eq.(1) witta = g?*1. The case oN < 0 can be verified in the same way.

2.3 Proof of Proposition 2.3

Our basic idea for proving Proposition 2.3 is to use a determinantal technique. Bindk&erence equations are
derived from the Ricker relations which are quadratic identities among determinants whose columns are shifted.
Therefore, we first construct such fiirence formulas” that relate “shifted determinants” andoy using the
g-difference equation af. We then derive bilinear flierence equations with the aid offgirence formulas from
proper Plicker relations. We refer to [7, 10, 12, 13, 21] for applications of this method to hypergeometric solutions
of other discrete Painlévequations.

Let us consider the case Nf> 0. We first introduce a notation for the determinants

() Wty - u(@A)
gty  owa) o (@)
™(t) = : : : =|%¥o,¥o,...,¥on-2l, (23)
@) w(@ NPy e (V)
where¥, denotes a column vector
w(dt)
Yt
k= : (24)
w(qk—NJrlt)

Here the height of the column vectorshowever we employ the same symbol for determinants wiffieging
heights.



Lemma 2.4. The following formulas hold:

| Wo, ¥a,..., Pon-2 | = Tn(D), (25)
| Wo, W1, Wa, ..., Pong | = (1N Lq-(N-DN-2720NL 7 ), (26)
| %P1, ¥o, W, ..., Pong | = (1N 2q(N-DN-22NL 7 ), (27)
where®, denotes the column vector
w(d)
_ ay(d)
Yy = . (28)

qN—ll!/(dk—Nﬂt)

Proof. Using the linear equation eq.(6) fgron theN-th column of the determinant eq.(23) we find

w(t) (@) o (@) (@) - N By (N3t
w(a ™) wad o (@) (@0t - N Ry (PN )
™w(t) = : : : ,
@V w@ NPy e (@) w(@N) - NPy (gN )
W(t) wot)y - =Bty (@®™ )
o |ulaty w@) e ()
N w(@ N e —gN Py (g

Applying the same procedure from the £ 1)-th column to the second column we have

W(t) —qty(qt) R R RG]
w(a't) —ty(t) o =Ny (PN )
™ = : : :
@™ () L VR
W(t) w(ab) e (@R
_ Mgy w(q.‘lt) q‘l?b(t) q‘lw(qz“““t)
l//(q—.N+lt) q—N+1¢/&q—N+2t) . q—N+1l!/.(qN—2t)
(1) 7C]) IRV (

au(at) w(t) - w(@®h)

(_t)N—lq(N—l)(N—Z)/Z

V() (@ N e y(oN R
(—N-TqN-DN-2/2 | i g g WYon-3 |,

which is nothing but eq.(26). At the stage where the above procedure has been employed up to the third column

we have
() w(oPt) -ty (at) S A
w(q ) y(qt) -ty (gt) e S 77 (c Gt
() = : : : : .
@V w@ ™) g M@y L gV PN )



Using eq.(6) on the first column, we obtain

w(g?t) + qty(qt) w(gPt) —tty(g?t) g2y (N3
(qt) + ty(t) w(qt) _qzt(r//(th) o _q2N—3¢,(q2N—4t)
™) = : : : :
w(@ ) + g M2 (@) w@ ™) —g NN L N (N
w(ay v (o) w(@) o (@™

(1) av(at) w(oPt) ... w(@h)

(_1)N—2q(N—1)(N—2)/2tN—l
w2 VB @R w(@ ) L w(@N )
= (-DN2gN-DN-2r2gN-Y ¥y, Wo, Ws, ..., Won-3 |,

which is eq. (27)0
Now consider the Ricker relation,

0 = ' ¥ 1, %o, Y, ..., Yon-s5 ' x| W1, ¥s,..., Yon-3,0 |
- ' Yo, ¥1,¥3,..., Yons, & | X|W_1,¥1,¥3,..., ¥on-z]|

+ |W_r,¥1,¥3,...,Ponos, 0 | X ' Yo, ¥1,¥3,..., WYon-3 |,

for an arbitrary column vectag. In particular by choosing as

0 1

. 0
o= - or ,

0 :

1 1

and applying Lemma 2.4 we obtain eq.(15) from the former and eq.(16) from the latter, respectively. The case of
N < 0 can be proved in a similar manner. This completes the proof of Proposition 2.3.

3 Continuous Limit to Py,

3.1 Continuous Limit on the Formal Level

The continuous limit of §-P,;” to Py, involves the “quantum” to classical limif — 1 but in contrast to the trivial
limits usually employed in basic hypergeometric series, i.e. making the substitutiofl — )z and then setting

g — 1, we have a completely flierent limiting process which is far from trivial and has not been studied much.
Let us first recall the formal limits of dR{") eq.(1).

Proposition 3.1. [26] With the replacements

Foie™ aze?’, q=e?, t=-2ie3’ =_2q’, (29)
eg.(1) has a limit to
d’w
e 203 + 25w+ 7, (30)

aso — 0.
Proposition 3.1 can be easily verified by noticing that

d 62 d’w
+14y — S 3
w(q t)_W(Sié)_Wi(SdSW+ 21 42 + O(5%). (31)



It is well-known that R eq.(30) admits the hypergeometric solutionsrfer 2N + 1 (N € Z)[24]:

d KN+1

w= —d—slog P (32)
dv d\"*
v & ()
dv d?v ( d )N v
ds  d¢ ds (N> 0).
d .N—l d N d éN—Z
G C I G
KN = 1 (N=0), (33)
dv d\"*
v & (G
dv v ( d )M v
ds ds ds (N=-M<0),
d M—l d . M d éM—Z
@) v (@~ (&
whereyv satisfies the Airy equation,
d’v
@ = —SV. (34)
The general solution to eq.(34) is given by
V(s) = CAi(e% s) + DAi(e 5 s), (35)
whereC, D are arbitrary constants and Aj(is the Airy function defined by
Ai(s) = % f est’Hisu gy (36)
Proposition 3.2. Under the substitutions eq.(29) and with
w(t) = ¥ Sev(o), (37)

the hypergeometric solutions to eq.(1) o= g®N* (N € Z), egs.(6), (13) and (14) yield, in the lindit— 0, the
hypergeometric solutions tg,Req.(30) forp = 2N + 1, eqgs. (34), (33) and (32).
Proof. Noticing that
W(gM) = =ie? S v(s+ 6),
the linear equation eq.(6) can then be rewritten as
562

v(s), (38)

which yields eq.(34) in the limid — 0. We next consider the limit afy and the dependent variable transformation.
The determinanty (N > 0) can be rewritten as

V(sS+6) +Vv(s—0) = 26

v(t) i2v(gPt) j2N-2(2N-2t)

Nri logt i_1V(C1‘1t) |V(qt) i2N_3V(q2N_3t)

N e 2 logq ) )

i—N+1V(.q—N+lt) i—N+3V(.q—N+3t) iN_lV(.qN_lt)
v(s) V(s + 26) V(s + (2N - 2)5)
o2 innenz| V579 V(s +9) Vs + (2N - 3)
V(s— (N -1)5) wv(s- (N - 3)0) v(s+ (N —1)9)

¥ B INN-DI2 ()



so that .
I on(S)ons1(S+ 6)

= W\ NHS T 39
N on(s+ 6)on+a(9) (39)
We also note that
on(9) = (-26°)NND2 [y + O(9)] .
Therefore we deduce
1, F 1 d KN+1 5 d KN+1

=-Zlog— =-=log|1+6|—1 O =——| O(9). 40
w 609| 609 +(dsogKN)+ (6)} dsogKN+ (6) (40)

The limit in the case oN < 0 can be verified in a similar manner.
Now let us consider the limit of the solution of the linear equation eq.(6). The two linearly independent power-
series solutions of the Airy equation eq.(34) are given by

- g 1 1.4 1-4-7
oFl(z' ):1——s3+—se— S+,

23 3l 6! ol
$ 2, 25, 2.5.8 )
. _ 4 ) 7 _ e E}O
SOFl( 3 ’_32)_5_ TR TR 0]

However as is apparent from the series expansion of hypergeometric functions in eq.(7) the application of the
scaling changes of variables in eq.(29) does not yield any meaningful lidiita® on a term by term basis. What

is required is another representation of these functions and a uniform, possibly asymptotic, expansion with respect
to the other parameters gs— 1. This question has been addressed in [25] and for the most part answered there.

We discuss the continous limit of the hypergeometric funct'mms{ _Oq ok iqt) in the next section.

3.2 Continuous Limit of the Hypergeometric Functions
There are three key ingredients in [25] which are necessary to derive the final formula that we require. The first
is a suitable integral representation for tlfq;q( 8 ;0 x) function and this is thel-analog of the Mellin-Barnes

inversion integral.

Proposition 3.3. [4, 25] The representation

T Y Do Jpieo 2ni Zw (42)

1901(8;Q, X) _ @9 ("7 42 iogxiogq /7 Qs

is valid forx,y € C, with|argX)| < 7,y #q " (n€ Z5),0<p<land0< q< 1

Remark3.1 Proposition 3.3 follows by evaluating the integral on the contour described in Fig.1 with the residues
atz=q™"

. qC)
Regz o) = (-1 ————nt,
z=q™" (9; On(9; oo

and by deforming the pai@ appropriately according to Cauchy’s Theorem.

n € ZZO’ (43)

The second ingredient is an asymptotic formula forgkehifted factorial (; ) asq — 1 which is uniform
with respect td. Such expansions have only recently been studied and in particular by Meinardus [19], McIntosh
[16, 17, 18] and the above cited work [25]. Amongst all the essentially equivalent forms we choose the following
statement:

Proposition 3.4. [19, 25, 18] Asg — 1" theg-shifted factorial(t; )., has an asymptotic expansion

BZn
(2n)!

2n-2
(tﬂ) T logg™™, (44)

1 1 S
l0g(t; Q) ~ (5o Lia(®) + 5 log(1 - + > &
n=1



Im

cut

Figure 1: Contour for Proposition 3.3.

for 0 < g < 1and uniform fort in any compact domain @f such thatarg(1-t)| < #. HereLi(t) is the dilogarithm

function defined by
. ' log(1- o
Li,(t) = —f log-w du= ) —, (45)
0 u rel

and By, the even Bernoulli numbers. In the case efq we have [22]

2

1 log + O(logq). (46)

10g(d; Pew = 7o + 5 10
6logqg 2

—logq
We next apply Proposition 3.4 to the integral representation eq.(42). Noticing-giafted factorials in the
integral representation are rewritten by putting e € as
(Y/zZ 0)eo 7 logx/logg _ e%[—Liz(y/z)+Li2(z)+log xlogZ] % e%[log(l—%)—log(l—z)] x [1 + O(é)]
(Z Deo ’

and @0 [ Z]
QDo _ _2|LizW)~% |+3 log Z~3 log(1-y)
——— =€ x [1 + O(e)],
v D [1+0(e)]
we obtain:

Proposition 3.5. Letx,y € Candq = e € for e > 0. Then

o 0.q x| = 1 fpmo et[logxlogz-Liz(%)+Liz(2)] o3 [log(1-$)-1og(1-2)]| 47 [1+O(e)] (47)
y' ' 2ni p—ico ’

where|arg(x)| < 7, Rey < p.

Remark3.2 We take logz on its principal sheet cut along-¢, 0] and Lk(2) on its principal sheet cut along
(1, +00). If X,y € (0,1) then forz € (y, 1) the argument of

log xlogz — Liz(lz’) +Lis@) (48)
is zero. Wherz € C subject to
largz <, |arg(l-2)| <n, |arg(1— >E/)| <m,
that is we exclude the rays,(®), (-0, 0) and (Qy), it follows that the argument of eq.(48) lies in the interval
(=, ). The contour path given in Proposition 3.5 is then just a simple path + it (Rey < p < 1,t € (=00, ))

satisfying these criteria and the requirement that the endpoints of the contour ensure the existence of the integral.
If the contour is deformed then eq.(47) is valid if the contour does not cut across theyay (0



The third ingredient is the application of saddle point method to the Laplace type integral in eq.(47). In this
problem two saddle points arise and can coalesce depending on the values of the parameters. Therefore we have to
construct an asymptotic approximation that incorporates the contributions from both saddle points uniformly with
repsect to their separation. A method for such an asymptotic expansion of this type of integral has been set out by
Chester, Friedman and Ursell[2, 32, 33].

To illustrate the method, let us consider the integral

| = Zj'ﬂfeeg(z")f(z)dz, € — 0,

wheref (2) is analytic with respect tp andg(z d) is analytic with respect teand the parametel. We assume that
there are two saddle points andz, which are determined frorg(z; d) = 0 and that they coalesce whdn= 0.
The key of this method is to introduce the change of variable u via the cubic parameterization

g(z d) = %ug —au+p, (49)
wherea andg are determined as follows. FirstlyftBrentiating eq.(49) we have
7 [ dZ 2
gzdg. =v-a (50)

In order for eq.(49) to define a single-valued analytic transformation negﬁemor %‘lé can vanish in relevant
regions. Therefore at the saddle points we have the correspondence

1

Z=27 <—>u=a%, Z=2 o U= —a2, (51)

which determines andg as

a3 = g(z;d) - 9(z; d), 28 =g(z;d) + g(z; d). (52)

w|4>

The transformation = u(z d) defined by egs.(49) and (52) has three branches. However, it can be shown that
there is exactly one branch which has the following properties[2, 33l &) u(z a/) is expanded into a power
series inz with codficient continuous ird neard = 0, (ii) z andz, correspond tarz and—a? respectively, and
(iii) neard = 0 the corresponden@ uis 1:1.

We next expand (2) in the form

f(z)— Z(pm+ Amu)(W? - @)™, (53)
and define the following integrals
— _f = —(tu)(UZ _a,)m dU,

szﬁ C/e(3u "”)(u - a)"udy

m=0,1,.... (54)

HereC’ is the image ofC by the transformation given by egs.(49) and (52). By using recursion relatiofg,for
andG, obtained by partial integration, the expansion g&n be written in the form

| = ¢ [E%V(agé) Z ame™ + €3V (aed) Z bmgm] , (55)
m=0 m=0
where

a8 = Po, bo=—0o, (56)

andV(Q) is the Airy integral

1 13

V(a4 3U- gy, 57
(=57 | e du (57)

10



The codficientspy andqp are determined by putting= z, u = at andz=2, U= —atin eq.(53) as

d d
o gl (5|

o=t @), ()]

Prellberg [25] has applied the above expansion to the integral representation eq.(47) to obtain its leading behaviour
ase — 0for 0< x,y < 1 as follows:

(58)

Proposition 3.6. [25] Let 0 < X,y < 1 andq = € € withe > 0. Then as — 0 we have

0 i 1.2,1 2r
. _ =[Lia(y)-z7°+ 5 log xlogy]
1Q, X = e« 6 2 -
M(v q ) Ve(l—y)

x [ poe’ Ai(ae3) - qoe 3 Ai’ (ae™3)] [1 + O(e)] . (59)
where the auxiliary variables are
4022 = |ogx|og[z'“ — ‘ﬂ) + 2Lig(zZm — Vd) — 2Lix(zm + Vd), (60)
3 Zm+ Vd
with 1
+y-X
=22 d=Z-vy, (61)
and 14
a\/41-x-y d
Po = (a) 5> W= (a) : (62)

Remark3.3. Errors in the statement of this result as given in [25] have been fixed, in particular the sigrggf the
term in eq.(59) and the factor of 2 in the denominatopgi eq.(62).

In our case, the parameters are given by
53
E,
and unfortunately, they do not match the assumptions of Proposition 3.6. Therefore we have to consider the

extension of Proposition 3.6 for our case, taking care of the multi-valuedness of the integrand. We fix the branch
of log and fractional power functions as

8 8 52  _sg2, s

€= g=€7, y=-€7=-1+—, X=Fqt=F2e2""7 =x(2-iss?-i6>+---),  (63)

si3

logz=In|Z +iArgz, -m<Argz<n, Zn = exp(? log z) =|47enA9Z

Note that logKY) = log X + log Y and log¥/Y) = log X — log Y are valid only mod 2i.
Substituting eq.(63) into eq.(47) and expanding the integrand with resp&owtoobtain:

Proposition 3.7. With the substitutions eq.(63) we havesas 0

0 . 1 o+ico 240 2n % %_éJr%éz 3

1901(_q,q,—qt) = 55 f/ N ea%@f (2) olzx(5 e )x[1+0(6 )] (64)
. 1

0 . 1 o+ico 24, 2r\2 (%3‘%)’%63 3

ol Saa) = o [T e a () AT 1iow). @)
where0 < p < 1and

9 = Liz(z)—Lig(—%)ﬂog(zie-sf)mgz, (66)
f 2 = e—%Iog(l+%)—%log(l—z)—logz’ (67)
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0:(2 = Lix(2-Li; (—%) +log (—2ie‘sa72) logz, (68)
f.(2 = e’% log(1+1)- 4 log(1-2)-log z (69)

Let us take the case af= —qt and apply the saddle point method to egs.(64), (66) and (67). The saddle points
2(1_) andz(z‘) are determined by

2
1)  log(2ie =
ogL— log(1+1) log(2ie¥)
4 - — — = 7
e . L ——— =0, (70)
which yields the quadratic equation
Z+2ieTz-1=0. (71)
Therefore the saddle points are given by
2)=2n+D, Z)=2y-D, zn=-ie %, D?=Z+1, (72)
or expanding in terms of we obtain
.S, 1 s 3
Zn=—-i+—=6+--, D=s2§——6"+---, (73)
2 4
z(lf)z—i+s%6+§62+--~, é’)z—i—s%6+§'62+-~-. (74)

The quantity is calculated by using eq.(52) as
oz -9”)

= Liy(@Zn- D)—Liz(—

NIlw
Il

wl s
Q

! D) +log (2ie‘%2) log(zm — D)

. . 1 L _s?
—Li, (zn+ D) + le(—m) - Iog(2|e )Iog(zm + D)

2

= 2[Li2(zn - D) - Liz(an+ D)] + log(2ie"* ) l0g(zn - D) ~ Iog(zn + D))
- Ay, 0(5°)
3
where we have us% = —(zn ¥ D). Therefore we conclude
a = 273362+ 0(6%). (75)

We can derive this fos in the sector-n < Arg(s) < x/3 but it actually holds without this restriction. The
reason for this is thaty; is an analytic function of € C and therefore o6 € C. Consequently the leading
term of the expansion ofp; asé — 0 is analytic with respect te as the remainder terms can be shown to be

uniformly bounded ins under this limit. Let us next computg andqp according to the formula eq.(58). From
the correspondence

_ . is _ 7
Z:Z(1)=_|+3%6+§62+'“ —> u:u(l):a%zz_%s%eg5+0(53)

_ . is _ 1
z=é)=—|—s%6+562+-«- — u=u) =—a? = -273ste¥5 + O(5%)
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we obtain (le/du)zzzg-{é-) as

dZ]_ .
2+ 2 i
(d_Z) _ (ag)é»vo _ S 1+1|Sf + 0(5 ) — 2%6_3 (1+ |S%5 + 0(52)),
du/, du” 273s7e% + O(62)
0 6~0
dz
s - 3 i 2 1 i 1
(d_z) = (HE)M = Szl+1'sf + O°) =23g’ s (1 —is26 + 0(62)).
du/,£) du’ ~2-3sze% + 0(62)
0 6~0

Substituting eq.(74) into eq.(67) we have
f(7) =27%e% (1-isto+--), (&) =2"%ed (1+isto+---),

from which we obtain

L (@ ) (d s a
Po = > [f(z(1 )) (d_i)zzz(l) + f(z(2 )) (d_lj)z:é)] =2 6elz + 0(52), (76)
= (%) S (®) |-
v = | &), ) -oee ™

We computeB by using eq.(52) as
28 = 9@ +9z)
~ UG- D)~ Lia -

D) + Iog<2ie‘%z)log(2m _D)

+ Li2(@Zn+D)- Liz(—zm1 )+ Iog(2ie‘%z)log(zm+ D)

+D
~ log (2ie-%2) [10g(Zn — D) + log(zm + D)], (78)
which yields
o P [ 4
B= 2In2+4+456 + O(57). (79)

Remarlk3.4. The multi-valuedness of the integrand has a criti¢éget in the calculation g8. One might compute
B from eq.(78) as

28 = |og(2ie-%2) [109(zn — D) + log(zm + D)] = |og(2ie-%2) log(Z - D?)

i 2
log (2ie’§72) log(-1) = —xi(In2 + o i),

2 2

but the second equality does not hold in general (in this case it is accidentally correct). In fact, the same procedure

for the case ok = gt yields wrong result.

Let us finally consider the image of integration p&th z = p + it (-0 < t < ) in theu-plane. From the
identity of dilogarithm[14, 3]

2
Lio(2) = —Liz(é) - }(Iog 2)? +nilogz + ”—, (80)
z7 2 3
we see fot — +oo
. . . . 1 1 N2 . 72
g-(o+it) ~ Lix(o+it) = —Lio(——=) — =(log(p + it))* + xi log(p + it) + —
p+it” 2 3
- —%(log 1t + %' logltl, t— oo, 81)
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therefore .

u(o +it) ~ (3g_(po + it))% ~ g5 (;(Iog |t|)2) , 1 — +oo.
This gives the integration paty ascoe™3 — O — coe?, which impliesV(1) = Ai(1). Closer investigation shows
that the mapping given by eq.(49) is regular and 1:1 in the domain incl@&iing

Collecting the above results and performing similar calculations for the case qgt, we obtain the following
asymptotic expansions from eq.(55):

Proposition 3.8. With the substitutions eq.(29) we havesas 0

(50
Wil g &

e
Wil g &

for sin any compact domain @f.

opbs-ta B2 gs s [Ai(se%') N 0(62)], (82)

Now we are in a position to deduce the limit of the general solution to eq.(6). From egs.(37) and (7) we note
that

_ i logt 0 zi logt 0
V(t) = Ag 2o 1901( _q 10, _qt) + Be2iougq 1901( g ;O qt) , (84)
for arbitraryg-periodic functionsA, B. Observing that
i logt %(iﬂi”‘lZ?é)t%S
g 2o = @b x [1 + O(5)], (85)

we find that thes-dependence in the exponential pre-factors of egs.(82) and (83) cancels exactly. Therefore we
finally arrive at the desired result:

Theorem 3.9. We have ag — 0
22 n i 72 _ i 7
v(t) = 2\/§ [A e3 " 2Ai(e3s) + Be 27 2Aj(e 3 9)| x [1+ O], (86)

for sin any compact domain @ and constant#\, B € C.

4 Concluding Remarks

In this article we have considered thePainlee equation dﬁ(gl)), eg.(1), and constructed its classical solutions
having a determinantal form with basic hypergeometric function elements. We have also discussed the continuous

limit to P;,. In particular, we have shown that hypergeometric funct'@ns( _Oq o 7th) actually reduce to the

Airy functions Ai(e%) by applying a generalization of the saddle point method to their integral representations.
We first remark that pPeq.(30) admits rational solutions fgr= 2N (N € Z) which can be expressed in terms of
a specialization of 2-core Schur functions[11]. Such solutions are obtained by appiéktuBd transformations
to the simple rational solution that is fixed by the Dynkin diagram automorphism. One would expect similar
rational solutions for eq.(1), however Masuda has shown that there is no rational solution fixed by the corresponding
Dynkin diagram automorphism [15]. This implies that it is not appropriate to regard eq.(1) simphgamalbg
of P
Secondly, we observe an asymmetry in the structure of determinant formula eq.(13); the shiffstie
entries are dferent between the horizontal and the vertical directions. It might be natural to regard this structure
as originating from the asymmetry of the root lattice. Actually in other cases where this situation arises, such as
the AL surface(t-Py” and “g-Pu”, (A2 + A1) D-symmetry)[10, 7]AL surface(t-Py”, Al-symmetry)[5] orAL)
surface(g-Py,”, Dél)-symmetry)[Bl], the determinant structure is symmetric. Such an asymmetric structure of the
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determinant is known for several discrete Paigleguations - one example is the “standard” discrete Pdrlev

equation[27, 13]

(@an+b)x, + ¢
1-x2 7

wherea, b, c are parameters. Equation (87) may be regarded as a special case of the “asymmetric” discreée Painlev

Il equatiorf[29, 23, 28]

Xni1 + Xn-1 = (87)

(an+ b)x, + ¢+ d(-1)"
1-x2 ’

Xns1 + Xn-1 = (88)
whend = 0, which is actually a discrete Painkequation associated with th)él) surface and arises as a&klund
transformation of the Painléw equation (). Therefore the hypergeometric solutions for (88) are expressible
in terms of the Whittaker function and are the same as those/f@8P However, the hypergeometric solutions
for eq.(87) are quite dlierent; the relevant hypergeometric function is the parabolic cylinder function and the
determinant structure has the same asymmetry as that f@télf:)FE(q.(l). A similar structure is known for the
“standard” discretegr)Painle\e Il equation (dip )[27, 12]

Xne1Xn-1 (X0 — C10")(Xa — C2Q")

= 89
did> (X = d1)(% — do) (69)
and theg-Painlee VI equation ¢-P,) [6, 29],
VoYt = a3a4(Zn+1 — 019")(Zn+1 — b2q")
o (Zn1-bg)(Zi—bs) 7 bbb, aap (90)
7y  DoPa0h = B1d) (o — o) bsbs  Jasas’
+1 — ’

(Yn — a3)(Yn — )

wherea;, b (i = 1,2,3,4), ¢; andd; (j = 1, 2) are parameters. The hypergeometric solutions for eq.(90) are given
by the basic hypergeometric serigsg [31] while those for eq.(89) are given by JacksapBessel function[12].

Thus the results of our study sheds some light on the “degenerated” equations such as eqs.(87) or (89). They are
not just special cases of the original “generic” equations. Our results imply that pdttr@in eq.(88) is not just
killing the “parity”, but causes qualitative change of the root lattice which in turn resultfferelnt hypergeometric
solutions and an asymmetry of the determinant formula. Therefore they should be studied independently of the
“generic” discrete Painlévequations in the Sakai’s classification[30].
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